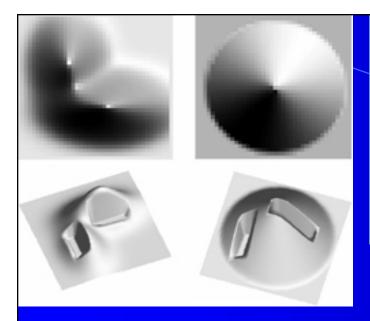
### **Shape from Shading**

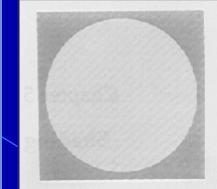
Computer Vision CS635 Dr. Sukhendu Das, Dept. of Computer Science & Engg.

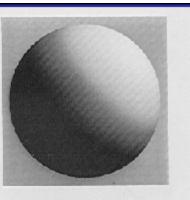
#### Introduction

- An image is essentially 2D where as the world is 3D
- The human visual system recovers shapes of objects in a 3D scene from a 2D image by a number of cues
  - Motion parallax
  - Binocular disparity
- But even a single image gives a lot of information about shape of an object. Where is the hidden information?
- Some examples to illustrate the point previously mentioned

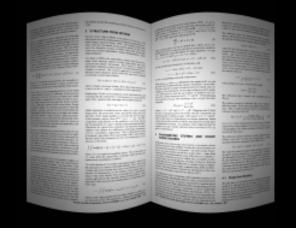








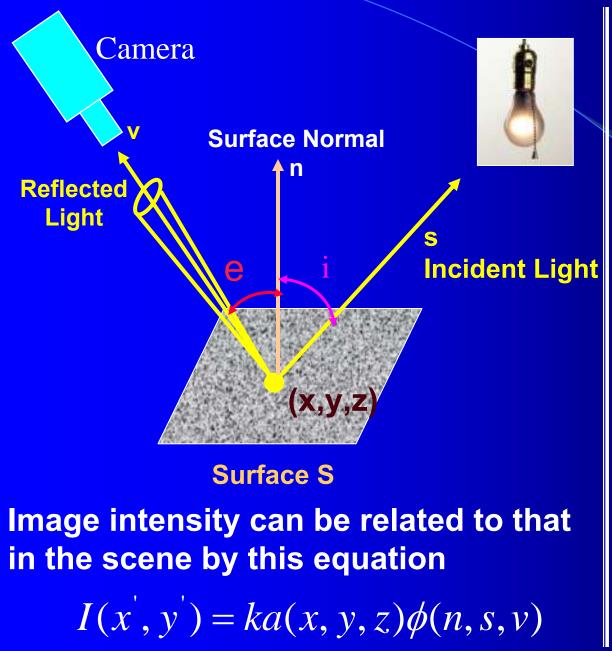
Any answers?...Yes you are right..... Its shading on the surface that gives the depth information and hence a cue to shape of the surface



**Our visual system tries to interpret the** 

brightness pattern on the retina as shading due to spatial fluctuations of the surface orientation and spatial variations in reflecting properties of the surface.

