Clipping:
LINES
and

POLYGONS

////

)2

Solving Simultaneous equations using parametric form of a line:

P(t)=01-t)P, +tP, Vertical Line: X =K
Horizontal Line: Y =K.
where, P(0)=PF,; P(1) =P,

Solve with respective pairs: K —X

K, -Y
tIx = > t|y =—* :
X, — X, Yi =Y

In general, solve for: !
two sets of simultaneous equations :

for parameters: .
1:edge and tIine. /

Check if they fall within range [O - 1].

I.e. Solve;

tl(Pl_Po)_tz(H'_Pol): I:)ol_l:)o

CYRUS-BECK formulation P

P(t) =Py +1(R -)

where, P(0)=PR,; P())=PF,
Define, F(N, Pg) = N.[P(t) — P¢l

Solve for t using: N.[P(t) — Pg] = 0;

F(N,Pg)<0

F(N,Pg)=0

F(N,P-)>0
N-[Po+(P1_Po)t_PE]:0; Py ()
Substitute, D = P, — P;; < N
To Obtain: t = N.[Fo — P
—N.D

To ensure valid value of t, denominator must be non-zero.
Assuming D, N <> 0, check if:
N.D <> 0. i.e. edge and line are not parallel. If they are parallel ?

Use the above expression of t to obtain all the four intersection:
e Select a point on each of the four edges of the clip rectangle.
e Obtain four values of t.

e Find valid intersections
How to implement the last step ?

Steps:
o If any value of t is outside the range [0 — 1] reject it.
» Else, sort with increasing values of t.

PE / Py
This solves L,, but notL, and L, lines. / L, / /
Criteria to choose intersection P/PL PL /PL
points, PE or PL: 0 L,

PE
Move from point P, to P,. Po/]
3

If you are entering edge’s inside half-plane, PE_~1"pg

then that intersection point is marked PE, /
else if you are leaving it is marked as PL. P
0

Check the angle of D and N vectors, for each edge separately.
If angle between D and N is:

> 90 deg., N.D <0, mark the point as PE, storetg(i) =t
< 90deg., N.D >0, mark the point as PL, storet (i) =t

Find the maximum value of tz and minimum value of t for a line.

If t- <t choose pair of parameters as valid intersections on the line. Else NULL

Simplified Calculations for parametric line Clipping,

applicable for any other algorithm too.

;::;pe NoeraI Pe? Po-Pe L= N .EPKL_DPE]
xL:e:r;m (-1, 0) | (X, Y) | =X Yo = V) _Eif:;((:)m)
XR:ig;r:;X (1, 0) [(Xaxs Y)| Ko Xinao Yo = Y) (_x& : f;a:))
\E:O:tts: (0, -1) [(X, Ypin) | %0=X Yo = Yuin) ‘g: :;(:)n)
Y Zos;ax 0, 1) | (X, Yinax) | Ko =X Yo=Y (—Y(EY:\—(H\];:))

§ - Exact coordinates for P¢ is irrelevant. Put any value, as shown in table.

Cohen-Sutherland

Line Clipping

Region Outcodes:

1000

e
L
-

o 1 | e }"m_m
0101 « O100 + 0110
1 |
X min A max
Bit Number 1 0
FIRST (MSB) Above Top edge Below Top edge
Y > Ymax Y < Ymax
Below Bottom edge Above Bottom edge
SECOND
Y < Ymin Y > Ymin
THIRD Right of Right edge Left of Right edge
X > Xmax X < Xmax
Left of Left edge Right of Left edge
FOURTH (LSB)
X< Xmin X> Xmin

First Step: Determine the bit values of the two end-points of the line to be clipped.
To determine the bit value of any point, use:

b, =sgn(Y - Y); b,=sgn(Y -Y...); by =sgn(X, . - X); b, =sgn(X - X_.);

Use these end-point codes to locate the line. Various possibilities:

* If both endpoint codes are [0000], the line lies completely inside the box, no need
to clip. This is the simplest case (e.g. L,).

* Any line has 1 in the same bit positions of both the endpoints, it is guaranteed to
lie outside the box completely (e.g. L, and L;).
Reject it.

Test is performed by bit-wise AND operation. ™~ L

If the results in not [0000], reject the line. \ \ Y

* Neither completely reject nor inside the box: \ /
2

o] |____ J"r[ﬂ_'l]] \
0101 0100 | 0110 s — | .

Needs more processing, Lines: L,and Lg L

« What about Line Lg ?| 1001 E 1000 i 1010
..... ! A L, L
0001 | 0000 | 0010 AN

Xmin Xmax

Processing of lines, neither completely IN or OUT; e.g. Lines: L,, Lcand L.

Basic idea:
Clip parts of the line in any order D (€

(consider from top or bottom). N I

Algm. Steps: B
« Compute outcodes of both endpoints to check A H

for trivial acceptance or rejection (AND logic). G
*If not so, obtain an endpoint that lies outside
the box (at least one will ?). Lg
* Using the outcode, obtain the edge that is N
crossed first. \M =
« Obtain corresponding intersection point. \ /
e CLIP (replace the endpoint by the LeNK £
intersection point) w.r.t. the edge. \
« Compute the outcode for the updated endpoint J

and repeat the iteration, till it is 0000.
 Repeat the above steps, if the other endpoint is also outside the area.

e.g. Take Line L (endpoints - E and I):

E has outcode 0100 (to be clipped w.r.t. bottom edge); So El is clipped to FlI;
Outcode of F is 0000; But outcode of | is 1010; Clip (w.r.t. top edge) to get FH.
Outcode of His 0010; Clip (w.r.t. right edge) to get FG; Since outcode of G is 0000,
display the final result as FG.

Coordinates for intersection, for clipping w.r.t edge:
Inputs:

« Endpoint coordinates: (X,, Y,) and (X, Y,)
« Edge for clipping (obtained using outcode of current endpoint).

Formulas for clipping w.r.t. edge, in cases of:

Yoo — Y
Top Edge : X = XO+(X1_X0)*(max o)
(Yl_YO)

Y —Y
Bottom Edge: X = XO -|-(X1_ XO)*(min O)
(Yl_Yo)

Right Edge: Y :YO 4 (Yl _YO)* (Xmax - Xo)
Xl_ Xo)

(Xmin B XO)

Leftedge: Y =Y.+ (Y. =Y.)*
(Y

POLYGON

CLIPPING

Examples of Polygon Clipping

CONVEX SHAPE

CONCAVE SHAPE
' MULTIPLE COMPONENTS

Methodology: CHANGE position of vertices for each edge by line clipping

May have to add new vertices to the list.

7

< <
N

(oo gup)

N = OUT

OUT S and P both IN N

Output: P.

Sand P
P both OUT

Output: Null.

S IN; P OUT

Output: i ‘_—'__{..—-
A :

S OUT; P IN; Ou

IN : OUT

P:second —
nurput“au-“""i_’_—\——- S

: I output

tput: i and P

N\

Now output is as above Desired Output

Any ldea ?? - the modified algorithm

