
Intermediate Code Generation

Rupesh Nasre.

CS3300 Compiler Design
IIT Madras
July 2018

2

Intermediate
Code Generator

Intermediate
Code Generator

Syntax AnalyzerSyntax Analyzer

Lexical AnalyzerLexical Analyzer

Semantic AnalyzerSemantic Analyzer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent
Code Optimizer

Machine-Independent
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate representation

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

Target machine code

Symbol
Table

F
 r

 o
 n

 t
 e

 n
 d

B
 a

 c
 k

 e
 n

 d

3

Role of IR Generator

● To act as a glue between front-end and
backend (or source and machine codes).

● To lower abstraction from source level.
– To make life simple.

● To maintain some high-level information.
– To keep life interesting.

● Complete some syntactic checks, perform more
semantic checks.
– e.g. break should be inside loop or switch only.

4

Representations
● Syntax Trees

– Maintains structure of the construct
– Suitable for high-level representations

● Three-Address Code
– Maximum three addresses

in an instruction
– Suitable for both high and

low-level representations
● Two-Address Code
● …

– e.g. C

++

44**

33 55

t1 = 3 * 5
t2 = t1 + 4

t1 = 3 * 5
t2 = t1 + 4

push 3
push 5
mult
add 4

push 3
push 5
mult
add 4

mult 3, 5
add 4

mult 3, 5
add 4

3AC

2AC

1AC
or
stack
machine

5

Syntax Trees and DAGs

a + a * (b – c) + (b – c) * d

++

**++

aa ** -- dd

bb ccaa --

bb cc

++

**++

** dd

aa --

bb cc

Production

E → E + T

E → E - T

E → T

T → (E)

T → id

T → num

Semantic Rules

$$.node = new Op($1.node, '+', $3.node)

$$.node = new Op($1.node, '-', $3.node)

$$.node = $1.node

$$.node = $2.node

$$.node = new Leaf($1)

$$.node = new Leaf($1)

A small problem:
subgraph isomorphism

is NP-complete.

A small problem:
subgraph isomorphism

is NP-complete.

6

Value Numbering

a + a * (b – c) + (b – c) * d

++

**++

aa ** -- dd

bb ccaa --

bb cc

++

**++

** dd

aa --

bb cc

A small problem:
subgraph isomorphism

is NP-complete.

A small problem:
subgraph isomorphism

is NP-complete.

2 3

41

5

6

7

8

9

● Uniquely identifies a node in the DAG.
● A node with value number V contains children of numbers < V.
● Thus, an ordering of the DAG is possible.
● This corresponds to an evaluation order of the underlying expression.
● For inserting l op r, search for node op with children l and r.
● Classwork: Find value numbering for a + b + a + b.

7

Three-Address Code

● An address can be a name, constant or temporary.
● Assignments x = y op z; x = op y.
● Copy x = y.
● Unconditional jump goto L.
● Conditional jumps if x relop y goto L.
● Parameters param x.
● Function call y = call p.
● Indexed copy x = y[i]; x[i] = y.
● Pointer assignments x = &y; x = *y; *x = y.

8

3AC Representations

● Triples
● Quadruples

minus c t1

* b t1 t2

minus c t3

* b t3 t4

+ t2 t4 t5

= t5 a

Assignment statement: a = b * - c + b * - c;

t1 = minus c

t2 = b * t1

t3 = minus c

t4 = b * t3

t5 = t2 + t4

a = t5

op arg1 arg2 result

minus c

* b (0)

minus c

* b (2)

+ (1) (3)

= a (4)

op arg1 arg2

0

1

2

3

4

5

Instructions cannot be
reordered.

Instructions can be
reordered.

9

3AC Representations

● Triples
● Quadruples

Assignment statement: a = b * - c + b * - c;

minus c

* b (0)

minus c

* b (2)

+ (1) (3)

= a (4)

op arg1 arg2

0

1

2

3

4

5

Instructions cannot be
reordered.

