Complexity

Rupesh Nasre.

rupesh@cse.iitm.ac.in

Algorithms

- For the same problem, there could be multiple algorithms.
- An algorithm is a clearly specified sequence of simple instructions that solve a given problem.
 - An algorithm, by definition, terminates.
 - Otherwise, the sequence of instructions constitutes a procedure.
- The algorithm should be so clear to you that you should be able to make a machine understand it.
 - This is called programming.

Algorithm Efficiency

- For the same problem, there could be multiple algorithms.
- We prefer the ones that run fast.
 - I don't want an algorithm that takes a year to sort!
 - By the way, there are computations that run for months!
 - Operating systems on servers may run for years.

```
[rupesh@aqua ~]$ uptime
17:15:41 up 228 days, 3:50, 155 users, load average: 0.21, 0.22, 0.26
```

- We would like to compare algorithms based on their speeds.
 - Mathematical model to capture algorithm efficiency.

Misconceptions

Program P1 takes 10 seconds, P2 takes 20

seconds, so I would choose P1.

\$ time Is >/dev/null

- Execution time is input-dependent.

real 0m0.002s user0m0.000s sys 0m0.001s

real 0m0.005s

- Execution time is hardware-dependent.
- Execution time is machine-load dependent. // on another machine
 \$ time is >/dev/null
- Execution time is run-dependent too!
- Other factors play a role; for instance: user0m0.000s sys 0m0.004s
 whether the program is running in hostel or in DCF

Or whether in Chennai or Kashmir

Or whether in May or December!

```
a = a + b;

b = a - b;

a = a - b;
```

```
for (ii = 0; ii < N; ++ii)
a[ii] = 0;
```

```
for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)
mat[ii][jj] = ii + jj;
```

```
int fun(int n) {
    return (n == 0 ? 1 : 4 * fun(n / 3));
}
```

Irrespective of the values of a and b, this program would take time proportional to three instructions.

Proportional to N.

Proportional to N*M.

?

$$a = a + b;$$

 $b = a - b;$
 $a = a - b;$

$$a[ii] = 0;$$

$$x = y;$$
if $(x > 0)$
 $y = x + 1;$
else
 $z = x + 1;$

```
for (ii = 0; ii < 1000; ++ii)
a[ii] = 0;
```

All of these are equally efficient!

- They all perform constant-time operations.
- We denote those as O(1).

```
a[0] = 0;

a[1] = 0;

a[2] = 0;

...

a[n - 5] = 0;
```

```
int fact(int n) {
    if (n > 0) return n * fact(n - 1);
    return 1;
}
```

```
for (ii = 0; ii < 2*n; ++ii)
a[ii] = 0;
```

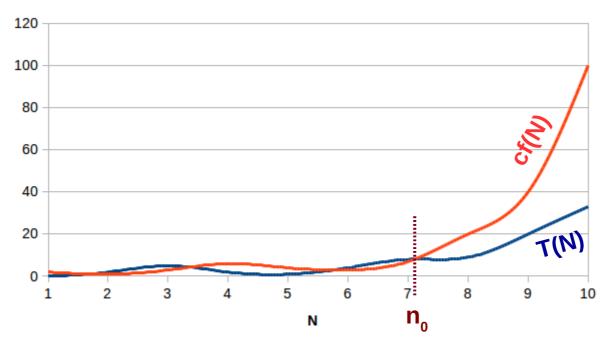
All of these are equally efficient!

- They all perform linear-time operation (linear in n).
- We denote those as O(n).

Definition

- T(N) = O(1) if $T(N) \le c$ when $N \ge n_0$, for some positive c and n_0 .
- T(N) = O(N) if $T(N) \le cN$ when $N \ge n_0$, for some positive c and n_0 .
- In general,
 - **T(N)** = **O(f(N))** if there exist positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.
- Complexity captures the rate of growth of a function.