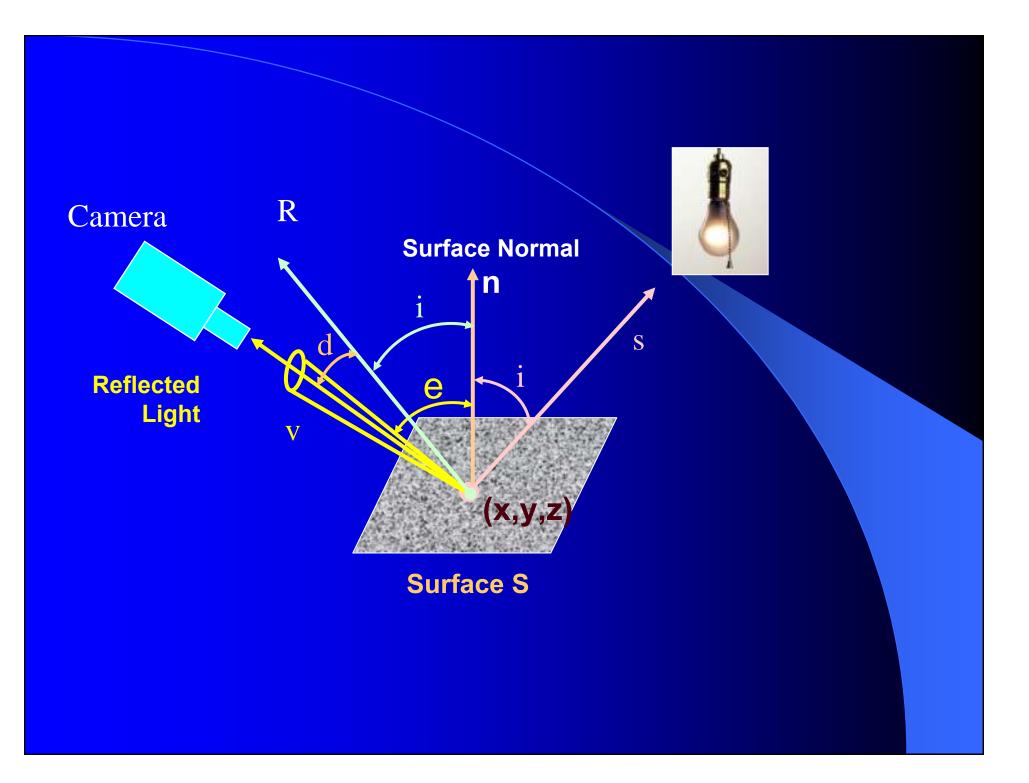
#### The Reflectance map



- S surface
- (x,y,z) Point on the surface
- *n* surface normal
- s source direction
- v viewing direction
- *i* incident angle
- e emergent angle
- (x',y') Points on the image plane
- a(x,y,z) Incident brightness at each point on the 3D scene
- Φ(n,s,v) the reflecting properties of the surface in scene

#### **Reflectance functions**

Ambient light: I=k<sub>i</sub>, where i indexes into the objects in the scene. **Diffused reflection**  $\phi(n,s,v) = \rho \cos i$ **Specular reflection** s + v = n $\phi(n,s,v) = \int_{0}^{1}$ else **Phong model**  $\phi(n,s,v) = \rho_1 \cos i + \rho_2 \cos^m d$ Some examples to follow



### **REFLECTANCE MODELS**

#### PHONG MODEL

#### LAMBERTIAN MODEL $\phi(n, s, v) = \rho \cos i$

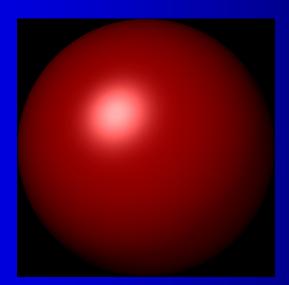
**Diffuse albedo** 

 $\phi(n,s,v) = \rho_1 \cos i + \rho_2 \cos^m d$ 

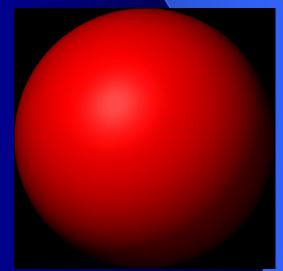
**Specular** albedo

albedo





 $\rho_1 = 0.3, \rho_2 = 0.7, m = 2$ 



 $\rho_1 = 0.7, \rho_2 = 0.3, m = 0.5$ 

### Reflectance map (Contd..)

 Assuming light source is at a distance, incident light at every point is assumed to be constant = a

$$I(x', y') = ka\phi(n, s, v)$$

- Reflectance at each point on surface depends on the surface properties and hence varies with a function Ø(n,s,v) which is directly proportional to the image intensity I(x',y')
- Since s and v are constants, Ø(n,s,v) is dependent on n alone
- Surface Normal n can be represented in gradient space (p-q space) yielding R(p,q), called the Reflectance map.
- What is the gradient space representation?.... What are the other ways to represent the surface orientation....

