Arrays

Rupesh Nasre.

rupesh@iitm.ac.in

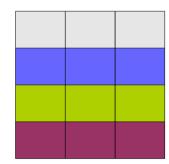
Properties

- Simplest data structure
 - Acts as aggregate over primitives or other aggregates
 - May have multiple dimensions
- Contiguous storage
- Random access in O(1)
- Languages such as C use type system to index appropriately
 - e.g., a[i] and a[i + 1] refer to locations based on type
- Storage space:
 - Fixed for arrays
 - Dynamically allocatable but fixed on stack and heap
 - Variable for vectors (internally, reallocation and copying)

Array Expressions

```
void fun(int a[][]) {
    a[0][0] = 20;
}
void main() {
    int a[5][10];
    fun(a);
    printf("%d\n", a[0][0]);
}
```

We view an array to be a Ddimensional matrix. However, for the hardware, it is simply single dimensional.



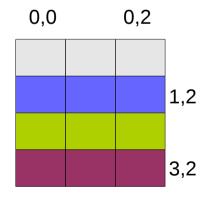
ERROR: type of formal parameter 1 is incomplete

For declaration int a[w4][w3][w2][w1]:

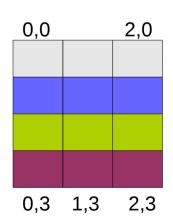
- What is the address of a[i][j][k][l]?
 - -(i*w3*w2*w1+j*w2*w1+k*w1+l)*4
- How to optimize the computation?
 - Use Horner's rule: (((i * w3 + j) * w2 + k) * w1 + l) * 4

Array Expressions

- In C, C++, Java, we use row-major storage.
 - All elements of a row are stored together.



- In Fortran, we use column-major storage.
 - each column is stored together.



Search

Linear: O(N)

How about Ternary search?

Binary: O(log N)

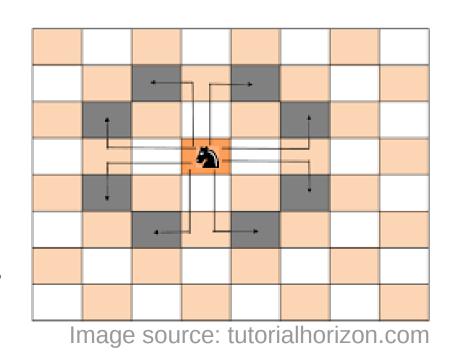
```
- T(N) = T(N/2) + c
```

```
int bsearch(int a[], int N, int val) {
    int low = 0, high = N - 1;

    while (low <= high) {
        int mid = (low + high) / 2;
        if (a[mid] == val) return 1;
        if (a[mid] > val) high = mid - 1;
        else low = mid + 1;
    }
    return 0;
}
```

Matrices

- Typically 2D arrays
 - Sometimes array of arrays (int *arr[N])
- If a matrix is sorted left-to-right and top-tobottom, can we apply binary search?
- Knight's tour
 - Start from a corner.
 - Visit all 64 squares without visiting a square twice.
 - The only moves allowed are 2.5 places.
 - Cannot wrap-around the board.



Binary Search in a Sorted Matrix

Q1

Q2

O3

Approach 1: Divide and Conquer

- $< i, 0 \text{ and } < 0, j \rightarrow Q1$
- $< i, 0 \text{ and } > 0, j \rightarrow Q1, Q2$
- > i, 0 and $< 0, j \rightarrow Q1, Q4$
- > i, 0 and > 0, $j \rightarrow Q2$, Q3, Q4
- $-T(M, N) = 3T(M/2, N/2) + c = min(M, N)^{1.54}$

Approach 2: Elimination

- Consider e: 0, N-1.
- If key < e, eliminate that column
- If key > e, eliminate that row
- O(M + N)

Approach 3: Divide and Conquer

- Use the corner points of Q1, Q2, Q3, Q4 to Q4 decide the quadrant.
- T(M, N) = 2T(M/2, N/2) + c = O(min(M, N))

Arrays: Classwork

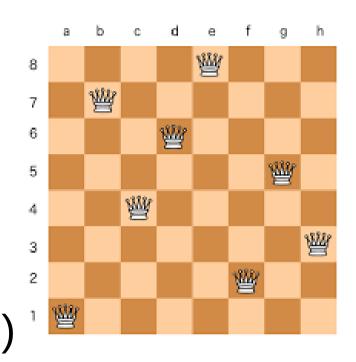
- Merge two sorted arrays
 - In a third array
 - In situ (also check with linked lists)
- For a given data, create a histogram
 - Numbers of students in [0..10), [10, 20), ..., [90, 100].
- Given two arrays of sizes N1 and N2, find a product matrix (P[i][j] = A[i] * B[j]).
 - Can this be done in O(N1 + N2) time?
 - or O(N1 log N2)?

Classwork

- Given an unsorted array of roll numbers, find the smallest CS18 roll number absent today.
 - {2, 3, 7, 6, 8, CH..., 10, 15} outputs 1
 - {2, 3, EE..., 6, 8, 1, CH..., 15} outputs 4
 - {1, 1, EE..., EE...} outputs 2
- Can this be done in linear time and constant additional space?