Big O



- In general,
 - **T(N)** = **O(f(N))** if there exist positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.
- The complexity is upper-bounded by c*f(N).
- Thus, big O is the worst-case complexity.

$$a = a + b;$$

 $b = a - b;$
 $a = a - b;$

0(1)

Irrespective of the values of a and b, this program would take time proportional to three instructions.

```
for (ii = 0; ii < N; ++ii)
a[ii] = 0;
```

O(N)

Proportional to N.

```
for (ii = 0; ii < N; ++ii)
  for (jj = 0; jj < M; ++jj)
  mat[ii][jj] = ii + jj;</pre>
```

O(N*M)

Proportional to N*M.

```
int fun(int n) {
    return (n <= 1 ? 1 : 4 * fun(n / 3));
}</pre>
```

?

Solving for Time Complexity

```
T(n) = c1 + T(n/3)
                                 and
                                         T(1) = 1
      = c1 + [c1 + T(n/9)]
      = 2*c1 + T(n/3<sup>2</sup>)
      = 3*c1 + T(n/33)
      = k*c1 + T(n/3k)
If n == 3^k,
T(n) = log_3 n*c1 + T(1) = c1*log_3 n + 1 = O(log_3 n)
int fun(int n) {
   return (n <= 1 ? 1 : 4 * fun(n / 3));
```

Types of Complexities

Symbol	Name	Bound	Equation
O()	Big O	Upper	T(n) <= cf(n)
Ω()	Big Omega	Lower	T(n) >= cf(n)
Θ()	Theta	Upper and Lower	$c_1 f(n) \le T(n) \le c_2 f(n)$
o()	Little O	Strictly Upper	T(n) < cf(n)
ω()	Little Omega	Strictly Lower	T(n) > cf(n)

Notes

- Θ means O and Ω. It is a stronger guarantee on the complexity.
- If T(n) is O(n), then T(n) is also O(n²), also O(nlogn), also O(n³), O(n¹00), O(2n); but it is not O(logn) or O(1).
- Big O is also called Big Oh.
- T(n) = T(n/2) = T(1000n) = T(nlog2) = T(2logn)
- Log₂(x), that is, log to the base 2 is sometimes written as lg(x).
- If T(n) = O(f(n)) then $f(n) = \Omega(T(n))$.

Complexity Arithmetic

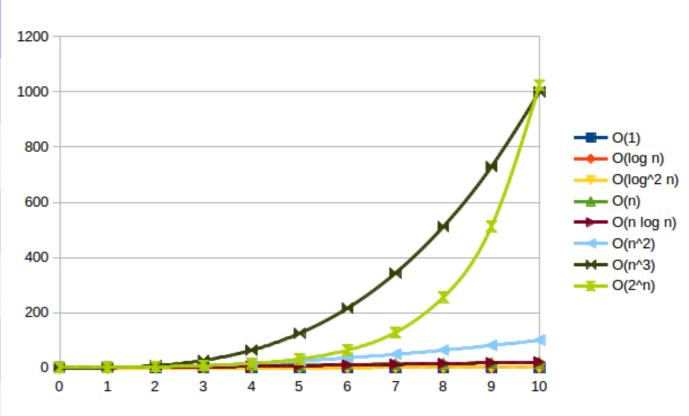
```
    If T1(n) = O(f(n)) and T2(n) = O(g(n)), then
    T1(n) + T2(n) = max(O(f(n), O(g(n)))
    T1(n) * T2(n) = O(f(n) * g(n))
```

Classwork:

- Write a C code that requires the use of T1(n) + T2(n).
- Write a C code that requires the use of T1(n) * T2(n).

Typical Complexities

Function	Name
С	Constant
Log N	Logarithmic
Log ² N	Log-squared
N	Linear
N log N	Superlinear
N^2	Quadratic
N^3	Cubic
2 ^N	Exponential



Homework: Find which one grows faster: nlogn or n^{1.5}.

