
Code Generation

Rupesh Nasre.

CS3300 Compiler Design
IIT Madras

Jul 2018

2

Intermediate
Code Generator

Intermediate
Code Generator

Syntax AnalyzerSyntax Analyzer

Lexical AnalyzerLexical Analyzer

Semantic AnalyzerSemantic Analyzer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent
Code Optimizer

Machine-Independent
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate representation

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

Target machine code

Symbol
Table

F
 r

 o
 n

 t
 e

 n
 d

B
 a

 c
 k

 e
 n

 d

3

Role of Code Generator

● From IR to target program.
● Must preserve the semantics of the source program.

– Meaning intended by the programmer in the original
source program should carry forward in each compilation
stage until code-generation.

● Target code should be of high quality
– execution time or space or energy or …

● Code generator itself should run efficiently.

instruction selection,
register allocation and
instruction ordering.

11

22

33

4

Code Generator in Reality

● The problem of generating an optimal target
program is undecidable.

● Several subproblems are NP-Hard (such as
register allocation).

● Need to depend upon
– Approximation algorithms

– Heuristics

– Conservative estimates

5

Input + Output

Code GeneratorCode Generator

Intermediate representation

Target machine code

● 3AC (Quadruples / Triples / Indirect triples)
● VM instructions (bytecodes / stack machine codes)
● Linear representations (postfix)
● Graphical representation (syntax trees / DAGs)

● RISC (many registers, 3AC, simple addressing
modes, simple ISA)

● CISC (few registers, 2AC, variety of addressing
modes, several register classes, variable length
instructions, instructions with side-effects)

● Stack machine (push / pop, stack top uses
registers, used in JVM, JIT compilation)

It helps to assume an assembler. Imagine if
in A3 you had to generate machine code and
manipulate bits rather than generating x86
assembly.

6

IR and Target Code

Code GeneratorCode Generator

Intermediate representation

Target machine code

R0 = y
R0 = R0 + z
x = R0

LD R0, y
ADD R0, R0, z
ST x, R0

What is the issue with this kind of code generation?What is the issue with this kind of code generation?

7

IR and Target Code

Code GeneratorCode Generator

Intermediate representation

Target machine code

R0 = y
R0 = R0 + z
x = R0

LD R0, y
ADD R0, R0, z
ST x, R0

Generate code for
a = b + c
d = a + e

LD R0, b
ADD R0, R0, c
ST a, R0
LD R0, a
ADD R0, R0, e
ST d, R0

8

Instruction Selection

● Complexity of instruction selection depends upon
– Level of the IR

Low-level IR can help generate more efficient code.

e.g., intsize versus 4.

– Nature of the ISA

Uniformity and completeness of ISA affects the code.

e.g., floats required to be loaded in special registers.

– Desired quality of the generated code

Context and amount of information to process affects
the code quality.

e.g., INC a versus LD R0, a; ADD R0, R0, #1; ST a, R0

1

9

Register Allocation

● Register allocation involves
– Allocation: which variables to be put into registers

– Assignment: which register to use for a variable

● Finding an optimal assignment of registers to
variables is NP-Complete.

● Architectural conventions complicate matters.
– Combination of registers used for double-precision arithmetic.
– Result is stored in accumulator.
– Registers are reserved for special instructions.
– ...

2

Thought exercise: How to use graph coloring for register allocation?Thought exercise: How to use graph coloring for register allocation?

10

Instruction Ordering

● Instruction order affects execution efficiency.

● Picking the best order is NP-complete.

● Optimizer / Code generator needs to look at multiple instructions at
a time.

● Classwork: Create an example IR whose generated code results in
the same meaning but different efficiency for different orders.