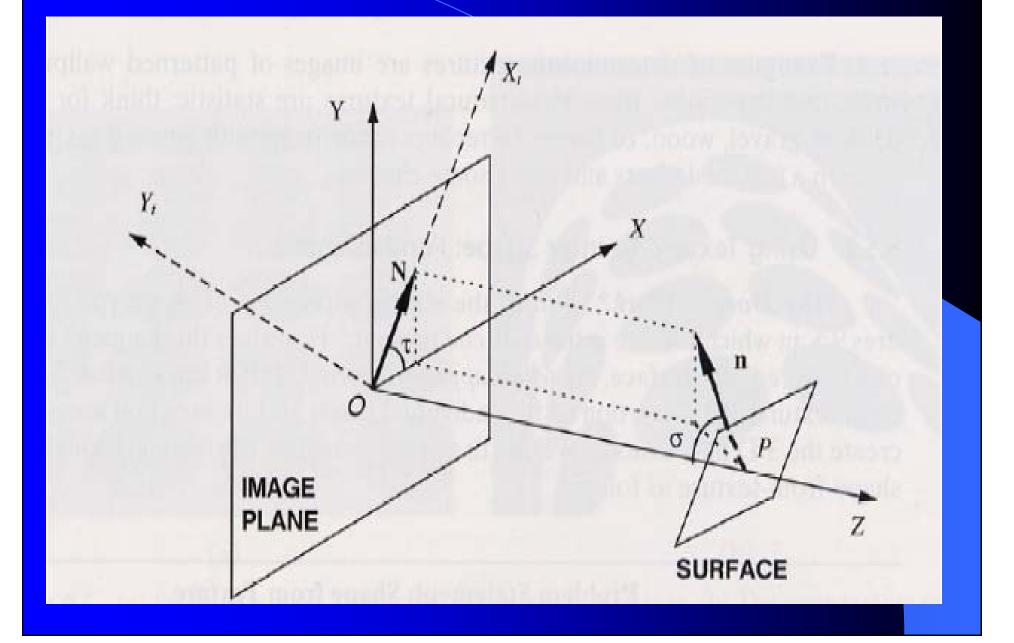
# Representation of surface orientation

- Surface normal :  $n = (n_1, n_2, n_3)$
- Surface gradient: p-q space
  - Given the equation of a surface in 3D world as : z=f(x,y)
  - The surface gradient is defined as

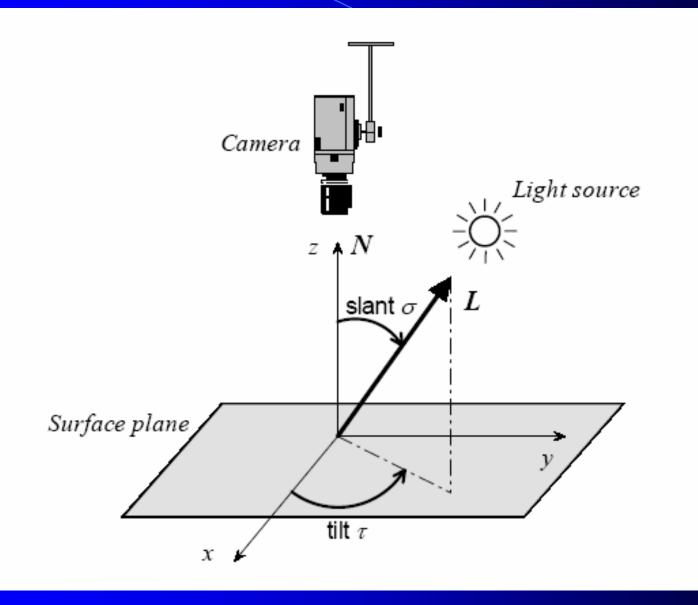
$$\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1\right), p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}$$

- Slant and the Tilt angle (σ, τ)
   σ is the angle made by the surface normal with z axis (3D world)
  - τ is the angle made by the projection of the normal on the image plane with the x axis (of image plane)

