Parallel Graph Algorithms

) & L%

Rupesh Nasre.
IIT Madras

gmggg

'ﬂ‘
- L '
| 5 =7 # L
1 L . ’ 4
i o B 4
1 LR -
-
(]) -
s
L1 I
\ ' L
. L]

MOD4(sum2)

adler += *buf++
sum2 += adler

| 2
Source: Google images

Graphs

 Where do we encounter graphs?

— Social networks, road connections, molecular
Interactions, planetary forces, ...

— snap, florida, dimacs, konect, ... %
* Why treat them separately? /J
@ J @

— They provide structural information.
— They can be processed more efficiently.
 What challenges do they pose?

— Load imbalance, poor locality, ...
— Irregularity

Scalability

e Meta /| Facebook

— 2.2 billion active users
— 1.3 billion is India's population
- e.g. top people in the world

. Milky Way

— over 100 billion stars
- e.g. finding possibility of life

 Human Brain

— 100 billion neurons
— Atrtificial intelligence

Finding betweenness centrality on a million node'graph (in a
sequential manner) takes several weeks!

Handling Large Graphs

Storage Time

Distributed setup e Parallelism

— Graph Is partitioned across a cluster. — Multi-core, distributed,
GPUs

External memory algorithms

— Graph partitions are processed * Approximations

sequentially. - Approximate
Algorithms on compressed data computing

— Compression needs to maintain
retrieval ability.

Maintaining graph core

— Removal of unnecessary subgraphs.

Parallelism Approaches

« Manual &
- OpenMP, MPI, CUDA 2
» Libraries 5
o
— Galols, Ligra, LonestarGPU, Gunrock, ... &
 Domain-Specific Languages u

— Green-Marl, Elixir, Falcon, ...

aouew.Iouad

Specifying Parallelism

* Do not specify.

— Sequential input, completely automated, currently
very challenging in general

* Implicit parallelism

— aggregates, aggregate functions, primitive-based
processing, ...

* Explicit parallelism
— pthreads, MPI, OpenCL, ...

ldentifying Dependence

for (i1 = 0; 11 < 10; ++i1) {
a[2 *1i] =

}

coal2 i+ 1] .,

Dependence equations
0<=ii <ii <10
2% =2*ii +1

which can be written as

0<= iiW)
iu<:m-1
iir <=9

2*iiW<:2*iir+1
2*iir+1<:2*iiw

~

_

Is there a flow dependence
between different iterations?

Flow dependence is
read-af ter-write (to the

same memory location).
W o> y

0 0
-1 -1
-2 Il 1
2 -1

Dependence exists if the system has a solution.

Parallel Architectures

e Multicore CPUs

— Intel, ARM, ...
— pthreads, OpenMP, ...

* Distributed systems

— CPUs with interconnects
- MPI
) Manycore GPUS CPU-GPU processing concepts

— NVIDIA. AMD have similarity with those in
’ P distributed systems.
— CUDA, OpenCL, ...

What i1s a GPU?

* Graphics Processing Unit

e Separate piece of hardware
connected using a bus

e Separate address space
than that of the CPU

* Massive multithreading
* Warp-based execution

10

What Is a Warp?

GPU Computation Hierarchy

GPU

Multi-processor

Block

Warp

Thread

Hundreds of
thousands

Tens of
thousands

1024

32

12

Challenges with GPUs

Warp-based execution

Locking Is expensive

Dynamic memory allocation is costly

Limited data-cache

Programmability issues

separate address space

low recursion support

complex computation hierarchy
exposed memory hierarchy

13

Challenges in Graph Algorithms

* Synchronization

— locks are prohibitively expensive on GPUs
— atomic instructions quickly become expensive

* Memory latency

— locality is difficult to exploit
— low caching support

 Thread-divergence

— work done per node varies with graph structure
* Uncoalesced memory accesses

— warp-threads access arbitrary graph elements

14

@ @ @

~_ Graph Representation

® @6

1. Adjacency matrix
- |V [x| V]| matrix
— Each entry [i, J] denotes if edge (i,))
IS present in G
— Useful for dense graph
— Finding neighbors is O(|V|)
2. Adjacency list
- |V| + |E| size
— Each vertex | has a list of Its
neighbors
— Useful for sparse graphs
— Finding neighbors is O(max.
degree)

