Intermediate Code Generation

Rupesh Nasre.

CS3300 Compiler Design

IIT Madras
July 2018

Character stream

v v

Machine-Independent

Lexical Analyzer Code Optimizer

v v

Token stream Intermediate representation
Syntax Analyzer Code Generator
Syntax tree Target machine code

v v

Machine-Dependent

Semantic Analyzer Code Optimizer

v v

Syntax tree Target machine code

v

Intermediate

Code Generator Symbol

Table

v

Intermediate representation

Role of IR Generator

e To act as a glue between front-end and
backend (or source and machine codes).

* To lower abstraction from source level.
- To make life simple.

* To maintain some high-level information.
— To keep life interesting.

 Complete some syntactic checks, perform more
semantic checks.

- e.g. break should be inside loop or switch only.

Representations

Syntax Trees

- Maintains structure of the construct
- Suitable for high-level representations

Three-Address Code

- Maximum three addresses
INn an instruction

- Suitable for both high and
low-level representations

Two-Address Code

- eqg.C

o
iu

t1=3*5
t2=t1+4

mult 3, 5
add 4

push 3
push 5
mult
add 4

3AC

2AC

1AC
or

stack

machine

Syntax Trees and DAGS

ata*(b-c)+(b-c)*d

® 9

@ ®) 5@ /@@
L ‘@%z

® Q6 &
@%@

Production
E-E+T
E-E-T
E-T
T-(E)

T - id
T - num

® ©

Semantic Rules

A small problem:
subgraph isomorphism
iIs NP-complete.

$$.node = new Op($1.node, '+', $3.node)
$$.node = new Op($1.node, '-', $3.node)

3.node = $1.node
$3.node = $2.node
$$.node = new Leaf($1)
$$.node = new Leaf($1)

Value Numbering

a+a*b-¢c)+(b-c)*d

}k }k

@ A small problem:
< subgraph isomorphism
@ Q Q @ @ is NP-complete.

® Q0 © 1) 24
@%@ Q

« Uniquely identifies a node in the DAG.

« A node with value number V contains children of numbers < V.

* Thus, an ordering of the DAG is possible.

» This corresponds to an evaluation order of the underlying expression.

e For inserting | op r, search for node op with children | and r.
 Classwork: Find value numbering fora + b + a + b. 6

Three-Address Code

 An address can be a name, constant or temporary.
o Assignments X =y op z; XxX=0pY.

e Copy X =Y.

» Unconditional jJump goto L.

» Conditional jumps if x relop y goto L.

 Parameters param X.

* Function call y = call p.

* Indexed copy x = VyJi]; X[i] = .

* Pointer assignments X = &y; X = *y; *X = .

e Triples
 Quadruples

tl
t2
t3
t4
t5

3AC Representations

Assignment statement.a =b *-c + b * -

= minusc
= b*tl

= minusc
= b*t3

= t2+t4
= t5

op
minus

*

minus

*

+

argl arg2
C
b tl
C
b t3
t2 t4
t5

 Instructions can be
\ reordered.

y

result

tl
t2
t3
t4
t5
a

oo AN W NN R O

Instructions cannot be

reordered.

argl

arg2

(0)

(2)
(3)
(4)

3AC Representations

* Triples —

Instructions cannot be
reordered.

 Quadruples

Assignment statement:a =b *-c + b * - ¢;

op argl arg2

(0) (2) 0 minus c
(1) (3) 1 % b (0)
(2) (0) 2 minus ¢
(3) (1) 3 b (2)
(4) (4) 4.+ (1) (3)
(5) (5) 5/ = a (4)

Indirect triples can be reordered

SSA

* Classwork: Allocate reqisters to variables.

e Some observations

— Definition of a variable kills
Its previous definition.

— Avariable's use refers to
Its most recent definition.

* |+

+ |

OT T AOT
IR EETE]
T OO T QD
0T QLo T

- Avariable holds a register for
a long time, If it is live longer.