3

1: R0 = a
2: R1 = b
3: R2 = c
4: R3 = R0 + R1
5: R4 = R2 + R3
6: d = R4

1: R0 = a
2: R1 = b
3: R2 = c
4: R3 = R0 + R1
5: R4 = R2 + R3
6: d = R4

1: R0 = a
2: R1 = b
4: R2 = R0 + R1
3: R0 = c
5: R3 = R2 + R0
6: d = R3

1: R0 = a
2: R1 = b
4: R2 = R0 + R1
3: R0 = c
5: R3 = R2 + R0
6: d = R3

11

A Typical Target Machine Model

Instruction Type Example

Load LD R1, x

Store ST R1, x

Computation SUB R1, R2, R3

Unconditional Jump BR main

Conditional Jump BLTZ R1, main

Addressing Mode Example

Direct LD R1, 100000

Named / Variable LD R1, x

Variable Indexed LD R1, a(R2)

Immediate Indexed LD R1, 100(R2)

Indirect LD R1, *100(R2)

Immediate LD R1, #100

12

Example Code Generation
using our Target Machine Model

...
x = y - z

...
x = y - z

...
R1 = y
R2 = z
R1 = R1 – R2
x = R1

...
R1 = y
R2 = z
R1 = R1 – R2
x = R1

...
LD R1, y
LD R2, z
SUB R1, R1, R2
ST x, R1

...
LD R1, y
LD R2, z
SUB R1, R1, R2
ST x, R1

…
; y already in R1
LD R2, z
SUB R1, R1, R2
ST x, R1

…
; y already in R1
LD R2, z
SUB R1, R1, R2
ST x, R1

…
LD R1, y
LD R2, z
; x is not used

…
LD R1, y
LD R2, z
; x is not used

Source

IR

Target
code

Optimized
target
code

Optimization and Code
Generation are often run
together multiple-times.

13

Homework

● Exercises 8.2.3 from ALSU book.

14

Basic Blocks and CFG

● A basic block is a maximal sequence of
consecutive 3AC instructions such that
– Single-entry: Control-flow enters the basic-block

through only the first instructions in the block.

– Single-exit: Control leaves the block only after the
last instruction.

● Thus, if control reaches a basic block, all
instructions in it are executed in sequence.
– No branching from in-between or no jumps to in-

between instructions.

● Basic-blocks together form a control-flow graph.

15

for (ii = 0; ii < 10; ++ii) {
for (jj = 0; jj < 10; ++jj) {

a[ii][jj] = 0;
}

}
for (ii = 0; ii < 10; ++ii)

a[ii][ii] = 1;

for (ii = 0; ii < 10; ++ii) {
for (jj = 0; jj < 10; ++jj) {

a[ii][jj] = 0;
}

}
for (ii = 0; ii < 10; ++ii)

a[ii][ii] = 1;

i = 0
L2:
j = 0
L1:
t1 = 10 * i
t2 = t1 + j
t3 = 4 * t2
t4 = t3 – 44
a[t4] = 1
j = j + 1
if j < 10 goto L1
i = i + 1
if i < 10 goto L2
i = 1
L3:
t5 = i - 1
t6 = 44 * t5
a[t6] = 1
i = i + 1
if i < 10 goto L3

i = 0
L2:
j = 0
L1:
t1 = 10 * i
t2 = t1 + j
t3 = 4 * t2
t4 = t3 – 44
a[t4] = 1
j = j + 1
if j < 10 goto L1
i = i + 1
if i < 10 goto L2
i = 1
L3:
t5 = i - 1
t6 = 44 * t5
a[t6] = 1
i = i + 1
if i < 10 goto L3

t1 = 10 * i
t2 = t1 + j
t3 = 4 * t2
t4 = t3 – 44
a[t4] = 1
j = j + 1
if j < 10 goto B3

t1 = 10 * i
t2 = t1 + j
t3 = 4 * t2
t4 = t3 – 44
a[t4] = 1
j = j + 1
if j < 10 goto B3

i = i + 1
if i < 10 goto B2

i = i + 1
if i < 10 goto B2

i = 1i = 1

i = 0i = 0

j = 0j = 0

t5 = i - 1
t6 = 44 * t5
a[t6] = 1
i = i + 1
if i < 10 goto B6

t5 = i - 1
t6 = 44 * t5
a[t6] = 1
i = i + 1
if i < 10 goto B6

ENTRY

EXIT

B1

B2

B3

B4

B5

B6

S
ou

rc
e

In
te

rm
ed

ia
te

 r
ep

re
se

nt
at

io
n

C
ontrol -flow

 gr aph (C
F

G
)

