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Role of IR Generator

e To act as a glue between front-end and
backend (or source and machine codes).

* To lower abstraction from source level.
- To make life simple.

* To maintain some high-level information.
— To keep life interesting.

 Complete some syntactic checks, perform more
semantic checks.

- e.g. break should be inside loop or switch only.



Representations

Syntax Trees

- Maintains structure of the construct
- Suitable for high-level representations

Three-Address Code

- Maximum three addresses
INn an instruction

- Suitable for both high and
low-level representations

Two-Address Code

- eqg.C

o
iu

t1=3*5
t2=t1+4

mult 3, 5
add 4

push 3
push 5
mult
add 4

3AC

2AC

1AC
or

stack

machine



Syntax Trees and DAGS

ata*(b-c)+(b-c)*d

® 9

@ ® ) 5@ /@@
L ‘@%z

® Q6 &
@%@

Production
E-E+T
E-E-T
E-T
T-(E)

T - id
T - num

® ©

Semantic Rules

A small problem:
subgraph isomorphism
iIs NP-complete.

$$.node = new Op($1.node, '+', $3.node)
$$.node = new Op($1.node, '-', $3.node)

$3$.node = $1.node
$3.node = $2.node
$$.node = new Leaf($1)
$$.node = new Leaf($1)




Value Numbering

a+a*b-¢c)+(b-c)*d

}k }k

@ A small problem:
< subgraph isomorphism
@ Q Q @ @ is NP-complete.

® Q0 © 1) 24
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« Uniquely identifies a node in the DAG.

« A node with value number V contains children of numbers < V.

* Thus, an ordering of the DAG is possible.

» This corresponds to an evaluation order of the underlying expression.

e For inserting | op r, search for node op with children | and r.
 Classwork: Find value numbering fora + b + a + b. 6



Three-Address Code

 An address can be a name, constant or temporary.
o Assignments X =y op z; XxX=0pY.

e Copy X =Y.

» Unconditional jJump goto L.

» Conditional jumps if x relop y goto L.

 Parameters param X.

* Function call y = call p.

* Indexed copy x = VyJi]; X[i] = .

* Pointer assignments X = &y; X = *y; *X = .




e Triples
 Quadruples

tl
t2
t3
t4
t5

3AC Representations

Assignment statement.a =b *-c + b * -

= minusc
= b*tl

= minusc
= b*t3

= t2+t4
= t5

op
minus

*

minus

*

+

argl arg2
C
b tl
C
b t3
t2 t4
t5

 Instructions can be
\ reordered.

y

result

tl
t2
t3
t4
t5
a
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Instructions cannot be

reordered.

argl

arg2

(0)

(2)
(3)
(4)



3AC Representations

* Triples —

Instructions cannot be
reordered.

 Quadruples

Assignment statement:a =b *-c + b * - ¢;

op argl arg2

(0) (2) 0 minus  c
(1) (3) 1 % b (0)
(2) (0) 2 minus ¢
(3) (1) 3 b (2)
(4) (4) 4.+ (1) (3)
(5) (5) 5/ = a (4)

Indirect triples can be reordered



SSA

* Classwork: Allocate reqisters to variables.

e Some observations

— Definition of a variable kills
Its previous definition.

— Avariable's use refers to
Its most recent definition.

* |+

+ |
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- Avariable holds a register for
a long time, If it is live longer.
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SSA

o Static Single Assignment

- An IR
- Each definition refers to a different variable (instance)
If (flag)
if (flag) X, = -1; \
K== else
else v =1 flag
X =1 c
_ . X, = DX, X))
=X * a. 3 17 2
y y =X, *a; ‘/\‘
Xx=-1 x=1
Al
y=X*a

 / 11



SSA

» Classwork: Find SSA form for the following

program fragment.

x = 0;

for 1 =0;1< N; ++1) {
X +=1;
1=1+ 1;
X--,

}

X =X + 1

X, = 0;
1, =0;
L1:

1, =P34, 1,);
if (1, < N) {

X3 = PX,;, X,);

X, = X3 + 1,

1, =1,+1;
X, =X, — 1,
1, =1, + 1;
goto L1;

}

x, = O(x,, X,);

X5 =X, + 113;

12



Language Constructs

to generate IR

Declarations

- Types (int, int [], struct, int *)

- Storage qualifiers (array expressions, const, static)
Assignments

Conditionals, switch

_oops

—unction calls, definitions

13



SDT Applications

* FInding type expressions
- Int a[2][3] is array of 2 arrays of 3 integers.
- In functional style: array(2, array(3, int))

