
Data Dependences

S1: a = b + c

S2: d = a * 2

S3: a = c + 2

S4: e = d + c + 2

stmt read write
 S1 b,c a
 S2 a d S1fS2
 S3 c a S1oS3, S2aS3
 S4 d,c e S2fS4

S1

S2

S3 S4

S1fS2

S1oS3

S2aS3

S2fS4

Data Dependence Types

flow-dependence: occurs when a variable which is assigned a value in
 one statement, e.g. S1, is read by another statement,

e.g. S2, later. Written as S1fS2.

anti-dependence: occurs when a variable read by one statement, e.g.
 S1, is assigned an updated value in another statement,
 e.g. S2, later. Written as S1aS2.

output-dependence: occurs when a variable which is assigned a
value in one statement, e.g. S1, is later re-assigned an updated

 value in another statement, e.g. S2, later. Written as
S1oS2.

Data Dependences

S1: a = b + c

S2: d = a * 2

S3: a = c + 2

S4: e = d + c + 2

stmtreadwrite
 S1 b,c a
 S2 a d OUT(S1) IN(S2) = {a} S1fS2
 S3 c a OUT(S1) OUT(S3) = {a} S1oS3,
 IN(S2) OUT(S3) = {a} S2aS3
 S4 d,c e OUT(S2) IN(S4) = {d} S2fS4

IN(Si): the set of memory locations
read by the statement Si.

OUT(Si): the set of memory locations
written by the statement Si.

(note a specific memory location may be both
IN(Si) and OUT(Si).)

• A data dependence exists between two statements Si and

Sj when the OUT set of one of the statements has a non-

empty intersection with the IN or OUT set of the other

4

Data Dependences in Loops

• Associate a dynamic instance to each statement. For

example

• Statements S1 and S2 are executed 50 times. We say S2(10)

to mean the execution of S2 when i = 10
• Dependences are based on dynamic instances of statements

 For i = 1 to 50
S1: A(i) = B(i-1) + C(i)
S2: B(i) = A(i+2) + C(i)
 EndFor

5

Data Dependences in Loops

• Unrolling loops can help one figure out dependences:

S1(1): A(1) = B(0) + C(1)
S2(1): B(1) = A(3) + C(1)
S1(2): A(2) = B(1) + C(2)
S2(2): B(2) = A(4) + C(2)
S1(3): A(3) = B(2) + C(3)
S2(3): B(3) = A(5) + C(3)
....................

S1(50): A(50) = B(49) + C(50)
S2(50): B(50) = A(52) + C(50)

6

Iteration Spaces
• Nested loops define an iteration space:

• Sequential execution (traversal order):

• Dimensionality of iteration space = loop

nest level; arbitrary convex shapes are

allowed

• Change in order of execution is valid if no

dependences are violated

For i = 1 to 4
 for j = 1 to 4
 A(i,j) = A(i,j) + C(j)
 Endfor
Endfor

7

Dependences in Loop Nests

For I1 = L1, U1
 For I2 = L2, U2
 …
 For In = Ln, Un
 S(I1,…,In)

8

Dependence Level

9

Dependence Distance Vector
• Suppose there is a dependence from to

in a loop nest
• We define the dependence distance vector as

• Legality of transformations is defined in terms of

distance vectors or approximations to distance vectors,

such as direction vectors and dependence levels
• Level of a dependence is position of rightmost positive

component in dependence vector

10

• We define sign of a real number x as follows:

– sign(x) = 0 if x=0

– sign(x) = + if x > 0

– sign(x) = - if x < 0
• Suppose we have a dependence from S(i1, …, in) to S(j1, …,

jn). The dependence distance is (j1-i1, …, jn-in)
• The direction vector for this dependence is:

(sign(j1-i1), sign(j2-i2), …, sign(jn-in))

Dependence Direction Vector

For loop nests that have loops that count up, the
first (left-most) non-zero component of any dependence
vector must be positive

11

Example of Dependences

 For i = 1 to 5
 For j = i to 5
S: A(i,j) = A(i,j-3) + A(i-2,j) + A(i-1,j+2) + A(i+1,j-1)
 EndFor
 EndFor

