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Role of Code Generator

From IR to target program.
Must preserve the semantics of the source program.

- Meaning intended by the programmer in the original
source program should carry forward in each compilation
stage until code-generation.

Target code should be of high quality
— execution time or space or energy or ...
Code generator itself should run efficiently.

‘1)instruction selection,
‘2 register allocation and
‘3)instruction ordering.



Code Generator in Reality

 The problem of generating an optimal target
program is undecidable.

» Several subproblems are NP-Hard (such as
register allocation).

* Need to depend upon

- Approximation algorithms
- Heuristics
- Conservative estimates



Input + Output

Intermediate representation

v

Code Generator

v

Target machine code

3AC (Quadruples / Triples / Indirect triples)

VM instructions (bytecodes / stack machine codes)
Linear representations (postfix)

Graphical representation (syntax trees / DAGS)

RISC (many registers, 3AC, simple addressing
modes, simple ISA)

CISC (few registers, 2AC, variety of addressing
modes, several register classes, variable length
instructions, instructions with side-effects)
Stack machine (push / pop, stack top uses
registers, used in JVM, JIT compilation)

It helps to assume an assembler. Imagine if
in A3 you had to generate machine code and
manipulate bits rather than generating x86
assembly.



IR and Target Code

| RO=y
Intermediate representation = RO =R0 +z
# X =RO
Code Generator
Y ~ LDRO,y
Target machine code ADD RO, RO, z

.~ STx, RO

What is the issue with this kind of code generation?




IR and Target Code

Intermediate representation -

v

Code Generator

v

Target machine code

RO =y
RO=RO+2z
X = RO

LD RO, y
ADD RO, RO, z
ST x, RO

Generate code for

a=b+c
d=a+e

LD RO, b
ADD RO, RO, c
ST a, RO
LD RO, a
ADD RO, RO, e
STd, RO



‘1 Instruction Selection

» Complexity of instruction selection depends upon

- Level of the IR
Low-level IR can help generate more efficient code.
e.g., Intsize versus 4.
- Nature of the ISA
Uniformity and completeness of ISA affects the code.
e.g., floats required to be loaded in special registers.
- Desired quality of the generated code

Context and amount of information to process affects
the code quality.

e.g., INC a versus LD RO, a; ADD RO, RO, #1; ST a, RO



2 Register Allocation

* Register allocation involves

- Allocation: which variables to be put into registers
- Assignment. which register to use for a variable

* Finding an optimal assignment of registers to
variables is NP-Complete.

» Architectural conventions complicate matters.

- Combination of registers used for double-precision arithmetic.
- Result Is stored in accumulator.
- Registers are reserved for special instructions.

Thought exercise: How to use graph coloring for register allocation?




‘3 Instruction Ordering

Instruction order affects execution efficiency.
Picking the best order is NP-complete.

Optimizer / Code generator needs to look at multiple instructions at
a time.

Classwork: Create an example IR whose generated code results in
the same meaning but different efficiency for different orders.

1:RO=a 1:RO=a
22R1=D 22R1=Db
3:R2=c 4-R2=R0O +R1
4°R3=R0O+R1 3:RO=c
5 R4=R2 +R3 5 R3=R2+R0
6:d=R4 6:d=R3
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A Typical Target Machine Model
InstructionType  Example

Store STR1, x
Unconditional Jump BR main

Named / Variable LD R1, x
Immediate Indexed LD R1, 100(R2)

Immediate LD R1, #100 !



Source

IR

Target
code

Example Code Generation

using our Target Machine Model

X y-z

Rl1=y
R2=2z
R1=R1-R2
Xx=R1

\4

LD R1,y
LD R2, z
SUB R1, R1, R2
ST x, R1

1

; y already in R1
LD R2, z
SUB R1, R1, R2
ST x, R1

Optimized

target
code

LD R1,y
LD R2, z
;X IS not used

Optimization and Code
Generation are often run
together multiple-times.
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Homework

e Exercises 8.2.3 from ALSU book.
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Basic Blocks and CFG

» A basic block is a maximal sequence of
consecutive 3AC instructions such that

- Single-entry: Control-flow enters the basic-block
through only the first instructions in the block.

- Single-exit: Control leaves the block only after the
last instruction.

* Thus, If control reaches a basic block, all
Instructions in it are executed in sequence.

- No branching from in-between or no jumps to in-
between instructions.