16

Optimizations using CFG

● Local: within a basic-block
– Local common sub-expressions

– Dead-code elimination

– Use of algebraic identities

● Global: across blocks
– Common sub-expression elimination

– Strength reduction

– Data-flow analysis

17

Local Common Sub-expressions
Elimination

a = b + c
b = a – d
c = b + c
d = a - d

a = b + c
b = a – d
c = b + c
d = a - d

a + a * (b – c) + (b – c) * d

++

**++

aa ** -- dd

bb ccaa --

bb cc

++

**++

** dd

aa --

bb cc

2 3

41

5

6

7

8

9

bb cc

++

--

++

dda

b, d

c
● Does not distinguish properly between different

variable instances.
● It is unclear why certain variable should be used or a

new one should be formed.
● We need use-def information.

18

Local Common Sub-expressions
Elimination

a = b + c
b = a – d
c = b + c
d = a - d

a = b + c
b = a – d
c = b + c
d = a - d

bb cc

++

--

++

dda

b, d

c

a1 = b0 + c0
b1 = a1 – d0
c1 = b1 + c0
d1 = a1 - d0

a1 = b0 + c0
b1 = a1 – d0
c1 = b1 + c0
d1 = a1 - d0

● Variables have initial DEFs.
● Each DEF creates a new instance of

the variable (recall SSA).
● Each USE refers to the latest DEF.

b0b0 c0c0

++

--

++

d0d0a1

b1, d1

c1

19

++

Local Common Sub-expressions
Elimination

a = b + c
b = a – d
c = b + c
d = a - d

a = b + c
b = a – d
c = b + c
d = a - d

bb cc

++

--

++

dda

b, d

c

a1 = b0 + c0
b1 = a1 – d0
c1 = b1 + c0
d1 = a1 - d0

a1 = b0 + c0
b1 = a1 – d0
c1 = b1 + c0
d1 = a1 - d0

Classwork: Find the Basic Block DAG
(expression DAG) for the above Basic Block.

b0b0 c0c0

++

--

++

d0d0a1

b1, d1

c1

a = b + c
b = b – d
c = c + d
e = b + c

a = b + c
b = b – d
c = c + d
e = b + c

a1 = b0 + c0
b1 = b0 – d0
c1 = c0 + d0
e1 = b1 + c1

a1 = b0 + c0
b1 = b0 – d0
c1 = c0 + d0
e1 = b1 + c1

No common
expressions

b0b0 c0c0 d0d0

++ -- ++a1 b1 c1

e1

20

Dead-code Elimination

● Remove root from the DAG that have no live
variables attached.
– There could be multiple roots in the DAG.

– We may be able to apply this repeatedly.

++

b0b0 c0c0 d0d0

++ -- ++a1 b1 c1

e1
Assuming a and b are live (used later)
while c and e are not, then
● We can remove e1.
● Once e1 is removed, c1 can also be removed.

21

Algebraic Identities

● Algebraic properties
– x + 0 = 0 + x = x x – 0 = x

– x * 1 = 1 * x = x x / 1 = x

● Strength reduction
– x2 = x * x

– 2 * x = x + x

– x / 2 = x * 0.5

● Constant folding
– 2 * 3.14 = 6.28

22

Algebraic Identities

● Commutativity and Associativity
– DAG construction can help us here.

– Apart from checking left op right, we could also
check right op left for commutativity.

e.g., (a + b) + (b + a).

e.g., a = b + c; e = c + d + b;

● Some algebraic laws are not obvious.
– e.g., Can you optimize if (x > y) a = b + x + c – y?

However, we need to worry about underflows.

23

Array References

● Array references cannot be treated like usual
variables.

x = a1
a2 = y
z = a1

x = a1
a2 = y
z = a1

x = a[ii]
a[jj] = y
z = a[ii]

x = a[ii]
a[jj] = y
z = a[ii]

a1a1

x, z a2

yy a[ii]a[ii]

x, z a[jj]

yy a0a0 ii0ii0 jj0jj0 y0y0

=[]=[] =[]=[] =[]=[]x x z

We represent a[ii] as a node with
two or three children depending
upon whether it is rvalue or lvalue.

wrong correct

How do you decide the order in
which assignments are executed?

