
Fourier Theory

and

Filtering in
spectral and spatial domains

Image processing methods may be broadly divided into two categories:

Real space methods
-- which work by directly processing the input pixel array.

Fourier space methods
-- which work by firstly deriving a new representation of the input

data by performing a Fourier transform, which is then processed, and
finally, an inverse Fourier transform is performed on the resulting data to
give the final output image.

What do frequencies mean in an image?

If an image has large values at high frequency components then
the data is changing rapidly on a short distance scale. (e.g., a page of
text).

If the image has large low frequency components then the large-
scale features of the picture are more important (e.g. a single fairly simple
object which occupies most of the image).

Fourier Theory

The tool, which converts a spatial (real space) description of an
image into one in terms of its frequency components, is called the
Fourier transform. The new version is usually referred to as the Fourier
space description of the image.

The corresponding inverse transformation which turns a Fourier
space description back into a real space one is called the inverse
Fourier transform.

1D Case:

Considering a continuous function f(x) of a single variable x
representing distance. The Fourier transform of that function is
denoted F(u), where u represents spatial frequency is defined by:

dxexfuF xuj∫
∞

∞−

−= π2)()(

Note: In general F(u) will be a complex quantity even though the
original data is purely real.

The meaning of this is that, not only is the magnitude of each frequency
present important, but that its phase relationship is too.

The inverse Fourier transform for regenerating f(x) from F(u) is given by:

dueuFxf xuj∫
∞

∞−

= π2)()(
which is rather similar, except that the exponential term has the opposite
sign.

Let's see how we compute a Fourier Transform: consider a
particular function f(x) defined as :

1||_____,1
_____,0)({ ≤= xif

otherwisexf

u
u

ee
uj

dxe

dxexf

uxjuxj

uxj

xuj

π
π

π
ππ

π

π

2sin

)(
2

1

)(

22

1

1

2

2

=

−
−

=

=

=

−

−

−

∞

∞−

−

∫

∫F(u)

In this case F(u) is purely real, which is a consequence of the
original data being symmetric in x and -x. This function is often
referred to as the Sinc function

2D Case - continuous

If f(x,y) is a function, for example the brightness in an image, its
Fourier transform is given by:

∫ ∫
∞

∞−

∞

∞−

+−= dxdyeyxfvuF vyuxj)(2),(),(π

and the inverse transform is:

∫ ∫
∞

∞−

∞

∞−

+= dudvevuFyxf vyuxj)(2),(),(π

Discrete Case - 1-D

Images are digitized - discrete sequence of numbers. Thus, we
need a discrete formulation of the Fourier transform, which takes such
regularly spaced data values, and returns the value of the Fourier
transform for a set of values in frequency space which are equally
spaced.

Replacing the integral by a summation, does this quite naturally,
gives the discrete Fourier transform or DFT for short.

In 1-D it is convenient now to assume that x goes up in steps of 1,
and that there are N samples, at values of x from 0 to N-1. So the DFT
takes the form:

)1(,....,1,0;
1

0

2
)(1)(−=∑

−

=

−
= Nu

N

x

N
uxj

exf
N

uF
π

while the inverse DFT is:

)1(,....,1,0;)(1)(
1

0

2
−=∑

−

=

= Nx
N

u

N
uxj

euF
N

xf
π

NOTE: Minor changes from the continuous case are a factor of 1/N in the
exponential terms, and also the factor 1/N in front of the forward
transform which does not appear in the inverse transform.

The 2D DFT works in a similar way. So for an NxM grid in x and y
we have:

1,....,1,0;1,....,1,0

),(1),(
1

0

1

0

)//(2

−=−=

= ∑ ∑
−

=

−

=

+−

MvNu

eyxf
NM

vuF
N

x

M

y

MyvNxuj π

and

1,.....,1,0,1,....,1,0

),(),(
1

0

1

0

)//(2

−=−=

= ∑ ∑
−

=

−

=

+

MyNx

evuFyxf
N

u

M

v

MyvNxuj π

Often N=M, and it is then it is more convenient to redefine F(u,v)
by multiplying it by a factor of N, so that the forward and inverse
transforms are more symmetrical:

1,...,1,0,

),(1),(
1

0

1

0

)//(2

−=

= ∑ ∑
−

=

−

=

+−

Nvu

eyxf
N

vuF
N

x

M

y

MyvNxuj π

and

1,...,1,0,

),(1),(
1

0

1

0

)//(2

−=

= ∑ ∑
−

=

−

=

+

Nyx

evuF
N

yxf
N

u

M

v

MyvNxuj π

Digital images
and their
2-D DFT’s

FILTERING

LOW PASS FILTER

A 2-D ideal lowpass filter (LPF) is one whose transfer
function satisfies the relation

1 if D (u, v) ≤ Do
H (u, v) =

0 if D (u, v) > Do

where, Do is a specified non-negative quantity, and D(u, v) is the distance
from point (u,v) to the origin of the frequency plane, that is,

D(u, v) = (u2 + v2) ½

Low frequency components are responsible for the slowly varying
characteristics of an image, such as overall contrast and average
intensity.

It blurs the image, since it de-enhances edges and other
sharp details in an image which contribute to the high frequency
components.

H(u,v)

u v

Input Image(Lena) Low Pass Filtered Image

HIGH PASS FILTER

A 2-D ideal highpass filter (HPF) is one whose transfer
function satisfies the relation

0 if D(u, v) ≤ Do
H(u, v) =

1 if D(u, v) > Do

Where Do is the cutoff distance measured from the origin of the
frequency plane and D(u, v) is given by

D(u, v) = (u2 + v2) ½

High-frequency components characterize edges and other
sharp details.