» Basic-blocks together form a control-flow graph



for (i = 0; i < 10; ++ii) {
for (jj = 0; jj < 10; ++jj) {
aliifjj] = 0;

}
}

for (ii = O; ii < 10; ++ii)

afini] = 1,

1=0

L2:

]=0

L1:

t1=10%*i

t2 =t1+]j
t3=4*12

t4 =t3 — 44
ajt4] =1
j=]+1

If ] <10 goto L1
I=1+1

ifi <10 goto L2
=1

L3:

t5=i-1

t6 =44 * t5
ajté] = 1
I=1+ 1

If 1 <10 goto L3

ENTRY > i=0 Bl
»
J:O B2
>
t1=10*i
t2=1t1+]
O t13=4+*t2
2 t4=t3-44 B3
S au]=1
o j=j+1
= jfj<10goto B3
Q
o |
=] y
8 =i+ 1
o  ifi<10 goto B2 B4
Y
=1 BS
<
t=1-1
t6 =44 * t6
EXIT<— a[té] =1 B6
I=1+1 115

If 1 <10 goto B6




Optimizations using CFG

 Local: within a basic-block

- Local common sub-expressions
- Dead-code elimination
- Use of algebraic identities

 Global: across blocks

— Common sub-expression elimination

— Strength reduction
- Data-flow analysis

16



Local Common Sub-expressions

a—d

Elimination
a+a*b-c)+(b-c)*d

e Does not distinguish properly between different

variable instances.

e It Is unclear why certain variable should be used or a

new one should be formed.

 We need use-def information.
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Local Common Sub-expressions

O 0O T 9w

T T

L+ +
Q0o oo

Elimination
al=b0+cO » Variables have initial DEFs.
bl=al-do « Each DEF creates a new instance of
cl=Dbl+cO the variable (recall SSA).
dl=al-do « Each USE refers to the latest DEF.
c1(+)
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Local Common Sub-expressions

Elimination e =
expressions
a=b+c¢c al =b0 +cO
b=b-d bl =b0-dO
c=c+d cl=cO0+dO
e=bh+c el =Dbl +cl

Classwork: Find the Basic Block DAG
(expression DAG) for the above Basic Block.



Dead-code Elimination

e Remove root from the DAG that have no live
variables attached.

- There could be multiple roots in the DAG.
- We may be able to apply this repeatedly.

Assuming a and b are live (used later) (et

while c and e are not, then /N

* We can remove el. alw cl

* Once el is removed, c1 can also be removed. Y
 ,



Algebraic ldentities

» Algebraic properties
-X+0=0+x=X X—0=X
- X*1=1*Xx=X X/1=X

» Strength reduction
— X2 =X *¥X
- 2*X=X+X
- Xx/2=x*05

» Constant folding
- 2*3.14=6.28

21



Algebraic ldentities

 Commutativity and Associativity

- DAG construction can help us here.

- Apart from checking left op right, we could also
check right op left for commutativity.

e.g., (a+Db)+(b+a).
eg.,a=b+c,e=c+d+b;
 Some algebraic laws are not obvious.
- e.g., Canyou optimize if(x>y)a=b+x+c—y?
However, we need to worry about underflows.
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Array References

* Array references cannot be treated like usual
variables.

X =al X = alii] We represent aJii] as a node with
a2 =y afijl =y two or three children depending
z=al z = alii] upon whether it is rvalue or lvalue.

X, Z a2 X, Z afjj]
wrong correct

How do you decide the order in

which assignments are executed?
23



Array References

* Array references cannot be treated like usual
variables.

x = al X = alii] X = alii]
a2 =y afjjl =y bljjl =y
z=al z = alii] z = alii]

Depending upon how much time a

compiler can afford,

* it would either analyze if a[ii] and
b[jj] are referring to the same
memory location OR

e conservatively assume that they
MAY Dbe referring to the same
location.
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Aliasing

* The issue with array references Is called aliasing.

 TWO expressions may refer to the same memory
location at the execution time.

- alii] and a|jj]
_ *p and *q
- Pass by reference variables
* Local processing may fail to identify aliasing

- Precise alias analysis is computationally difficult.
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Classwork: Aliasing

* Find all the aliases in this C++ program.

#include <iostream>
intg =1,

void fun(int &p, int *q, intr, int a, int *s) {
Int &x = Q;
Int *y = &p;
std:icout << p << *g<<r<<a<<* << x<<*y<<g<<std:endl
}
iInt main() {
Inta = gQ;
int &b = g;
Int *c = &g;

fun(b, &g, g, a, c);
return O;




Peephole Optimization

e Consider a sliding window of instructions and
optimize It.

 Repeated passes are often helpful.

- Redundant load/store elimination
- Dead-code elimination

— Control-flow optimization

- Algebraic simplifications

- Use of machine idioms



Peephole Optimization

* Consider a sliding window of instructions and
optimize It.

* Repeated passes are often helpful. G5gs3

- Redundant load/store elimination

ST a, RO

- Dead-code elimination
— Control-flow optimization
- Algebraic simplifications
- Use of machine idioms



Peephole Optimization

* Consider a sliding window of instructions and
optimize It.

 Repeated passes are often helpful.