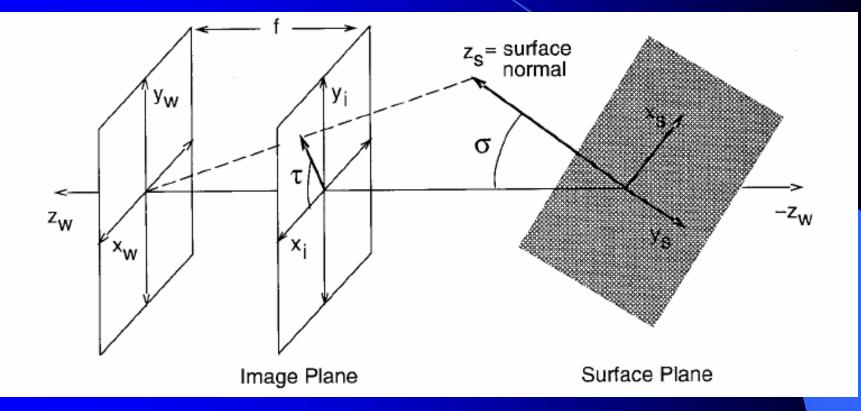
## Slant and the tilt angle



#### **Slant and the tilt angle**



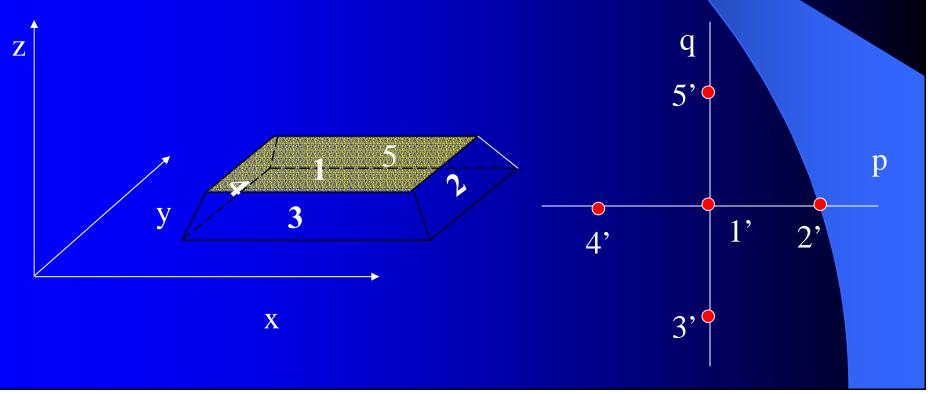
# Slant and the tilt angle



#### **Gradient space representation**

- A plane parallel to x-y plane will have the gradient 0 in both x and y directions
- From p and q the equation of a plane can be recovered as

z = px + qy + c



### Reflectance map (Contd..)

- The image irradiance can be related to the scene irradiance  $I(x, y) = R(\hat{n}(x, y))$
- Since the surface normal can be represented using the gradient space representation
   I(x, y) = R(p, q)
- R(p,q) is called the reflectance map of the image
- Our aim in the <u>"shape from shading" problem</u> is to recover the orientation (p, q) of the surface (or surface patch) given the image l(x, y)

### The shape from shading problem

- Each point in the image has only one attribute – the intensity and the surface orientation is defined by (p, q). Is it possible to recover this from a single image?
- Yes... Provided ...
  - We add some constraints on the object surface
    - Homogeneity assumption
  - Priory knowledge about the shape of the surface
- If homogeneity assumption is violated the shape perceived is quiet different from the one that actually is. e.g:- make up

# The shape from shading problem (Contd...)

To formulate the shape from shading problem 2 issues need to be solved

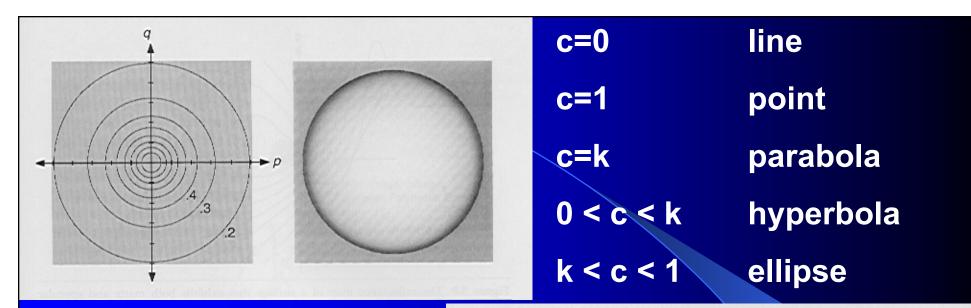
- Position of a point in the image with respect to its position in the 3D Scene
  - Projective Geometry is the answer
- What determines the brightness of each point on the surface
  - Reflecting properties of the surface (BRDF)
  - Illumination model used

