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A binary decision diagram (BDD) is a data structure that is used to represent a Boolean 

function. On a more abstract level, BDDs can be considered as a compressed representation of 

sets or relations. Unlike other compressed representations, operations are performed directly 

on the compressed representation, i.e. without decompression. 

BDDs can represent large sets of redundant data efficiently. 

 

A Boolean function can be represented as a rooted, directed, acyclic graph, which consists of 

several decision nodes and terminal nodes. There are two types of terminal nodes called 0-

terminal and 1-terminal. Each decision node N is labelled by Boolean variable VN and has 

two child nodes called low child and high child. The edge from node VN to a low (or high) 

child represents an assignment of VN to 0 (resp. 1). 

 
There are two types of BDD 

1. Ordered BDD 

2. Reduced ordered BDD 

 

Why BDD? 

 

Using truth table representation for Boolean function we need. 

 

Space: For n variables, needs to store 2n. (n+1) bits 

  n+1 bits for each row of truth table including n variable and one function bit. 

  2n rows for n variables. 

Operations: Visit each entry of truth table. 

 

If Boolean functions are represented using truth tables, a function with 100 variables needs 

more than 2100 bits. 

 

To represent a Boolean function using BDD we first need to represent it into binary decision 

tree. 

 
The figure below shows a binary decision tree (the reduction rules are not applied), and a truth 

table, each representing the function f (x1, x2, x3). In the tree on the left, the value of the 

function can be determined for a given variable assignment by following a path down the graph 

to a terminal. 

In the figures below, dotted lines represent edges to a low child, while solid lines represent 

edges to a high child. Therefore, to find (x1=0, x2=1, x3=1), begin at x1, traverse down the 

dotted line to x2 (since x1 has an assignment to 0), then down two solid lines (since x2 and x3 

each have an assignment to one). This leads to the terminal 1, which is the value of f (x1=0, 

x2=1, x3=1). 

The function is 

 

 f(x1, x2, x3) = x’1  x’2 x’3 + x1x2 + x2x3 

 

  

https://en.wikipedia.org/wiki/Child_node
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fig.1 

Some Definitions: 
 

Variable Ordering: 

The size of the BDD is determined both by the function being represented and the chosen 

ordering of the variables. There exist Boolean functions f(x1,x2,....xn) for which depending upon 

the ordering of the variables we would end up getting a graph whose number of nodes would 

be linear (in n) at the best and exponential at the worst case. 

 

Ordered Binary Decision Diagrams (OBDD) : 

 
Ordered binary decision diagrams (OBDDs) are just like BDDs but with a defined variable 

ordering. That is, a tuple p= (z1, . . ., zm). Let a node u labelled ‘zi’ have two child nodes v and 

w. The variable v must be labelled by a variable zj such that zi < p zj, that is, zj must come later 

in the ordered list of variables in p. The same thing must be true for the other child node (w). 

Size of OBDD depends on the chosen ordering. The variable ordering makes it possible to 

simplify (reduce) OBDDs. 
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Reduced Ordered Binary Decision Diagrams (ROBDD): 

 

The advantage of an ROBDD is that it is canonical (unique) for a particular function and 

variable order. The binary decision tree can be transformed into a binary decision diagram by 

maximally reducing it according to the two reduction rules. 

 

Elimination rule: If v is an inner node and both of its children points to the same node w, then 

remove v and redirect all incoming edges to w. 

 

 

 

                      
 

Fig.2 

 

Isomorphism rule: If the nodes v and w are terminals and if they have the same value, then 

remove node v and redirect all incoming edges to node w. If v and w are inner nodes, they are 

labelled by the same Boolean variable and their children are the same, then remove node v and 

redirect all incoming edges to w. 