- =
N -

_‘
w

,
o1

® QO O O T T 9
- -
) &

-_
\l

SSA

o Static Single Assignment

- An IR
- Each definition refers to a different variable (instance)
If (flag)
if (flag) X, = -1; \
K== else
else v =1 flag
X =1 c
_ . X, = DX, X))
=X * a. 3 17 2
y y =X, *a; ‘/\‘
Xx=-1 x=1
Al
y=X*a

 / 11

SSA

» Classwork: Find SSA form for the following

program fragment.

x = 0;

for 1 =0;1< N; ++1) {
X +=1;
1=1+ 1;
X--,

}

X =X + 1

X, = 0;
1, =0;
L1:

1, =P34, 1,);
if (1, < N) {

X3 = PX,;, X,);

X, = X3 + 1,

1, =1,+1;
X, =X, — 1,
1, =1, + 1;
goto L1;

}

x, = O(x,, X,);

X5 =X, + 113;

12

Language Constructs

to generate IR

Declarations

- Types (int, int [], struct, int *)

- Storage qualifiers (array expressions, const, static)
Assignments

Conditionals, switch

_oops

—unction calls, definitions

13

SDT Applications

* FInding type expressions
- Int a[2][3] is array of 2 arrays of 3 integers.
- In functional style: array(2, array(3, int))

Production Semantic Rules
T-BidC Tt=C.t
C.i=B.t
B - int B.t =int
B — float B.t = float
- C.t = array(nhum, C_.t
nt C-[num]C, | .y(1)
C.1=C.
C - ¢ Ct=C.

p
Classwork: Write productions and semantic rules for computing W
types and finding their widths in bytes. 14

SDT Applications

* FInding type expressions
- Int a[2][3] is array of 2 arrays of 3 integers.
- In functional style: array(2, array(3, int))

Production Semantic Rules
T-BidC Tt=C.t T.sw = C.sw;
C.i=B.t; C.iw = B.sw;
B - int B.t = int; B.sw = 4;
B — double B.t = double; B.sw = §;
int C-[num]C, Ct=array(num, C,.t);

C,.i=C.; C.sw=C_.sw* num.value;

C - ¢ Ct=C.i; Csw=_C.iw;

p
Classwork: Write productions and semantic rules for computing W
types and finding their widths in bytes. 15

Types

* Types encode:

- Storage requirement (number of bits)
- Storage interpretation (meaning)
- Valid operations (manipulation)

For Instance,
- 1100..00 may be char[4], int, float, int[1], ...

16

Type Equivalence

e Since type expressions are possible, we need
to talk about their equivalence.

» Let's first structurally represent them.

* Question: Do type expressions form a DAG?
Can they contain cycles?

X y
_ int/ float
INt
union { struct node {
int X; int data;

int a[2][3] float y; struct node *next; 17

b h

Type Equivalence

Compare against
assembly code.

* Two types are structurally equivalent
Iff one of the following conditions is true.

1. They are the same basic type.
Name

2. They are formed by applying the same * equivalence
constructor to structurally equivalent types.

3.0ne Is a type name that denotes the other. typedef

L 4

int a[2][3] Is not equivalent to int b[3][2];

Int a 1s not equivalent to char b[4];

struct {int, char} is not equivalent to struct {char, int},
Int * is not equivalent to void *. .

2

4

L 4

Type Checking

Type expressions are checked for

— Correct code
— Security aspects
- Efficient code generation

Compiler determines that type expressions
conform to a collection of logical rules, called as
the type system of the source language.

Type synthesis: If f has type s — t and x has type
S, then expression f(x) has type t.

Type inference: If f(X) Is an expression, then for
some a and [3, f has type a — [3 and x has type «q.

Type System

« Potentially, everything can be checked
dynamically...

- If type information Is carried to execution time.

* A sound type system eliminates the need for
dynamic type checking.

* Alanguage implementation is strongly typed if a
compiler guarantees that the valid source
programs (it accepts) will run without type errors.

20

Type Conversions

e inta=10; floatb =2 * a;
 Widening conversions are safe.

- Int32 - long32 - float — double.
- Automatically done by compiler, called coercion.
* Narrowing conversions may not be safe.
- Int — char.
- Usually, enforced by the programmers, called casts.
- Sometimes, deferred until runtime, dyn_cast<...>.

21

Declarations

 When declarations are together, a single offset
on the stack pointer suffices.

- int x, y, z; funl(); fun2();

* Otherwise, the translator needs to keep track of
the current offset.

- Int X; funl(); inty, z; fun2();

* A similar concept Is applicable for fields in
structs (when methods are present).

* Blocks and Nestings
- Need to push the current environment and pop. =

Expressions

* We have studied expressions at length.

* To generate 3AC, we will use our grammar and
Its associated SDT to generate IR.

e For instance, a = b + - ¢ would be converted to
- t1 =minus c
-12=b+1tl
- a=t2

23

Array Expressions

e For instance, create IR for ¢ + alil[jl.

e This requires us to know the types of a and c.

e Say, cIs an integer (4 bytes) and a Is int [2][3].
 Then, the IR Is

tl=1%*12 : 3 * 4 bytes

t2=3%4 : 1 * 4 bytes

t3=t1 +t2 ;offset from a

t4 = a[t3] ; assuming base[offset] is present in IR.
tOh=c+t4

e a|5

e ali]

Array Expressions

IS a + 5 * sizeof(type)

3] for a[31[5] is a + 1 * 5 * sizeof(type) +j *

sizeof(type)
* This works when arrays are zero-indexed.