(2)

(3)

(0)

(1)

(4)

(5)

can be reordered

(0)

(1)

(2)

(3)

(4)

(5)

Indirect triples

10

SSA
● Classwork: Allocate registers to variables.
● Some observations

– Definition of a variable kills
its previous definition.

– A variable's use refers to
its most recent definition.

– A variable holds a register for
a long time, if it is live longer.

p = a + b
q = p – c
p = q * d
p = e – p
q = p + q

p = a + b
q = p – c
p = q * d
p = e – p
q = p + q

a r1

b r2

p r3

c r4

q r5

d r6

e r7

p
1
 = a + b

q
1
 = p

1
 – c

p
2
 = q

1
 * d

p
3
 = e – p

2

q
2
 = p

3
 + q

1

p
1
 = a + b

q
1
 = p

1
 – c

p
2
 = q

1
 * d

p
3
 = e – p

2

q
2
 = p

3
 + q

1

r1

r2

r1

r2

r1

r2

r3

11

SSA
● Static Single Assignment

– An IR

– Each definition refers to a different variable (instance)

if (flag)
x = -1;

else
x = 1;

y = x * a;

if (flag)
x = -1;

else
x = 1;

y = x * a;

if (flag)
x

1
 = -1;

else
x

2
 = 1;

x
3
 = Φ(x

1
, x

2
)

y = x
3
 * a;

if (flag)
x

1
 = -1;

else
x

2
 = 1;

x
3
 = Φ(x

1
, x

2
)

y = x
3
 * a;

x = -1x = -1 x = 1x = 1

y = x * ay = x * a

flagflag

12

SSA
● Classwork: Find SSA form for the following

program fragment.

x = 0;
for (i = 0; i < N; ++i) {

x += i;
i = i + 1;
x­­;

}
x = x + i;

x = 0;
for (i = 0; i < N; ++i) {

x += i;
i = i + 1;
x­­;

}
x = x + i;

x1 = 0;
i1 = 0;
L1:

i13 = Φ(i1, i3);
if (i13 < N) {

x13 = Φ(x1, x3);
x2 = x13 + i13;
i2 = i13 + 1;
x3 = x2 – 1;
i3 = i2 + 1;
goto L1;

}
x4 = Φ(x1, x3);
x5 = x4 + i13;

x1 = 0;
i1 = 0;
L1:

i13 = Φ(i1, i3);
if (i13 < N) {

x13 = Φ(x1, x3);
x2 = x13 + i13;
i2 = i13 + 1;
x3 = x2 – 1;
i3 = i2 + 1;
goto L1;

}
x4 = Φ(x1, x3);
x5 = x4 + i13;

13

Language Constructs
to generate IR

● Declarations

– Types (int, int [], struct, int *)

– Storage qualifiers (array expressions, const, static)

● Assignments

● Conditionals, switch
● Loops
● Function calls, definitions

14

arrayarray

arrayarray

SDT Applications

● Finding type expressions
– int a[2][3] is array of 2 arrays of 3 integers.

– in functional style: array(2, array(3, int))

intint33

22

Classwork: Write productions and semantic rules for computing
types and finding their widths in bytes.

Classwork: Write productions and semantic rules for computing
types and finding their widths in bytes.

Production

T → B id C

B → int

B → float

C → [num] C
1

C → ε

Semantic Rules

T.t = C.t
C.i = B.t

B.t = int

B.t = float

C.t = array(num, C
1
.t)

C
1
.i = C.i

C.t = C.i

15

arrayarray

arrayarray

SDT Applications

● Finding type expressions
– int a[2][3] is array of 2 arrays of 3 integers.

– in functional style: array(2, array(3, int))

intint33

22

Classwork: Write productions and semantic rules for computing
types and finding their widths in bytes.

Classwork: Write productions and semantic rules for computing
types and finding their widths in bytes.