RHS
reference

Type Distance
Vector

Direction
Vector

Level

A(i,j-3) Flow (0,3) (0,+) 2

A(i-2,j) Flow (2,0) (+,0) 1

A(i-1,j+2) Flow (1,-2) (+,-) 1

A(i+1,j-1) Anti (1,-1) (+,-) 1

12

Example of Dependences

 For i = 1 to 5
 For j = i to 5
S: A(i,j) = A(i,j-3) + A(i-2,j) + A(i-1,j+2) + A(i+1,j-1)
 EndFor
 EndFor

RHS
reference

Type Distance
Vector

Direction
Vector

Level

A(i,j-3) Flow (0,3) (0,+) 2

A(i-2,j) Flow (2,0) (+,0) 1

A(i-1,j+2) Flow (1,-2) (+,-) 1

A(i+1,j-1) Anti (1,-1) (+,-) 1

13

 For i = 1 to 5
 For j = i to 5
S: A(i,j) = A(i,j-3) + A(i-2,j) + A(i-1,j+2) + A(i+1,j-1)
 EndFor
 EndFor

RHS
reference

Type Distance
Vector

Direction
Vector

Level

A(i,j-3) Flow (0,3) (0,+) 2

A(i-2,j) Flow (2,0) (+,0) 1

A(i-1,j+2) Flow (1,-2) (+,-) 1

A(i+1,j-1) Anti (1,-1) (+,-) 1

Example of Dependences

14

RHS
reference

Type Distance
Vector

Direction
Vector

Level

A(i,j-3) Flow (0,3) (0,+) 2

A(i-2,j) Flow (2,0) (+,0) 1

A(i-1,j+2) Flow (1,-2) (+,-) 1

A(i+1,j-1) Anti (1,-1) (+,-) 1

 For i = 1 to 5
 For j = i to 5
S: A(i,j) = A(i,j-3) + A(i-2,j) + A(i-1,j+2) + A(i+1,j-1)
 EndFor
 EndFor

Example of Dependences

15

 For i = 1 to 5
 For j = i to 5
S: A(i,j) = A(i,j-3) + A(i-2,j) + A(i-1,j+2) + A(i+1,j-1)
 EndFor
 EndFor

RHS
reference

Type Distance
Vector

Direction
Vector

Level

A(i,j-3) Flow (0,3) (0,+) 2

A(i-2,j) Flow (2,0) (+,0) 1

A(i-1,j+2) Flow (1,-2) (+,-) 1

A(i+1,j-1) Anti (1,-1) (+,-) 1

Example of Dependences

16

Validity (Legality) of Loop Transformations
• In a program, let there be a dependence

from some instance of statement S1 (called source)

to some instance of statement S2 (called sink)
• A transformation of a program is said to be valid if in the

transformed version, every sink executes after its

corresponding source.

17

Transformations: Loop interchange

• Interchange: Exchanges two loops in a perfectly nested
loop, also known as permutation

• Interchange can improve locality
• It is not always legal; can change the dependence level,

direction and distance. (d1,d2) becomes (d2,d1)

For I = 1, N
 For J = 1, M
 S(I,J)

For J = 1, M
 For I = 1, N
 S(I,J)

Valid Loop Interchange

for (int i = 0; i <= n; i++)
 for (int j = 0; j <= n; j++)
 A(i, j) = A(i-1, j-1) * .9A

for (int j = 0; j <= n; j++)
 for (int i = 0; i <= n; i++)
 A(i, j) = A(i-1, j-1) * .9B

Invalid Loop Interchange

for (int i = 0; i <= n; i++)
 for (int j = 0; j <= n; j++)
 A(i, j) = A(i-1, j+1) * .9A

for (int j = 0; j <= n; j++)
 for (int i = 0; i <= n; i++)
 A(i, j) = A(i-1, j+1) * .9B

20

Validity Condition for Loop Interchange
• Loop interchange is valid for a 2D loop nest if none of the

dependence vectors has any negative components
• Interchange is legal: (1,1), (2,1), (0,1), (3,0)
• Interchange is not legal: (1,-1), (3,-2)
• Equivalent view: After permutation, inner dimension

becomes outer dimension and vice versa; so permute the

dependence vectors of original loop and check if they are

still valid dependence vectors.
• (1,1) -> (1,1): valid
• (1,-1) -> (-1,1): Not a valid dependence vector; hence

loop interchange will result in violation of dependence

21

Validity Condition for Loop Permutation
• Generalization for higher-dimensional loops: permute all

dependence vectors exactly the same way as the

intended loop permutation: if any permuted vector is lex.