* Classwork: Find array expression to be generated
for accessing alilljllk] when indices start with low,

and array Is declared as type a[10][20][30].

 Classwork: What all computations can be
performed at compile-time?

« Classwork: What happens for malloc’ed arrays?:

Array Expressions

void fun(inta[][]) { We view an array to be a D-
a[0][0] = 20; dimensional matrix. However, for
} the hardware, it is simply single
void main() { dimensional.
Int a[5][10];
fun(a);
printf("%d\n", a[0][0]); -
}

ERROR: type of formal parameter 1 is incomplete

 How to optimize computation of the offset for a I
long expression alilljlik][1] with declaration as
int alw4][w3][w2][w1]?

- 1*w3*w2*wl+j*w2*wl+k*wl+1

- Use Horner'srule: (1 * w3 +j) *w2 + k) *wl + 1 :

Array Expressions

e In C, C++, Java, and so -+ In Fortran, we use

far, we have used row- column-major storage
major storage. - format.
— All elements of aroware - each column is -
stored together. stored together.
0,0 0,2 ‘ -
’ ’ 0,0 2,0
L n
B .
\ L
I - - I
03 1,3 23 -
|
I L

IR for Array Expressions

e L — id [E] | L [E]

L~ id[E]

L-L [E]

E-id
E-L

E->E +E

S-id=E
S—-L=E

{ L.type = id.type;
L.addr = new Temp();

/[maintain three attributes: type, addr and base.

gen(L.addr '=' E.addr ** L.type.width); }

{ L.type = L .type;
T = new Temp();
L.addr = new Temp();

addr is syntax tree node,
base is the array address.

gen(t '=" E.addr ™' L.type.width);

gen(L.addr '=' L .addr '+'t); }

{ E.addr = id.addr; }

{ E.addr = new Temp();

gen(E.addr '=' L.base '[' L.addr T); }

{ E.addr = new Temp();

gen(E.addr '=' E .addr + E_.addr); }

{ gen(id.name '=' E.addr); }

{ gen(L.base '[' L.addr T '=" E.addr); }

28

tl=1%*12

2= * 4
t3 =tl1 + t2
t4 = a[t3]
th=c+t4d
L~ id[E] { L.type = id.type;
L.addr = new Temp();
gen(L.addr '=' E.addr ** L.type.width); }
L~ L [E] {L.type =L .type; addr is syntax tree node,
t = new Temp(); '
L addr = new Temp() base is the array address.
gen(t '=' E.addr *' L.type.width);
gen(L.addr '=' L .addr '+'t); }
E - id { E.addr = id.addr; }
E - L { E.addr = new Temp();
gen(E.addr '=' L.base ' L.addr '); }
E_-E +E { E.addr = new Temp();
gen(E.addr '=' E .addr + E_ .addr); }
S - id=E { gen(id.name '=' E.addr); } 29
S>> L=E {gen(L.base T L.addr '] '=" E.addr); }

printMatrix

 What's wrong with this code?

int a[1][2], b[3][4], c[5][6]; | int a[1][2], b[31[2], c[5][2];

printMatrix(a); printMatrix(a);
printMatrix(b); printMatrix(b);
printMatrix(c); printMatrix(c);

30

Control Flow

e Conditionals

- If, Iif-else, switch
e Loops

- for, while, do-while, repeat-until
* We need to worry about

- Boolean expressions
- Jumps (and labels)

31

Control-Flow — Boolean Expressions

B-B||B|B&&B|!IB|(B)|ErelopE | true | false
relop - <|<=|>|>=|==|1I=

What is the associativity of ||?

What is its precedence over &&?
How to optimize evaluation of (B, || B,) and (B, && B,)?

— Short-circuiting: if (x < 10 && vy < 20) ...

- Classwork: Write a C program to find out if C uses
short-circuiting or not.

o If (b && p->next) ...

32

Control-Flow — Boolean Expressions

e Source code:
-1f(x<100 | | x>200 && x!=y)x=0;

e |IR:

without short-circuit

0]l = x <100

n2 = x> 200

N3 =X I=y

Iftrue bl goto L2
Iffalse b2 goto L3
Iffalse b3 goto L3
L2:

X =0;
L3:

with short-circuit

bl =x<100

Iftrue b1l goto L2

b2 =x > 200

Iffalse b2 goto L3

b3=x!=y

Iffalse b3 goto L3
L2:

X =0;
L3:

33

3AC for Boolean Expressions

B - B ||B,

/] attributes: true, false, code
/| B.true, B.false are available.
/I B,.code, B,.code are available.