Production

T → B id C

B → int

B → double

C → [num] C
1

C → ε

Semantic Rules

T.t = C.t; T.sw = C.sw;
C.i = B.t; C.iw = B.sw;

B.t = int; B.sw = 4;

B.t = double; B.sw = 8;

C.t = array(num, C
1
.t);

C
1
.i = C.i; C.sw = C

1
.sw * num.value;

C.t = C.i; C.sw = C.iw;

16

Types

● Types encode:
– Storage requirement (number of bits)

– Storage interpretation (meaning)

– Valid operations (manipulation)

For instance,

– 1100..00 may be char[4], int, float, int[1], …

17

Type Equivalence

● Since type expressions are possible, we need
to talk about their equivalence.

● Let's first structurally represent them.
● Question: Do type expressions form a DAG?

Can they contain cycles?

arrayarray

arrayarray

intint33

22

int a[2][3]

union {
 int x;
 float y;
};

int / floatint / float

x y

data
next
data
next

struct node {
 int data;
 struct node *next;
};

18

Type Equivalence

● Two types are structurally equivalent
iff one of the following conditions is true.

1.They are the same basic type.

2.They are formed by applying the same
constructor to structurally equivalent types.

3.One is a type name that denotes the other.

 int a[2][3] is not equivalent to int b[3][2];
 int a is not equivalent to char b[4];
 struct {int, char} is not equivalent to struct {char, int};
 int * is not equivalent to void *.

Name
equivalence

typedef

Compare against
assembly code.

Compare against
assembly code.

19

Type Checking

● Type expressions are checked for
– Correct code
– Security aspects
– Efficient code generation
– …

● Compiler determines that type expressions
conform to a collection of logical rules, called as
the type system of the source language.

● Type synthesis: if f has type s → t and x has type
s, then expression f(x) has type t.

● Type inference: if f(x) is an expression, then for
some α and β, f has type α → β and x has type α.

20

Type System

● Potentially, everything can be checked
dynamically...
– if type information is carried to execution time.

● A sound type system eliminates the need for
dynamic type checking.

● A language implementation is strongly typed if a
compiler guarantees that the valid source
programs (it accepts) will run without type errors.

21

Type Conversions

● int a = 10; float b = 2 * a;
● Widening conversions are safe.

– int32 → long32 → float → double.

– Automatically done by compiler, called coercion.

● Narrowing conversions may not be safe.
– int → char.

– Usually, enforced by the programmers, called casts.

– Sometimes, deferred until runtime, dyn_cast<...>.

22

Declarations

● When declarations are together, a single offset
on the stack pointer suffices.
– int x, y, z; fun1(); fun2();

● Otherwise, the translator needs to keep track of
the current offset.
– int x; fun1(); int y, z; fun2();

● A similar concept is applicable for fields in
structs (when methods are present).

● Blocks and Nestings
– Need to push the current environment and pop.

23

Expressions

● We have studied expressions at length.
● To generate 3AC, we will use our grammar and

its associated SDT to generate IR.
● For instance, a = b + - c would be converted to

– t1 = minus c

– t2 = b + t1

– a = t2

24

t1 = i * 12 ; 3 * 4 bytes
t2 = j * 4 ; 1 * 4 bytes
t3 = t1 + t2 ; offset from a
t4 = a[t3] ; assuming base[offset] is present in IR.
t5 = c + t4

t1 = i * 12 ; 3 * 4 bytes
t2 = j * 4 ; 1 * 4 bytes
t3 = t1 + t2 ; offset from a
t4 = a[t3] ; assuming base[offset] is present in IR.
t5 = c + t4

Array Expressions

● For instance, create IR for c + a[i][j].
● This requires us to know the types of a and c.

● Say, c is an integer (4 bytes) and a is int [2][3].
● Then, the IR is

25

Array Expressions

● a[5] is a + 5 * sizeof(type)
● a[i][j] for a[3][5] is a + i * 5 * sizeof(type) + j *

sizeof(type)
● This works when arrays are zero-indexed.
● Classwork: Find array expression to be generated

for accessing a[i][j][k] when indices start with low,
and array is declared as type a[10][20][30].

● Classwork: What all computations can be
performed at compile-time?

● Classwork: What happens for malloc’ed arrays?

