Pattern Recognition

Pattern Recognition is a branch of science that concerns the
description or classification (or identification) of measurements. It is an
important component of intelligent systems and are used for both data
processing and decision making.
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Popular Features
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An Important Area of Research in
Computer Vision and Visual Perception




Features must be invariant to:
 Translation

* Rotation

e Scale

* Noise
* Projective (?)

Computational cost must not be high

Must be distinct and unique for a given shape.

Preferably have graceful degradation due to discontinuities and missing parts




Statistical Features

The features used in pattern recognition and segmentation are
generally geometric or intensity gradient based.

One approach is to work directly with regions of pixels in the
image, and to describe them by various statistical measures. Such
measures are usually represented by a single value. These can be
calculated as a simple by-product of the segmentation procedures
previously described.

Such statistical descriptions may be divided into two distinct
classes. Examples of each class are given below:

. Geometric descriptions: area, length, perimeter, elongation,
average radius, compactness and moment of inertia.

. Topological descriptions: connectivity and Euler number.




Elongation

- sometimes called eccentricity. This is the ratio of the maximum
length of line or chord that spans the region to the minimum length chord.
We can also define this in terms of moments, as we will see shortly.

Compactness

- this is the ratio of the square of the perimeter to the area of the
region

Connectivity -

- the number of neighboring features adjoining the region.

Euler Number

- for a single region, one minus the number of holes in that region.
The Euler number for a set of connected regions can be calculated as the
number of regions minus the number of holes.




Figure 6.24 FElongatedness: {a) Bounding rectangle gives acceptable resulis,
(6]} bounding reciengle cannot represent elongatedness.

Elongatedness:

A ratio between the length and width of the region bounding
rectangle = a/b = Areal/sqr(thickness).




{a) {b)

Figure 6.25 (ompaciness: {e) Compect, {6) non-compect.

Compactness
Compactness is independent of linear transformations

= sqr(perimeter)/Area




Moments of Inertia

The ij-th discrete central moment m., of a region is defined by:

ij

. ; D\
H = (x=x)'(y-y)
where the sums are taken over all points (x, y) contained within the
region and (x~, y~) are the center of gravity of the region:

S il
x-;zixl. and y—;Ziyl.

Note that, n, the total number of points contained in the region, is
a measure of its area (= |,).

We can form seven new moments from the central moments that
are invariant to changes of position, scale and orientation ( RTS ) of the
object represented by the region, although these new moments are not
invariant under perspective projection. Let, the normalized unscaled

central moments be: 7 p+q
mpq=( pqy;?/:( > )+1
Hoo

Up to order seven, the RST-invariant moments are:




My = man + mp

My = (map — mop2)® + 4my,

M; = [m.'ju — 31’“13]3 + [37“31 — mﬂ'-'i:':g

My = (myp + myy)’ + (rityg + rip )

Mg = [m.-ju — 3m131|(muu + miz) [(muu + m”);g - 3("‘31 + m”-'i):g]
+ (3 — mos) (M + mos) [3(muu + ml!)g — (ma + mu.'j)z]

Mg = (myp + mpy) [[muu + myy)? — 3(ma + muu]E]
+ drapa (msp + mae)(mos + ma)

M, = [37“31 — mu.‘ﬂ[mw + ity ) [[muu + m:fz — 3["‘31 + mmi)g]

—[mgp — Jmne)( e + mos) [3(muu + mye)® — (i + muu)z]

We can also define eccentricity, using moments as

Mep + Moz + w,f(mzu — muﬂﬂ + 4mf1
My + Mpy — w,f(mzu — )t + 4mf1

We can also find principal axes of inertia that define a natural
coordinate system for a region. It is given by:

1

§=—tan!

cccentricity =

imyy

Ty — My




Geometric properties in terms of moments:

m m
23 _ Myp 01
Area=my;, X=—",y=—-
My My
aY
AXxis of minimal inertia
= s
tan2o = 2m,/(m, -m,) \iﬂ
v

Polar Signature, Skeletons (MAT), B-splines are also used.
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Phase of DFT-based Signature Function
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Skeletons - MAT

Read about :

e CSS, a multi-scale representation;
e MCC

 Wavelet based descriptors

e Contour descriptor moments

e Distance functions — Hausdorff

e Shape Context




An Example of Classification

e “Sorting incoming Fish on a conveyor
according to species using optical sensing

Sea bass
Species

Salmon




— Some properties that could be possibly used to
distinguish between the two types of fishes is

\
* Length
e Lightness
; > Features
* Width
e Number and shape of fins
e Position of the mouth, etc... =

— This is the set of all suggested features to explore for use
in our classifier!

Feature is a property (or characteristics) of
an object (quantifiable or non quantifiable) which
is used to distinguish between (or classify) two
objects.




Feature vector

* A Single feature may not be useful always for

classification

e A set of features used for classification form a feature

vector

Fish

—  XT=[x, %]

Lightness Width




Keature space

The samples of input (when represented by their features) are
represented as points in the feature space

If a single feature is used, then work on a one- dimensional feature
space.

00— 0 000 O *—© *—©

v

Point representing samples

 If number of features is 2, then we get points in 2D-
space as shown in the next slide.

« We can also have an n-dimensional feature space
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Decision boundary in one-dimensional case with two
classes.

\4

Decision boundary in 2 (or 3)
dimensional case with three
classes




Perimeter
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Sample points in a two-dimensional feature space

< Class 3




Some Terminologies:

Pattern

Feature

Feature vector

Feature space

Classification

Decision Boundary

Decision Region

Discriminant function
Hyperplanes and Hypersurfaces
Learning

Supervised and unsupervised
Error

Noise

PDF

Baye’s Rule

Parametric and Non-parametric approaches




Decision region and Decision Boundary

Our goal of pattern recognition is to reach an optimal
decision rule to categorize the incoming data into their
respective categories

The decision boundary separates points belonging to one
class from points of other

The decision boundary partitions the feature space into
decision regions.

The nature of the decision boundary is decided by the
discriminant function which is used for decision. It is a
function of the feature vector.




Hyper planes and Hyper surfaces

 For two category case, a positive value of discriminant
function decides class 1 and a negative value decides the
other.

e If the number of dimensions is three. Then the decision
boundary will be a plane or a 3-D surface. The decision
regions become semi-infinite volumes

e If the number of dimensions increases to more than three,
then the decision boundary becomes a hyper-plane or a
hyper-surface. The decision regions become semi-infinite
hyperspaces.




Learning

The classifier to be designed is built using input samples
which is a mixture of all the classes.