B - B, &&B,

B .true = B.true;

B, .false = newLabel();

B._.true = B.true;

B .false = B.false;

B.code = B,.code +
label(B, .false) +
B..code;

B, .true = newLabel();

B .false = B.false;

B._.true = B.true;

B .false = B.false;

B.code = B,.code +
label(B,.true) +
B..code;

34

3AC for Boolean Expressions

B - IB,

B - E relopE,

B - true

B - false

B .true = B.false;
B .false = B.true;
B.code = B,.code;

B.code = E, .code + E .code +
gen('if' E .addr relop E..addr
'goto’ B.true) +
gen(‘goto’ B.false);

B.code = gen('goto’ B.true);

B.code = gen('goto’ B.false);

35

SDD for while

S—>while(C)S

/I S.next, S.code
/I C.true, C.false, C.code

1

L1 = newLabel();

L2 = newLabel();

S .next =L1;

C.false = S.next;

C.true =1L2;

S.code ="“label”’ + L1 +
C.code +
"label” + L2 +
S .code +

gen('goto’ L1);

36

3AC for If / if-else

S - if (B) S,

S - if(B) S,else S,

B.true = newLabel();
B.false = Sl.next = S.next;

S.code = B.code +
label(B.true) +
S, .code;

B.true = newLabel();
B.false = newLabel();
S .next = S .next = S.next;

S.code = B.code +
label(B.true) + S, .code +
gen(‘goto’ S.next) +
label(B.false) + S, .code;

37

Control-Flow — Boolean Expressions

» Source code: If (x <100 || x > 200 && x I=y) x = 0;

without optimization
bl =x<100
b2 = x> 200
b3=x!=y
Iftrue bl goto L2
goto LO
LO:
Iftrue b2 goto L1
goto L3

L1

.iftrue b3 goto L2

with short-circuit

bl =x<100
Iftrue bl goto L2
b2 = x> 200
Iffalse b2 goto L3
b3=x!=y

Iffalse b3 goto L3

L2:

X =0;

L3:

38

Avoids redundant gotos.

Homework

* Write SDD to generate 3AC for for.
- for (S1, B; S2) S3

* Write SDD to generate 3AC for repeat-until.
- repeat S until B

39

Backpatching

» /f (B) S required us to pass label while
evaluating B.

— This can be done by using inherited attributes.

» Alternatively, we could leave the label
unspecified now...
- ... and fill it in later.

« Backpatching is a general concept for one-pass
code generation

B — true B.code = gen(‘goto —);

B - B, |B, backpatch(B,.false);

40

break and continue

* break and continue are disciplined / special gotos.

e Their IR needs

— currently enclosing loop / switch.
- goto to a label just outside / before the enclosing block.

 How to write the SDD to generate their 3AC?

- elther pass on the enclosing block and label as an
Inherited attribute, or

- use backpatching to fill-in the label of goto.
- Need additional restriction for continue.

» Classwork: How to support break label? “

IR for switch

Using nested If-else |
_ _ switch(E) {
Using a table of pairs case V,: S,
_ <V S> case V.. S,
Using a hash-table caseV, 'S,
o default: S_
- when i is large (say, > 10))

Special case when Vs are
consecutive integrals.

- Indexed array Is sufficient.

42

t = code for E
goto test
L,: code for S1

goto next
L2: code for S

goto next

2

L ,:code forS_,

goto next
L : code for S_

goto next

test:
!f t=V,goto L,
ift=V, gotoL,

ift=V_ _ gotoL
goto L_

next:
Sequence of statements,

Sequence of values

1

t = code for E
ift!=V gotolL,
code for S,

goto next
L:ift!=V, gotoL,
code for S,

goto next

L.:

2

L :ift!I=V_ _gotolL
code for S_,

goto next
L _,: code for S_

next:

Sequence of
values and statements

1

switch(E) {
case V. S,
case V.. S,
caseV .S |
default: S_

}

43

Functions

 Function definitions

- Type checking / symbol table entry
- Return type, argument types, void
- Stack offset for variables

- Stack offset for arguments

e Function calls

- Push parameters

- Switch scope / push environment
- Jump to label for the function

- Switch scope / pop environment
- Pop parameters

Summary

Declarations

- Types (int, int [], struct, int *)

- Storage qualifiers (array expressions, const, static)
Assignments

Conditionals, switch
Loops
Function calls, definitions

45

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