Redundant load/store elimination
Dead-code elimination
Control-flow optimization
Algebraic simplifications

Use of machine idioms

if debug == 1 goto L1
goto L2

L1:
print debug info

L2: )

_ constant
debug =0 @ propagation

L2 j

s




Peephole Optimization

* Consider a sliding window of instructions and
optimize It.

 Repeated passes are often helpful.

- Redundant load/store elimination

goto L1
- Dead-code elimination
S goto L3
— Control-flow optimization L1: goto L2
- Algebraic simplifications @
- Use of machine idioms
goto L2
Remove “L1: goto L2” if no jumps to it. goto L3

Can be generalized to conditional jumptoL1. |L1: goto L2




Peephole Optimization

* Consider a sliding window of instructions and
optimize It.

 Repeated passes are often helpful.

— Redundant load/store elimination
— Dead-code elimination

- Control-flow optimization
X=x+0

- Algebraic simplifications z=y*32
- Use of machine idioms



Peephole Optimization

* Consider a sliding window of instructions and
optimize It.

 Repeated passes are often helpful.

Redundant load/store elimination
Dead-code elimination
Control-flow optimization
Algebraic simplifications

Use of machine idioms

Id rO, X

add rO, rO, 1
st x, r0
push X
push %esp

goto fun
2

INC X
push x
call fun




Register Allocation

 Memory hierarchy: Network, File system, Main
memory, L3 cache, L2, L1, Registers.

- Capacity reduces, access time reduces.

 Critical to allocate and assign registers for
efficiency.

- Register versus Memory could be ~10x
performance difference.

e C allows register variables.

- register int a; // not always a good idea.
- register int a asm(“r12”); // tries a specific register.
- gcc -ffixed-r12 ... // reserve rl2.
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L

Register Allocation

Classwork: Allocate registers for the following code.

while (b) {
a=b+c
d=d-Db
e=a+f
if (e) {
b=d+f
e=a-—-=c
if (b) goto fun
} else {
f=a-d
}

b=d+c

}
printb,c,d, e, f

First-Come-First-Served way is often not
the best policy for register allocation.

We need to perform some analysis to
find out the benefit of allocating registers
to variables.

We may have to assign cost / benefit to
various operations within a loop.

What if we say that K registers would be
allocated to the top K variables that have
the maximum number of uses?

By paying a small spilling cost, we may
be able to increase the benefit of K
registers to more than K variables.

benefit(x, B) = F(use(x, B), live(x, B))

Variable x, Basic block B
use returns the number of uses.

live returns O or 1 based on if X is live aftar

leaving B.



LIveness
>ibcdf

(use(x, B), live(x, B)) d=d-=>b B1
use returns number of uses. e=a+f
live returns O or 1 based on if x y
is live after leaving B. it (e) {
acﬂa‘\icdf
use(a, B1) =1, live(a, B1) =1 acde b=l
use(a, B2) =1, live(a, B2) =0 -~
use(b, B3) = 1, live(b, B3) = 1 [f —a-d J B2 B3 e=a-c
use(c, B2) =0, live(c, B2) = 1 If (b) goto fun
use(a, B4) =0, live(a, B4) =0 cdef
cdef bcdef
Overall benefit S(x) =
sum(benefit(x, B)) for all B bdef

B4 b :_ d+c (obtained from

Say, S(a) = 4, S(b) =5, S(c) = 3, while (b) analyzing fun)
S(d) =6, S(e) =4, S(f) = 4.
: bcdef
« Assign RO, R1, R2to a, b and y
d globally (global allocation). :

« Use remaining register R3 BS printb, c, d, e, f 5

inside blocks (local allocation).



Allocation

 R1 and R2 remain assigned
to b and d throughouit.

 R3is loaded repeatedly
inside the loop as an auxiliary
register.

e ais not live at the start,
hence it is not loaded initially.

« At the end of the loop, the
register values are stored
back.

Overall benefit S(x) =
sum(benefit(x, B)) for all B

Say, S(a) =4, S(b) =5, S(c) =3
S(d) =6, S(e)=4,S(f)=4

« Assign RO, R1, R2 to a, b and
d globally (global allocation).
* Use remaining register R3

inside blocks (local allocation).

'LDR1,b
LDR2,d

___

/

SUB R3, RO, R2
STf R3

»i

LD RS, c
ADD RO, R1, R3
SUB R2, R2, R1
LD R3, f
ADD R3, RO, R3
STe, R3

\LD R3, C
\ADD R1, R2, R3

.

y

'STh,R1
STd, R2

Bl

\

( LD R3, f
ADD R1, R2, R3
LD R3, C
SUB R3, RO, R3
STe,R3

|

'STb, R1
STa R2
| v

)

36




Register Allocation as Graph Coloring

* Vertices? Edges?
» Vertices: Variables (or their instances)

» Edges: Co-Live information

- If x and y are live at the same program point, add an
(undirected) edge between x and .