The classifier learns how to discriminate between samples
of different classes.

If the Learning is offline i.e. Supervised method then, the
classifier is first given a set of training samples and the
optimal decision boundary found, and then the
classification is done.

If the learning is online then there is no teacher and no
training samples (Unsupervised). The input samples are
the test samples itself. The classifier learns and classifies at
the same time.




Error

 The accuracy of classification depends on two
things

— The optimality of decision rule used: The central task is
to find an optimal decision rules which can generalize to
unseen samples as well as categorize the training samples
as correctly as possible. This decision theory leads to a
minimum error-rate classification.

— The accuracy in measurements of feature vectors: This
inaccuracy is because of presence of noise. Hence our
classifier should deal with noisy and missing features too.




Classifier Types

Statistical Syntactic Neural

Categories of Statistical Classifiers:

e Linear
e Quadratic
e Piecewise

e Non-parametric




Parametric Decision making (Statistical) - Supervised

Goal of most classification procedures is to estimate the probabilities
that a pattern to be classified belongs to various possible classes, based on the
values of some feature or set of features.

In most cases, we decide which is the most likely class. We need a
mathematical decision making algorithm, to obtain classification.

Bayesian decision making or Bayes Theorem

This method refers to choosing the most likely class, given
the value of the feature/s. Bayes theorem calculates the probability
of class membership.

Define:
P(w;) - Prior Prob. for class w;,; P(X) - Prob. (Uncondl.) for feature vector X.

P(w; |X) - Measured-conditioned or posteriori probability

P(X | w;) - Prob. (Class-Condnl.) Of feature vector X in class w,




Bayes Theorem:

P(w, | X) =

P(X | w,)P(w,)

P(X)

P(X) is the probability distribution for feature X in the entire

population. Also called unconditional density function.

P(w;) is the prior probability that a random sample is a

member of the class C..

P(X | w;) is the class conditional probability of obtaining

feature value X given that the sample is from class w.. It is equal to
the number of times (occurrences) of X, if it belongs to class w..

The goal is to measure: P(w; |X) -

Measured-conditioned or posteriori probability,
from the above three values.

This is the Prob. of any vector X

being assigned to class w..

P(w)

P(X]w)

BAYES RULE

|

X, P(X)

" P(w|X)




Take an example:

Two class problem:
Cold (C) and not-cold (C’). Feature is fever (f).

Prior probability of a person having a cold, P(C) = 0.01.

Prob. of having a fever, given that a person has a cold is,
P(f|C) = 0.4. Overall prob. of fever P(f) = 0.02.

Then using Bayes Th., the Prob. that a person has a cold, given

that she (or he) has a fe${6i*5|:f) i P(f | C)P(C) % 0.4*0.01 e
Not convinced that it works? P(f) 0.02 |
let us take an example with values to verify:

Total Population =1000. Thus, people having cold = 10. People having
both fever and cold = 4. Thus, people having only cold = 10 - 4 = 6.
People having fever (with and without cold) = 0.02 * 1000 = 20.
People having fever without cold = 20 - 4 = 16 (may use this later).

So, probability (percentage) of people having cold along with fever,
out of all those having fever, is: 4/20 = 0.2 (20%).
IT WORKS, GREAT




A Venn diagram,
illustrating the
two class,

one feature problem.

Probability of a joint event - a sample comes from class C and
has the feature value X:

P(C and X) = P(C).P(X|C)

P(X).P(C|X)
= 0.01*0.4

0.02%0.2




Also verify, for a K class problem:

P(X) = P(w,)P(X|w,) + P(w,)P(X]w,) + ....... + P(w, )P(X|w,)
Thus: g
e P(X |w.)P(w,

P(w) P(X | wy) + P(w,) P(X | ) +....+ P(w, ) P(X | w,)
With our last example:
P(f) = P(C)P(f|C) + P(C)P(f|C’)

= 0.01 *0.4 + 0.99 *0.01616 = 0.02

Decision or Classification algorithm according to Baye’s Theorem:

rWl; It p(X |wy)p(w,) > p(X |w,) p(w,)
Wy 1T p(X [w,) p(w,) > p(X [wy) p(w,;)

Choose -




Errors in decision making:

Letd =1, C = 2,
P(C,) = P(C,) =

p(x|C)=

0.07 ¢

0.06

1 0.05}
(7\/_ exp[_ ) ]D.m :

Bayes decision rule:

1xul

003
Choose C, , if P(x|C,) > P(x|C,) o}

This gives 0, and hence the -

two decision regions. - 10 T 60
My a Hy X >

Classification error (the shaded region — minimum of the two curves):

P(E) = P(Chosen C,, when x belongs to C,) +
P(Chosen C,, when x belongs to C,)

- PG [POICdy+PC) [ Py I Cdy
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Notmal distributions of featute measurement for a 5-class probletn, equal vatiance,

A minimum distance (NN) supervised classifier

Rule: Assign X to R,, where X is closest to Li,.




An example of 2-D DRs:
R1 and R2; with a non-linear DB.

An example of 1-D DRs: &
R1 and R2.

0.05

0




Decision based on
arbitrary Posteriors,
for an example:
Apples

Vs. Oranges.

8{X)= Ptwx)

gilix]= plixlwiJPﬁv )
jg Px[w;)P(w;)

Commonly used Discriminant fun<__:ti<_)n§
based on Baye’s decision rule:

g [x)= pix|w JF(w)

g(x)= Inp(xjw,) + In F(w;)




K-means Clustering (unsupervised)

* Given a fixed number of k clusters, assign observations to
those clusters so that the means across clusters for all
variables are as different from each other as possible.

 Input

— Number of Clusters, k

— Collection of n, d dimensional vectors X; , i=1,2,....,n
* Goal: find the k mean vectors ;, Ly ..., L
 Output

— Kk x n binary membership matrix U where

(

1 1If x; €G;
.. ==

7|0 else
& G;, |71, 2, ..., krepresent the k clusters




If n is the number of known patterns and c the
desired number of clusters, the k-means algorithm is:

Begin
initialize n, c, p,u,,..,u.(randomly
selected)

do

1.classity n samples according

to nearest p;
2.recompute u;
until no change In p;

return p;, Mo, .., Hc
End




Classification Stage

e The samples have to be assigned to clusters in order to
minimize the cost function which is:

b ZJ IRy MH

i=1| k,x, G,

 This is the Euclidian Distance of the samples from

its cluster center; for all clusters this sum should
be minimum

* The classification of a point x, is done by:

[ P e P R
0 otherwise




Re-computing the Means

* The means are recomputed according to:

1 £ )
Hi =17 X
‘Gl‘ \k’kaEGik/

 Disadvantages

« What happens when there is overlap between classes...
that is a point is equally close to two cluster centers......
Algorithm will not terminate

 The Terminating condition is modified to “Change in
cost function (computed at the end of the Classification)
is below some threshold rather than 0”.




