Pointer Analysis

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras
Jan 2014

Outline

- Introduction
- Pointer analysis as a DFA problem
- Design decisions
- Andersen's analysis, Steensgaard's analysis
- Pointer analysis as a graph problem
 - Optimizations
- Pointer analysis as graph rewrite rules
- Applications
- Parallelization
 - Constraint based
 - Replication based

Each pointer as a node, directed edge $p \rightarrow q$ indicates points-to set of q is a subset of that of p.

Input: set C of points-to constraints

Process address-of constraints

Add edges to constraint graph G using copy constraints

repeat

Propagate points-to information in G

Add edges to G using load and store constraints

until fixpoint

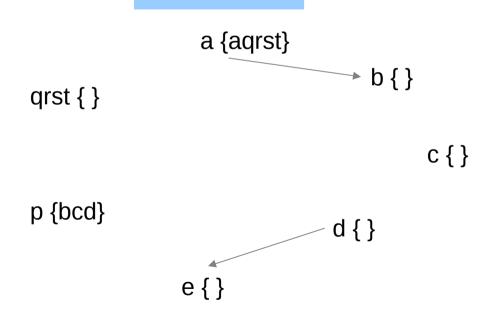
```
*e = c, c = *a, e = d, b = a, *a = p
Initially, a \rightarrow \{a,q,r,s,t\}, p \rightarrow \{b,c,d\}
```

```
a {aqrst}
qrst {}

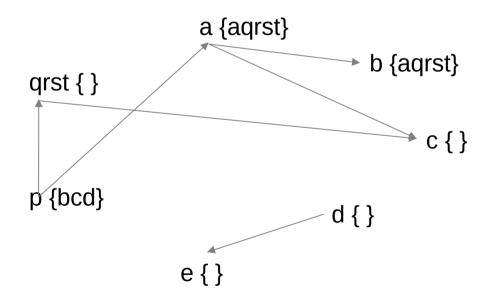
p {bcd}

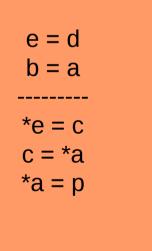
e {}
```

*e = c, c = *a, e = d, b = a, *a = p
Initially,
$$a \rightarrow \{a,q,r,s,t\}, p \rightarrow \{b,c,d\}$$

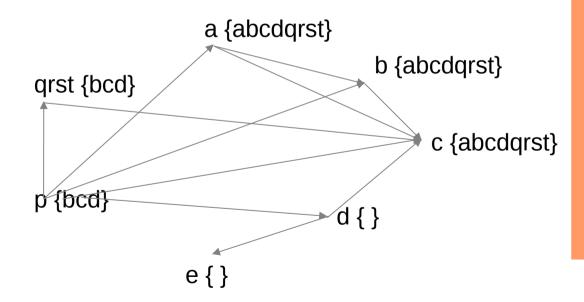


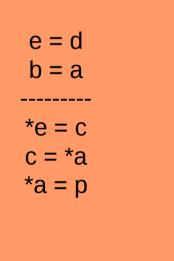
*e = c, c = *a, e = d, b = a, *a = p Initially, $a \rightarrow \{a,q,r,s,t\}, p \rightarrow \{b,c,d\}$



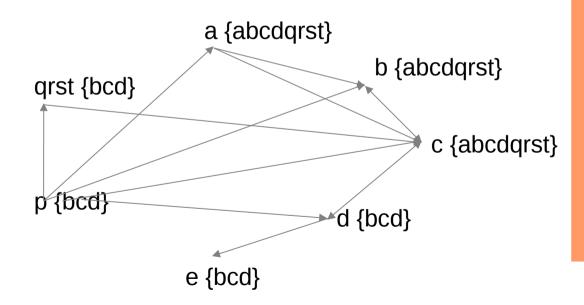


*e = c, c = *a, e = d, b = a, *a = p Initially, $a \rightarrow \{a,q,r,s,t\}, p \rightarrow \{b,c,d\}$





