
Run-Time Environments

Rupesh Nasre.

CS3300 Compiler Design
IIT Madras
July 2024

2

Static versus Dynamic
● Time: compilation versus execution,

preprocessor versus compilation
● Compilation: gcc versus jit
● Optimization: without and with input
● Analysis: without and with environment
● Type:

– strongly typed versus scripting languages
– inheritance and virtual functions

● Linking: .a versus .so
● Scoping

3

Memory Organization

Code

Static / Global

Heap

Stack

● Code is often rx and not w.
● Static / Global section is rw.
● const data is often not stored

in code section.
– We can fool the compiler via

pointers and type-casts.
– But a run-time environment

may decide to mark the page
read-only (r--).

● static in C is an abstraction
over globals.
– Hardware does not enforce it.

a.
ou

t
in
 m

em
or
y

Default stack size is
limited (8 MB).

4

Scope and Lifetime

Variable Scope Lifetime

auto (local variables) Function / Block Function / Block

global Global 100%

static local Function / Block 100%

static global File 100%

Dynamically allocated (malloc) Global (via pointers) Until deallocated (free) or 100%

5

Heap

● Dynamic memory allocation
– malloc, calloc, realloc, free
– malloc does not initialize memory. In Linux, it may

not even allocate memory (over-provisioning).
– calloc initializes memory to 0.
– free does not need size. Double free has undefined

behavior. Freeing a null pointer has no effect.
– realloc may expand the existing memory or

allocate new memory and copy the data.
– Not recommended: realloc can be used as malloc

as well as free.

6

Memory Manager

● Heap uses a memory manager.
– dlmalloc (general purpose allocator, earlier Linuses)
– ptmalloc2 (glibc, thread-friendly, per thread heap)
– jemalloc (freebsd and firefox)
– tcmalloc (google)
– libumem (solaris)
– …

● The implementations interface between user
program and OS.
– Gets arenas from OS and maintains those for a.out.

Source and code

https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c

7

malloc
● For small chunks, malloc uses brk / sbrk syscalls.

– Linux uses sbrk as a library function, which calls brk as
a syscall.

– sbrk can be used to query the current break value,
which indicates the end of the data segment.

● For larger chunks (> 128 KB), malloc uses mmap.
– More communication with OS.
– Hence, costlier.

● .bss section may get mapped to uninitialized block.
– Useful to not allocate page, since data is not written yet.
– On Linux, the physical pages are initialized to zero, but

C does not guarantee it. Source and code

https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c

8

● mallocs lead to a linked list.
● Head pointer to the

allocated list is in libc.so.
● Metadata about allocated

chunk is stored prior to the
allocated region.

● No two free chunks are
adjacent.

● Different sized free chunks
are maintained in different
bins (small, large, etc.)

Source and code

Memory Layout with malloc and free

https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c

9

Allocation Strategies

● malloc: where to allocate this memory when we
have multiple options?

● First-fit: find the first free (from
starting) block to satisfy the
request.

● Next-fit: similar to first fit, but
start from the end of the
previously allocated chunk.

● Best-fit: find the smallest free
chunk satisfying the request, and
allocate to the left.

● Worst-fit: find the largest free
chunk satisfying the request, and
allocate centrally in it.

first

next

best

worst

What is the use of next-fit and worst-fit?

10

free
● Deallocates memory created using malloc

– Uses munmap if memory was allocated with mmap.
– Does not need size of the allocated region. Uses

metadata stored prior to the pointer.
● Free results in merging with adjacent free regions.
● Freeing nullptr is a no-op.
● Freeing previously freed memory may lead to

undefined program behavior.
● Free creates dangling pointers.

#define myfree(p) free(p), p = nullptr

11

Garbage Collection
● Due to the issues with free, some languages prefer to

not permit users to use it.

– Or users do not need to worry about freeing memory.
● A managed run-time is needed to collect garbage.

– e.g., Java, Python, most functional languages
● GC based on algorithm

– Reference Counting, Mark and Sweep
● GC based on static vs. dynamic behavior

– Incremental, Stop the World
● Concepts applicable in other contexts.

– fopen-fclose, init-destroy, lock-unlock, connect-
disconnect, ...

12

Stack

● LIFO, useful for storing function call data
– Called as activations, recent activation on top

● Permits reuse of memory area across functions
● Permits relative addresses of variables to be the

same within a function, irrespective of the call.
● Compiler needs to generate code to use a stack.

