Three-Dimensional Graphics

Use of aright-handed coordinate system (consistent with math)
Left-handed suitable to screens.

To transform from right to left, negate the z values.

Right Handed Space Left Handed Space

Homogeneous representation of 3D point:

Ixyz1[
(w=1 for a 3D point)

Transformations will be represented by 4x4 matrices.
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Why is the sign reversed in one case ?
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Rotation About an Arbitrary AXis in Space

Assume we want to perform a rotation about an axis in space
passing through the point (x0, y0, z0) with direction cosines (cx, cy, Ccz)
by 0 degrees.

1) First of all, translate by: - (x0, y0, z0) = |T|.

2) Next, we rotate the axis into one of the principle axes,
let's pick, Z (|[Rx|, [Ry]).

3) We rotate next by 0 degrees in Z ( |Rz(0))).

4) Then we undo the rotations to align the axis.

5) We undo the translation: translate by (x0, y0, z0)
The tricky part is (2) above.

This Is going to take 2 rotations,

1 about x (to place the axis in the xz plane) and
1 abouty (to place the result coincident with the z axis).
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Rotation about x by o (=) )
How do we determine o?

Project the unit vector, along OP, into the yz plane as shown below.
The y and z components are ¢, and c,, the direction cosines of the
unit vector along the arbitrary axis. It can be seen from the diagram

above, that : d = sqgrt(c,* + c,?),
therefore cos(a) = c.,/d
sin(a) =c,/d



Rotation by  about y:
How do we determine ? Similar to above:

Determine the angle B to rotate the result into the Z axis:
The x component is c, and the z component is d.

cos(B)=d = d/(length of the unit vector)
sin(B)=c, = c,/(length of the unit vector).

Final Transformation:
M= [T R ™ IRy™ R, IRy| IRy IT]

If you are given 2 points instead, you can calculate the direction
cosines as follows:

V = | (x1-x0) (yl-y0) (z1-z0)|
. = (x1-x0)/ |V]|

C
c, = (y1-y0) |vi|
c, = (z1-zO0)/ |V|, where |V]| is the length of the vector V.



Spaces

Object Space
definition of objects. Also called Modeling space.

World Space
where the scene and viewing specification is made

Eyespace (Normalized Viewing Space)
where eye point (COP) is at the origin looking down the Z axis.

3D Image Space
A 3D Perspected space.
Dimensions: -1:1inx &y, 0:11in Z.
Where Image space hidden surface algorithms work.

Screen Space (2D)
Coordinates O:width, O:height



Projections

We will look at several planar geometric 3D to 2D projection:

-Parallel Projections
Orthographic
Oblique

-Perspective

Projection of a 3D object is defined by straight projection
rays (projectors) emanating from the center of projection (COP)
passing through each point of the object and intersecting the
projection plane.



Classification of Geometric Projections

Planar geometric
projections
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z-axis vanishing point

- h‘q:

z-axis vanishing point

Perspective Projections . B X

4
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Distance from COP to projection plane is finite. The projectors are
not parallel & we specify a center of projection.

Center of Projection is also called the Perspective Reference Point
COP = PRP

Perspective foreshortening: the size of the perspective projection of
the object varies inversely with the distance of the object from the center
of projection.

Vanishing Point: The perspective projections of any set of parallel
lines that are not parallel to the projection plane converge to a vanishing
point.
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Perspective geometry and Camera Models
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Equations of Perspective geometry X,/ x / Y,/ vy /.
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Generalized formulation of perspective projection:

Parametric eqn. of the

line L between COP and P: P(X,Y,Z)

>

(0,0, Z) Z

Let the direction vector from (0, O, Z,) to COP be (d,, d,, d,), and Q is the
distance from (0, 0, Zp) to COP. Then COP = (0, 0, Z,) + Q(d,, d,, d,).

COP +t(P-COP); 0<t<1.

The coordinates of any point on line L is:
X = de % (X' de)t,

Y =Qd, + (Y- Qd)t;

Z = (Zp i de) % (Z a (Zp + de))t1

Using the condition Z° = Z, at the intersection of line L and plane PP:

- = Class work:
Z#hZ o+ Qdw) Now subsitute to obtain, x, and y,,.
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Parallel Projection

Distance from COP to projection plane is infinite.