#### An example

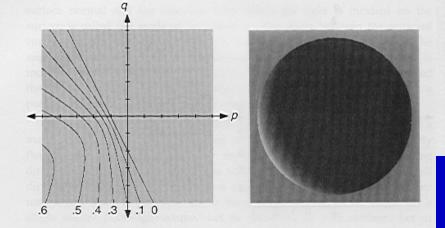
- Lambertian (diffused) surface
- (p, q, 1) vector normal to the surface
- $(p_s, q_s)$  vector in the direction of source s

$$\cos i = \frac{1 + pp_{s} + qq_{s}}{\sqrt{1 + p^{2} + q^{2}}\sqrt{1 + p_{s}^{2} + q_{s}^{2}}}$$

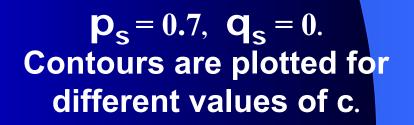
$$R(p,q) = \rho \cos i = \frac{\rho(1 + pp_{s} + qq_{s})}{\sqrt{1 + p^{2} + q^{2}}\sqrt{1 + p_{s}^{2} + q_{s}^{2}}}$$
A contour (in p-q space) of constant intensity  
c (=R) is given by:  
c (=R) is given by:  
c = \frac{1 + pp\_{s} + qq\_{s}}{\sqrt{1 + p^{2} + q^{2}}\sqrt{1 + p\_{s}^{2} + q\_{s}^{2}}}
Check two cases: c = 0, 1.



p<sub>s</sub> = 0, q<sub>s</sub> = 0. Circles are plotted for different values of c



 $p_s = -2, q_s = -1.$ 

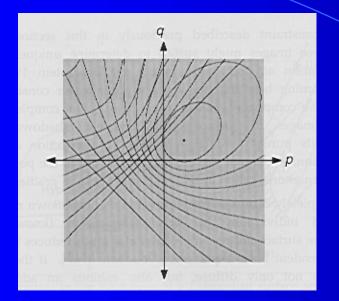


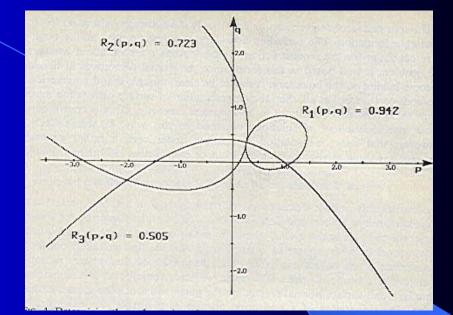
.8

0.1.2.3

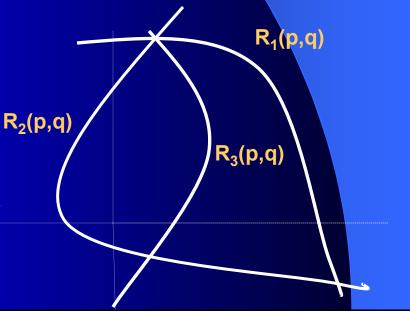
- Hence for each intensity value and for each source direction we have a contour on which our orientation could lie.
- But a contour or a curve does not give a unique value of: p, q .....? what do we do?
- One solution is to have more than one image.... Photometric stereo
- Add constraints to the Object surface on the scene.
  - > Parallel lines
  - Texture elements on the surface and its variation in the projected image

#### **Photometric stereo**





- Use more than one image.
- Find the contours or curves for each one.
- The intersection of 2 curves gives 2 such possible points
- Intersection of 3 or more curves will give one unique value for (p, q)



## Photometric stereo (Mathematical formulation)

- So we have 3 sets of
  - light source directions (s<sub>11</sub>,s<sub>12</sub>,s<sub>13</sub>) (s<sub>21</sub>,s<sub>22</sub>,s<sub>23</sub>) (s<sub>31</sub>,s<sub>32</sub>,s<sub>33</sub>)
  - resulting images  $E_1(x,y)$ ,  $E_2(x,y)$ ,  $E_3(x,y)$
  - resulting reflectance maps R<sub>1</sub>(p,q), R<sub>2</sub>(p,q), R<sub>3</sub>(p,q)