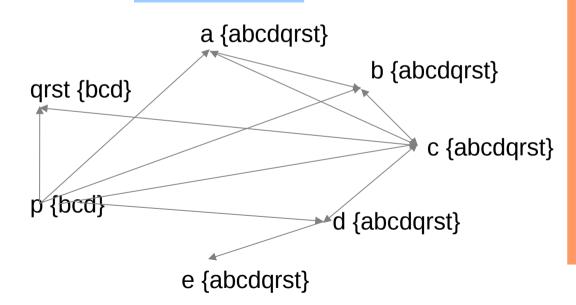
*e = c, c = *a, e = d, b = a, *a = p Initially, $a \rightarrow \{a,q,r,s,t\}, p \rightarrow \{b,c,d\}$



e = d	
b = a	
*e = c	
c = *a	
*a = p	

*e = c, c = *a, e = d, b = a, *a = p Initially, $a \rightarrow \{a,q,r,s,t\}, p \rightarrow \{b,c,d\}$

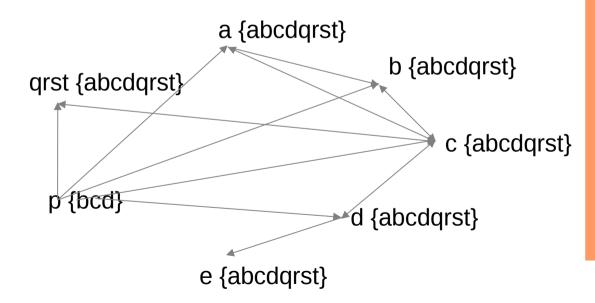
Iteration 4

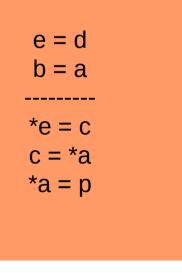


e = d b = a -----*e = c c = *a *a = p

*e = c, c = *a, e = d, b = a, *a = p
Initially,
$$a \rightarrow \{a,q,r,s,t\}, p \rightarrow \{b,c,d\}$$

Iteration 5: fixed-point





Why a Graph Formulation?

- A naïve formulation offers no benefits over the constraint-based formulation.
- We need to exploit structural properties of the constraint graph for efficient execution.
 - Online cycle detection
 - Online dominator detection
 - Propagation order: Topological sort, Depth first

Pointer Equivalence

- Two pointers are equivalent if they have the same points-to sets. Simple.
- If we identify such pointers *before* computing their points-to information, we can reduce the number of pointers tracked during the analysis.
- Now let's go back to the constraint graph.

Why a Graph Formulation?

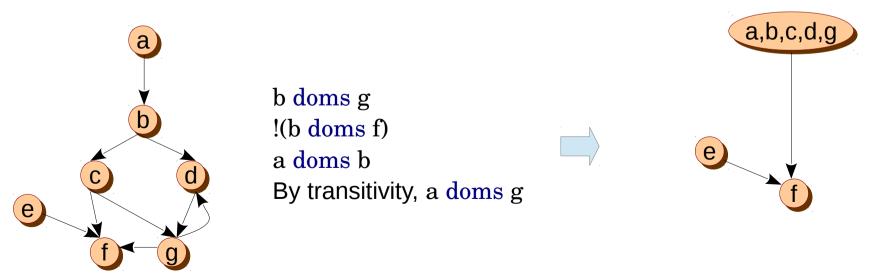
- If the program contains statements a = b, b = a, what can you say about the points-to sets of a and b at the fixed-point?
- How does the constraint graph look like?
- How about a = b, b = c, c = a?
- How about a = c, b = *p, c = b?

Online Cycle Detection

- Edges get added to the graph dynamically.
- So, cycle detection is performed online.
- Cycles are collapsed usually replaced with a representative.
- Can use union-find.