– A VM may also use a stack to execute instructions.
● Used in exception handling

13

Allocations on Stack
● Local variables, temporaries, register spills, function

parameters (actual), function arguments (formal), return
value, return address, call environment

● Not allocated: global, static, malloc

– Optimizations may convert heap-to-stack allocation.

● Dynamically sized arrays? Two ways:

– Decide addresses on the fly (of the array and the latter
variables).

– Statically allocate a pointer.

● Small allocations are okay and expected.

● Large allocations are expected to be on heap.

– Stack size needs to be updated in case needed.

– Source: ulimit.c

14

Why Stack for Activations?

int fact(int n) {
 printf("%d\n", n);

 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

int fact(int n) {
 printf("%d\n", n);

 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

main

fact(5) printf

fact(4)printf

fact(3)printf

current
past
future

● The activations form a tree.
● Functions begin in preorder.

Functions exit in postorder.
● Current sequence of activations

is a path from the root.
● The DFS needs a stack.

An activation record is created
for each function call.

An activation record is created
for each function call.

15

Activation Record

Actual parameters

Return values

Control link

Access link

Saved machine status

Local data

Temporaries

● Saved machine status
includes return address
(PC), calleX-saved registers

● Access link points to the
activation record where data
may be found (e.g., globals,
nested procedures in static
scoping)

● Control link → caller

16

Activation Record

5

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

Actual parameters

Return values

Control link

Access link

Saved machine status

Local data

Temporaries

retval (BP + 0)

x (BP + 4)

main
BP

17

Activation Record

5

return addr

main BP

5

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

Actual parameters

Return values

Control link

Access link

Saved machine status

Local data

Temporaries

retval

x

main

BP
fact

n (BP - 4)

call to printf

caller-saved

retval

Calling
sequence

18

Activation Record

4

return addr

fact(5) BP

5

return addr

main BP

5

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

Actual parameters

Return values

Control link

Access link

Saved machine status

Local data

Temporaries

retval

x

main

BP

fact
n

call to printf

caller-saved

fact

n (BP - 4)

retval

19

Activation Record

24

4

return addr

fact(5) BP

5

return addr

main BP

5

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

Actual parameters

Return values

Control link

Access link

Saved machine status

Local data

Temporaries

retval

x

main

BP

fact
n

call to printf

caller-saved

fact

n (BP - 4)

retval

Return
sequence

20

Activation Record

120

5

return addr

main BP

5

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

Actual parameters

Return values

Control link

Access link

Saved machine status

Local data

Temporaries

retval

x

main

BP
fact

n

call to printf

caller-saved

retval

21

Activation Record

fmt str

120

return addr

main BP

5

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

int fact(int n) {
 if (n == 0) return 1;
 return n * fact(n - 1);
}
int main() {
 int x = 5;
 printf("%d\n", fact(x));
}

Actual parameters

Return values

Control link

Access link

Saved machine status

Local data

Temporaries

retval

x

mainBP

caller-saved

BP
printf

22

Register Saving
● Calling Sequence and Return Sequence
● Caller-Saved

– Callers know what registers they want to be restored.
– But they don’t know what all callee would require.

● Callee-Saved
– Callee knows which registers are needed.
– Independent of the multiple callers.
– But, it doesn’t know which of the callers are using

those registers.
● While the compiler may have access to both

caller and callee codes, the code generation is
often function-by-function.
– Inter-procedural optimizations with -O3

23

Stack Depth
● CS1111: Write a program to recursively search

in an unsorted array.
● Stack depth affects whether your program

crashes on large inputs.
– Your and company’s credibility is at stake.
– How can you help?

● Algorithmic considerations may affect.
– Source: search.c // borrowed from Dr. Meghana
– Use recursion carefully.
– Recall PDS Trees: Tree-height not only affects

execution time, it also affects stack requirement.

24

Intermediate
Code Generator

Intermediate
Code Generator

Syntax AnalyzerSyntax Analyzer

Lexical AnalyzerLexical Analyzer

Semantic AnalyzerSemantic Analyzer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent
Code Optimizer

Machine-Independent
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate representation

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

Target machine code

Symbol
Table

F
 r

 o
 n

 t
 e

 n
 d

B
 a

 c
 k

 e
 n

 d

25

Going Forward

● Advanced Compiler Design
● Program Analysis
● Program Verification
● Programs and Proofs
● Research on various backends

– analysis, optimization, and code generation
– LLVM and MLIR
– Newer architectures

● Acknowledgments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

