
SCAN CONVERSION - POLYFILL

Pixels are not at the center of the grid, but at the intersection of two
orthogonal scan lines (on the grid intersection points).

SCANLINE POLYFILL ALGORITHM
Steps (conceptual):

• Find minimum enclosed rectangle

• No. of scanlines = Ymax – Ymin + 1

• For each scanline do

• Obtain intersection points of scanline
with polygon edges.

• Sort intersections from left to right

• Form pairs of intersections from the list§

• Fill within pairs

• Intersection points are updated for each scanline

• Stop when scanline has reached Ymax

Check if a point is
within a Poly?

Look left or right,
and count the number of
intersection points of the
scanline with the edges of
the Poly.

If the number is ODD,
Points is Inside
else Outside

§ - Intersections at vertices require special handling

Two different cases of scanlines passing
through the vertex of a polygon

Add one more intersection: 3 -> 4

Add one more intersection: 5 -> 6; ---->

Do not add intersection, keep 4; ---->
HOW ??

Y

Y’

For Y, the edges at the vertex are on the same side of the scanline,
whereas for Y’ the edges are on either/both sides of the vertex.
In this case, we require additional processing:

Traverse along the polygon boundary clockwise (or counter-
clockwise) and observe the relative change in Y-value of the edges on
either side of the vertex (i.e. as we move from one edge to another).

Check the condition:
If end-point Y values of two consecutive edges monotonically

increase or decrease, count the middle vertex as a single intersection
point for the scanline passing through it.

Else the shared vertex represents a local maximum (or minimum)
on the polygon boundary.

What is the difference between
the intersection of the scanlines
Y and Y’, with the vertices?

If the vertex is a local extrema, add two intersections
for the scan line corresponding to such a shared vertex.

Must avoid this to happen in cases, such as:

Before
processing

After
processing Before

processing

After
processing

To implement the above:

While processing non-horizontal edges (generally) along a polygon
boundary in any order, check to determine the condition of monotonically
changing (increasing or decreasing) endpoint Y values. If so:

Shorten the lower edge to ensure only one intersection point at the vertex.

Scanline Fill Algorithm (revisited, in brief)

Intersect scanline with polygon edges.
Fill between pairs of intersections

Basic Structure:
For y = Ymin to Ymax

1) intersect scanline with each edge
2) sort intersections by increasing X
3) fill pairwise (int0->int1, int2->int3, ...)

This is the basic structure, but we are going to handle some special
cases to make sure it works right.

• scanline coherence - values don't change much from one scanline to
the next - the coverage (or visibility) of a face on one scanline typically
differs little from the previous one.

• edge coherence - edges intersected by scanline i are typically
intersected by scanline i+1

L

(Xk, Yk)

(Xk+1, Yk+1)

(Yk)

(Yk+1 = Yk + 1)
Slope of the line L
(polygon edge) is:

kk

kk

XX
YYm

−
−

=
+

+

1

1

where, Yk+1 = Yk + 1; Thus, Xk+1 = Xk + 1/m

Thus the intersection for the next scanline is obtained as:
Xk+1 = round (Xk + 1/m),
where m = ∆Y/∆X. How to implement this using integer arithmetic ?

Take an example: m = ∆Y/∆X = 7/3.
Set Counter, C = 0 and counter increment, ∆C = ∆X = 3;

For the next three scan lines, successive values of C are : 3, 6, 9.
Thus only at 3rd scanline C > ∆Y.
Xk is incremented by 1 only at 3rd scanline
and set C = C – ∆Y = 9 – 7 = 2.

Repeat the above step(s) till Yk reaches Ymax .

Data Structure Used (typical example):

SET (Sorted Edge table):
Contains all information necessary to process the scanlines

efficiently. SET is typically built using a bucket sort, with a many buckets
as there are scan lines. All edges are sorted by their Ymin coordinate. with
a separate Y bucket for each scanline. Within each bucket, edges sorted
by increasing X of Ymin point.

Only non-horizontal edges are stored. Store these edges at the
scanline position in the SET.

Edge structure (sample record for each scanline):
(Ymax, Xmin, ∆X/∆Y, pointer to next edge)

AEL (Active edge List):
Contains all edges crossed by a scanline at the current stage of

iteration. This is a list of edges that are active for this scanline, sorted by
increasing X intersections. Also called: Active Edge Table (AET).

2 4 6 8 10 12

1

3

5

7

9

11

A

B

C

D

E

F

Precautions:
Intersection has an integer Y coordinate

If this point is the Ymin of the edge's endpoints, count it.
If the edge is horizontal and on the scanline, don't count it.

During iteration process with each scanline, the AET is updated.
For each scanline the AET keeps track of the set of edges it has to
intersect and stores the intersection points in it. The sorting of the
entries is w.r.t the X-intersection values.

Have a closer look at it, w.r.t. the previous figure:

9 2 0 . 9 2 -5/2 .
AET

Pointer 11 10 6/4 . 11 13 0 λ
FA EF DE CD

AET
Pointer 11 12 6/4 . 11 13 0 λ

DE CD
Scanline No. 10:

Scanline No. 9:

9 2 0 . 9 4 -5/2 .
AET

Pointer

Scanline No. 8:
FA EF

11 9 6/4 .
DE

11 13 0 λ
CD

Processing Steps:

• Set Y to smallest Y in SET entry (first non-empty bucket)

• Initialize AET to be empty

• Repeat until both AET and SET are empty

(i) Move from SET bucket Y to AET, those edges whose Ymin = Y.

(ii) Sort AET on X (simple, as SET is pre-sorted anyway).

(iii) Fill pixels in scanline Y using pairs of X-coordns. from AET.

(iv) Increment scanline by 1.

(v) Remove from AET those entries for which Y = Ymax (edges not
involved).

(vi) For each non-vertical edge in AET, update X for new Y.

The algorithm:
scan-fill(polygon)

Construct the Edge table (ET)
Y = min(all Y in the ET)
AET= null

for Y = Ymin to Ymax

Merge-sort ET[Y] into AET by X value
Fill between pairs of X in AET.

for each edge in AET
if edge.Ymax = Y

remove edge from AET
else

edge.X = edge.X + dx/dy
endif

sort AET by X value

end scan_fill