(34

(355

>4

>0k>1

>(05>2]

14

15

. @ (2 .
~_ Graph Representation

3 45
3. Edge list | Coordinate list (COO)
~- | E| pairs

— Useful for edge-based algorithms
— Typically sorted on vertex id

4. Compressed sparse row (CSR)
— Concatenated adjacency lists

— Useful for sparse graphs
— Useful for data transfer

© N o1 AN O

A~ P NN O P O b~ O W & W

oo o1 A W W NN P LR OO

~ PP NP O b O W B~ W

16

TAQO Classification

‘ active node

neighborhood

* Operator formulation: Computation as an iterated application of operator

* Topology-driven processing: operator is applied at all the nodes even if
there is no work to do at some nodes (e.g., Bellman-Ford SSSP)

 Data-driven processing: operator is applied only at the nodes where
there might be work to be done (e.g., SSSP with delta-stepping)

The TAO of Parallelism in Algorithms, Pingali et a/, PLDI 2011

Data-driven vs. Topology-driven

. e

. b] v
o, U e o o, o 0 e
O ¢ & @ ¢ ¢
da‘z-driven topology-driven
work-efficient e performs extra work
centralized worklist * no worklists

fine-grained synchronization ¢ coarse-grained synchronization
using atomics using barriers

complicates implementation < easier to implement

18

Data-driven: Base Version

main {
read input
transfer input
initialize_kernel
initialize worklist(w/in)
clear wlout

while w/in not empty {

operator(w/in, wlout, ..

transfer w/lout size
clear wlin

swap(wl/in, wlout)
}

transfer results

)

cpu

.
S

B

T
TIT

sssp_operator(w/in, wlout, ...) {

src= wilinl...]

dsrc = distance[src]

forall edges (src, dst, wt) {
ddst = distancel dst]
altdist = dsrc + wt
if altdist < ddst {

distanceldst] = altdist

} wlout.push(dst)
H)

i)

f/' N \\\
o A
o, r o ®
o e
) / \\\/,/“ ‘\\J/J

N

L wihin

Data-driven: Hierarchical Worklist

1 win global memory

L wlhocal on-chip cache
O.. Threadblocks

|| wiout global memory

* Worklist exploits memory hierarchy

* Makes judicious use of limited on-chip cache

20

Data-driven: Work Chunking

&

atomic perelement (EDEBE B O(e) atomics
atomic perthread (M @EE@ O(?) atomics

* Reserves space for multiple work-items in a single atomic

* May reduce overall synchronization

Data-driven: Atomic-free Worklist Update

atomic per element PBUEE B O(e) atomics

atomic per thread | @88 O(%) atomics

prefix-sum | DD e O(log t) barriers

AN

B

[

i
Sl

22

Data-driven: Work Donation

donate_kernel {
shared donationbox|...];
// determine if I should donate
--barrier--

// donate
--barrier--

// operator execution

// empty donation box

* Work-donation improves load balance

23

Data-driven: Variable Kernel Configuration

DMR's parallelism profile (input: mesh with 50K triangles)

8000
£ A
= 6000 |- Available parallelism varies
= i throughout execution
© _
A 4000
9 i
& 2000 |-
= -
> -
< 0

r 1 I L 1 L 1 I L 1 L 1 I L 1 1 1 l 1 1 1 1 l 1 1 1 1 l

I L 1 L
0 10 20 30 40 50 60
Computation Step

* Varying configuration improves work-efficiency

* |t also reduces conflicts and may improve performance

24

Topology-driven: Base Version

cpu

main { B
read input o
transfer input
initialize_kernel T
transfer false to changed S
operatox(...)]
transfer changed -
} while changed - N

transfer results | am

|
%

e

o
‘lﬁ}

25

Topology-driven: Kernel Unrolling

sssp_operator(src) {
dsrc = distance[src]

ddst = distancel dst]
altdist = dsrc + wt

if altdist < ddst
distancel[dst] = altdist

* |[mproves amount of computation per thread invocation
* Need to ensure absence of races