Online Dominator Detection

- If two nodes in a constraint graph have the same dominator, they are pointer equivalent.
- A dominator and its dominees are pointer equivalent.
- doms is a transitive relation.



Offline Variable Substitution

 But some constraints were easy to check for equivalence without running the analysis.

$$- a = b, b = a$$

$$- a = *p, *p = a$$

- -a = b, c = a, c = b and no other incoming edge to c.
- OVS is performed before running pointer analysis.

Propagation Order

- A topological ordering is beneficial for propagating points-to information (wave propagation)
- The information may also be propagated in depth-first manner (deep propagation)
- DP is helpful to reuse the difference in points-to information

How About Constraint Order?

- Given a set of constraints, find an optimal way of evaluating them
- Like most CS problems, this is NP-Complete
- Reducible from Set Cover

Reduction from Set Cover

- Given an instance of Set Cover SC(U, S, K)
 - U: universe of elements
 - S: set of subsets S_{i}
 - K: some number

 $S = \{1, 4\}, \{2, 5\}, \{2, 4, 5\}, \{3\}$ Solution Two: $\{1, 4\}, \{2, 4, 5\}, \{3\}$ Solution One: $\{1, 4\}, \{2, 5\}, \{3\}$

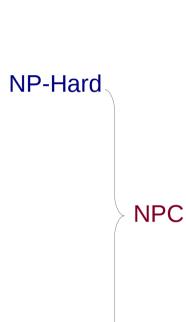
whether there exists a set of K subsets covering U

- Reduce to PTA(C, S, K) where
 - C is a set of copy constraints
 - S is a variable of interest w.r.t. fixed-point
 - K is the number of steps in which the fixed-point is reached

$SC \geqslant PTA$

- $SC(U, S, K) \ge PTA(C, S, K)$
- Linear time reduction
 - for each $s \in S_i$ add s to ptsto(S_i)
 - for each set S_i create a copy statement $S = S_i$
- A solution to $PTA \Rightarrow A$ solution to SC
- A solution to $PTA \leftarrow A$ solution to SC

Poly-time verification



NP

How About Constraint Order?

- Given a set of constraints, find an optimal way of evaluating them
- Like most CS problems, this is NP-Complete
- Reducible from Set Cover
- Need to depend upon heuristics

What would be a good heuristic?