An Example

 The no of clusters is 1
two in this case. * %

 But still there is
some overlap

¥ tirmension

® dirnension




Some necessary elements of

Probability theory and Statistics




Normal Density: p(x) = GF eXp[— : (X Glu) ]

Bivariate Normal Density:

1 [(x—yx)2_2pxy(x—ﬂx)(y—ﬂy)+(y—ﬂy)2]

2(1-p%,) " O 00y Oy

210,04/l p2)
# - Mean; o - S.D.; p, -Correlation Coefficient

Visualize p as equivalent to the orientation of the 2-D Gabor filter.

n
For x as a discrete random variable, g A
the expected value of x: E(X) Z Xi P(xi) H X
E(x) is also called the first moment of the dlstrlbutlon

The kth moment is defined as: I
E(x") = Z x; P(x;)

p(x, y) ==

P(x;) is the probability of x = x..




Second, third,... moments of the distribution p(x) are the expected values of:
) (i SN

The kth central moment is defined as: 5
E[(x— ) 1= ) (x— )" P(x,)
st

Thus, the second central moment (also called Variance) of a random variable x is

T o= Blfx-E(¥]= Bl(x- )]
o= E{x— E()¥]= El(x—p,)’]
= E(x*) =2, + p; = E(x°) - p1;
Thus

E(x)=0"+u°

If zis a new variable: z= ax + by; Then E(z) = E(ax + by)=aE(x) + bE(y).




Covariance of x and y, is defined as: ny — E[(X T ,le ) (y 0 ,Lly )]

Covariance indicates how much x and y vary together. The value
depends on how much each variable tends to deviate from its mean, and also
depends on the degree of association between x and y.

Gx X — X y s ll’l
Correlation between x and y: ,UXy = > = E[( : )( - )]

0.0, o o

Property of correlation coefficient: — 1 S IOxy S 1

ForZ = ax + by ;
E[(z—p.)’]=a’c? + 2abo +b20y2;

i DA YN D FHAD
If 0,=0, o;,=a"c,+b°0,
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i e %
S
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p,=—2 e ”xxy u )]

0.0, o o,
o E(XY) - E(X)E(Y)
Pxy =

JE(X?) — B2(X) JE(Y?) - B(Y)

The correlation coefficient can also be viewed as the cosine of the angle
between the two vectors (R P) of samples drawn from the two random variables.

This method only works with centered data, i.e., data which have been
shifted by the sample mean so as to have an average of zero.
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Other PDFs:
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LAPLACE:

|z — g
b

ifx <

if @ > u

Double Exponential Density:

o7,
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Read about:

* Central Limit Theorem

e Uniform Distribution

« Geometric Distribution

« Quantile-Quantile (QQ) Plot

* Probability-Probability (P-P) Plot




PROB. & STAT. Contd.

A n n
Sample mean is defined as: X = Z x.P(x.) =3 E Z X.
l l l
i n -
n “
. ; 2 1 2
Sample Variance is: O = — Z (Xl. ¥ x)
n

73, N4
Higher order moments may also be computed: E(xl. = x) : E(xl. 5 x)

Covariance of a bivariate distribution:

1

o = El(v—p)r-u)] ==Y (= x)(y - )

n -




MAXIMUM LIKELTHOOD ESTIMATE (MLE)

The ML estimate (MLE) of a parameter is that value which, when substituted
into the probability distribution (or density), produces that distribution for which
the probability of obtaining the entire observed set of samples is maximized.

Find the maximum likelihood estimate for p in a normal distribution.

x 53 by L 85
p(x) = G\/—exp[ AT )°]

Problem:

Normal Density:

Assuming all random samples to be independent:
px,ss,%,) = p(x)....p(x,) =1 p(x;)
1 1 &G x—
expl-=—5 > ()]
i=1

Jn (272_)11/2
Setting this term = 0, we get:

Taking derivative (w.r.t. n)
of the LOG of the above:
Z 1
H=—

1 n
1).2=—1> x—ny]
(V=" n

~

n

2% =%

[=3

Also read about MAP estimate — Baye’s is an example.




Hy

Multi-variate Case: X=[x; X, ...... Xql"

Mean vector: Ky

M =E(X)=

Covariance matrix (symmetric):

2
01 Opp - .« Oy O, O, . . Oy
2
Oy Oy . . Oy O, O, . . Oy My
2
1 On Oy + + Oy | Oy Oyy - . Oy |

d-dimensional normal density is: 71
p(X) = : exp|- Sor, Y
Jdet(2)(27)° ;

1 1
- Jdet()(27)" exp[?; Seiae

]




1 o XX
Jdet(S)(27) 2

1 1
- Jdet(z)(27)° exp[_E;(xi Leaier bl

where, s; is the i-jt" component of > (the inverse of covariance matrix ).

p(X) = ]

Special case, d = 2; where X = (x y)T; Then: ,Ll at [’ux]

and 2 2 £ Y
Z 3t Gx O-xy il Gx p xy O-X Gy
¥ ) S 2
ny Gy P Xy O, Uy Gy

Can you now obtain this, . X
as given earlier: F [(x—,ux )2_2'0xy (=4 )(y=4,) (y Hy \2 121

e 2(1—10)?)/) Oy O'XO'y y

44 210,04/l p2)
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L =E(X)=

Contours have constant density
of the distant term (d=2):

d(X) =
(X-W)'Z, (X -,

The contours are lines of constant Mahalanobis distance (determined
by the matrix X), and are quadratic functions.

The contours of constant density may also be hyper-ellipsoids (non-
diagonal X) of constant Mahalanobis distance to LL.




Diagonal covariance;

.*/,. ~\ Diagonal covariance;
0] :
\) TG
N4 .
y A
Non-Diagonal
covariance;
TR S S AR -7
€, =Cp (X c,=c,;
Ly
c. <0 oo c. >0
Xy J “x._zl | Xy )

Remember,
asymmetric and oriented
Gaussians







Decision Regions and Boundaries

A classifier partitions a feature space into class-labeled
decision regions (DRSs).

If decision regions are used for a possible and unique class
assignment, the regions must cover R9 and be disjoint (hon-
overlapping. In Fuzzy theory, decision regions may be overlapping.