Negative, permutation is illegal
• Example: d1 = (1,-1,1) and d2 = (0,2,-1)
• ijk -> jik? (1,-1,1) -> (-1,1,1): illegal
• ijk -> kij? (0,2,-1) -> (-1,0,2): illegal
• ijk -> ikj? (0,2,-1) -> (0,-1,2): illegal
• No valid permutation:

– j cannot be outermost loop (-1 component in d1)
– k cannot be outermost loop (-1 component in d2)

22

Validity Condition for Loop Unroll/Jam
• Sufficient condition can be obtained by observing that

complete unroll/jam of a loop is equivalent to a loop

permutation that moves that loop innermost, without

changing order of other loops
• If such a loop permutation is valid, unroll/jam of the loop is

valid
• Example: 4D loop ijkl; d1 = (1,-1,0,2), d2 = (1,1,-2,-1)

– i: d1-> (-1,0,2,1) => invalid to unroll/jam

– j: d1-> (1,0,2,-1); d2 -> (1,-2,-1,1) => valid to unroll/jam

– k: d1 -> (1,-1,2,0); d2 -> (1,1,-1,-2) => valid to unroll/jam

– l: d1 and d2 are unchanged; innermost loop always

unrollable

23

Validity Condition for Loop Distribution
• Sufficient (but not necessary) condition: A loop with two

statements can be distributed if there are no dependences
from any instance of the later statement to any instance of
the earlier one. Generalizes to more statements.

• Example: Loop distribution is not valid (executing all S1 first
and then all S2)

• Example: Loop distribution is valid

 For I = 1, N
S1: A(I) = B(I) + C(I)
S2: E(I) = A(I+1)* D(I)
 EndFor

 For I = 1, N
S1: A(I) = B(I) + C(I)
S2: E(I) = A(I-1)* D(I)
 EndFor

24

Validity Condition for Tiling
• A contiguous band of loops can be tiled if they are fully

permutable
• A band of loops is fully permutable of all permutations of

the loops in that band are legal
• Example: d = (1,2,-3)

– Tiling all three loops ijk is not valid, since the
permutation kij is invalid ((-3,1,2) is lex. –ve)

– 2D tiling of band ij is valid (jik: (2,1,-3) is lex. +ve)
– 2D tiling of band jk is valid (ikj: (1,-3,2) is lex. +ve)

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for(k = 0;k < n; k++)
 Loop_body(I,j,k)

for (it = 0; it < n; it+=T)
 for (jt = 0; tj < n; j+=T)
 for (i = it; i < it+T; i++)
 for (j = jt; j < jt+T; j++)
 for(k = 0;k < n; k++)
 Loop_body(I,j,k)

25

Transformations: Loop Parallelization
• A loop in a loop nest can be executed in parallel if it does

not carry a dependence

• The dependence distance is (1,0); the outer (I) loop

carries the dependence.
• The inner (J) loop does not carry any dependences

For I = 1, N
 For J = 1, M
 A(I,J)= A(I-1,J)

For I = 1, N
 ForPAR J = 1, M
 A(I,J)= A(I-1,J)

26

Examples of Parallelization

For I = 1, 10
 A(I) = A(I) + 5

Parallel (Why?)

For I = 1, 10
 A(I) = A(I-1) + 5

Not parallel

For I = 1, 10
 A(I) = A(I-10) + 5

Parallel

	Data Dependences
	Data Dependence Types
	Data Dependences
	Data Dependences in Loops
	Data Dependences in Loops
	Iteration Spaces
	Dependences in Loop Nests
	Dependence Level
	Dependence Distance Vector
	Dependence Direction Vector
	Example of Dependences
	Example of Dependences
	Example of Dependences
	Example of Dependences
	Example of Dependences
	Validity (Legality) of Loop Transformations
	Transformations: Loop interchange
	Valid Loop Interchange
	Invalid Loop Interchange
	Validity Condition for Loop Interchange
	Validity Condition for Loop Permutation
	Validity Condition for Loop Unroll/Jam
	Validity Condition for Loop Distribution
	Validity Condition for Tiling
	Transformations: Loop Parallelization
	Examples of Parallelization