24

Array References

● Array references cannot be treated like usual
variables.

x = a1
a2 = y
z = a1

x = a1
a2 = y
z = a1

x = a[ii]
a[jj] = y
z = a[ii]

x = a[ii]
a[jj] = y
z = a[ii]

a1a1

x, z a2

yy

a0a0 ii0ii0 jj0jj0 y0y0

=[]=[] =[]=[] =[]=[]x x z

x = a[ii]
b[jj] = y
z = a[ii]

x = a[ii]
b[jj] = y
z = a[ii]

Depending upon how much time a
compiler can afford,
● it would either analyze if a[ii] and

b[jj] are referring to the same
memory location OR

● conservatively assume that they
MAY be referring to the same
location.

25

Aliasing

● The issue with array references is called aliasing.
● Two expressions may refer to the same memory

location at the execution time.
– a[ii] and a[jj]

– *p and *q

– Pass by reference variables

● Local processing may fail to identify aliasing
– Precise alias analysis is computationally difficult.

26

Classwork: Aliasing
● Find all the aliases in this C++ program.

#include <iostream>
int g = 1;

void fun(int &p, int *q, int r, int a, int *s) {
 int &x = g;
 int *y = &p;
 std::cout << p << *q << r << a << *s << x << *y << g << std::endl;
}
int main() {
 int a = g;
 int &b = g;
 int *c = &g;

 fun(b, &g, g, a, c);
 return 0;
}

#include <iostream>
int g = 1;

void fun(int &p, int *q, int r, int a, int *s) {
 int &x = g;
 int *y = &p;
 std::cout << p << *q << r << a << *s << x << *y << g << std::endl;
}
int main() {
 int a = g;
 int &b = g;
 int *c = &g;

 fun(b, &g, g, a, c);
 return 0;
}

27

Peephole Optimization

● Consider a sliding window of instructions and
optimize it.

● Repeated passes are often helpful.
– Redundant load/store elimination

– Dead-code elimination

– Control-flow optimization

– Algebraic simplifications

– Use of machine idioms

– ...

28

Peephole Optimization

● Consider a sliding window of instructions and
optimize it.

● Repeated passes are often helpful.
– Redundant load/store elimination

– Dead-code elimination

– Control-flow optimization

– Algebraic simplifications

– Use of machine idioms

– ...

...
LD R0, a
ST a, R0
...

...
LD R0, a
ST a, R0
...

29

Peephole Optimization

● Consider a sliding window of instructions and
optimize it.

● Repeated passes are often helpful.
– Redundant load/store elimination

– Dead-code elimination

– Control-flow optimization

– Algebraic simplifications

– Use of machine idioms

– ...

constant
propagationdebug = 0

30

Peephole Optimization

● Consider a sliding window of instructions and
optimize it.

● Repeated passes are often helpful.
– Redundant load/store elimination

– Dead-code elimination

– Control-flow optimization

– Algebraic simplifications

– Use of machine idioms

– ...
Remove “L1: goto L2” if no jumps to it.

Can be generalized to conditional jump to L1.

31

Peephole Optimization

● Consider a sliding window of instructions and
optimize it.

● Repeated passes are often helpful.
– Redundant load/store elimination

– Dead-code elimination

– Control-flow optimization

– Algebraic simplifications

– Use of machine idioms

– ...

32

Peephole Optimization

● Consider a sliding window of instructions and
optimize it.

● Repeated passes are often helpful.
– Redundant load/store elimination

– Dead-code elimination

– Control-flow optimization

– Algebraic simplifications

– Use of machine idioms

– ...

33

Register Allocation

● Memory hierarchy: Network, File system, Main
memory, L3 cache, L2, L1, Registers.
– Capacity reduces, access time reduces.

● Critical to allocate and assign registers for
efficiency.
– Register versus Memory could be ~10x

performance difference.

● C allows register variables.
– register int a; // not always a good idea.
– register int a asm(“r12”); // tries a specific register.
– gcc -ffixed-r12 … // reserve r12.

34

Register Allocation
Classwork: Allocate registers for the following code.

● First-Come-First-Served way is often not
the best policy for register allocation.