The border of each decision region is a Decision Boundary (DBSs).

Typical classification approach is as follows:

Determine the decision region (in RY) into which X falls, and
assign X to this class.

This strategy is simple. But determining the DRs is a
challenge.

It may not be possible to visualize, DRs and DBs, in a general
classification task with a large number of classes and higher feature
space (dimension).




Classifiers are based on Discriminant functions.

In a C-class case, Discriminant functions are denoted by:
g.(X),i=1,2,...,C.

This partitions the Rdinto C distinct (disjoint) regions, and the
process of classification is implemented using the Decision Rule:

Assign X to class C,, (or region m), where: |

Decision Boundary is defined by the locus of points, where:

g, (X)=g/(X) k=l

Minimum distance (also NN) classifier:

Discriminant function is based on the distance to the class mean:

a(X) =X -pl; g,(X)=X -4,

This does not take into account
class PDFs and priors.




P(X | w,)P(w,)

Remember Baye’s: P(w, | ?() = —
P(X)

Consider

discriminant function as: %lf}{:' =In P[}ﬂ"*"ij + In Pw;)

and class-conditional ProblaS' (X ILL)TZ_l (X ,u)
p(X ) i |

\/det(z )(27)° 2 ]

g.(x) =

Many cases arise, due to the varying nature of :
e Diagonal (equal or unequal elements);

e Off-diagonal (+ve or —-ve).




Let the discrimination function for the ith class be:
g,(X)=P(C, | X), andassume P(C,)=P(C,),V1i, j;i # .

Remember, multivariate Gaussian density?

1 (X-p)' (X -p)
g,(X)=P(X|C,)= exp[— ! I
| Jdet(z,)(27)" 2
Define: 1 X (X—#l-)TZ,-_l(X—ﬂi)

G,(X) = log[P(X | C,)] = log|

Jdet(,)(2r)" : 2

v,
= k.d; T

Thus the classification is now influenced by the square

distance (hyper-dimensional) of X from Li;, weighted by the >-1
Let us examine: — 2

di =(X-p.) T (X -p.)

This quadratic term (scalar) is known as the
Mahalanobis distance (the distance from X to L, in feature space).




— 2

di =(X-p.)' T3 (X - p)

For a given X, some G_(X) is largest where (d )2 is the
smallest, for a class i = m (assign X to class m, based on NN Rule) .

Simplest case: 2 = I, the criteria becomes the Euclidean
distance norm (and hence the NN classifier).

This is equivalent to obtaining the mean Li,,, for which X is
the nearest, for all |; The distance function is then:

252
di =|X-pu e X'X—-2u X+ o (all vector notations)
Thus, G.(X)=d?*/2=(X"X)I2—u" X +(u" 11)]2

T
=) X + W Neglecting the class-invariant term.

13
H: U This gives the simplest
. linear discriminant function
2 or correlation detector.

where, @ = u. and w,, =




The perceptron (ANN) built to form the linear discriminant function

X4
X2
. 0(X)
O(X) = (Z Wi‘xi) T Wi
X, Wio :

View this as (in 2-D space):




The decision region boundaries are determined by solving :

G.(X) =G, (X), whichgives: (@' —® )X + (0, —®,,)=0

This is an expression of a hyperplane separating the decision
regions in R4. The hyperplane will pass through the origin, if:
;5 = a)jo

l

Generalized results (Gaussian case) of a discriminant function:

1 (X -u)'T (X )

G,(X) = log[P(X | C,)] = log[

Jdet(=,)(2r) : 2

= (X)X - 1)~ () log(2m) - Zlog (%)

The mahalanobis distance (quadratic term) spawns a number
of different surfaces, depending on X1, It is basically a vector
distance using a 21 norm. It is denoted as: HX lLl 2

I

e




Make the case of Baye’s rule more general for class assignment.
Earlier we has assumed that:

g,(X) = P(C,| X), assuming P(C,)=P(C,),Vi, ;i # j.
Now, G, (X) = log[P(C, | X).P(X)]=log[P(X | C,)]+log[P(C,)]
1 (X —p)'Z, (X - u))
log ]- +log[P(C,)]

Jdet(=,)(27)* 2
1

L (=)' 3] (X - ) - () log(22) - og(x) +log[ P(C)]

2
1 Neglecting th
:__(X 1) S, (X =) = 109(Z,) +10g[P(C)] constant term

Gi(X):

Simpler case: 2; = ¢?I, and ellmlnatlng the class-independent bias,
we have:
G, (X) =—2 > (X =) (X =) +log[P(C)]

These are loci of constant hyper-spheres, centered at class mean.
More on this later on.....




If X is a diagonal matrix, with equal/unequal c;;2:

. : (Lot g
O s e ) %12
0 o2 .. 0 0%2..0
2

Dy s T e S el T

0S8 i 0 G e o :
2 2 o
Considering the discriminant function: -

G,(X) == (X ~ )" ZA(X - 1)~ 10g(E, )+ og[P(C,)

This now will yield a weighted distance classifier. Depending
on the covariance term (more spread/scatter or not), we tend to put
more emphasis on some feature vector components than the other.

Check out the following:
This will give hyper-elliptical surfaces in R9Y, for each class.

It is also possible to linearise it.




More general decision boundaries

Take P(C,) = K for all i, and eliminating the class independent

terms yield:
G(X)=(X-p) T (X —u.)

)

di =(X-p.)' (X —p) = —XT221X+2A¢Z-TZ,-‘1X—#Z.T221#Z-
i 1 X

Gi (X) = (2 l,ul)TX —2,LllTZ 1,Lll. as 2; =2, and are symmetric.

Thus, G,(X)=w' X+,

1
where @, =X . and w,, = —E,ul.TZ_llul.

Thus the decision surfaces are hyperplanes and decision

boundaries will also be linear (use G;(X) = G;(X), as done earlier)

Beyond this, if a diagonal 2 is class-dependent or off-diagonal terms
are non-zero, we get non-linear DFs, DRs or DBs.




The discriminant function (DF) for linearly separable classes is:
(X)=0' X+
8i j i0

where, ®; is a dx1 vector of weights used for class i.

This function leads to DBs that are hyperplanes. It's a point in

1D, line in 2-D, planar surfaces in 3-D, and ....... :
( xl\
3-D case:
(w,@,0,)| x, |=0 is a plane passing through the origin.

\X3) % > —_—
In general, the equation: (()T (X e Xd) = O, => C()TX —-d=0

represents a plane H passing through any point (position vector) X,.