Production Semantic Rules
T-BidC Tt=C.t
C.i=B.t
B - int B.t =int
B — float B.t = float
- C.t = array(nhum, C_.t
nt C-[num]C, | .y( 1)
C.1=C.
C - ¢ Ct=C.

p
Classwork: Write productions and semantic rules for computing W
types and finding their widths in bytes. 14




SDT Applications

* FInding type expressions
- Int a[2][3] is array of 2 arrays of 3 integers.
- In functional style: array(2, array(3, int))

Production Semantic Rules
T-BidC Tt=C.t T.sw = C.sw;
C.i=B.t; C.iw = B.sw;
B - int B.t = int; B.sw = 4;
B — double B.t = double; B.sw = §;
int C-[num]C,  Ct=array(num, C,.t);

C,.i=C.; C.sw=C_.sw* num.value;

C - ¢ Ct=C.i; Csw=_C.iw;

p
Classwork: Write productions and semantic rules for computing W
types and finding their widths in bytes. 15




Types

* Types encode:

- Storage requirement (number of bits)
- Storage interpretation (meaning)
- Valid operations (manipulation)

For Instance,
- 1100..00 may be char[4], int, float, int[1], ...

16



Type Equivalence

e Since type expressions are possible, we need
to talk about their equivalence.

» Let's first structurally represent them.

* Question: Do type expressions form a DAG?
Can they contain cycles?

X y
_ int/ float
INt
union { struct node {
int X; int data;

int a[2][3] float y; struct node *next; 17

b h



Type Equivalence

Compare against
assembly code.

* Two types are structurally equivalent
Iff one of the following conditions is true.

1. They are the same basic type.
Name

2. They are formed by applying the same * equivalence
constructor to structurally equivalent types.

3.0ne Is a type name that denotes the other.  typedef

L 4

int a[2][3] Is not equivalent to int b[3][2];

Int a 1s not equivalent to char b[4];

struct {int, char} is not equivalent to struct {char, int},
Int * is not equivalent to void *. .

2

4

L 4



Type Checking

Type expressions are checked for

— Correct code
— Security aspects
- Efficient code generation

Compiler determines that type expressions
conform to a collection of logical rules, called as
the type system of the source language.

Type synthesis: If f has type s — t and x has type
S, then expression f(x) has type t.

Type inference: If f(X) Is an expression, then for
some a and [3, f has type a — [3 and x has type «q.



Type System

« Potentially, everything can be checked
dynamically...

- If type information Is carried to execution time.

* A sound type system eliminates the need for
dynamic type checking.

* Alanguage implementation is strongly typed if a
compiler guarantees that the valid source
programs (it accepts) will run without type errors.

20



Type Conversions

e inta=10; floatb =2 * a;
 Widening conversions are safe.

- Int32 - long32 - float — double.
- Automatically done by compiler, called coercion.
* Narrowing conversions may not be safe.
- Int — char.
- Usually, enforced by the programmers, called casts.
- Sometimes, deferred until runtime, dyn_cast<...>.

21



Declarations

 When declarations are together, a single offset
on the stack pointer suffices.

- int x, y, z; funl(); fun2();

* Otherwise, the translator needs to keep track of
the current offset.

- Int X; funl(); inty, z; fun2();

* A similar concept Is applicable for fields in
structs (when methods are present).

* Blocks and Nestings
- Need to push the current environment and pop. =



Expressions

* We have studied expressions at length.

* To generate 3AC, we will use our grammar and
Its associated SDT to generate IR.

e For instance, a = b + - ¢ would be converted to
- t1 =minus c
-12=b+1tl
- a=t2

23



Array Expressions

e For instance, create IR for ¢ + alil[jl.

e This requires us to know the types of a and c.

e Say, cIs an integer (4 bytes) and a Is int [2][3].
 Then, the IR Is

tl=1%*12 : 3 * 4 bytes

t2=3%4 : 1 * 4 bytes

t3=t1 +t2 ;offset from a

t4 = a[t3] ; assuming base[offset] is present in IR.
tOh=c+t4




e a|5

e ali]

Array Expressions

IS a + 5 * sizeof(type)

3] for a[31[5] is a + 1 * 5 * sizeof(type) +j *

sizeof(type)
* This works when arrays are zero-indexed.

* Classwork: Find array expression to be generated
for accessing alilljllk] when indices start with low,

and array Is declared as type a[10][20][30].