         

                 

Fig.4  
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In general, the size of ROBDD depends of the variable ordering. The chosen variable ordering 

makes a significant difference to the size of the ROBDD representing a given function. To 

show the effect of the ordering of variable, we take f(x1, x2, x3, x4, x5, x6) = 

(x1+x2) .(x3+x4).(x5+x6). The ROBDD of function f with variable ordering [x1, x2, x3, x4, 

x5, x6] and with variable ordering [x1, x3, x5, x2, x4, x6] is shown in Figure below. So it may 

be noted that the size of ROBDD is sensible to the variable ordering. If the chosen variable 

ordering is a good one, then we get a very compact ROBDD representation for the given 

function, otherwise, the ROBDD representation is an expensive one. 

 

 

 

 

 

 

 

 

Fig.5: ROBDD with variable ordering [x1, x2, x3, x4, x5, x6] and [x1, x3, x5, x2, x4, x6] 

  

OBDD size is strongly influenced by the variable ordering and a good variable ordering always 

produces a compact OBDD. Optimal variable ordering is NP-Complete problem. Many 

heuristics have been proposed to get a good variable ordering which leads to a compact 

representation of OBDD of a given function. There are two classes of heuristics – static variable 

ordering and dynamic variable ordering. In case of static variable ordering, order of the variable 

is identified before the construction of the variables and that ordering is maintained throughout 

the process. In case of dynamic variable ordering, we use the ordering heuristics during the 

construction or operation on OBDDs. 
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Algorithm to reduce OBDD: 

 

Leaves: Label all 0 terminals with #0 and all 1 terminals with #1. 

 

Intermediate node n: 

 

 If 0-child and 1-child of n has same label, set label of that n to be that label (i.e. 

label of its child). 

 If there is another node m such that m has the same variable xi and the children of n 

and m have same label, then set label of n to be label of m. 

 Otherwise set label of n to be next unused integer. 

 

Example: 1 

 

                    

 
 

Fig.6 
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If the next higher node has same id for both 0 child and 1 child, then use the same id for that 

node. Else we have to give a new id to the node. After following the steps, we get a final tree 

with all labelled node. draw edges from one id to another unique id. 

As we can see id #4 has a 1 edge to id #2, so draw one edge form #4 to #2. 

There is 1 edge from #3 to #2, so draw that edge. After repeating the same we will get the 

reduced BDD as shown in Fig.7. 

 
       Fig.7: Reduced BDD. 

 

 
 

  



8 
 

Example: 2 

 
Fig.8 

 

Id #5 edge 1 is going to id #4 and edge 0 is going to #3, so draw that edges. 

Id #4 edge 1 is going to #1 and edge 0 is going to #2.  

Id #3 edge 1 is going to #0 and edge 0 is going to #2. 

Id #2 edge 1 is going to #1 and edge 0 is going to #0. 

After drawing this edges we will get a reduced BDD as shown in Fig.9. 

 

 
Fig.9: Reduced BDD. 
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Program Analysis Using Binary Decision Diagrams 

Analysis of programs with pointer to memory must estimates the effects of operations 

performed through pointers. A points-to analysis approximates, for each pointer in the program, 

the set of objects to which the pointer may point. In our example points-to analysis, we 

represent each object by the allocation site at which it is allocated. Suppose that p and q are 

pointers and the assignment p = q appears in the program. since q is assigned to p, after the 

assignment, p may point to any object to which q was pointing. This is modelled in the analysis 

with the subset constraint points-to(q) ⊆points-to(p). 

 

To use a concrete example, consider a program statement shown below. 

a=&X; 

b=&Y; 

c=&z; 

a=b; 

b=a; 

c=b; 

 

the first three statement are allocation statement, which would cause the analysis to initialize 

the points-to sets of a, b and c to {X}, {Y} and {Z}, respectively. 

After last three instructions the final points-to sets for the example would be 

 

 

Points-to(a) = {X, Y} 

Points-to(b) = {X, Y} 

Points-to(c) = {X, Y, Z} 

 

When analysing large programs, a key problem is that the number of points-to sets and the size 

of each set may become very large. Various techniques have been studied for compactly 

representing the points-to sets and efficiently solving the subset constraints. We review one 

such technique, which is to use BDDs to compactly represent the points-to sets and BDD 

operations to efficiently propagate them along subset constraints. To use a concrete example, 

we will now show how the points-to sets computed for the above statements can be encoded in 

a BDD. We could write the points-to sets as a set of points-to pairs, with each pair indicating 

that a given pointer may point to a given object, as follows:  

 

{(a, X), (a, Y), (b, X), (b, Y), (c, X), (c, Y), (c, Z)} 

 

Using 00 to represent a and X, 01 to represent b and Y, and 10 to represent c and Z, we can 

encode these points-to pairs as the set of binary vectors. 