This plane partitions the space into two mutually exclusive regions,
say R, and R,.. The assignment of the vector X

é -
to either the +ve side, or >0 If XeRrR
—ve side or along H, Rt H &
can be implemented by: C()TX —d:=0 if XeH

<0 If XeR




A relook at, N
Linear Discriminant Function g(X):

+ve side, Rp

g(X)szyf—d

XTW=0

X

vy

Orientation of H is determined by ®. -ve side, Rn\

Pattern/feature Space

Location of H is determined by d.

A

H is a hyperplane for d > 3. | The figure shows a 2D representation.

N

W,

H’

The complementary role of  Space
a sample in parametric space:




=0
TX =
W
H .
W)

PN

2
W Wl
X3
X4
/V
X1 X515
= | 19

T,

I5
= X3, X4
T,=







LMS learning Law in BPNN or FFNN models

Read about perceptron

X, W, vs. multi-layer feedforward network
\69 . O(X)

t __— {kaka if X[W, <0

W, if X, W, >0

n. IS the learning rate parameter

Xd A
W)

\ H Wk+1

Xy

W,-nX, if X eX,and X/ W, >0

14 _{Wk“th if X, eX, and X, W, <0
k+1 —




Tl = [Xl’ XZ]’ A

T, =[X3, X,

n,. decreases with each iteration

_{Wk“?ka if X eX,andX,W, <0
k+1

W,-nX, if X eX,andX/W, >0



In case of FFNN, the objective is to minimize the error term:

A

a — LMS Learning Algorithm:

N

AW, =ne, X,




MSE error surface (in case of multi-layer perceptron):

S =%[dk —X'WVP=EI2-P"W+QI2JW'RW.




Effect of class Priors — revisiting DBs in a more general case.

oA = P(w, ] X) = P(XJDV(%D(M
- (X -y 2 (X - 1)
exp[- ]
Jdet(2)(27) 2

gll}zj = In p[}{|wi_“| + In Fiw;)

E _
-1
gi[:-:] - Ei,’]-..: —}.l.} E{ |.Li‘,l - %I///é—l/é + 1n P[wi}

CASE — A. — Same diagonal 2. with identical diagonal elements.

Canceling in class-invariant terms:

=
(X) =
gz()z

) (X_ﬂi)]+|nP(Wi)

g (X)=— ]+ InP(w)

207




=
g,(X)= 202%_ Zﬂz'TX+ﬂz'Tﬂi]+|nP(Wi)

Thus, g,(X)=0 X +w,

T
where @, = VZ and w,, = — Hi leli +In P(w,)
o} 20

The linear DB is thus: g, (X)=g,(X),k #1
whichist (@, —@, )X + (@, — @) = 0;

Prove that the 2" constant term: %
(W — @) = (@, — @) X,; Where

M — H; In P(a)k)
2
|, — | Play)

1
X, za(ﬂk+ﬂz)_52

Thus the linear DB is:

W' (X-X,)=0;

where, W = U, — L, Nothing new,
seen earlier




CASE — A. — Same diagonal 2., with identical diagonal elements (Contd.)
Linear DB:

W' (X -X,)=0;
where, W =, —u,

He =t 5 P(w,)
2
H,Uk _/UIH Plo,)

1
Xo=§(ﬂk+ﬂz)—02

: , : 14 : ————
P \ Pl A
I "I'-'-fl L '.Iw? 135 ] -IwI e :-,I
a ' | aa f [ -
|—|I—I1Hl:l:-:llilr1' Ly decision
o ! boundary SRR " boundary
ooy | ooV '
| |': | oz | | | : | ]
Plwe)- s | Plw2)- LIS+ EEEJ_ | U | Prwe)= )
07 I : 03 17 | : | 0.1
.' b '. ! N
[ Al I 1 ol | / Pl
J . ! y ! | Y
! ! :" 'y ] L5 ! L | !
- - ! . g v |
I u ~ ~ . I .
i 2Rl 0 2 dpze @ e T tpr & 8
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decision
boundary




CASE - B. — Arbitrary 2. but identical for all class.

¢ (X) =‘71[(X—ui)Tz-1(X—ui)]+InP(wl-)

Removing the class-invariant quadratic term:

g.(X) = _71#1?2‘1% +(Z71,)" X +1In P(w,)

hus, g.(X)=w'X+w,

1
where w. =X 1. and w,, = —E,U,-Tz_l,u,- +In P(w,)

The linear DB is thus: g, (X) =g,(X),k #/
whichis: (0, —w )X + (v, —®,,) =0;
(@0 — @) = (0, — ;)" X,,; where
e — H In Plw,)

Sy € Prove it.
( — 1) 2 (1, — 1) Ploy)

1
X, :E(ﬂk+ﬂ1)_




Thus the linear DB is: J¥/' (X — X ) =0;

where, W =w, —w, where @, = Z_llul.
Thus, W =37 (i, — 1,);

The normal to the DB, "W"”, is thus the transformed line
joining the two means.

The transformation matrix is a symmetric X ..

The DB is thus -
a tilted (rotated) vector joining the two means.

Let > 2-D) be diagonal, with non-identical diagonal elements: G, and G,

A

Then, W, = :

d=2case. Directionof DB =

v




Thus the linear DB is: JJ// (X -X,)=0;
where, W=w, —w, Where . =X 1L
Thus, W =37 (1, — 1,);

Special case:
Let, > (2—D) be arbitrary, but with diagonal elements (=1).

Solve for W in this case, and compare with the diagonal X case.




L=

Feature 2 Feaiure 2
Incre 52 decreasing s1 Increasing ¢, and decreasing o,
Fea 1 Feature 1 *
Feature 2 T Feature > <=7

Diagonal 2
INn all cases.

Increasing 51 and decreasing s2

Feature 1

Increasing 51 and decreasing s2

Feature 1




Feature 2

Feature 1

Feature ?

Diagonal elements

in > are both (1.0,
INn all cases

Covariance is 0.8

Feature 2

Feature 1

TETTTT S T TETTTTT

Feature 1

Covariance is 0.600

Feature 2

Covariance is -0.39

A U ALF AAF SR RFOUE UARAALAL § AN R el AR

Covariance is -0.64
Feature 1




P(w1)=0.5 "

elliptical contaur

. I lines.

i mean' 1 a1 s Decision Decision boundary
!t / boundary




PW1=09. . ' . - P(w2)=0.1

II!'EI' L . 1 .
..-'..ll' - i i"q'-l'F;f 1

Point P is actually closer (in the ol i x o m#ﬁ'}ﬁ..?r 2 |
Euclidean sense) to the mean for the g fﬂ" ﬁﬁ
Orange class.

