
Clipping:

LINES  

and

POLYGONS



INPUT

OUTPUT



Solving Simultaneous equations using parametric form of a line:
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Horizontal Line:  Y = Ky.

01

0

YY
YK

t y
ly −

−
=

01

0

XX
XKt x

lx −
−

=
Solve with respective pairs:

In general, solve for: 
two sets of simultaneous equations
for parameters:

tedge and tline.

Check if they fall within range [0 - 1].

i.e. Solve:
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CYRUS-BECK formulation

Define, F(N, PE) = N.[P(t) – PE]
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F(N,PE)>0

F(N,PE)=0

F(N,PE)<0

PE

N

P(t) - PE

Solve for t using:   N.[P(t) – PE] = 0;

DN
PPNt

PPD
PtPPPN

E

E

.
].[  :Obtain To

; ,Substitute
;0])(.[

0

01

010

−
−

=

−=
=−−+

To ensure valid value of t, denominator must be non-zero.
Assuming D, N <> 0, check if:
N.D <> 0.   i.e. edge and line are not parallel. If they are parallel ?

Use the above expression of t to obtain all the four intersection:
• Select a point on each of the four edges of the clip rectangle.
• Obtain four values of t.
• Find valid intersections

How to implement the last step ?



Steps:
• If any value of t is outside the range [0 – 1] reject it.
• Else, sort with increasing values of t.

This solves L1,  but not L2 and L3 lines.
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PLCriteria to choose intersection
points, PE or PL:

Move from point P0 to P1;

If you are entering edge’s inside half-plane,
then that intersection point is marked PE,
else if you are leaving it is marked as PL.

Check the angle of D and N vectors, for each edge separately.

If angle between D and N is:

>  90 deg.,  N.D < 0, mark the point as PE,  store tE(i) = t
<  90 deg.,  N.D > 0, mark the point as PL,  store tL(i) = t

Find the maximum value of tE, and minimum value of tLfor a line.

If tE < tL choose pair of parameters as valid intersections on the line.  Else NULL



Simplified Calculations for parametric line Clipping, 
applicable for any other algorithm too.

Clip 
Edge

Normal
N

PE
$ P0 - PE

Left:
X = Xmin

(-1, 0) (Xmin, Y) (X0 – Xmin, Y0 – Y)

Right:
X = Xmax

(1, 0) (Xmax, Y) (X0 – Xmax, Y0 – Y)

Bottom:
Y = Ymin

(0, -1) (X, Ymin) (X0 – X, Y0 – Ymin)

Top:
Y = Ymax

(0, 1) (X, Ymax) (X0 – X, Y0 – Ymax)
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§ - Exact coordinates for PE is irrelevant. Put any value, as shown in table.



Cohen-Sutherland 

Line Clipping



Region Outcodes:

Bit Number 1 0

FIRST (MSB)
Above Top edge

Y > Ymax

Below Top edge
Y < Ymax

SECOND
Below Bottom edge

Y < Ymin

Above Bottom edge
Y > Ymin

THIRD
Right of Right edge

X > Xmax

Left of Right edge
X < Xmax

FOURTH (LSB)
Left of Left edge

X < Xmin

Right of Left edge
X > Xmin



First Step: Determine the bit values of the two end-points of the line to be clipped.
To determine the bit value of any point, use:
b1 = sgn(Ymax - Y); b2 = sgn(Y - Ymin); b3 = sgn(Xmax - X); b4 = sgn(X - Xmin); 

Use these end-point codes to locate the line. Various possibilities:

• If both endpoint codes are [0000], the line lies completely inside the box, no need 
to clip. This is the simplest case (e.g. L1).

• Any line has 1 in the same bit positions of both the endpoints, it is guaranteed to 
lie outside the box completely (e.g. L2 and L3 ). 
Reject it.
Test is performed by bit-wise AND operation.
If the results in not [0000], reject the line.

• Neither completely reject nor inside the box:
Needs more processing, Lines: L4 and L5.

• What about Line L6 ?
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Processing of lines, neither completely IN or OUT;  e.g. Lines: L4, L5 and L6.

Basic idea:
Clip parts of the line in any order 
(consider from top or bottom).

Algm. Steps:
• Compute outcodes of both endpoints to check

for trivial acceptance or rejection  (AND logic).
• If not so, obtain an endpoint that lies outside
the box (at least one will ?).

• Using the outcode, obtain the edge that is 
crossed first.

• Obtain corresponding intersection point.
• CLIP (replace the endpoint by the 

intersection point) w.r.t. the edge.
• Compute the outcode for the updated endpoint

and repeat the iteration, till it is 0000.
• Repeat  the above steps, if the other endpoint is also outside the area.

e.g. Take Line L5 (endpoints - E and I): 
E has outcode 0100 (to be clipped w.r.t. bottom edge); So EI is clipped to FI; 
Outcode of F is 0000; But outcode of I is 1010; Clip (w.r.t. top edge) to get FH. 
Outcode of H is 0010; Clip (w.r.t. right edge) to get FG; Since outcode of G is 0000, 
display the final result as FG. 



Coordinates for intersection, for clipping w.r.t edge:

Inputs: 
• Endpoint coordinates: (X0, Y0) and (X1, Y1)
• Edge for clipping (obtained using outcode of current endpoint).
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Formulas for clipping w.r.t. edge, in cases of:

Top Edge :

)(
)(*)(

01

0min
010 YY

YYXXXX
−
−

−+=Bottom Edge:

)
)(*)(

01

0max
010 XX

XXYYYY
−
−

−+=Right Edge:

)
)(*)(

01

0min
010 XX

XXYYYY
−
−

−+=Left edge:



POLYGON

CLIPPING



Examples of Polygon Clipping

CONVEX SHAPE

CONCAVE SHAPE
MULTIPLE COMPONENTS



Methodology: CHANGE position of vertices for each edge by line clipping
May have to add new vertices to the list.



S and P both IN

Output: P.

S  IN;  P  OUT

Output: i

S  OUT;  P  IN; Output: i and P
S and P 
both OUT

Output: Null.





Desired OutputNow output is as above

Any Idea ??   – the modified algorithm