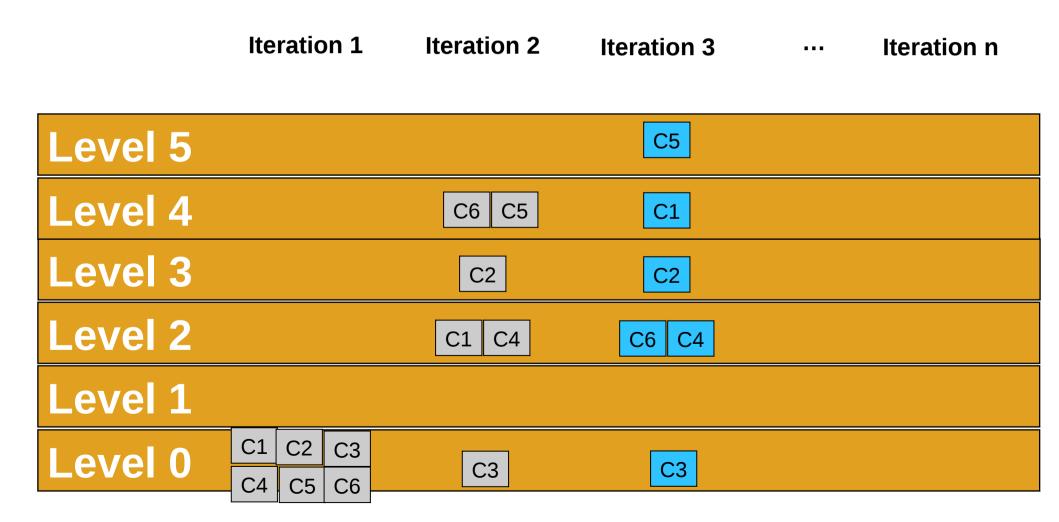
Constraint Priority

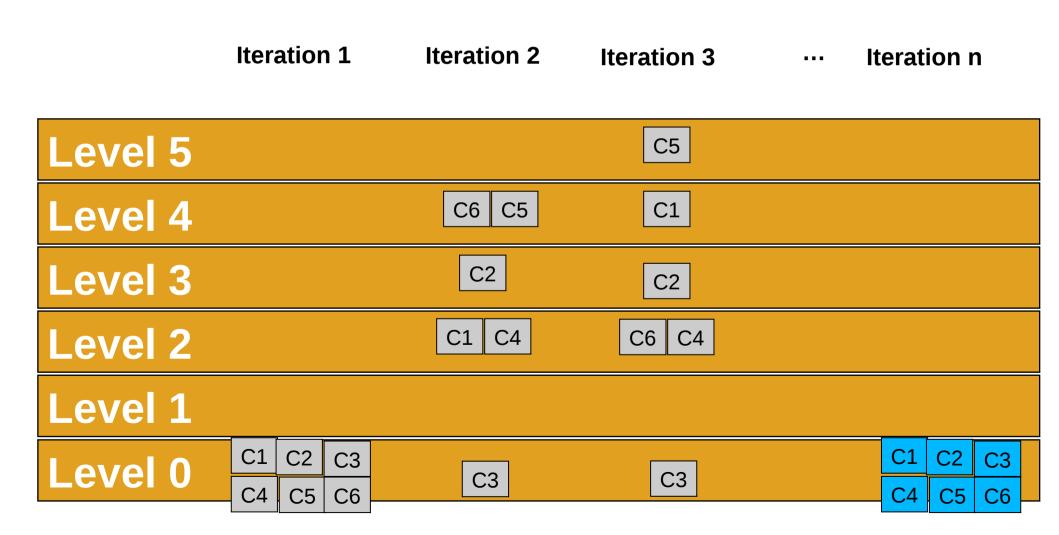
- Priority of a constraint in iteration i is the amount of new points-to information it adds in iteration (i – 1).
- Constraints are grouped in different priority levels which are ordered based on their priority.
- A constraint may jump across multiple priority levels during the analysis.

Iteration 1 Iteration 2 Iteration 3 ... Iteration n

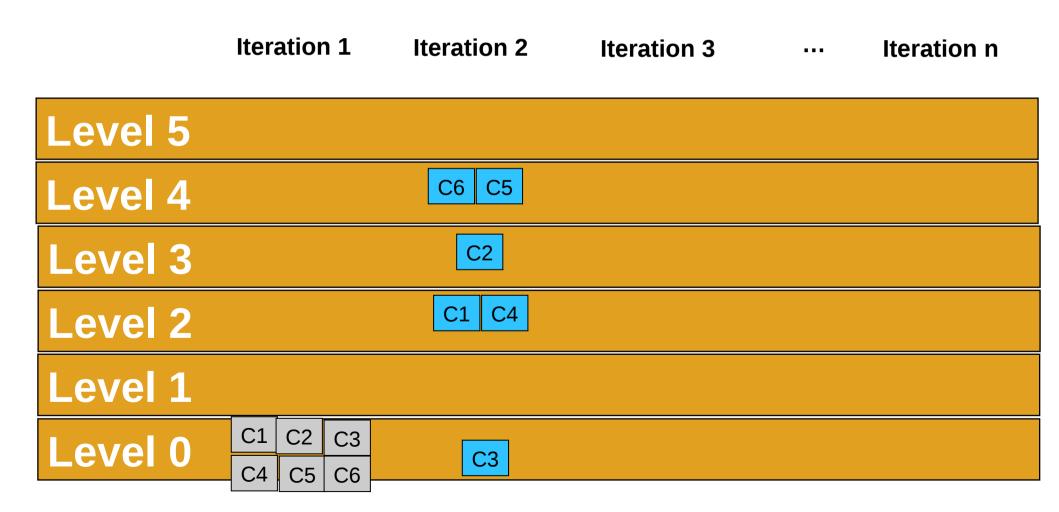
Level 5	
Level 4	
Level 3	
Level 2	
Level 1	
Level 0	C1 C2 C3 C4 C5 C6