Therefore, the projectors are parallel lines & we specify a direction
of projection (DOP)

Orthographic: the direction of projection and the normal to the
projection plane are the same. (direction of projection is normal to the
projection plane). Projection

Example of
Orthographic
Projection:

(front view)



Axometric orthographic projections use planes of projection
that are not normal to a principal axis (they therefore show multiple face
of an object.)

Isometric projection: projection plane normal makes equal angles
with each principle axis. DOP Vector: [1 1 1].

All 3 axis are equally foreshortened allowing measurements along
the axes to be made with the same scale.

Example Isometric Projection:

Projection

Projector

Projection-
plane
normal



Obligue projections : projection plane normal and the direction of
projection differ.

Plane of projection is normal to a principle axis
Projectors are not normal to the projection plane

Example Obligue Projection

Projection ¥
plane

/ Projector ¥

.

Projection-plane
normal



General oblique projection of a point/line:

Projection Plane: x-y plane; P is the projection of P(0, O, 1) onto
x-y plane. U is the projection of the z-axis unit vector onto x-y plane and

a Is the angle the projection makes with the x-axis. When DOP varies,
both U and o will vary.

Coordinates of P’:

(Icos a, Isin a, 0). y 4 /

As given in the figure: P’
DOP is (dx, dy, -1) or (Icos a, Isin o, —1).

What is 3 ? B

Z P@,0, 1) \ X



View Specifications:

VP, VRP, VUP, VPN, PRP, DOP, CW, VRC
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Y Semi-infinite pyramid view volume
\ / for perspective projection
\
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Infinite parallelopiped view volume VPN
for perspective projection n



Implementation of 3D Viewing

3-D world
coordinate App!y_ Clip against
output normallzm_g e
orimitives transformation viewMolume
Transform into
2D device viewport in 2D Project onto

device coordinates projection plane

coordinates :
for display



Canonical view volume
for IS
defined by six planes:
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Steps for implementing normalizing transformation matrix
for parallel projection

e Translate the VRP to origin

e Rotate VRC such that VPN (Nn-axis) aligns with Z-axis
(also, u with X and v with Y)
e Shear (not necessary for pure orthographic) such that DOP is
parallel to the Z-axis

* Translate and scale into parallel-projection canonical view volume
Expressions for Step 2 must be derived.

Implement using the concept of combined transforrpation (rotation).
1 0 0 0 -

0 |cos(e¢) — sin(x)| O
0 |sin() cos(ex) | O
0 0 0 1

« Rows are unit vectors, when rotated by RX,
will align with the Y and Z axis respectively.

Take R, =

 When unit vectors along the principle axes ‘/‘ Y g
are rotated by Rx, they form the column vectors. o




Consider a general scenario of combined rotations and use the

property derived based on the orthogonality of the R matrix.
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Let the effective rotation matrix
be a combination of three rows as: r.1y r2y r3y
& r1z r22 r32




Where, PP 5
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The rotation matrix of step 2 in normalizing
transformations, can be formulated as:

r.1x r.2x r.3x O
R: rly r2y r3y where,

0
r.lz r.2 Z r.32 O
Q:iieigis @201




The overall combined transformation matrix
(for WCSVV -> PPCVV), for parallel projection is:

N par — Spar Tpar SH par RT (_VRP)

Implementing normalizing transformation matrix
for perspective projection
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Steps for implementing normalizing transformation matrix
for perspective projection

* Translate the VRP to origin

* Rotate VRC such that VPN (Nn-axis) aligns with Z-axis
(also, u with X and v with Y)
e Translate such that COP (or PRP) is at the origin
e Shear such that center of line of view volume (VVCL) becomes z-axis
e Scale such that VV becomes %
the canonical view volume

N

per

S r SH .. T(~PRP) RT(-VRP)




Coordinate Systems and Matrices
Perspective R.T(-VRP)

Parallel R.T(-VRP)

3D World
Coordinates

View
Orientation
matrix

3-D modeling
(object)
coordinates

Modeling
Transformation

View reference
Coordinates

Normalized
projection
Coordinates

Clip, transform
into 2D screen
coordinates

View Mapping
2D device matrix

coordinates

M.S

ver-SHo. T(-PRP)
S Todasbl

par-



where after clipping,
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The 3D Viewing Pipeline

Objects are modeled in object (modeling) space.

