
Data  Dependences

S1:   a = b + c

S2:   d = a * 2

S3:   a = c + 2

S4:   e = d + c + 2

stmt read write 
  S1  b,c    a
  S2    a    d     S1fS2
  S3    c    a     S1oS3, S2aS3
  S4  d,c    e     S2fS4

S1

S2

S3 S4

S1fS2

S1oS3

S2aS3

S2fS4



Data  Dependence  Types

flow-dependence:  occurs when a variable which is assigned a value in 
   one statement, e.g. S1, is read by another statement,    

e.g. S2, later.  Written as S1fS2.

anti-dependence:  occurs when a variable read by one statement, e.g. 
   S1, is assigned an updated value in another statement,
   e.g. S2, later.  Written as S1aS2.

output-dependence:    occurs when a variable which is assigned a 
value in    one statement, e.g. S1, is later re-assigned an updated 

   value in another statement, e.g. S2, later.  Written as    
S1oS2.



Data  Dependences

S1:   a = b + c

S2:   d = a * 2

S3:   a = c + 2

S4:   e = d + c + 2

stmtreadwrite 
  S1  b,c    a
  S2    a    d         OUT(S1)   IN(S2)     = {a}       S1fS2
  S3    c    a         OUT(S1)   OUT(S3) = {a}       S1oS3,
               IN(S2)       OUT(S3) = {a}       S2aS3
  S4  d,c    e         OUT(S2)   IN(S4)     = {d}       S2fS4

IN(Si):     the set of memory locations 
read by the statement Si.

OUT(Si): the set of memory locations 
written by the statement Si.  

(note a specific memory location  may be both 
IN(Si) and OUT(Si).)

• A data dependence exists between two statements Si and 

Sj when the OUT set of one of the statements has a non-

empty intersection with the IN or OUT set of the other
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Data Dependences in Loops

• Associate a dynamic instance to each statement. For 

example

• Statements S1 and S2 are executed 50 times. We say S2(10) 

to mean the execution of S2 when i = 10
• Dependences are based on dynamic instances of statements

    For i = 1 to 50
S1:   A(i) = B(i-1) + C(i)
S2:   B(i) = A(i+2) + C(i)
    EndFor
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Data Dependences in Loops

• Unrolling loops can help one figure out dependences:

S1(1):     A(1) = B(0) + C(1)
S2(1):     B(1) = A(3) + C(1)
S1(2):     A(2) = B(1) + C(2)
S2(2):     B(2) = A(4) + C(2)
S1(3):     A(3) = B(2) + C(3)
S2(3):     B(3) = A(5) + C(3)
....................

S1(50):   A(50) = B(49) + C(50)
S2(50):   B(50) = A(52) + C(50)
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Iteration Spaces
• Nested loops define an iteration space:

• Sequential execution (traversal order):

• Dimensionality of iteration space = loop 

nest level; arbitrary convex shapes are 

allowed

• Change in order of execution is valid if no 

dependences are violated

For i = 1 to 4
   for j = 1 to 4
      A(i,j) = A(i,j) + C(j)
   Endfor
Endfor
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Dependences in Loop Nests

For I1 = L1, U1
 For I2 = L2, U2
  …
   For In = Ln, Un
     S(I1,…,In)
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Dependence Level
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Dependence Distance Vector
• Suppose there is a dependence from to 

in a loop nest
• We define the dependence distance vector as

• Legality of transformations is defined in terms of 

distance vectors or approximations to distance vectors, 

such as direction vectors and dependence levels
• Level of a dependence is position of rightmost positive 

component in dependence vector
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• We define sign of a real number x as follows:

– sign(x) = 0   if x=0

– sign(x) = +   if x > 0

– sign(x) = -    if x < 0
• Suppose we have a dependence from S(i1, …, in) to S(j1, …, 

jn). The dependence distance is (j1-i1, …, jn-in)
• The direction vector for this dependence is:

( sign(j1-i1), sign(j2-i2), …, sign(jn-in) )

Dependence Direction Vector

For loop nests that have loops that count up, the
first (left-most) non-zero component of any dependence 
vector must be positive
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Example of Dependences

      For i = 1 to 5 
           For j = i to 5
S:             A(i,j) = A(i,j-3) + A(i-2,j) + A(i-1,j+2) + A(i+1,j-1)
           EndFor
      EndFor

RHS 
reference

Type Distance 
Vector

Direction 
Vector 

Level

A(i,j-3) Flow (0,3) (0,+) 2

A(i-2,j) Flow (2,0) (+,0) 1

A(i-1,j+2) Flow (1,-2) (+,-) 1

A(i+1,j-1) Anti (1,-1) (+,-) 1
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Validity (Legality) of Loop Transformations
• In a program, let there be a dependence 

from some instance of statement S1 (called source)

to some instance of statement S2 (called sink)
• A transformation of a program is said to be valid if in the 

transformed version, every sink executes after its 

corresponding source.
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Transformations: Loop interchange

• Interchange: Exchanges two loops in a perfectly nested 
loop, also known as permutation