 Classwork: What all computations can be
performed at compile-time?

« Classwork: What happens for malloc’ed arrays?:



Array Expressions

void fun(inta[ ][ ]) { We view an array to be a D-
a[0][0] = 20; dimensional matrix. However, for
} the hardware, it is simply single
void main() { dimensional.
Int a[5][10];
fun(a);
printf("%d\n", a[0][0]); -
}

ERROR: type of formal parameter 1 is incomplete

 How to optimize computation of the offset for a I
long expression alilljlik][1] with declaration as
int alw4][w3][w2][w1]?

- 1*w3*w2*wl+j*w2*wl+k*wl+1

- Use Horner'srule: (1 * w3 +j) *w2 + k) *wl + 1 :



Array Expressions

e In C, C++, Java, and so -+ In Fortran, we use

far, we have used row-  column-major storage
major storage. - format.
— All elements of aroware - each column is -
stored together. stored together.
0,0 0,2 ‘ -
’ ’ 0,0 2,0
L n
B .
\ L
I - - I
03 1,3 23 -
|
I L



IR for Array Expressions

e L — id [E] | L [E]

L~ id[E]

L-L [E]

E-id
E-L

E->E +E

S-id=E
S—-L=E

{ L.type = id.type;
L.addr = new Temp();

/[ maintain three attributes: type, addr and base.

gen(L.addr '=' E.addr ** L.type.width); }

{ L.type = L .type;
T = new Temp();
L.addr = new Temp();

addr is syntax tree node,
base is the array address.

gen(t '=" E.addr ™' L.type.width);

gen(L.addr '=' L .addr '+'t); }

{ E.addr = id.addr; }

{ E.addr = new Temp();

gen(E.addr '=' L.base '[' L.addr T); }

{ E.addr = new Temp();

gen(E.addr '=' E .addr + E_.addr); }

{ gen(id.name '=' E.addr); }

{ gen(L.base '[' L.addr T '=" E.addr); }

28




tl=1%*12

2= * 4
t3 =tl1 + t2
t4 = a[t3]
th=c+t4d
L~ id[E] { L.type = id.type;
L.addr = new Temp();
gen(L.addr '=' E.addr ** L.type.width); }
L~ L [E] {L.type =L .type; addr is syntax tree node,
t = new Temp(); '
L addr = new Temp() base is the array address.
gen(t '=' E.addr *' L.type.width);
gen(L.addr '=' L .addr '+'t); }
E - id { E.addr = id.addr; }
E - L { E.addr = new Temp();
gen(E.addr '=' L.base ' L.addr '); }
E_-E +E { E.addr = new Temp();
gen(E.addr '=' E .addr + E_ .addr); }
S - id=E { gen(id.name '=' E.addr); } 29
S>> L=E {gen(L.base T L.addr '] '=" E.addr); }




printMatrix

 What's wrong with this code?

int a[1][2], b[3][4], c[5][6]; | int a[1][2], b[31[2], c[5][2];

printMatrix(a); printMatrix(a);
printMatrix(b); printMatrix(b);
printMatrix(c); printMatrix(c);

30



Control Flow

e Conditionals

- If, Iif-else, switch
e Loops

- for, while, do-while, repeat-until
* We need to worry about

- Boolean expressions
- Jumps (and labels)

31



Control-Flow — Boolean Expressions

B-B||B|B&&B|!IB|(B)|ErelopE | true | false
relop - <|<=|>|>=|==|1I=

What is the associativity of ||?

What is its precedence over &&?
How to optimize evaluation of (B, || B,) and (B, && B,)?

— Short-circuiting: if (x < 10 && vy < 20) ...

- Classwork: Write a C program to find out if C uses
short-circuiting or not.

o If (b && p->next) ...

32



Control-Flow — Boolean Expressions

e Source code:
-1f(x<100 | | x>200 && x!=y)x=0;

e |IR:

without short-circuit

0]l = x <100

n2 = x> 200

N3 =X I=y

Iftrue bl goto L2
Iffalse b2 goto L3
Iffalse b3 goto L3
L2:

X =0;
L3:

with short-circuit

bl =x<100

Iftrue b1l goto L2

b2 =x > 200

Iffalse b2 goto L3

b3=x!=y

Iffalse b3 goto L3
L2:

X =0;
L3:

33



3AC for Boolean Expressions

B - B ||B,

/] attributes: true, false, code
/| B.true, B.false are available.
/I B,.code, B,.code are available.