8-Queens Problem

Given a chess-board, can you place 8 queens in non-attacking positions? (no two queens in the same row or same column or same diagonal)



- Does a solution exist for 2x2, 3x3, 4x4?
- Have you seen similar constraints somewhere?

Sorting

- A fundamental operation
- Elements need to be stored in increasing order.
 - Some methods would work with duplicates.
 - Algorithms that maintain relative order of duplicates from input to output are called stable.
- Comparison-based methods
 - Insertion, Shell, Selection, Quick, Merge
- Other methods
 - Radix, Bucket, Counting

Sorting Algorithms at a Glance

Algorithm	Worst case complexity	Average case complexity
Bubble	O(n ²)	O(n²)
Insertion	$O(n^2)$	$O(n^2)$
Shell	O(n²)	Depends on increment sequence
Selection	$O(n^2)$	$O(n^2)$
Heap	O(n log n)	O(n log n)
Quick	O(n²)	O(n log n) depending on partitioning
Merge	O(n log n)	O(n log n)
Bucket	O(n α log α)	Depends on α

Bubble Sort

- Compare adjacent values and swap, if required.
- How many times do we need to do it?
- What is the invariant?
- Classwork: Write the code.

6	2	4	9	11	7	8	1	3	5

Insertion Sort

- Invariant: Keep the first i elements sorted.
- Classwork: Write the code.
- Good case, bad case?

6	2	4	9	11	7	8	1	3	5

Shell Sort

- The number of shiftings is too high in insertion sort.
 This leads to high inefficiency.
- Can we allow some perturbations initially and fix them later?
- Approach: Instead of comparing adjacent elements, compare those that are some distance apart.
 - And then reduce the distance.
 - This sequence of distances is called increment sequence.
- Classwork: Write the code.

	6	2	4	9	11	7	8	1	3	5
--	---	---	---	---	----	---	---	---	---	---

Selection Sort

- Approach: Choose the minimum element, and push it to its final place.
- What is the invariant?
- Classwork: Write the code.

Heapsort

Given N elements, build a heap and then perform N deleteMax, store each element into an array.

N storage

O(N) time

O(N log N) time

O(N) time and N space

for (int ii = 0; ii < nelements; ++ii) {
 h.hide_back(h.deleteMax());
}
h.printArray(nelements);</pre>

Source: heap-sort.cpp

O(N log N) time and 2N space

Can we avoid the second array?

Quicksort

- Approach:
 - Choose an arbitrary element (called pivot).
 - Place the pivot at its final place.
 - Make sure all the elements smaller than the pivot are to the left of it, and ... (called partitioning)
 - Divide-and-conquer.
- Best case, worst case?
- Classwork: Write the code.

6	2	4	9	11	7	8	1	3	5

Merge Sort

- Divide-and-Conquer
 - Divide the array into two halves
 - Sort each array separately
 - Merge the two sorted sequences
- Worst case complexity: O(n log n)
- Not efficient in practice due to array copying.
- Classwork: Write the code (reuse the merge function already written).

6 2 4 9 11 7 8 1 3 5

Comparison-based Sorts

- Array consists of n distinct elements.
- Number of permutations = n!
- A sorting algorithm must distinguish between these permutations.
- The number of yes/no bits necessary to distinguish n! permutations is log(n!).
 - Also called information theoretic lower bound
- Given: $N! >= (n/2)^{n/2}$
- log(N!) >= n/2 log(n/2) which is Ω (n log n)
- Comparison-based sort needs 1 bit per comparison (two numbers).
 Hence it must require at least n log n time.
 - For each comparison-based sorting algorithm, there exists an input for which it would take n log n comparisons.
 - Heapsort, mergesort are theoretically asymptotically optimal (subject to constants)

Bucket Sort

- Hash / index each element into a bucket, based on its value (specific hash function).
- Sort each bucket.
 - use other sorting algorithms such as insertion sort.
- Output buckets in increasing order.
- Special case when number of buckets >= maximum element value.
- Unsuitable for arbitrary types.

6	2	4	9	11	7	8	1	3	5
_	_	_	_		-	_	_	_	

Counting Sort

- Bucketize elements.
- Find count of elements in each bucket.
- Perform prefix sum.
- Copy elements from buckets to original array.

Original array	6	2	4	9	11	7	8	1	3	5
Buckets	1, 2		3	4, 5,	6 7		8		9	11
Bucket sizes	2	0	1	3	1	0	1	0	1	1
Starting index	0	2	2	3	6	7	7	8	8	9
Output array	1	2	3	4	5	6	7	8	9	11

Radix Sort

- Generalization of bucket sort.
- Radix sort sorts using different digits.
- At every step, elements are moved to buckets based on their ith digits, starting from the least significant digit.
- Classwork: 33, 453, 124, 225, 1023, 432, 2232

64	8	216	512	27	729	0	1	343	125
0	1	51 <mark>2</mark>	343	64	125	216	27	8	729
00, 01, 08	512, 216	125, 27, 729		343		64			
000, 001, 008, 027, 064	125	216	343		512		729		