View parameters are specified to define the view volume of the world, a
projection plane, and the viewport on the screen.

Objects are clipped to this View volume.
The results are projected onto the projection plane (window) and finally
mapped into the 3D viewport.

Hidden objects are then removed.
The objects are scan converted and shaded if necessary.

Model Object ] | Normalizing
inati Trz_msfnrmauun

Clip

Perspective Remove Hidden

Transformation Surfaces
{ Projection



The Computer
Graphics Pipeline
VViewing Process
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The Camera Model
We specify our initial camera model by identifying the following parameters.

1. A scene, consisting of polygonal elements each represented by their
vertices;

2. A point that represents the camera position -- C = [C,, C,, C,],;

3. A point that represents the center-of-attention" of the camera (i.e. where
the camera is looking):
A=[As Ay AL

4. A field-of-view angle, a ,
representing the angle
subtended at the apex of the
viewing pyramid.

5. The specification of "near"
and "far" bounding planes.
These planes considered
perpendicular to the
direction-of-view vector at a

distance of d,, and d; from the
camera, respectively.
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The Viewing Pyramid
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The image space volume:
-1<u,v,w<l




Derivation of the viewinqg transformation matrix,

In terms of camera parameters:

du d.u du du dw
(u,v,w) —( —d) ( )

—W W —W w
Thus, uor v

(u,v,w2l) - (d.u,d.v,d.w,—w)

Express as transformation:

P(u, v, w)

d=0:-0_. 069 F1 0440 o‘O(COF’)OI
POdOO' 01 0 O > CEEEEEEE >
d_00d—1’(0'r001_%)
0 00" 0 HO0s 00
.0 0 05
0.id S8 0
u v w1 [du dv dw -w]
SR ]
proesd 0]




O (COP)

uoryv

f.tan(a/2)
n.tan(o/2)

1&/2

0,0,-n)  (0,0,f) -w >

Transformation of the finite (truncated) viewing pyramid
to the cube, -1 <u, v,w < 1. Let us first analyze w-axis only.

Use the transformation matrix;:

1

0
0
0

0

1
0
0

0

o 9 O

0
0

il

such that,

(0,0,-n)P - (0,0, 1)
and

(0,0,-HP - (0,0, -1)

Solve for parameters a and b, please:




From the constraints of the The solution:; f _I_ n
above two equations: q = "

_an+b=n T
and |O_2f.n
_HA b O h

1 0 0 0
Hence the transformation is:
0 0
S 0 f+n 1
f—n
g Pty
P f _n ]

What about u and v-axis transformations in the pyramid ?



uoryv (0,f.tan(a/2),-f)

(O,n.tan(a/2),-n)

10(/2

O (COP) (0,0,-n)  (0,0,-f) -w >

Transformations for the
two points are as
follows:

[O n.tan(a/2) -n 1]P: 0 n.tan(a/2) —nf_n+ i n
f+n f+n

=0 ntan(e/2) —-n n]
f—n 2nf

[O f.tan(x/2) —f 1]P:{O f.tan(x/2) —f + f}
f+n f+n

=[0. f.tan(ai2) —f f]

Desired normalized 3-D coordinates for both the points: [01-11]



Thus modify P to be:

Its inverse has the form:

P=

Pt =

cot(a/2)
0

0

tan(a/ 2)
0

0

0
cot(a / 2)

0

0
tan(a / 2)

0

0

0
f+n

f—n
2f.n
f—n

0
0

0

=

2 fn
f+n

2t




P, =P,.P
d.cot(a/2)
0

0
0

or
cot(a/2)
0

0
0

The Viewing Transformation Matrix

0 0 0
d.cot(a/2) 0 0
0 f(d+1)+n(d-1) s
f—n
0 0 0
0 0 0
cot(a / 2) 0 0
0 f+n i using the regular
£ _n d expression of Py
0 (e







