
Three-Dimensional Graphics

• Use of a right-handed coordinate system (consistent with math) 
• Left-handed suitable to screens. 
• To transform from right to left, negate the z values. 

Right Handed Space Left Handed Space 

Homogeneous representation of 3D point: 
|x y z 1|T
(w=1 for a 3D point)

Transformations will be represented by 4x4 matrices. 
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Why is the sign reversed in one case ?



Rotation About an Arbitrary Axis in Space

Assume we want to perform a rotation about an axis in space 
passing through the point (x0, y0, z0) with direction cosines  (cx, cy, cz) 
by θ degrees. 

1) First of all, translate by:  - (x0, y0, z0) = |T|. 

2) Next, we rotate the axis into one of the principle axes, 
let's pick,  Z (|Rx|,    |Ry|). 

3) We rotate next by θ degrees in Z ( |Rz(θ)|).

4) Then we undo the rotations to align the axis. 

5) We undo the translation: translate  by (x0, y0, z0) 

The tricky part is (2) above.

This is going to take  2 rotations, 
1 about x  (to place the axis in the xz plane) and 
1 about y  (to place the result coincident with the z axis). 



Rotation about x by α:  
How do we determine α? 

Project  the unit vector, along OP, into the yz plane as shown below. 
The y and z components are cy and cz, the direction cosines of the 

unit vector along the arbitrary axis.  It can be seen from the diagram 
above, that : d = sqrt(cy

2 + cz
2),

therefore          cos(α) = cz/d
sin(α)  = cy/d



Rotation by β about y: 

How do we determine β? Similar to above: 

Determine the angle β to rotate the result into the Z axis: 
The x component is cx and the z component is d. 

cos(β)= d =  d/(length of the unit vector) 
sin(β)= cx =  cx/(length of the unit vector). 

Final Transformation: 

M = |T|-1 |Rx|-1 |Ry|-1 |Rz| |Ry| |Rx| |T| 

If you are given 2 points instead, you can calculate the direction 
cosines as follows: 

V   =  | (x1 -x0)  (y1 -y0)  (z1 -z0) |T 

cx =  (x1 -x0)/ |V| 
cy =  (y1 -y0)/ |V| 
cz =  (z1 -z0)/ |V|, where |V| is the length of the vector V. 



Spaces

Object Space 
definition of objects. Also called Modeling space. 

World Space
where the scene and viewing specification is made 

Eyespace (Normalized Viewing Space) 
where eye point (COP) is at the origin looking down the Z axis. 

3D Image Space
A 3D Perspected space. 
Dimensions: -1:1 in x & y, 0:1 in Z. 
Where Image space hidden surface algorithms work. 

Screen Space (2D) 
Coordinates 0:width, 0:height



Projections

We will look at several planar geometric 3D to 2D  projection: 

-Parallel Projections 
Orthographic 
Oblique

-Perspective 

Projection of a 3D object is defined  by  straight projection  
rays (projectors) emanating from the center of projection (COP) 
passing through each point of the object and intersecting the  
projection  plane. 



Classification of Geometric Projections



Perspective Projections

Distance from COP to projection plane is finite.  The projectors are 
not parallel  & we specify a center of projection. 

Center of Projection is also called the Perspective Reference Point 
COP = PRP

Perspective foreshortening:  the size of the perspective projection of 
the object varies inversely with the distance of the object from the center 
of projection. 

Vanishing Point: The perspective projections of any set of parallel 
lines that are not parallel to the projection plane converge to a vanishing 
point. 





Perspective geometry and Camera Models
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P(X,Y,Z)

PP X or Y P(X,Y,Z)F

Z

Zf

IP

PP

X or Y

xp or yp

P(X,Y,Z)

(COP) ZO



⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

==

0100
0100
0010
0001

;  ;

f

M

Z
Y

f
y

Z
X

f
x

per

ppEquations of Perspective geometry

O (COP)

X or Y

xp or yp

P(X,Y,Z)

PP

Z

P´ =Mper.P; where P =[X Y Z 1]T

f

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

+
=

+
=

1100
0100
0010
0001

;  ;

f

M

fZ
Y

f
y

fZ
X

f
x

per

pp

PP

X or Y

xp or yp

P(X,Y,Z)

(COP) ZO



Generalized formulation of perspective projection: 

(COP)

X or Y

P´(xp, yp, Zp)

PP

O

Q

(0, 0, Zp)

Parametric eqn. of the 
line L between COP and P:

COP + t(P-COP);  0 <
(dx, dy, dz)

L

P(X,Y,Z)

t < 1.
Z

Let the direction vector from (0, 0, Zp) to COP be (dx, dy, dz), and Q is the 
distance from (0, 0, Zp) to COP. Then COP = (0, 0, Zp) + Q(dx, dy, dz).

The coordinates of any point on line L is:
X´ = Qdx + (X- Qdx)t; 
Y´ = Qdy + (Y- Qdy)t;
Z´ = (Zp + Qdz) + (Z - (Zp + Qdz))t;

Using the condition Z´ = Zp, at the intersection of line L and plane PP:

)( zp

z

QdZZ
Qdt
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= Class work:
Now subsitute to obtain, xp and yp.
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Parallel ProjectionParallel Projection

Distance from COP to projection plane is infinite. 

Therefore,  the projectors are parallel lines & we specify a direction 
of projection (DOP) 

Orthographic: the direction of projection and the normal to the 
projection plane are  the same. (direction of projection is normal to the 
projection plane).

Example of
Orthographic 
Projection:



Axometric orthographic projections use planes of projection 
that are not normal to a principal axis (they therefore show multiple face 
of an object.) 

Isometric projection: projection plane normal makes equal angles 
with each principle axis. DOP Vector: [1 1 1].