Iteration 1 Iteration 2 **Iteration 3** Iteration n Level 5 Level 4 C5 Level 3 Level 2 Level 1 Level 0 C3 C5 C6 24

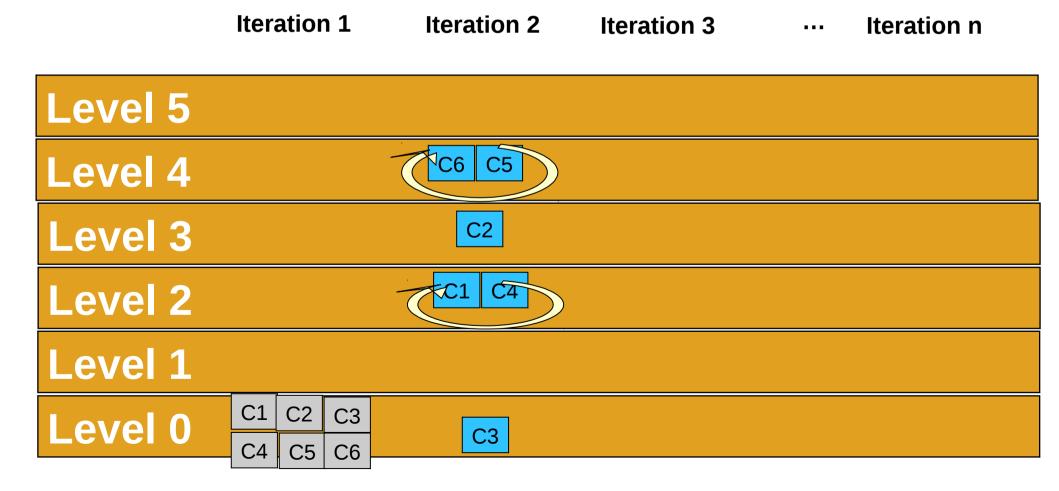




Skewed Evaluation



Skewed Evaluation



Processing order

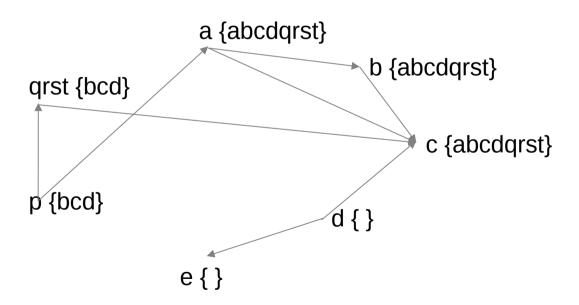
$$c = *a (8)$$

$$*e = c (0)$$

Processing order

$$*a = p (18)$$

 $c = *a (8)$
 $*e = c (0)$



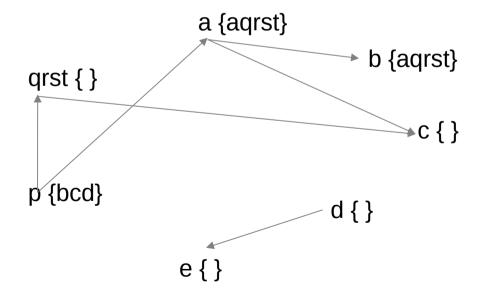
Fixed Processing order

$$*e = c$$

$$c = *a$$

$$*a = p$$

Andersen: Iteration 1

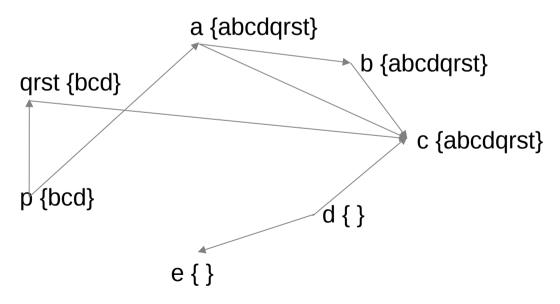


Processing order

$$*a = p (18)$$

$$c = *a (8)$$

$$*e = c (0)$$