The discriminant function evaluated e N X
at P is smaller for class 'apple’ than it JE= S g MeANEs o e
is for class ‘orange’.

i
apples

=

; ™ oranges

Decision
Boundary

p

weight




CASE — C. — Arbitrary Y. all parameters are class dependent.

Z:i

&(X)=‘71[(X—ui>Tzf(X—ui)]—‘—1ln +InP(w,)

2

Thus’ gl (X) — XTVV;X-FQ)ITX‘FQ)IO,

where W, =_712;1,
w. =X 1 and
AR 1
@ __Elui 2, M, _Elnzi 'I'InP(Wi)

The DBs and DFs are hyper-quadrics. g, (X)=g,(X),k #/

We shall first look into a few cases of such surfaces next.




Example [Duda, Hart]:

Draw and Visualize (qualitatively)
the iso-contours

LAt

¥ e

Get expression of DB:

Assume; P(w,) = P(w,) = 0.5;




Quadratic Decision Boundaries

In RY with X = (x,, X5, ...,X4)T, consider the equation:

wa +Z ZW XX, +wa +w =0

=1 g =utd

The above equation is defined by a quadric discriminant
function, which yields a quadric surface.

Ifd=2, X = (x,, X,)T equation (1) becomes:

2 2 *e
Wy Xy + Woo X5 + WX, X, + WX, + WX, + W, =0




Special cases of equation:

2 2 >
Wy X, + Woo X5 + WX, X, + WX, + WX, + w, =0

Case 1:
W, =W,, =W,, =0; Eqn. (2) defines a line.

Case 2:
w,, = W,, = K; w,, =0; defines a circle.
Case 3:
W, =W,, =1, w,=w, =W, = 0; defines a circle whose center is at the origin.
Case 4:
W,, = W,, = 0; defines a bilinear constraint.
Case 5:
w,, = W,, =W, = 0; defines a parabola with a specific orientation.
Case 6:

defines a simple ellipse.
Selecting suitable values of w,’s, gives other conic sections;

For d > 3, we define a family of hyper-surfaces in Rq.

wy 20wy, 20, W ZWo,iwp, =w, =w, =0

Hyperbolic ??




d-1 d

wa +Z Zw X +wa Lo =0

=1 j=i+l

In the above equation, the total number of parameters is: ??

2d + 1 + d(d-1)/2 =

Organize these parameters, and manipulate the equation to obtain:

WX WX e O

has d terms, has term, and is a matrix as:
(w, ifi=]
(d2-d) non-diagonal terms of the matrix W, w; =41 b st
is obtained by duplicating (split into two parts): EWg If 1 J
\

d(d-1)/2 w;s.

In equation 3, the symmetric part of matrix W, contributes to
the Quadratic terms. Equation 3 generally defines a
hyperhyperboloidal surface.

If W=1/0, we get a hyper-spheres/planes.




}TW}—FWT}Jra)O =0

di= (X = ,Ltl.)TZ_l(X e —X'ITX +2u/ 37X — ! 2_1”1'

Example of linearization:

g(X)=x,-x-3x,+6=0
To Linearize, let x, = x,2. Then:
g(X)=x,—x,-3x,+6=W' X +w
where, X = [xl,xz,x3]T
and W' =[-3,1, 1]




CASE - C. — Arbitrary 2. all parameters are class dependent — contd..

g;(X) =_71[(X—ﬂ,-)T2;1(X—u,-)]—_7lln

Thus, g (X)=X"WX+0'X+w,, where W =—37";
8 I I i0 2 I

Z:i

+In P(w,)

1 1
w. =% u and a)l.o=—§,ul.TZl._1,ul.—§|n|2|+|nP(Wi)

16
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Principal Component Analysis

% Eigen analysis, Karhunen-Loeve transform

% Eigenvectors: derived from Eigen decomposition of the
scatter matrix

“* A projection set that best explains the distribution of
the representative features of an object of interest.

“* PCA techniques choose a dimensionality-reducing
linear projection that maximizes the scatter of all

projected samples.




Principal Component Analysis Contd.

* Let us consider a set of /Vsample images {x, x,, ....... y» Xnf
taking values in n-dimensional image space.

* Each image belongs to one of ¢ classes {X;, X,,....., X }.

e Let us consider a linear transformation, mapping the
original n-dimensional image space to m-dimensional
feature space, where m <n.

* The new feature vectors y, ¢ R™ are defined by the linear

transformation —
T
k=12, N

where, We R™™ is a matrix with orthogonal columns
representing.the basis in feature space.




Principal Component Analysis Contd..

* Total scatter matrix S is defined as

where, /V is the number of samples , and p € R” is the mean
image of all samples .

* The scatter of transformed feature vectors {y;y,....pn} 18
WIS, W.

* In PCA, W is chosen to maximize the determinant of the
total scatter matrix of projected samples, i.e.,

w,, =argmaxw’s,w
w

where {w; | i=1,2,....,m/} is the set of n dimensional eigenvectors
of S corresponding to m largest eigenvalues (check proof).




Principal Component Analysis Contd.

- Eigenvectors are called eigen images/pictures and also
basis images/facial basis for faces.

- Any data (say, face) can be reconstructed approximately as
a weighted sum of a small collection of images that define a
facial basis (eigen images) and a mean image of the face.

- Data form a scatter in the feature space through
projection set (eigen vector set)

* Features (eigenvectors) are extracted from the training
set without prior class information

=» Unsupervised learning




Demonstration of KL Transform

X First
eigen
vector

Second
eigen
vector




Another One




Another Example

Object plot after Translation

AU
P,

-0 -150 -100 - 1 50 100 150 200

Source: SQUID Homepage
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Principal components analysis (PCA) is a technique

used to reduce multi-dimensional data sets to lower

dimensions for analysis.

The applications include exploratory data analysis and
generating predictive models. PCA involves the computation of the
eigenvalue decomposition or Singular value decomposition of a data
set, usually after mean centering the data for each attribute.

PCA is mathematically defined as an orthogonal linear
transformation, that transforms the data to a new coordinate
system such that the greatest variance by any projection of
the data comes to lie on the first coordinate (called the first
principal component), the second greatest variance on the
second coordinate, and so on.