26

Array Expressions

 ERROR: type of formal parameter 1 is incomplete

void fun(int a[][]) {
 a[0][0] = 20;
}
void main() {
 int a[5][10];
 fun(a);
 printf("%d\n", a[0][0]);
}

void fun(int a[][]) {
 a[0][0] = 20;
}
void main() {
 int a[5][10];
 fun(a);
 printf("%d\n", a[0][0]);
}

● How to optimize computation of the offset for a
long expression a[i][j][k][l] with declaration as
int a[w4][w3][w2][w1]?
– i * w3 * w2 * w1 + j * w2 * w1 + k * w1 + l
– Use Horner's rule: ((i * w3 + j) * w2 + k) * w1 + l

We view an array to be a D-
dimensional matrix. However, for
the hardware, it is simply single
dimensional.

27

Array Expressions

● In C, C++, Java, and so
far, we have used row-
major storage.
– All elements of a row are

stored together.

● In Fortran, we use
column-major storage
format.
– each column is

stored together.

0,0 0,2

1,2

3,2

0,3 1,3 2,3

2,00,0

28

IR for Array Expressions

● L → id [E] | L [E]
L → id [E] { L.type = id.type;

L.addr = new Temp();
gen(L.addr '=' E.addr '*' L.type.width); }

L → L
1
 [E] { L.type = L

1
.type;

T = new Temp();
L.addr = new Temp();
gen(t '=' E.addr '*' L.type.width);
gen(L.addr '=' L

1
.addr '+' t); }

E → id { E.addr = id.addr; }

E → L { E.addr = new Temp();
gen(E.addr '=' L.base '[' L.addr ']'); }

E → E
1
 + E

2
{ E.addr = new Temp();
gen(E.addr '=' E

1
.addr + E

2
.addr); }

S → id = E { gen(id.name '=' E.addr); }

S → L = E { gen(L.base '[' L.addr ']' '=' E.addr); }

addr is syntax tree node,
base is the array address.

addr is syntax tree node,
base is the array address.

// maintain three attributes: type, addr and base.

29

L → id [E] { L.type = id.type;
L.addr = new Temp();
gen(L.addr '=' E.addr '*' L.type.width); }

L → L
1
 [E] { L.type = L

1
.type;

t = new Temp();
L.addr = new Temp();
gen(t '=' E.addr '*' L.type.width);
gen(L.addr '=' L

1
.addr '+' t); }

E → id { E.addr = id.addr; }

E → L { E.addr = new Temp();
gen(E.addr '=' L.base '[' L.addr ']'); }

E → E
1
 + E

2
{ E.addr = new Temp();
gen(E.addr '=' E

1
.addr + E

2
.addr); }

S → id = E { gen(id.name '=' E.addr); }

S → L = E { gen(L.base '[' L.addr ']' '=' E.addr); }

t1 = i * 12 ; 3 * 4 bytes
t2 = j * 4 ; 1 * 4 bytes
t3 = t1 + t2 ; offset from a
t4 = a[t3] ; assuming base[offset] is present in IR.
t5 = c + t4

t1 = i * 12 ; 3 * 4 bytes
t2 = j * 4 ; 1 * 4 bytes
t3 = t1 + t2 ; offset from a
t4 = a[t3] ; assuming base[offset] is present in IR.
t5 = c + t4

addr is syntax tree node,
base is the array address.

addr is syntax tree node,
base is the array address.

30

printMatrix

● What’s wrong with this code?

int a[1][2], b[3][4], c[5][6];
...
printMatrix(a);
printMatrix(b);
printMatrix(c);

int a[1][2], b[3][4], c[5][6];
...
printMatrix(a);
printMatrix(b);
printMatrix(c);

int a[1][2], b[3][2], c[5][2];
...
printMatrix(a);
printMatrix(b);
printMatrix(c);

int a[1][2], b[3][2], c[5][2];
...
printMatrix(a);
printMatrix(b);
printMatrix(c);

31

Control Flow

● Conditionals
– if, if-else, switch

● Loops
– for, while, do-while, repeat-until

● We need to worry about
– Boolean expressions

– Jumps (and labels)

32

Control-Flow – Boolean Expressions

● B → B || B | B && B | !B | (B) | E relop E | true | false

● relop → < | <= | > | >= | == | !=

● What is the associativity of ||?