 $\overline{E}(x, y) = \rho \cos(\overline{s}_k \cdot \overline{n}) \qquad \rho = \left| S^{-1} \overline{E} \right|$   $\begin{bmatrix} E_1(x, y) \\ E_2(x, y) \\ E_3(x, y) \end{bmatrix} = \rho \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix} \begin{bmatrix} n_1(x, y) \\ n_2(x, y) \\ n_3(x, y) \end{bmatrix} \overline{n} = \left( \frac{1}{\rho} \right) S^{-1} \overline{E}$ 

#### Adding Geometric Constraints to the scene **3D world coordinate**

- X = (x, y, z)
- X' = (x', y')
- X' = f(X)**Perspective projection** •
- If we know m constraints relating n points in the scene • then we have the following set of simultaneous equations.

Image point

 $h_1(X_1, X_2 \dots X_n) = 0$  $X_1 = f(X_1)$  $h_2(X_1, X_2 \dots X_n) = 0$  $X_2 = f(X_2)$ &

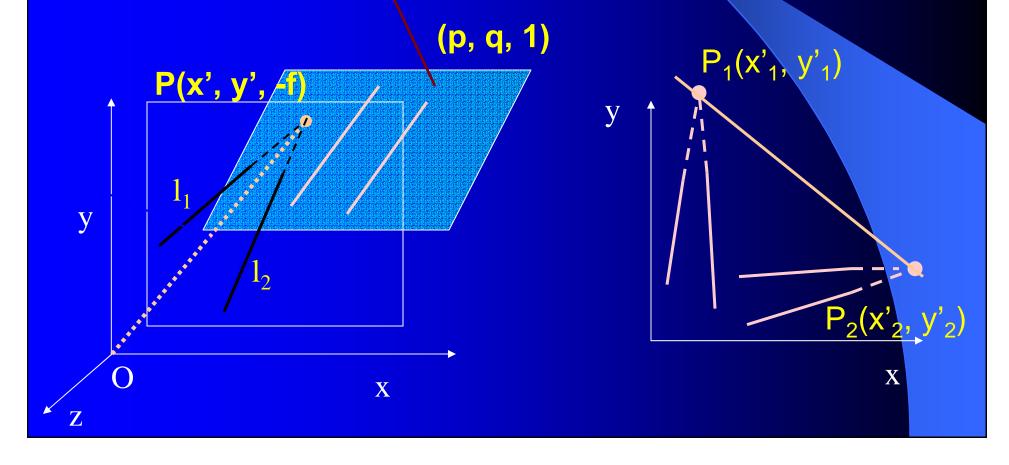
$$\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{X}_1, \boldsymbol{X}_2 \dots \boldsymbol{X}_{\boldsymbol{n}}) = 0$$

 $X'_n = f(X_n)$ 

Solve to get equation relating (x,y,z) to equation of the curve.

#### An example

- Projections of parallel lines in the scene meet at a vanishing point in the image.
- Any pair of parallel lines meet on the vanishing point. Line OP is termed as the vanishing line.



#### Generating the constraints

 P<sub>1</sub> and P<sub>2</sub> are both vanishing points, and OP<sub>1</sub> and OP<sub>2</sub> are perpendicular to the surface normal

$$x_1' p + y_1' q - f = 0,$$
  
 $x_2' p + y_2' q - f = 0$ 

#### Generating the constraints

3

Consider these set of parallel lines

$$\overline{X}_{2} - \overline{X}_{1} = \overline{X}_{4} - \overline{X}_{3} \qquad \Longrightarrow$$

$$X'_{1} = f(\overline{X}_{1})$$

$$X'_{1} = f(\overline{X}_{2})$$

$$X'_{1} = f(\overline{X}_{3})$$

$$X'_{1} = f(\overline{X}_{4})$$

#### **11 constraints to find 12 unknowns**

#### End of lectures on

## Shape from Shading

Slides courtesy: Shivani G. Rao