● We need to perform some analysis to
find out the benefit of allocating registers
to variables.

● We may have to assign cost / benefit to
various operations within a loop.

● What if we say that K registers would be
allocated to the top K variables that have
the maximum number of uses?

● By paying a small spilling cost, we may
be able to increase the benefit of K
registers to more than K variables.

benefit(x, B) = F(use(x, B), live(x, B))

Variable x, Basic block B
use returns the number of uses.
live returns 0 or 1 based on if x is live after
leaving B.

35

Liveness

bcdef

cdef

cdef

acde

acdf

bcdef

bdef
(obtained from
analyzing fun)

acdef

bcdf

benefit(x, B) =
 F(use(x, B), live(x, B))

use returns number of uses.
live returns 0 or 1 based on if x
is live after leaving B.

use(a, B1) = 1, live(a, B1) = 1
use(a, B2) = 1, live(a, B2) = 0
use(b, B3) = 1, live(b, B3) = 1
use(c, B2) = 0, live(c, B2) = 1
use(a, B4) = 0, live(a, B4) = 0
...

B1

B2 B3

B4

B5

Overall benefit S(x) =
 sum(benefit(x, B)) for all B

Say, S(a) = 4, S(b) = 5, S(c) = 3,
 S(d) = 6, S(e) = 4, S(f) = 4.

● Assign R0, R1, R2 to a, b and
d globally (global allocation).

● Use remaining register R3
inside blocks (local allocation).

36

Allocation

B1

B2 B3

B4

Overall benefit S(x) =
 sum(benefit(x, B)) for all B

Say, S(a) = 4, S(b) = 5, S(c) = 3,
 S(d) = 6, S(e) = 4, S(f) = 4.

● Assign R0, R1, R2 to a, b and
d globally (global allocation).

● Use remaining register R3
inside blocks (local allocation).

● R1 and R2 remain assigned
to b and d throughout.

● R3 is loaded repeatedly
inside the loop as an auxiliary
register.

● a is not live at the start,
hence it is not loaded initially.

● At the end of the loop, the
register values are stored
back.

37

Register Allocation as Graph Coloring

● Vertices? Edges?
● Vertices: Variables (or their instances)
● Edges: Co-Live information

– If x and y are live at the same program point, add an
(undirected) edge between x and y.

● Vertex coloring colors neighbors differently.
– Thus, vertex coloring colors x and y differently, if they

are live at the same program point.

– This means, x and y should not use the same register.

– Corollary: if x and z have the same color, they can
reuse the register (at different program points).

38

Live Ranges

bcdef

cdef

cdef

acde

acdf

bcdef

bdef
(obtained from
analyzing fun)

acdef

bcdf

39

Coloring

b

e

This means, in basic block B1, b and e could use the same register.

Classwork: Try it for .

40

Coloring

b

e

● Coloring gave us the maximum number of registers required for the program.
● However, in practice, the number of registers is fixed.
● Therefore, we need to generate spill code for storing a variable into memory

(ST x, R) and then reload the register with the next variable (LD R, y)

41

Data Flow Analysis

● Flow-sensitive: Considers the control-flow in a
function

● Operates on a flow-graph with nodes as basic-
blocks and edges as the control-flow

● Examples
– Constant propagation

– Common subexpression elimination

– Dead code elimination

a = 8a = 8

a = 3a = 3 a = 2a = 2

b = ab = aWhat is the
value of b?

42

Reaching Definitions

● Every assignment is a definition.

● A definition d reaches a program point p if there
exists a path from the point immediately
following d to p such that d is not killed along
the path. D0: y = 3

D1: x = 10
D2: y = 11

if c

D0: y = 3
D1: x = 10
D2: y = 11

if c

D3: x = 1
D4: y = 2
D3: x = 1
D4: y = 2

D5: z = x
D6: x = 4
D5: z = x
D6: x = 4

B0

B1 B2

B3 What definitions reach B3?