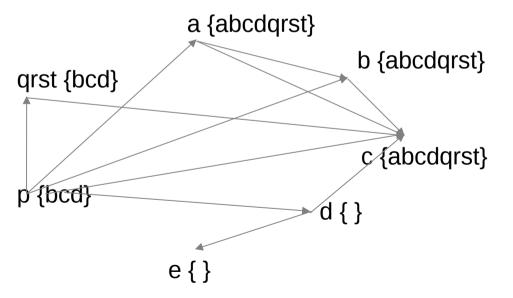
Fixed Processing order

*e = c

c = *a

*a = p

Andersen: Iteration 2

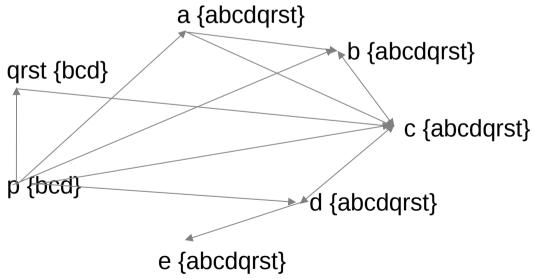


Processing order

*a = p (6)

c = *a (0)

e = c (10)



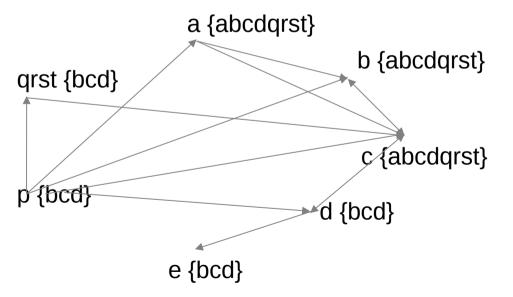
Fixed Processing order

*e = c

c = *a

*a = p

Andersen: Iteration 3

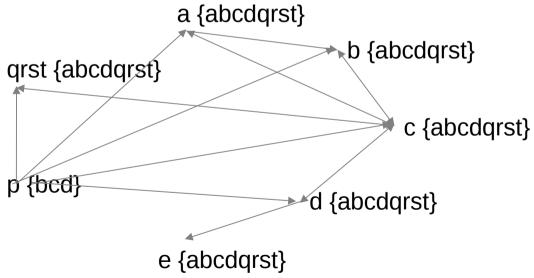


Processing order

e = c (20)

*a = p (0)

c = *a (0)



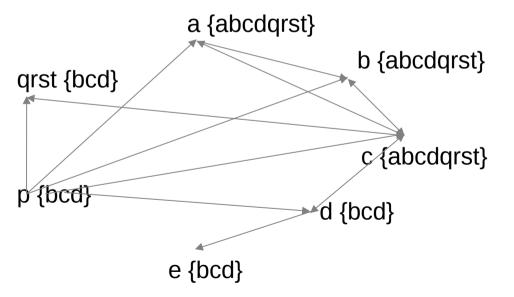
Fixed Processing order

*e = c

c = *a

*a = p

Andersen: Iteration 4



Processing order

*e = c (0)

*a = p(0)

c = *a (0)

Priority: fixed-point