B - B, &&B,

B .true = B.true;

B, .false = newLabel();

B._.true = B.true;

B .false = B.false;

B.code = B,.code +
label(B, .false) +
B..code;

B, .true = newLabel();

B .false = B.false;

B._.true = B.true;

B .false = B.false;

B.code = B,.code +
label(B,.true) +
B..code;

34



3AC for Boolean Expressions

B - IB,

B - E relopE,

B - true

B - false

B .true = B.false;
B .false = B.true;
B.code = B,.code;

B.code = E, .code + E .code +
gen('if' E .addr relop E..addr
'goto’ B.true) +
gen(‘goto’ B.false);

B.code = gen('goto’ B.true);

B.code = gen('goto’ B.false);

35



SDD for while

S—>while(C)S

/I S.next, S.code
/I C.true, C.false, C.code

1

L1 = newLabel();

L2 = newLabel();

S .next =L1;

C.false = S.next;

C.true =1L2;

S.code ="“label”’ + L1 +
C.code +
"label” + L2 +
S .code +

gen('goto’ L1);

36



3AC for If / if-else

S - if (B) S,

S - if(B) S,else S,

B.true = newLabel();
B.false = Sl.next = S.next;

S.code = B.code +
label(B.true) +
S, .code;

B.true = newLabel();
B.false = newLabel();
S .next = S .next = S.next;

S.code = B.code +
label(B.true) + S, .code +
gen(‘goto’ S.next) +
label(B.false) + S, .code;

37



Control-Flow — Boolean Expressions

» Source code: If (x <100 || x > 200 && x I=y) x = 0;

without optimization
bl =x<100
b2 = x> 200
b3=x!=y
Iftrue bl goto L2
goto LO
LO:
Iftrue b2 goto L1
goto L3

L1

.iftrue b3 goto L2

with short-circuit

bl =x<100
Iftrue bl goto L2
b2 = x> 200
Iffalse b2 goto L3
b3=x!=y

Iffalse b3 goto L3

L2:

X =0;

L3:

38

Avoids redundant gotos.




Homework

* Write SDD to generate 3AC for for.
- for (S1, B; S2) S3

* Write SDD to generate 3AC for repeat-until.
- repeat S until B

39



Backpatching

» /f (B) S required us to pass label while
evaluating B.

— This can be done by using inherited attributes.

» Alternatively, we could leave the label
unspecified now...
- ... and fill it in later.

« Backpatching is a general concept for one-pass
code generation

B — true B.code = gen(‘goto —);

B - B, |B, backpatch(B,.false);

40




break and continue

* break and continue are disciplined / special gotos.

e Their IR needs

— currently enclosing loop / switch.
- goto to a label just outside / before the enclosing block.

 How to write the SDD to generate their 3AC?

- elther pass on the enclosing block and label as an
Inherited attribute, or

- use backpatching to fill-in the label of goto.
- Need additional restriction for continue.

» Classwork: How to support break label? “



IR for switch

Using nested If-else |
_ _ switch(E) {
Using a table of pairs case V,: S,
_ <V S> case V.. S,
Using a hash-table caseV, 'S,
o default: S_
- when i is large (say, > 10) )

Special case when Vs are
consecutive integrals.

- Indexed array Is sufficient.

42



t = code for E
goto test
L,: code for S1

goto next
L2: code for S

goto next

2

L ,:code forS_,

goto next
L : code for S_

goto next

test:
!f t=V,goto L,
ift=V, gotoL,

ift=V_ _ gotoL
goto L_

next:
Sequence of statements,

Sequence of values

1

t = code for E
ift!=V gotolL,
code for S,

goto next
L:ift!=V, gotoL,
code for S,

goto next

L.:

2

L :ift!I=V_ _gotolL
code for S_,

goto next
L _,: code for S_

next:

Sequence of
values and statements

1

switch(E) {
case V. S,
case V.. S,
caseV .S |
default: S_

}

43



Functions

 Function definitions

- Type checking / symbol table entry
- Return type, argument types, void
- Stack offset for variables

- Stack offset for arguments

e Function calls

- Push parameters

- Switch scope / push environment
- Jump to label for the function

- Switch scope / pop environment
- Pop parameters



Summary

Declarations

- Types (int, int [], struct, int *)

- Storage qualifiers (array expressions, const, static)
Assignments

Conditionals, switch
Loops
Function calls, definitions

45
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