* Vertex coloring colors neighbors differently.

- Thus, vertex coloring colors x and y differently, if they
are live at the same program point.

- This means, x and y should not use the same register.

- Corollary: if x and z have the same color, they can _,
reuse the register (at different program points).



Live Ranges

’ibcdf
a=b+c ”
d=d-b
e=a+ ‘
if (e) { |

A‘//////////////;;a;?\\\\\\\\\\\\\\EPdf
acde
b=d+

ea ezize
If (b) goto fun
cdef
w
bdef
b=d+c ““ (obtaineed from
while (b) analyzing fun)
bcdef
\J

[print b, c,

d,e,f] 38




Coloring

/
% /
P /
% |/

This means, in basic block B1, b and e could use the same register.

a=b+c
|' d=d-b
e=a+

What is the issue with what we did? JEEIEGE]

Classwork: Try it for |




Coloring

/‘
/
/
/

« Coloring gave us the maximum number of registers required for the program.

 However, in practice, the number of registers is fixed.

* Therefore, we need to generate spill code for storing a variable into memory
(ST X, R) and then reload the register with the next variable (LD R, y)

40



Data Flow Analysis

 Flow-sensitive: Considers the control-flow In a
function

* Operates on a flow-graph with nodes as basic-
blocks and edges as the control-flow

 Examples

: =8
- Constant propagation - ]

- Common subexpression elimination ‘3 ] ‘2 ]
a = a=

- Dead code elimination

What is the _
value of b? | b=a ]
41




Reaching Definitions

» Every assignment is a definition.

* A definition d reaches a program point p if there
exists a path from the point immediately
following d to p such that d is not killed along
the path. [ DO:y=3 )

D1:x=10 |pgo
D2:y=11

if ¢ Yy

« A

B]_D3ZX=1] D5:z=X]BZ

D4:y =2 D6:x=4

Y S
B3 ] What definitions reach B3?

42




DFA Equations

IN(B) = set of data flow facts entering block B
out(B) = ...
gen(B) = set of data flow facts generated in B

kill(B) = set of data flow facts from the other
blocks killed in B

43



DFA for Reaching Definitions

* In(B) = U out(P) where P is a predecessor of B

. out(B) = gen(B) U (in(B) — kill(B)) SEEED
D1:x=10 |pgo
D2:y=11
" if
» Initially, out(B) = { } —
Bl [D3: X = 1} [DS: Z = X}Bz
gen(B0) = {D1, D2} kill(B0O) = {D3, D4, D6} Dd:y=2 D6:x =4

gen(B1)
gen(B2) =

{D3, D4} kill(B1)
{D5, D6} kill(B2) =

{DO, D1, D2, D6}
{D1, D3}

AL

B3 ]
gen(BS) ={} kill(B3) = { }

o e o w—ow

{D3, D4} {D1, D2} {D3, D4} {D1, D2} {D3, D4}

{D3, D4, D5, D6} {D3, D4, D5, D6} {D2, D3, D4, D5, D6} {D2, D3, D4, D5, D6}



Algorithm for Reaching Definitions

for each basic block B
compute gen(B) and kill(B)
out(B) = {}

do {
for each basic block B
iNn(B) = U out(P) where P \in pred(B)
out(B) = gen(B) U (in(B) - kill(B))
} while in(B) changes for any basic block Bs



Classwork

* In(B) = U out(P) where P is a predecessor of B
« out(B) = gen(B) U (in(B) — kill(B))

 |nitially, out(B) = {} -\ (D3
gen(B0) = {D1, D2} kill(B0) = {D3, D4, D6, D8}
gen(B1) = {D3, D4}  kill(B1) = {D1, D2, D6, D8} AL
gen(B2) = {D5, D6} kill(B2) = (D2, D3, D7, D8} B3 [D7 z=y
gen(B3) = {D7, D8} kill(B3)= {D2 D3, D5, D6} D8:x =z

Bl {} {D3,D4} {D1,D2} {D3,D4} {D1,D2,D7} {D3,D4,D7} {D1,2,7} {D3,4,7}

{D78} {D3456} {D478} {D13456} {D1478} {D134567} {D1478}



DFA for Reaching Definitions

Domain Sets of definitions
Transfer function in(B) = U out(P)

out(B) = gen(B) U (in(B) - kill(B))
Direction Forward

Meet | confluence U
operator

Initialization out(B) = {}




DFA for Live Variables

Domain Sets of variables
Transfer function in(B) = use(B) U (out(B) - def(B))
out(B) = U in(S) where S is a successor of B
Direction Backward
Meet /| confluence U
operator
Initialization n(B) = {}

A variable v is live at a program point p if v is used along some path
in the flow graph starting at p.
Otherwise, the variable v is dead.

48
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