43

DFA Equations

● in(B) = set of data flow facts entering block B
● out(B) = …
● gen(B) = set of data flow facts generated in B
● kill(B) = set of data flow facts from the other

blocks killed in B

44

in1 out1 in2 out2 in3 out3

B0 {} {D1, D2} {} {D1, D2} {} {D1, D2}

B1 {} {D3, D4} {D1, D2} {D3, D4} {D1, D2} {D3, D4}

B2 {} {D5, D6} {D1, D2} {D2, D5, D6} {D1, D2} {D2, D5, D6}

B3 {} {} {D3, D4, D5, D6} {D3, D4, D5, D6} {D2, D3, D4, D5, D6} {D2, D3, D4, D5, D6}

DFA for Reaching Definitions

● in(B) = U out(P) where P is a predecessor of B

● out(B) = gen(B) U (in(B) – kill(B))

● Initially, out(B) = { }

D0: y = 3
D1: x = 10
D2: y = 11

if c

D0: y = 3
D1: x = 10
D2: y = 11

if c

D3: x = 1
D4: y = 2
D3: x = 1
D4: y = 2

D5: z = x
D6: x = 4
D5: z = x
D6: x = 4

B0

B1

B3

gen(B0) = {D1, D2} kill(B0) = {D3, D4, D6}
gen(B1) = {D3, D4} kill(B1) = {D0, D1, D2, D6}
gen(B2) = {D5, D6} kill(B2) = {D1, D3}
gen(B3) = { } kill(B3) = { }

B2

45

Algorithm for Reaching Definitions

for each basic block B

 compute gen(B) and kill(B)

 out(B) = {}

do {

 for each basic block B

 in(B) = U out(P) where P \in pred(B)

 out(B) = gen(B) U (in(B) - kill(B))

} while in(B) changes for any basic block B

46

Classwork

D1: y = 3
D2: x = 10

if c

D1: y = 3
D2: x = 10

if c

D3: x = 1
D4: y = 2
D3: x = 1
D4: y = 2

D5: z = x
D6: x = 4
D5: z = x
D6: x = 4

D7: z = y
D8: x = z
D7: z = y
D8: x = z

B0

B1

B3

● in(B) = U out(P) where P is a predecessor of B

● out(B) = gen(B) U (in(B) – kill(B))

● Initially, out(B) = { }

gen(B0) = {D1, D2} kill(B0) = {D3, D4, D6, D8}
gen(B1) = {D3, D4} kill(B1) = {D1, D2, D6, D8}
gen(B2) = {D5, D6} kill(B2) = {D2, D3, D7, D8}
gen(B3) = {D7, D8} kill(B3) = {D2, D3, D5, D6}

B2

in1 out1 in2 out2 in3 out3 in4 out4

B0 {} {D1,D2} {D7,D8} {D1,D2,
D7}

{D4,D7,D8} {D1,D2,D7} {D1,4,7} {D1,2,7}

B1 {} {D3,D4} {D1,D2} {D3,D4} {D1,D2,D7} {D3,D4,D7} {D1,2,7} {D3,4,7}

B2 {} {D5,D6} {D1,D2} {D1,D5,D6} {D1,D2,D7} {D1,D5,D6} {D1,2,7} {D1,5,6}

B3 {} {D78} {D3456} {D478} {D13456} {D1478} {D134567} {D1478}

47

DFA for Reaching Definitions

Domain Sets of definitions

Transfer function in(B) = U out(P)
out(B) = gen(B) U (in(B) ­ kill(B))

Direction Forward

Meet / confluence
operator

U

Initialization out(B) = { }

48

DFA for Live Variables

Domain Sets of variables

Transfer function in(B) = use(B) U (out(B) ­ def(B))
out(B) = U in(S) where S is a successor of B

Direction Backward

Meet / confluence
operator

U

Initialization in(B) = { }

A variable v is live at a program point p if v is used along some path
in the flow graph starting at p.
Otherwise, the variable v is dead.

49

Intermediate
Code Generator

Intermediate
Code Generator

Syntax AnalyzerSyntax Analyzer

Lexical AnalyzerLexical Analyzer

Semantic AnalyzerSemantic Analyzer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent
Code Optimizer

Machine-Independent
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate representation

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

Target machine code

Symbol
Table

F
 r

 o
 n

 t
 e

 n
 d

B
 a

 c
 k

 e
 n

 d

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

