Department of Computer Science and Engineering, Indian Institute of Technology Madras

Course title	GPU Programming								Course No	CSNEW			
Department	CSE	New Credits	L	Т	Е	Р	0	С	Old Credits	L	Т	Ρ	С
			3	1	0	0	8	12		3	1	0	4
Offered for	BTech / DD / MTech / MS / PhD								Status	Final			
Faculty	Rupesh Nasre.								Туре	Theory			
Pre-requisite									To take effect from	2017			
Submission date	Date of approval by DCC Date of approval by BAC								Date of approval by Senate				

Objectives:

To learn parallel programming with graphics processing units (GPUs)

Outcomes:

Students would learn concepts in parallel programming, implementation of programs on GPUs, debugging and profiling parallel programs.

Course Contents:

Topic (number of lectures + number of tutorials)

Introduction (2 + 1):

- history, graphics processors, graphics processing units, GPGPUs
- clock speeds, CPU / GPU comparisons, heterogeneity
- accelerators, parallel programming, CUDA / OpenCL / OpenACC, Hello World

Computation (3 + 1):

- kernels, launch parameters
- thread hierarchy, warps / wavefronts, thread blocks / workgroups, streaming multiprocessors
- 1D / 2D / 3D thread mapping, device properties, simple programs

Memory (8 + 2):

- memory hierarchy, DRAM / global, local / shared, private / local, textures, constant memory
- pointers, parameter passing, arrays and dynamic memory, multi-dimensional arrays
- memory allocation, memory copying across devices
- programs with matrices, performance evaluation with different memories

Synchronization (6 + 2):

- memory consistency

- barriers (local versus global), atomics, memory fence
- prefix sum, reduction
- programs for concurrent data structures such as worklists, linked-lists
- synchronization across CPU and GPU

Functions (3 + 1):

- device functions, host functions, kernels, functors
- using libraries (such as Thrust), developing libraries

Support (1 + 2):

- debugging GPU programs
- profiling, profile tools, performance aspects

Streams (3 + 1):

- asynchronous processing, tasks, task-dependence
- overlapped data transfers, default stream, synchronization with streams
- events, event-based-synchronization

- overlapping data transfer and kernel execution, pitfalls

Case studies (3 + 2):

- image processing
- graph algorithms
- simulations
- deep learning

- ...

Advanced topics (8 + 2):

- dynamic parallelism
- unified virtual memory
- multi-GPU processing
- peer access
- heterogeneous processing

Course evaluation would involve programming assignments.

Text Books:

Programming Massively Parallel Processors: A Hands-on Approach; David Kirk, Wen-mei Hwu; Morgan Kaufman; 2010 (ISBN: 978-0123814722)

Reference Books:

CUDA Programming: A Developer's Guide to Parallel Computing with GPUs; Shane Cook; Morgan Kaufman; 2012 (ISBN: 978-0124159334)