PCA can be used for dimensionality reduction in a data
set by retaining those characteristics of the data set that
contribute most to its variance, by keeping lower-order
principal components and ignoring higher-order ones. Such
low-order components often contain the "most important”
aspects of the data. But this is not necessarily the case,

depending on the application.
LLLLEEEEEEEEEEEEEEEEEEEHHEESEEEESEE




For a data matrix, X', with zero empirical mean (the
empirical mean of the distribution has been subtracted from
the data set), where each column is made up of results for a
different subject, and each row the results from a different

probe. This will mean that the PCA for our data matrix X will
be given by:

Y=W'XxX=3V",

where W= V" is the singular value decomposition (SVD) of X.

Goal of PCA:

Find some orthonormal matrix WT, where Y = WTX;
such that

COV(Y)=(1/(n-1))YYT is diagonalized.

The rows of W are the principal components of X,
which are also the eigenvectors of COV(X).

Unlike other linear transforms (DCT, DFT, DWT etc.),
PCA does not have a fixed set of basis vectors. Its basis
vectors depend on the data set.




SVD - the theorem

Suppose M is an m-by-n matrix whose entries come from the field K,
which is either the field of real numbers or the field of complex numbers. Then
there exists a factorization of the form

M=UxV"

where U is an m-by-m unitary matrix over K, the matrix Z is m-by-n with
nonnegative numbers on the diagonal and zeros off the diagonal, and V*
denotes the conjugate transpose of V, an n-by-n unitary matrix over K. Such a
factorization is called a singular-value decomposition of M.

The matrix V thus contains a set of orthonormal "input” or "analysing"
basis vector directions for M.

The matrix U contains a set of orthonormal "output"” basis vector
directions for M. The matrix Z contains the singular values, which can be
thought of as scalar "gain controls™ by which each corresponding input is
multiplied to give a corresponding output.

A common convention is to order the values Z;; in non-increasing
fashion. In this case, the diagonal matrix Z is uniquely determined by M
(though the matrices U and V are not).

For p = min(m,n) — U is m-by-p, 2 is p-by-p, and V is n-by-p.




The Karhunen-Loéve transform is therefore equivalent
to finding the singular value decomposition of the data matrix
X, and then obtaining the reduced-space data matrix Y by
projecting X down into the reduced space defined by only the

first L singular vectors, W, : T T T
X=wxV , Y=W X=2,V,

The matrix W of singular vectors of X is equivalently
the matrix W of eigenvectors of the matrix of observed
covariances C = X XT

COV(X)=XX" =w=='W"' =wDW"

The eigenvectors with the largest eigenvalues
correspond to the dimensions that have the strongest
correlation in the data set. PCA is equivalent to empirical

orthogonal functions (EOF).

PCA is a popular technique in pattern recognition. But it
iIs not optimized for class separability. An alternative is the
linear discriminant analysis, which does take this into
account. PCA optimally minimizes reconstruction error under

the L, norm.
S




PCA by COVARIANCE Method

We need to find a dxd orthonormal transformation matrix WT, such that:

T
with the constraint that:

Cov(Y) is a diagonal matrix, and W-1 = WT,

CoV(Y)=E[YY 1=E[(W X)W X)"]

=E[(W"' X)(X'W)]=W"E[XX" W

=W 'COV(X)W =w"'(WDW" YW =D
WCOV (Y)=WW"'COV (X)W =COV (X)W

Can you derive from the above, that:

[COV (X)W, COV (XW,.....COV (XW,]



Samples:

3-D problem, with N = 3.

Example of PCA

(2

|1

1 -2 4
X={1 3 0
2 1 3

Each column is an observation (sample) and each row a variable (dimension),

Mean of the samples:

M, =

Method — 1 (easiest)

e

0

s s

1

(XX )/2=(1/2)

COVAR =

T

X1 =

__%_
_% -

0

6% _2% 6 |
_2% 1% _3
6 -3 2




Method — 2 (PCA defn.)

Cl=
1.7778 0.4444
0.4444 0.1111
0 0

o oo

C2=
5.4444 -3.8889 2.3333
-3.8889 2.7778 -1.6667
2.3333 -1.6667 1.0000

SigmaC =

20.6667 -8.3333 6.0000
-8.3333 4.6667 -3.0000
6.0000 -3.0000 2.0000

Next do SVD, to get vectors.

X1

1 & r
Sy = (ﬂ)kzzll(Xk — 1) (x, — 1)

sl /A

1y
3
0 -1 1
C3=
13.4444 -4.8889 3.6667
-4.8889 1.7778 -1.3333
3.6667 -1.3333 1.0000
COVAR =
SigmaC/2 =

10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000




For a face image with N samples and dimension d (=w*h, very large), we have:

The array X or Xavg of size d*N (N vertical samples stacked horizontally)

Thus XXT will be of d*d, which will be very large. To perform eigen-
analysis on such large dimension is time consuming and may be erroneous.

Thus often X™X of dimension N*N is considered for eigen-analysis. Will
it result in the same, after SVD? Lets check:

- 62/ _25 ]

. % 25 6
_ _ o5/ 14 103333 -4.1667 3.0000
§=XX =@/2) - A A —3|= -41667 2.3333 -1.5000
5 35 3.0000 -1.5000 1.0000

. oo 0.9444 1.2778 -2.2222
S"=X" X = 12778 46111 -5.8889
.2.2222 -5.8889 8.1111

Lets do SVD of both:




U

S

V

S
S
I

10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

-0.8846 -0.4554
0.3818 -0.8313
-0.2680 0.3189

-0.1010
0.4041
0.9091

13.0404 0 0
0 0.6263 0
0 0 0.0000

-0.8846 -0.4554 0.1010
0.3818 -0.8313 -0.4041
-0.2680 0.3189 -0.9091

Sm

X' X =
0.9444 1.2778 -2.2222
1.2778 4.6111 -5.8889

-2.2222 -5.8889 8.1111

U=

-0.2060 0.7901
-0.5812 -0.5735
0.7872 -0.2166

0.5774
0.5774
0.5774

S =

13.0404 0 0

0 0.6263 0

0 0 0.0000

V =

-0.2060 0.7901

-0.5812 -0.5735
0.7872 -0.2166

0.5774
0.5774
0.5774




Samples: Example, where d <> N:

-3 —2 -1 4 5 0
X, = X, = D VX, =  Xe = Xp = :
1 1V ) V3 ) VY y Vg 1 V6 y
-3 —2 -1 4 5 I
2-D problem (d=2), with N = 6. X =
: . 3 2 1 4 5 6
Each column is an pbservgtlon (s_ample) 3 2 1 4 5 7
and each row a variable (dimension),
Mean of the samples: XM=
3/2 -4.5000 -3.5000 -2.5000 2.5000 3.5000 4.5000
H. = 5 /3 : -4.6667 -3.6667 -2.6667 2.3333 3.3333 5.3333

