Dynamic Analysis

Rupesh Nasre.

CS6843 Program Analysis IIT Madras Jan 2014

Limitations of Static Analysis

- · Reduced precision: Over-approximations
- Cannot perform input-dependent analysis

Outline

- · Applications of dynamic analysis
 - Limitations of static analysis
 - Trade-offs
- · Profiling techniques
- · Finding invariants
 - Equality
 - Affine
- · Dynamic type inferencing

Static versus Dynamic

Sound

Incomplete

· Imprecise

- Precise
- · Input-oblivious
- · Input-dependent
- · Choosing between static and dynamic analysis often requires a trade-off
- between soundness and precision.

 Current trend is to combine the two techniques to get better precision at improved scalability.

Applications

- · Bug finding (testing)
- Data race detection
- · Identifying security vulnerabilities
- · Improved precision of static analysis
- · Input-dependent analysis

Profiling

- · Profiling is a method of collecting information of interest during program execution.
- The information is often useful to find hot-spots in the program.
- Examples
 - Number of times an instruction is executed
 - Number of page faults
 - Number of cache hits
 - Total memory used

Profiling

- Intrusive: inserts instructions in the program (source, IR, assembly) statically, which get executed at runtime
 - File log
 - Memory locations pointed to by a pointer
 - Execution time of a function
- Non-intrusive: the program is unaltered; uses external means to profile
 - Hardware counters
 - Program execution time

7

Edge Profiling

- Path profile is approximated as an edge profile
- The frequency of each edge is calculated which is used to find the path frequency

10

Path Profiling

- Consider a program with an entry node and an exit node. There are several execution paths (traces) that the program takes from entry to exit.
- The task is to find the frequency of execution of each path.

Path	Frequency
ACDF	90
ACDEF	60
ABCDF	0
ABCDEF	100
ABDF	20
ABDEF	0

Edge Profiling

- Path profile is approximated as an edge profile
- The frequency of each edge is calculated which is used to find the path frequency

Path	Frequency
ACDF	110
ACDEF	150
ABCDF	100
ABCDEF	100
ABDF	20
ABDEF	20

1

Path Profiling

- Naïve path profiling is expensive: instrumenting each path may lead to exponential blow up in computation and storage
- This can lead to unacceptable program slowdown

Efficient Edge Profiling

- $\bullet\,$ Observation: We do not need to instrument every edge.
- How to find a minimal, low-cost set of edges to instrument?
- Use a spanning tree: reduced instrumentation along paths, not all edges carry instrumentation

Path	Frequency
$C \rightarrow D$	ac + bc
$D \rightarrow F$	ac + bc + bd - de
E→F	de
$A \rightarrow B$	bc + bd
$F \rightarrow A$	ac + bc + bd

1

Edge Profiling

- · Edge profile may not always be a good indicator of a path profile
- Efficient edge profiling requires a unique variable along each instrumented edge (spanning tree edge)

Path	Frequency	Actual Freq.	Actual Freq. 2
ACDF	110	90	110
ACDEF	150	60	40
ABCDF	100	0	0
ABCDEF	100	100	100
ABDF	20	20	0
ABDEF	20	0	20

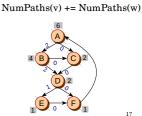
But path profiling is expensive

Efficient Path Profiling

- 1. Assign integer values to edges such that no two paths compute the same path-sum.
- 2. Use a spanning tree to select edges to instrument and compute the appropriate increment.
- 3. Select appropriate instrumentation.
- 4. After collecting the run-time profile, derive the execution paths.

Efficient Path Profiling

- · Unique (and consecutive) path numbering, which enables indexing
- Most hardware support fast increment and indexing

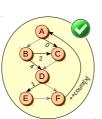


Path	x
ACDF	0
ACDEF	1
ABCDF	2
ABCDEF	3
ABDF	4
ABDEF	5

Efficient Path Profiling

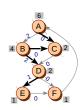
- 1. Assign integer values to edges such that no two paths compute the same path-sum.
- 2. Use a spanning tree to select edges to instrument and compute the appropriate increment.
- 3. Select appropriate instrumentation.
- 4. After collecting the run-time profile, derive the execution paths.

NumPaths(node) = 0NumPaths(leaf) = 1In reverse topological order For each edge $v \rightarrow w$ { $Val(v \rightarrow w) = NumPaths(v)$


Efficient Path Profiling

• Path numbering is not unique

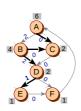
Path	x
ACDF	0
ACDEF	1
ABCDF	2
ABCDEF	3
ABDF	4
ABDEF	5

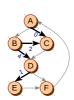

path numbering is the same. number of instrumented edges (5) is the same

So, which instrumentation should we choose?

Efficient Path Profiling

- 1. Assign integer values to edges such that no two paths compute the same path-sum.
- 2. Use a spanning tree to select edges to instrument and compute the appropriate increment.
- 3. Select appropriate instrumentation.
- 4. After collecting the run-time profile, derive the execution paths.

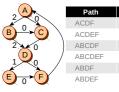

- Find a spanning tree.
- · Find chord (non-ST) edges.
- · For each chord, find fundamental cycle.



Efficient Path Profiling

- Assign integer values to edges such that no two paths compute the same path-sum.
- 2. Use a spanning tree to select edges to instrument and compute the appropriate increment.
- Select appropriate instrumentation.
- **4.** After collecting the run-time profile, derive the execution paths.

Chord AC: cycle ACDF : 0
Chord BC: cycle ABCDF : 2
Chord BD: cycle ABDF : 4
Chord DE: cycle DEF : 1

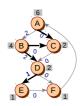


19

Efficient Path Profiling

- Assign integer values to edges such that no two paths compute the same path-sum.
- 2. Use a spanning tree to select edges to instrument and compute the appropriate increment.
- 3. Select appropriate instrumentation.
- After collecting the run-time profile, derive the execution paths.

Path Regeneration
Path id → Path mapping?



2

Efficient Path Profiling

- Assign integer values to edges such that no two paths compute the same path-sum.
- 2. Use a spanning tree to select edges to instrument and compute the appropriate increment.
- 3. Select appropriate instrumentation.
- After collecting the run-time profile, derive the execution paths.

Chord AC: cycle ACDF : 0
Chord BC: cycle ABCDF : 2
Chord BD: cycle ABDF : 4
Chord DE: cycle DEF : 1

20

Efficient Path Profiling

- Assign integer values to edges such that no two paths compute the same path-sum.
- Use a spanning tree to select edges to instrument and compute the appropriate increment.
- 3. Select appropriate instrumentation.
- **4.** After collecting the run-time profile, derive the execution paths.

Prelude: Allocate and initialize the array of counters

Postlude: Write the array to permanent storage

Main:

- Initialize path register r in the entry vertex
- Increment path memory counter in the exit vertex
- Optimizations

21