● What is its precedence over &&?

● How to optimize evaluation of (B
1
 || B

2
) and (B

3
 && B

4
)?

– Short-circuiting: if (x < 10 && y < 20) ...

– Classwork: Write a C program to find out if C uses
short-circuiting or not.

● if (p && p->next) ...

33

Control-Flow – Boolean Expressions

● Source code:

– if (x < 100 || x > 200 && x != y) x = 0;
● IR:

b1 = x < 100
b2 = x > 200
b3 = x != y
iftrue b1 goto L2
iffalse b2 goto L3
iffalse b3 goto L3

L2:
x = 0;

L3:
...

b1 = x < 100
b2 = x > 200
b3 = x != y
iftrue b1 goto L2
iffalse b2 goto L3
iffalse b3 goto L3

L2:
x = 0;

L3:
...

b1 = x < 100
iftrue b1 goto L2
b2 = x > 200
iffalse b2 goto L3
b3 = x != y
iffalse b3 goto L3

L2:
x = 0;

L3:
...

b1 = x < 100
iftrue b1 goto L2
b2 = x > 200
iffalse b2 goto L3
b3 = x != y
iffalse b3 goto L3

L2:
x = 0;

L3:
...

without short-circuit with short-circuit

34

3AC for Boolean Expressions

B
1
.true = B.true;

B
1
.false = newLabel();

B
2
.true = B.true;

B
2
.false = B.false;

B.code = B
1
.code +

 label(B
1
.false) +

 B
2
.code;

B
1
.true = B.true;

B
1
.false = newLabel();

B
2
.true = B.true;

B
2
.false = B.false;

B.code = B
1
.code +

 label(B
1
.false) +

 B
2
.code;

B → B
1
 || B

2

B → B
1
 && B

2 B
1
.true = newLabel();

B
1
.false = B.false;

B
2
.true = B.true;

B
2
.false = B.false;

B.code = B
1
.code +

 label(B
1
.true) +

 B
2
.code;

B
1
.true = newLabel();

B
1
.false = B.false;

B
2
.true = B.true;

B
2
.false = B.false;

B.code = B
1
.code +

 label(B
1
.true) +

 B
2
.code;

// attributes: true, false, code
// B.true, B.false are available.
// B

1
.code, B

2
.code are available.

35

3AC for Boolean Expressions

B
1
.true = B.false;

B
1
.false = B.true;

B.code = B
1
.code;

B
1
.true = B.false;

B
1
.false = B.true;

B.code = B
1
.code;

B → !B
1

B → E
1
 relop E

2 B.code = E
1
.code + E

2
.code +

 gen('if' E
1
.addr relop E

2
.addr

 'goto' B.true) +
 gen('goto' B.false);

B.code = E
1
.code + E

2
.code +

 gen('if' E
1
.addr relop E

2
.addr

 'goto' B.true) +
 gen('goto' B.false);

B → true B.code = gen('goto' B.true);B.code = gen('goto' B.true);

B → false B.code = gen('goto' B.false);B.code = gen('goto' B.false);

36

SDD for while

S → while (C) S1 L1 = newLabel();
L2 = newLabel();
S

1
.next = L1;

C.false = S.next;
C.true = L2;
S.code = “label” + L1 +

 C.code +
 ”label” + L2 +
 S

1
.code +

 gen('goto' L1);

L1 = newLabel();
L2 = newLabel();
S

1
.next = L1;

C.false = S.next;
C.true = L2;
S.code = “label” + L1 +

 C.code +
 ”label” + L2 +
 S

1
.code +

 gen('goto' L1);

// S.next, S.code
// C.true, C.false, C.code

37

3AC for if / if-else

B.true = newLabel();
B.false = S

1
.next = S.next;

S.code = B.code +
 label(B.true) +
 S

1
.code;

B.true = newLabel();
B.false = S

1
.next = S.next;