{0000, 0001, 0100, 0101, 1000, 1001, 1010}  
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A BDD representing this set of binary vectors is shown below. The pointers a, b, and c are 

encoded in first two bit positions of the BDD, and the objects X, Y, and Z are encoded third 

and fourth bit positions. We follow the common convention of drawing the 0- successor of each 

node as a dashed arrow, and the 1-successor as a solid arrow. 

 

 

 
Fig.10: Unreduced BDD for points-to example. 

 

The nodes marked x, y, and z in above figure are at the same bit position and have the 

same successors, because they all represent the same subset of objects {X, Y}. Since 

these nodes are the same, they could be merged into a single node, making the BDD 

smaller without changing the set that it represents.  

Furthermore, since their 0- and 1-successor are the same (the 1 node), the value of the 

bit that they test does not affect the successor, so the bit does not need to be tested and 

the nodes could be removed entirely. If we repeatedly reduce the BDD in this way by 

finding mergeable and unnecessary nodes, we obtain the reduced BDD shown in Figure 

below. The BDD represents the same set as the original unreduced BDD, but it is 

smaller. 
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Fig.11: Reduced BDD for points-to example. 

Context-sensitive call graphs in BDD 

                       

                                                                      Fig.12 

We can represent a call graph as binary function, for that label each node with some binary 

number and then translate this relation form into binary string 

 

                    Fig.13 
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  TRUTH TABLE 

 

 

 Graphical encoding of the truth table 

 

Fig.14 
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Label all terminal using algorithm. 

 

Fig.15 

Id #7 edge 1 is going to id #6 and edge 0 is going to #5. Id #5 edge 1 is going to id #4 and edge 

0 is going to #3, and Id #6 edge 1 is going to id #0 and edge 0 is going to #4, so draw that edges 

We will get tree like Fig.16 

 

Fig.16 
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Both #4 id nodes have same terminals, so we can merge them together 

 

Fig.17 

#3 and #4 going to same node #2 so merge them. 

 

Fig.18 

Id #3 edge 1 is going to id #1 and id #4 is going to #0. So we can remove both X4 nodes. after that we 

will get tree like Fig.19  
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Fig.19 

Here we have many nodes with same label and same successor which can be collapse. So, all 

the 1 node can be collapse together and all the 0 node can be collapse together. After that we 

will get reduced BDD.  

 

Fig.20: reduced BDD 

 

 

Fig.15 
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Advantages of reduced order binary decision diagram (ROBDD) 

 A ROBDD can represent an exponential number of paths with linear number of 

nodes. 

 It is canonical (unique) for a particular function and variable order. 

Problems with ROBDDs  

 some functions have exponential-size ROBDDs 

multipliers, HWB 

 size of ROBDD depends critically on variable ordering 

--adders – exponential for bad ordering, linear for good orderings. 

 Finding a best variable ordering requires exponential time. 

o Multipliers and hidden weighted bit(HWB) function 
 

1) Multipliers: 

Consider multiplication of two n bit integers yielding a 2n bit result: 

(p2n-1, …., p0) = (an-1, …., a0) x (bn-1, …., b0) 

The BDD representing pn and pn-1 exhibit exponential complexity as n increases 

regardless of the variable order. 

 

2) Hidden weighted bit(HWB): 

The function has n inputs X= {x1, x2, …, xn}. define weight, denoted wt(a), to be 

the number of 1 bits in an assignment {a1, a2, …., an} to X. the hidden weighted 

bit function selects the ith input, i = wt(a). 

 

HWB(a)=0, wt(a)=0 

 

BDD representation of HWB requires Ω(1.14n) nodes. where Ω is asymptotic lower 

bound. 


