
x86 Assembly Code

Rupesh Nasre.

CS3300 Compiler Design
IIT Madras
August 2020

Based on the references one and two.

https://en.wikibooks.org/wiki/X86_Assembly
http://download.savannah.gnu.org/releases/pgubook/ProgrammingGroundUp-1-0-booksize.pdf

2

Assembly Code

● Just above the machine code
● In presence of assembler, the output of your

compiler
● Useful for efficient, low-level programming

– Reduces productivity

● We will use Linux-based assembler as.
– Example of GAS. Also, Netwide assembler is popular

(NASM).
– On Windows, MASM is popular (uses Intel syntax).
– Software interrupts and code libraries differ across OSs.

3

Intel Microprocessors
Microprocessor Year of introduction Number of transistors

4004 1971 2,250

8008 1972 3,500

8080 1974 6,000

8086 1978 29,000

80186 1982 55,000

80286 1982 134,000

80386 1985 275,000

80486 1989 1,180,235

Pentium 1993 3,100,000

Pentium II 1997 7,500,000

Pentium III 2000 21,000,000

Pentium 4 2000 42,000,000

Core 2006 184,000,000

Core 2 2006 291,000,000

i Series 2008 731,000,000

Xeon Since 1998 8,000,000,000 (2017)

4

Registers

● 8 General-Purpose Registers (GPRs)
– AX, BX, CX, DX, SI, DI, SP, BP

● 6 Segment Registers
– SS, CS, DS, ES, FS, GS (not required for you)

● 1 Flags Register (EFLAGS: 32 bits)
– Bit 0 is carry, 6 is zero, 7 is sign, 8 is trap (used in

step-by-step debugging)
● 1 Instruction Pointer (EIP: 32 bits)
● x86-64 has additional registers.

5

Registers
Register Accumulator ...

64-bit RAX ...

32-bit EAX ...

16-bit AX ...

8-bit AH AL ...

Memory
● x86 architecture is little-endian.
● Least significant byte is written first in memory.

● 0x12345678 is written as
● Source: 3.c

78 56 34 12 ...

6

Bye World! … exit

● Source: 2.s
● mov src, dst ; comment

– Opcode and registers are case insensitive, labels
are case sensitive.

– Constants are prefixed with $.
– Registers are prefixed with %.
– Assembler directives start with a dot.
– b=byte, w=word (16), l=long (int32), q=quad
– int invokes an interrupt handler.
– exit system call expects exit code in ebx register.

7

Hello World!

● Source 1.c
● .section .data starts data section.
● .section .text starts instructions section.
● .section .rodata is for read-only data.
● .globl marks a label used by the linker; so

assembler should not tamper with it.
● _start / main are special labels, marking beginning

of instructions when the program loads.

8

Max

● Source: 4.s
– Assemble as: as 4.s -o 4.o
– Link as: ld 4.o -o max
– Run as: ./max; echo $?
– Note that 0 marks the end of the number list.
– Try changing 44 to 344.
– Program is correct, but exit codes are 8-bit long (try

return 300 in a .c program).

9

Addressing Modes

Addressing Mode Example Instruction

Register mov ax, bx

Immediate mov $0xABCD, ax

Direct memory .data
my_var dw 0abcdh
.code
mov ax, [my_var]

Direct offset byte_table db 12, 15, 16, 22
mov al, [byte_table + 2]
mov al, byte_table[2]

Register indirect mov ax, [di]

10

Instruction Set
Instruction Type Example Instruction

Data transfer movl $0x000F, %eax
; byte=8, word=16, long=32, quad=64

Control-flow mov ecx, $5
mov edx, $5
cmp ecx, edx
je equal
;--
call fun
;--
mov ecx, 5
five:

; the code here is executed 5 times
loop five

Arithmetic mov eax, [source] ; read low 32 bits
mov edx, [source+4] ; read high 32 bits
add [destination], eax ; add low 32 bits
adc [destination+4], edx ; add high 32 bits, plus carry

11

Instruction Set

Instruction Type Example Instruction

Data transfer ...

Control-flow ...

Arithmetic ...

Logic movl $0x1, %edx ; edx 1≔ 1
movl $0x0, %ecx ; ecx 0≔ 1
andl %edx, %ecx ; ecx edx ecx≔ 1 ∧ ecx
; here ecx would be 0 because 1 0 0∧ ecx ⇔ 0

Shift and Rotate movw $ff00,%ax # ax=1111.1111.0000.0000
shrw $3,%ax # ax=0001.1111.1110.0000
shlw $1,%ax # ax=0011.1111.1100.0000

Others push, pop, pusha, popa, pushf, popf, stc, clc, rdtsc

Interrupts int 0x0a

12

Example on addressing modes

● movl -8(%ebp, %edx, 4), %eax # Full ex.: eax = *(ebp + (edx * 4) - 8)

● movl -4(%ebp), %eax # Typical ex.: eax = a stack variable

● movl (%ecx), %edx # Register indirect to register

● leal 8(,%eax,4), %eax # Arithmetic: eax = 4 * eax + 8

● leal (%edx,%eax,2), %eax # Arithmetic: eax = 2 * eax + edx

13

Notes

● as assembler allows C/C++ style comments.
– /* … */ and //.
– It also allows comments using #.

● SSE/AVX extensions allow 128, 256, 512
registers (e.g., XMM, YMM and ZMM).

● 8086 had 20-bit address. But registers were 16
bits. Hence, a combination of registers was
used (Segment:Offset or CS:IP). With the
current Flat Addressing (32 bits), this is not
necessary.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