Complexity Comparison

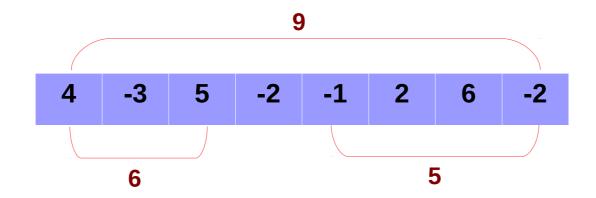
- Given two complexity functions f(n) and g(n), we can determine relative growth rates using $\lim_{n\to\infty} f(n) / g(n)$, using L'Hospital's rule.
- Four possible values:
 - The limit is zero, implies f(n) = o(g(n)).
 - The limit is $c \neq 0$, implies $f(n) = \Theta(g(n))$.
 - The limit is ∞, implies g(n) = o(f(n)).
 - The limit oscillates, implies there is no relation.

Facets of Efficiency

- An algorithm or its implementation may have various facets towards efficiency.
 - Time complexity (which we usually focus on)
 - Space complexity (considered in memory-critical systems such as embedded devices)
 - Energy complexity (e.g., your smartphones)
 - Security level (e.g., program with less versus more usage of pointers)
 - I/O complexity

_ ...

Max. Subsequence Sum



Problem Statement

Given an array of (positive, negative, zero) integer values, find the largest subsequence sum.

• A subsequence is a consecutive set of elements. If empty, its sum is zero.

Exhaustive Algorithm

For each possible subsequence

Compute sum

If sum > current maxsum

current maxsum = sum

Return current maxsum

How many subsequences?

What is the complexity of this part?

Algorithm 1 takes O(N³) running time.

Source: mss1.cpp

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$\sum_{i=0}^{N-1} \sum_{j=i}^{N-1} O(1)$$

$$j - i + 1$$

We will assume O(1) to be equal to constant 1. This would affect only the constant in BigOh.

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$\sum_{i=0}^{N-1} \sum_{j=i}^{N-1} (j-i+1)$$
sum of first N-i integers
$$= (N-i)(N-i+1)/2$$

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$\sum_{i=0}^{N-1} (N-i)(N-i+1)/2$$

$$= (N^3 + 3N^2 + 2N) / 6$$

 $= O(N^3)$

The analysis is tight. Is the algorithm tight?

Observation:

Return maxsum

$$\sum_{k=i}^{j} A[k] = A[j] + \sum_{k=i}^{j-1} A[k]$$

For each starting position i
For each ending position j
Incrementally compute sum
If sum > maxsum
maxsum = sum

What is the complexity of this algorithm?

Source: mss2.cpp

- Observation: Discard fruitless subsequences early.
 - e.g., in {1, 2, -8, 4, -3, 5, -2, -1, 2, 6, -2}, we need not consider subsequences {-2} or {-2, -1} or even {-2, -1, 2} or {1, 2, -8, 4}.

For each position

Add next element to sum

If sum > maxsum

Maxsum = sum

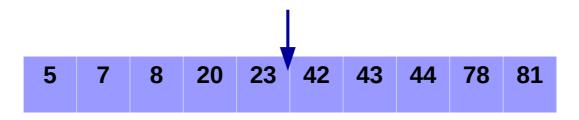
Else if sum is negative

sum = 0

Are you kidding?
This shouldn't work.
This is linear time algorithm!

Binary Search

- Go to page number 44.
- Searching in an array takes linear time O(N).
- If the array is sorted already, we can do better.
- We can cut the search space by half at every step.



Classwork: Write the code for binary search.

Source: bsearch.cpp

Binary Search

- Constant amount of time required to
 - Find the mid element.
 - Check if it is the element to be searched.
 - Decide whether to go to the left or the right.
 - Cut the search space by half.
- T(N) = T(N/2) + O(1)
 - Thus, T(N) is O(logN).

Exercises

• Solve exercises at the end of Chapter 2 of Weiss's book.