* Propagates information faster

26

Topology-driven: Exploiting Memory Hierarchy

l queue

e e
S
\ % 8
on-chip \ 5
cache =
O]
< m O S Y i
unroll factor
Y\ / 6\6

stackl Reduces memory latency

* Requires careful selection of unroll factor

27

Topology-driven: Improved Memory Layout

¢ .0
o ©
S A R

* Bring logically close graph nodes also physically close in memory

* |Improves spatial locality

28

Improving Synchronization

2 4

push-based pull-based

tfive {seven trive tseven tfive {seven

2 3 2 3 3
Atomic-free update Lost-update problem Correction by topology-driven

processing, exploiting monotonicity

29

Irregular Algorithms on GPUs

\? /’j 4 b 77‘\\

S

Breadth-first search Barnes-Hut n-body simulation Single-source shortest paths

e Better memory layout

* Kernel unrolling BFS 48
: BH 90
Local worklists sssp i

* Improved synchronization

30

ldentify the Celebrity

Source: wikipedia

31

What Is a morph?

Source: wikipedia

32

Examples of Morph Algorithms

Delaunay Mesh Refinement

X

Minimum Spanning
Tree Computation

a = &X a/\
b=&y | %
p=& pla| by
*p=>b

c=a c

o

.,
B .
''''''
. . .
. . .
......
. o .

o 3

Survey Propagation

33

Challenges in Morph Algorithms

* Synchronization

— locks are prohibitively expensive on GPUs
— atomic instructions quickly become expensive

 Memory allocation

— changing graph structure requires new strategies
— memory requirement cannot be predicted

 Load imbalance

— different modifications to different parts of the graph
— work done per node changes dynamically

— leads to thread-divergence and uncoalesced "
memory accesses

GPU Optimization Principles

Algorithm SeleCt?On These optimization principles
Work Sort!ng are critical for high-performing
Work chunking irregular GPU computations.
Communication onto computation
Following parallelism profile
Pipelined computation / Kernel transformations
~ Data grouping
Exploiting memory hierarchy

Synchronization

Avoiding synchronization
Coarsening synchronization
Race and resolve mechanism
Combining synchronization

36

Approximations

Reduced execution
 reduce the number of iterations

Partial graph processing
— process fewer graph elements

Graph compaction
— reduce the graph size

Approximate attribute values

— reduce the number of distinct values

Approximation A(Domain D, Function F)
Function F: entity — entity
entity belongs to Domain D.

Iter. >K—=K
Edge >K—K
Vertex u—v

Value v—=v/ K

37

Synchronization Energy Approximations

Saurabh, Ganesh Jyothi Krishna, Nikitha Somesh, Jash
Graph DSL : i
:) Testing and Android
Ebenezer, Ashwina, Graph Algorithms Shouvick, Aman
Nibedita
Autoparallelizers Community Detection Clustering
Prema Akash, Srivatsan Anju

Gajendra
Invited paper at ACM Transactions on Parallel Computing
Institute research awards at IIT Madras in 2021, 2020, 2019
Winner of HIPC Parallel Programming Challenge: Intel track in 2017
Distinguished Paper Award at PPoPP 2016
Best Paper Award at HiPC Student Research Symposium 2015

Best MTP Awards, Krishnamurthy Endowment Prize, Prakash Arora Prize

38

Graph DSL

v OpenMP |

Graph .
Algorithm [Compiler > MPI |
in DSL

CUDA |

Generate code for different backends from the same
algorithm specification.

Currently works with static graphs (SSSP, BC, PR, TC).
In progress: dynamic graphs, complex algorithms,
analysis, multi-GPU processing, ...

39

Exercises

Find Iif true dependence exists for the loop.

for (i1 = 0; 11 < 10; ++1i1) {
a[2 *1ii] = ... a[ii + 1] ...
al3 +1i] = ... a[b *1ii] ...

}

Represent a graph as adjacency list on GPU.

Represent an input graph in CSR format, and
then convert it into a COO format.

Write a kernel to count degrees of various
vertices. Check finally that the sum equals the
number of edges.

Implement shortest path algorithm. Check your
Implementation against that in CUDA SDK. ¥

Parallel Graph Algorithms

) & L%

Rupesh Nasre.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