XMT* XM =

42.0278 32.8611 23.6944 -22.1389 -31.3056 -45.1389
COVAR(X) = XM*XMT 35 3611 25.6944 18.5278 -17.3056 -24.4722 -35.3056
_ 775000 820000  23.6944 185278 13.3611 -12.4722 -17.6389 -25.4722
82.0000 87.3333 -22.1389 -17.3056 -12.4722 11.6944 16.5278 23.6944
131.3056 -24.4722 -17.6389 16.5278 23.3611 33.5278

451389 -35.3056 -25.4722 23.6944 33.5278 48.6944




COVAR(X) = XM * XMT

= 77.5000 82.0000
82.0000 87.3333

U=
-0.6856 -0.7280
-0.7280 0.6856
S =
164.5639 0)
0) 0.2694
V =

-0.6856 -0.7280
-0.7280 0.6856

42.0278
32.8611
23.6944
-22.1389
-31.3056
-45.1389

U=
-0.5053
-0.3951
-0.2849

0.2660
0.3762
0.5432

S =

32.8611
25.6944
18.5278
-17.3056
-24.4722
-35.3056

-0.1469
-0.0654
0.0162
0.4241
0.5057
-0.7337

164.5639 0

0
0

o OO

0.2694
0

o OO

23.6944 -22.1389 -31.3056 -45.1389
18.5278 -17.3056 -24.4722 -35.3056
13.3611 -12.4722 -17.6389 -25.4722
-12.4722 11.6944 16.5278 23.6944
-17.6389 16.5278 23.3611 33.5278
-25.4722 23.6944 33.5278 48.6944

-0.7547

0.3632
-0.0433
-0.5083
-0.0258
-0.1938

0
0
0.0

0
0
0

XMT* XM =

0.3882
0.0984
-0.3456
-0.5306
0.6601
0.0541

o
O O
S © 0O

cNoNeoNoNoNe

0.0214
-0.4091
-0.7396
-0.1150
-0.4043
-0.3293

cNoNeNoNoNe

0.0486
0.7284
-0.5002
0.4429
-0.0539
0.1332

V=U??




Scatter Matrices and Separability criteria

Scatter matrices used to formulate criteria of class
separability:

Within-class scatter Matrix: It shows the scatter
of samples around their respective class expected
vectors. .

Sy = Z Z(xk - 1)(x, — 1)

=1 X, X,

Between-class scatter Matrix: It is the scatter
of the expected vectors around the mixture
mean.....p is the mixture mean..

3= 2N, 4t~ )t~




Scatter Matrices and Separability criteria

s» Mixture scatter matrix: It is the covariance matrix of

* The criteria formulation for class separability
needs to convert these matrices into a number

* This number should be larger when between-
class scatter is larger or the within-class scatter is

smaller
Several Criteria are..

J, = In‘Sz‘lSl‘ =In|S,|—In[S,]

7 s |
J,=tr(S,)—ursS, —c) sy




Linear Discriminant Analysis

e Learning set is labeled — supervised learning

 Class specific method in the sense that it tries to ‘shape’ the
scatter in order to make it more reliable for classification.

e Select W to maximize the ratio of the between-class
scatter and the within-class scatter.

Between-class scatter matrix is defined by-

A :CZM (=1 _/U)T

u; 1s the mean of class X

N; is the no. of samples in class X,

l

Within-class scatter matrix

Sy ZZ(xk —14)0o,—14)"

i=l x, X




Linear Discriminant Analysis

* If Sy, Is nonsingular, W, Is chosen to satisfy
T

sy
T

e g

w,, =arg max

{w |i=12,...m}Isthe set of eigenvectors of S, and S},
corresponding to m largest eigen values.i.e.

 There are at most (c-/) non-zero eigen values. So upper
bound ofm is (c-1).




Linear Discriminant Analysis

Sy,1s singular most of the time. It’s rank is at most N-c

Solution — Use an alternative criterion.

* Project the samples to a lower dimensional space.
e Use PCA to reduce dimension of the feature space to N-c.

e Then apply standard FLD to reduce dimension to c-1.

W, is given by /4 W w!

opt pca

S mvsx‘WTS ! W‘ ,=arg mafo”‘”ng’”‘lW

W g Sy W V)

pca




Demonstration for LDA




e
Hand workout EXAMPLE:

_ 1 3 5
Data Points: 1 2 3 4

N

Class: 11 1 1 1 1 1 2 2 2 2 2 2 2

Lets try first :

2.9286
5.0000

Overall data mean:

COVAR of the mean-subtracted data:

7.3022 3.3077
3.3077 5.3846

Eigenvalues after SVD of above:
9.7873 2.8996

Finally, the eigenvectors:

-0.6007
0.7995




Same EXAMPLE for LDA :

. 1 2 3 5
Data Points: 1 2 3 4

Class:

S,= 10.6122 8.5714
8.5714 8.0000

S,= 20.6429 -17.00
INV(S,).S, =  -17.00  14.00

27.20 -22.40
-31.268 25.75

Perform Eigendecomposition
on above:

Eigenvalues of S, 1 S, :  53.687

Eigenvectors:

0:6357
0.7719




S, = 10.6122 8.5714
8.5714 8.0000

S,= 20.6429 -17.00
-17.00 14.00

Eigenvalues of S, 1 S, :  53.687
0

-0.7719 0.6357
0.6357 0.7719

Eigenvectors:

= 10.6122 8.5714
8.5714 8.0000

S,= 203.143 -95.00
- 95.00 87.50

Eigenvalues of S, 1 S, :  297.83
0.0

-0.7355 -0.6775
0.6775 0.7355

Eigenvectors:
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e
Same EXAMPLE for LDA, with C = 3:

. 1 2 3 5
Data Points: 1 2 3 4

Class:

S,= 8.0764 -2.125
-2.125 4.1667

S,= 56.845 52.50

INV(S,) . S, = 52.50  50.00

11.958 11.155
18.7 17.69

Perform Eigendecomposition
on above:

Eigenvaluesof S, 1 S,: 30.5
0.097

Eigenvectors:

- 0.69
0.728




Data projected along
1st eigenvector:




Some of the latest advancements in Pattern recognition technology deal with:

Neuro-fuzzy (soft computing) concepts

Multi-classifier Combination — decision and feature fusion
Reinforcement learning

Learning from small data sets

Generalization capabilities

Evolutionary Computations

Genetic algorithms

Pervasive computing

Neural dynamics

Support Vector machines
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