• Interchange can improve locality 
• It is not always legal; can change the dependence level, 

direction and distance. (d1,d2) becomes (d2,d1)

For I = 1, N
  For J = 1, M
     S(I,J)

For J = 1, M
  For I = 1, N
     S(I,J)



Valid Loop  Interchange

for (int i = 0; i <= n; i++)
    for (int j = 0; j <= n; j++)
        A( i, j) = A( i-1, j-1) * .9A

for (int j = 0; j <= n; j++)
    for (int i = 0; i <= n; i++)
        A( i, j) = A( i-1, j-1) * .9B



Invalid Loop  Interchange

for (int i = 0; i <= n; i++)
    for (int j = 0; j <= n; j++)
        A( i, j) = A( i-1, j+1) * .9A

for (int j = 0; j <= n; j++)
    for (int i = 0; i <= n; i++)
        A( i, j) = A( i-1, j+1) * .9B
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Validity Condition for Loop Interchange
• Loop interchange is valid for a 2D loop nest if none of the 

dependence  vectors has any negative components
• Interchange is legal: (1,1), (2,1), (0,1), (3,0)
• Interchange is not legal: (1,-1), (3,-2)
• Equivalent view: After permutation, inner dimension 

becomes outer dimension and vice versa; so permute the 

dependence vectors of original loop and check if they are 

still valid dependence vectors.
• (1,1) -> (1,1): valid
• (1,-1) -> (-1,1): Not a valid dependence vector; hence 

loop interchange will result in violation of dependence
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Validity Condition for Loop Permutation
• Generalization for higher-dimensional loops: permute all 

dependence vectors exactly the same way as the 

intended loop permutation: if any permuted vector is lex. 

Negative, permutation is illegal
• Example: d1 = (1,-1,1) and d2 = (0,2,-1)
• ijk -> jik? (1,-1,1) -> (-1,1,1): illegal
• ijk -> kij? (0,2,-1) -> (-1,0,2): illegal
• ijk -> ikj? (0,2,-1) -> (0,-1,2): illegal
• No valid permutation:

– j cannot be outermost loop (-1 component in d1)
– k cannot be outermost loop (-1 component in d2)
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Validity Condition for Loop Unroll/Jam
• Sufficient condition can be obtained by observing that 

complete unroll/jam of a loop is equivalent to a loop 

permutation that moves that loop innermost, without 

changing order of other loops
• If such a loop permutation is valid, unroll/jam of the loop is 

valid
• Example: 4D loop ijkl; d1 = (1,-1,0,2), d2 = (1,1,-2,-1)

– i: d1-> (-1,0,2,1) => invalid to unroll/jam

– j: d1-> (1,0,2,-1); d2 -> (1,-2,-1,1) => valid to unroll/jam

– k: d1 -> (1,-1,2,0); d2 -> (1,1,-1,-2) => valid to unroll/jam

– l: d1 and d2 are unchanged; innermost loop always 

unrollable
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Validity Condition for Loop Distribution
• Sufficient (but not necessary) condition: A loop with two 

statements can be distributed if there are no dependences 
from any instance of the later statement to any instance of 
the earlier one. Generalizes to more statements.

• Example: Loop distribution is not valid (executing all S1 first 
and then all S2)

• Example: Loop distribution is valid

    For I = 1, N
S1:  A(I) = B(I) + C(I)
S2:  E(I) = A(I+1)* D(I)
    EndFor

    For I = 1, N
S1:  A(I) = B(I) + C(I)
S2:  E(I) = A(I-1)* D(I)
    EndFor
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Validity Condition for Tiling
• A contiguous band of loops can be tiled if they are fully 

permutable
• A band of loops is fully permutable of all permutations of 

the loops in that band are legal
• Example: d = (1,2,-3) 

– Tiling all three loops ijk is not valid, since the 
permutation kij is invalid ((-3,1,2) is lex. –ve)

– 2D tiling of band ij is valid (jik: (2,1,-3) is lex. +ve)
– 2D tiling of band jk is valid (ikj: (1,-3,2) is lex. +ve)

for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
   for(k = 0;k < n; k++)
        Loop_body(I,j,k)

for (it = 0; it < n; it+=T)
 for (jt = 0; tj < n; j+=T)
  for (i = it; i < it+T; i++)
   for (j = jt; j < jt+T; j++)
    for(k = 0;k < n; k++)
        Loop_body(I,j,k)



25

Transformations: Loop Parallelization
• A loop in a loop nest can be executed in parallel if it does 

not carry a dependence

• The dependence distance is (1,0); the outer (I) loop 

carries the dependence. 
• The inner (J) loop does not carry any dependences 

For I = 1, N
  For J = 1, M
     A(I,J)= A(I-1,J)

For I = 1, N
  ForPAR J = 1, M
    A(I,J)= A(I-1,J)
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Examples of Parallelization

For I = 1, 10
   A(I) = A(I) + 5

Parallel (Why?)

For I = 1, 10
   A(I) = A(I-1) + 5

Not parallel

For I = 1, 10
   A(I) = A(I-10) + 5

Parallel
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