S.code = B.code +
 label(B.true) +
 S

1
.code;

S → if (B) S
1

S → if (B) S
1
else S

2
B.true = newLabel();
B.false = newLabel();
S

1
.next = S

2
.next = S.next;

S.code = B.code +
 label(B.true) + S

1
.code +

 gen('goto' S.next) +
 label(B.false) + S

2
.code;

B.true = newLabel();
B.false = newLabel();
S

1
.next = S

2
.next = S.next;

S.code = B.code +
 label(B.true) + S

1
.code +

 gen('goto' S.next) +
 label(B.false) + S

2
.code;

38

Control-Flow – Boolean Expressions

● Source code: if (x < 100 || x > 200 && x != y) x = 0;

b1 = x < 100
b2 = x > 200
b3 = x != y
iftrue b1 goto L2
goto L0

L0:
iftrue b2 goto L1
goto L3

L1:
iftrue b3 goto L2
goto L3

L2:
x = 0;

L3:
...

b1 = x < 100
b2 = x > 200
b3 = x != y
iftrue b1 goto L2
goto L0

L0:
iftrue b2 goto L1
goto L3

L1:
iftrue b3 goto L2
goto L3

L2:
x = 0;

L3:
...

b1 = x < 100
iftrue b1 goto L2
b2 = x > 200
iffalse b2 goto L3
b3 = x != y
iffalse b3 goto L3

L2:
x = 0;

L3:
...

b1 = x < 100
iftrue b1 goto L2
b2 = x > 200
iffalse b2 goto L3
b3 = x != y
iffalse b3 goto L3

L2:
x = 0;

L3:
...

without optimization with short-circuit

Avoids redundant gotos.

39

Homework

● Write SDD to generate 3AC for for.
– for (S1; B; S2) S3

● Write SDD to generate 3AC for repeat-until.
– repeat S until B

40

Backpatching

● if (B) S required us to pass label while
evaluating B.
– This can be done by using inherited attributes.

● Alternatively, we could leave the label
unspecified now...
– … and fill it in later.

● Backpatching is a general concept for one-pass
code generation

B → true B.code = gen('goto –');B.code = gen('goto –');

B → B
1
 || B

2 backpatch(B
1
.false);

...

backpatch(B
1
.false);

...

41

break and continue

● break and continue are disciplined / special gotos.
● Their IR needs

– currently enclosing loop / switch.

– goto to a label just outside / before the enclosing block.

● How to write the SDD to generate their 3AC?
– either pass on the enclosing block and label as an

inherited attribute, or

– use backpatching to fill-in the label of goto.

– Need additional restriction for continue.

● Classwork: How to support break label?

42

IR for switch

● Using nested if-else
● Using a table of pairs

– <V
i
, S

i
>

● Using a hash-table
– when i is large (say, > 10)

● Special case when V
i
s are

consecutive integrals.
– Indexed array is sufficient.

switch(E) {
case V

1
: S

1

case V
2
: S

2

…
case V

n-1
: S

n-1

default: S
n

}

switch(E) {
case V

1
: S

1

case V
2
: S

2

…
case V

n-1
: S

n-1

default: S
n

}

43

switch(E) {
case V

1
: S

1

case V
2
: S

2

…
case V

n-1
: S

n-1

default: S
n

}

switch(E) {
case V

1
: S

1

case V
2
: S

2

…
case V

n-1
: S

n-1

default: S
n

}

Sequence of
values and statements

Sequence of
values and statements

Sequence of statements,
Sequence of values

Sequence of statements,
Sequence of values

44

Functions
● Function definitions

– Type checking / symbol table entry

– Return type, argument types, void

– Stack offset for variables

– Stack offset for arguments

● Function calls
– Push parameters

– Switch scope / push environment

– Jump to label for the function

– Switch scope / pop environment

– Pop parameters

45

Summary

● Declarations
– Types (int, int [], struct, int *)

– Storage qualifiers (array expressions, const, static)

● Assignments
● Conditionals, switch
● Loops
● Function calls, definitions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