All 3 axis are equally foreshortened allowing measurements along 
the axes to be made with the same scale. 

Example Isometric Projection: 



Oblique projections : projection plane normal and the direction of 
projection differ. 

Plane of projection is normal to a principle axis 

Projectors are not normal to the projection plane 

Example Oblique Projection 
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α
β

General oblique projection of a point/line:

Projection Plane: x-y plane; P´ is the projection of P(0, 0, 1) onto 
x-y plane.  `l´ is the projection of the z-axis unit vector onto x-y plane and 
α is the angle the projection makes with the x-axis. When DOP varies, 
both `l´  and α  will vary. 

Coordinates of  P´:
(l cos α, l sin α, 0).

As given in the figure:
DOP is (dx, dy, -1) or (l cos α, l sin α, −1).

What is β ?
l



View Specifications:
VP, VRP, VUP, VPN, PRP, DOP, CW, VRC 
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Semi-infinite pyramid view volume
for perspective projection

Infinite parallelopiped view volume
for perspective projection



Implementation of 3D Viewing

Apply
normalizing

transformation

3-D world
coordinate

output
primitives

Clip against
canonical

view Volume

Transform into
viewport in 2D

device coordinates
for display

Project onto
projection plane2D device

coordinates



Canonical view volume 
for parallel projection is 
defined by six planes:

X = -1; X = 1;  
Y = -1; Y = 1; 
Z  = 0; Z = -1. 

Canonical view volume 
for perspective projection is 
defined by six planes:

X = Z; X = -Z;  
Y = -Z; Y = Z; 
Z = -Zmin; Z = -1. 

X or Y
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FP
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BP

-1-1 -Z-Z

BP



Steps for implementing normalizing transformation matrix 
for parallel projection

• Translate the VRP to origin
• Rotate VRC such that VPN (n-axis) aligns with Z-axis 

(also, u with X and v with Y)
• Shear (not necessary for pure orthographic) such that DOP is

parallel to the Z-axis
• Translate and scale into parallel-projection canonical view volume
Expressions for Step 2  must be derived. 

Implement using the concept of combined transformation (rotation).

Take Rx = α

α

Z

Y

• Rows are unit vectors, when rotated by Rx,
will align with the Y and Z axis respectively.
• When unit vectors along the principle axes 
are rotated by Rx, they form the column vectors.
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Consider a general scenario of combined rotations and use the 
property derived based on the orthogonality of the R matrix.
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The rotation matrix of step 2 in normalizing 
transformations, can be formulated as: 
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The overall combined transformation matrix 
(for WCSVV -> PPCVV), for parallel projection is:

)(    VRPTRSHTSN parparparpar −=

Implementing normalizing transformation matrix 
for perspective projection
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Steps for implementing normalizing transformation matrix 
for perspective projection

• Translate the VRP to origin
• Rotate VRC such that VPN (n-axis) aligns with Z-axis 

(also, u with X and v with Y)
• Translate such that COP (or PRP) is at the origin
• Shear such that center of line of view volume (VVCL) becomes z-axis
• Scale such that VV becomes 
the canonical view volume X or Y
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3-D modeling
(object)

coordinates

2D device
coordinates

Modeling
Transformation

View 
Orientation

matrix

View Mapping
matrix

Clip, transform
into 2D screen

coordinates

3D World
Coordinates

R.T(-VRP)
R.T(-VRP)

View reference
Coordinates

Normalized
projection

Coordinates

M.Sper.SHpar.T(-PRP)
Spar.Tpar.SHpar

Perspective
Parallel

Coordinate Systems and Matrices

MCVV3DVP



where after clipping,
use MCVV3DVP = 
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The 3D Viewing Pipeline

• Objects are modeled in object (modeling) space.
• Transformations are applied to the objects to position them in world space. 
• View parameters are specified to define the view volume of the world, a 

projection plane, and the viewport on the screen.

• Objects are clipped to this View volume.
• The results are projected onto the projection plane (window) and finally 

mapped into the 3D viewport.

• Hidden objects are then removed. 
• The objects are scan converted and shaded if necessary.



The Computer 
Graphics Pipeline 
Viewing Process





The Camera Model
We specify our initial camera model by identifying the following parameters.

1. A scene, consisting of polygonal elements each represented by their 
vertices;

2. A point that represents the camera position -- C = [Cx, Cy, Cz],;

3. A point that represents the ``center-of-attention'' of the camera (i.e. where 
the camera is looking):

A = [Ax, Ay, Az];

4. A field-of-view angle, α , 
representing the angle 
subtended at the apex of the 
viewing pyramid. 

5. The specification of ``near'' 
and ``far'' bounding planes. 
These planes considered 
perpendicular to the 
direction-of-view vector at a 
distance of  dn and  df from the 
camera, respectively. 



The Viewing Pyramid

Side view of the viewing space

3D view of the viewing space

The image space volume:

1,,1 ≤≤− wvu



Derivation of the viewing transformation matrix,
in terms of camera parameters:
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Express as transformation:



O (COP) -w  

n.tan(α/2)

u or v

α/2

f.tan(α/2)

(0, 0, -n) (0, 0, -f)
Transformation of the finite (truncated) viewing pyramid 
to the cube, -1 < u, v, w < 1.  Let us first analyze w-axis only.
Use the transformation matrix:

;
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and
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Solve for  parameters a and b, please:



From the constraints of the
above two equations:
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Hence the transformation is:
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What about u and v-axis transformations in the pyramid ?
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Transformations for the
two points are as
follows:
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Desired normalized 3-D coordinates for both the points: [0 1 -1 1] 
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using the regular
expression of Pd

The Viewing Transformation Matrix




