
Clipping:

LINES

and

POLYGONS

INPUT

OUTPUT

Solving Simultaneous equations using parametric form of a line:

10

10

)1(;)0(,
)1()(

PPPPwhere
tPPttP

==
+−= Vertical Line: X = Kx;

Horizontal Line: Y = Ky.

01

0

YY
YK

t y
ly −

−
=

01

0

XX
XKt x

lx −
−

=
Solve with respective pairs:

In general, solve for:
two sets of simultaneous equations
for parameters:

tedge and tline.

Check if they fall within range [0 - 1].

i.e. Solve:

0
'

0
'

0
'

12011)()(PPPPtPPt −=−−−

10

010

)1(;)0(,
)()(

PPPPwhere
PPtPtP

==
−+=

CYRUS-BECK formulation

Define, F(N, PE) = N.[P(t) – PE]

P1

P0

F(N,PE)>0

F(N,PE)=0

F(N,PE)<0

PE

N

P(t) - PE

Solve for t using: N.[P(t) – PE] = 0;

DN
PPNt

PPD
PtPPPN

E

E

.
].[:Obtain To

; ,Substitute
;0])(.[

0

01

010

−
−

=

−=
=−−+

To ensure valid value of t, denominator must be non-zero.
Assuming D, N <> 0, check if:
N.D <> 0. i.e. edge and line are not parallel. If they are parallel ?

Use the above expression of t to obtain all the four intersection:
• Select a point on each of the four edges of the clip rectangle.
• Obtain four values of t.
• Find valid intersections

How to implement the last step ?

Steps:
• If any value of t is outside the range [0 – 1] reject it.
• Else, sort with increasing values of t.

This solves L1, but not L2 and L3 lines.

P0

P1

P0

P0

P1

P1

L1

L2

L3

PE

PE

PE

PL PL

PL

PE

PLCriteria to choose intersection
points, PE or PL:

Move from point P0 to P1;

If you are entering edge’s inside half-plane,
then that intersection point is marked PE,
else if you are leaving it is marked as PL.

Check the angle of D and N vectors, for each edge separately.

If angle between D and N is:

> 90 deg., N.D < 0, mark the point as PE, store tE(i) = t
< 90 deg., N.D > 0, mark the point as PL, store tL(i) = t

Find the maximum value of tE, and minimum value of tLfor a line.

If tE < tL choose pair of parameters as valid intersections on the line. Else NULL

Simplified Calculations for parametric line Clipping,
applicable for any other algorithm too.

Clip
Edge

Normal
N

PE
$ P0 - PE

Left:
X = Xmin

(-1, 0) (Xmin, Y) (X0 – Xmin, Y0 – Y)

Right:
X = Xmax

(1, 0) (Xmax, Y) (X0 – Xmax, Y0 – Y)

Bottom:
Y = Ymin

(0, -1) (X, Ymin) (X0 – X, Y0 – Ymin)

Top:
Y = Ymax

(0, 1) (X, Ymax) (X0 – X, Y0 – Ymax)

DN
PPNt E

.
].[0

−
−

=

)(
)(

01

min0

XX
XX

−
−−

)(
)(

01

max0

XX
XX
−−

−

)(
)(

01

min0

YY
YY

−
−−

)(
)(

01

max0

YY
YY
−−

−

§ - Exact coordinates for PE is irrelevant. Put any value, as shown in table.

Cohen-Sutherland

Line Clipping

Region Outcodes:

Bit Number 1 0

FIRST (MSB)
Above Top edge

Y > Ymax

Below Top edge
Y < Ymax

SECOND
Below Bottom edge

Y < Ymin

Above Bottom edge
Y > Ymin

THIRD
Right of Right edge

X > Xmax

Left of Right edge
X < Xmax

FOURTH (LSB)
Left of Left edge

X < Xmin

Right of Left edge
X > Xmin

First Step: Determine the bit values of the two end-points of the line to be clipped.
To determine the bit value of any point, use:
b1 = sgn(Ymax - Y); b2 = sgn(Y - Ymin); b3 = sgn(Xmax - X); b4 = sgn(X - Xmin);

Use these end-point codes to locate the line. Various possibilities:

• If both endpoint codes are [0000], the line lies completely inside the box, no need
to clip. This is the simplest case (e.g. L1).

• Any line has 1 in the same bit positions of both the endpoints, it is guaranteed to
lie outside the box completely (e.g. L2 and L3).
Reject it.
Test is performed by bit-wise AND operation.
If the results in not [0000], reject the line.

• Neither completely reject nor inside the box:
Needs more processing, Lines: L4 and L5.

• What about Line L6 ?
L1

L3

L2

L6

L5

L4

L6

L4

L5

A
B

CD

E

F

G
H

I

J

K

M
N

Processing of lines, neither completely IN or OUT; e.g. Lines: L4, L5 and L6.

Basic idea:
Clip parts of the line in any order
(consider from top or bottom).

Algm. Steps:
• Compute outcodes of both endpoints to check

for trivial acceptance or rejection (AND logic).
• If not so, obtain an endpoint that lies outside
the box (at least one will ?).

• Using the outcode, obtain the edge that is
crossed first.

• Obtain corresponding intersection point.
• CLIP (replace the endpoint by the

intersection point) w.r.t. the edge.
• Compute the outcode for the updated endpoint

and repeat the iteration, till it is 0000.
• Repeat the above steps, if the other endpoint is also outside the area.

e.g. Take Line L5 (endpoints - E and I):
E has outcode 0100 (to be clipped w.r.t. bottom edge); So EI is clipped to FI;
Outcode of F is 0000; But outcode of I is 1010; Clip (w.r.t. top edge) to get FH.
Outcode of H is 0010; Clip (w.r.t. right edge) to get FG; Since outcode of G is 0000,
display the final result as FG.

Coordinates for intersection, for clipping w.r.t edge:

Inputs:
• Endpoint coordinates: (X0, Y0) and (X1, Y1)
• Edge for clipping (obtained using outcode of current endpoint).

)(
)(*)(

01

0max
010 YY

YYXXXX
−
−

−+=

Formulas for clipping w.r.t. edge, in cases of:

Top Edge :

)(
)(*)(

01

0min
010 YY

YYXXXX
−
−

−+=Bottom Edge:

)
)(*)(

01

0max
010 XX

XXYYYY
−
−

−+=Right Edge:

)
)(*)(

01

0min
010 XX

XXYYYY
−
−

−+=Left edge:

POLYGON

CLIPPING

Examples of Polygon Clipping

CONVEX SHAPE

CONCAVE SHAPE
MULTIPLE COMPONENTS

Methodology: CHANGE position of vertices for each edge by line clipping
May have to add new vertices to the list.

S and P both IN

Output: P.

S IN; P OUT

Output: i

S OUT; P IN; Output: i and P
S and P
both OUT

Output: Null.

Desired OutputNow output is as above

Any Idea ?? – the modified algorithm