Highpass filtering causes a loss in the low frequency
components in the image, the smaller gray level variations in the image
are removed in the output. The output image will have sharpened edges
and other sharp details.

u v

H(u,v)

Input Image(Lena) High Pass Filtered Image

v
u

H(u,v)

Input Image(Lena) Band-Pass Filtered Image

Comparison of the effects of filtering

Low Pass Band Pass High Pass

Low Pass Butterworth Filter

Another filter sometimes used is the Butterworth lowpass filter (BLPF).
In this case, H(u,v) takes the form:

nwvu
vuH

]/)[(1
1),(2

0
22++

=

where, n is called the order of the filter. This keeps some of the high
frequency information, as illustrated by the second order one-
dimensional Butterworth filter shown in the figure below:

This is one way of reducing the blurring effect of an ILPF.

Wiener Filter: Adaptive Inverse Filter
Purpose: To Remove noise and/or bluriness in the image.

Estimate the local mean and variance in the neighborhood
around each pixel

∑=),()1(yxfMNµ ∑ −= 222),()1(µσ yxfMN
Wiener filter formulation, for no blur:

)),((),(
2

22

µ
σ

σ
µ −

−
+= yxf

n
yxw v

Where nv is the
standard deviation for noise.

w ->

Typical response
For Wiener filter

Convolution

Several important optical effects can be described in terms of
convolutions. Let us examine the concepts using 1D continuous
functions.

The convolution of two functions f(x) and g(x), written f(x)*g(x), is
defined by the integral

∫
∞

∞−

−= ααα dxgfxgxf)()()(*)(

For example, let us take two top hat functions. Let f(x) and g(x) be two
top hat functions defined as:

1||___,1
___,0)({ ≤= xif

otherwisexf

10__,2/1
_____,0)({ ≤≤= xif

otherwisexg

Steps:

♦ Form g(-a),
♦ Form g (x - a) by shifting/sliding,
♦ For any given x, get the product of f(a). g(x-a), by finding the

overlap of these two functions,
♦ Keep repeating the above step for all values of x

Example below illustrates the situation,
when x = -1:

Thus the convolution of f(x) and g(x), f(x)*g(x), in this case has the
form :

Mathematically the output
of this convolution
can be expressed by:

otherwise
2x1 if
1x0 if

0x1if

0
2/1

2/1
2/)1(

)(*)(
≤≤
≤≤

≤≤−

−

+

=
x

x

xgxf

Convolution in 2-D

∫

∫

−−=−

−=−

dudvvyuxmvufyxfmD

duuxmufxfmD

),(),(),(*:2

)()()(*:1

Continuous case:

∑∑

∑

−−=−

−=−

ji

i

jimjyixfyxfmD

imixfxfmD

),(),(),(*:2

)()()(*:1

Discrete case:

Correlation (discrete case):

∑∑

∑

++=•−

+=•−

ji

i

jimjyixfyxfmD

imixfxfmD

),(),(),(:2

)()()(:1

If we take two functions f and g, as 2-D equivalent of
1-D top-hat functions, (call them as roof-top functions):

Then the 2D convolution of the functions will result in:

Image

Surface PlotResults displayed as:

This computation is very time consuming and expensive
for large size images.

If the image resolution is 32*32 or less than 64*64, it is
recommended to use the above code (i.e. convolve in the spatial
domain).

Generally most digital images are larger in size. Then for
computational efficiency use the convolution theorem:

CONVOLUTION THEOREM

In 1-D :
f(x) * g(x) F(u) . G(u)

and
f(x) . g(x) F(u) * G(u)

in 2-D :

f(x, y) * g(x, y) F(u, v) . G (u, v)
and

f(x, y) . g(x, y) F(u, v) * G (u, v)

FFT algorithm exists which computes the Fourier transform of a
digitized signal efficiently. Hence it is recommended to first transform
the signals to the frequency domain, multiply and then compute the
inverse transform to obtain the convolution. Since FFT is
computationally efficient, this method works faster for large
images/signals.

Equation for filtering: Use convolution theorem

Input Image to be filtered: f(x,y)
Output filtered Image: g(x,y)

Obtain g(x,y) using: G(u,v) = H(u,v).F(u,v),

where, H(u,v) is the filter transfer function, F(u,v) is the DFT of the image,
and G(u,v) is the DFT of the output filtered image. Obtain g(x,y), by
IDFT of G(u,v).

For bandpass filtering, the transfer function is:

1 if D1 ≤ D(u, v) ≤ D2
H(u, v) =

0 otherwise

For bandstop filtering, the transfer function is:

0 if D1 ≤ D(u, v) ≤ D2
H(u, v) =

1 otherwise

Discrete Sampling as convolution

∑ ∑

∑ ∑
∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

−−=

−−=

i i

i i
d

jyixyxf

jyixjifyxf

]),()[,(

),(),(),(

δ

δ

Assume f(x,y) to be continuous and the δ function has the property:

∫
∞

∞−

=)0()()(afdxxfxaδ

Then the discretized signal fd(x,y) is:

Multiply the signal by a set of δ functions, one at each sample point.
This is called a comb function in 1D and bed of nails in 2D.

Sampling and Aliasing:

Magnitude
SpectrumSignal F.T.

Sampling Filtering

Magnitude
Spectrum

DFT
Sampled Signal

The Fourier transform of a sampled signal:

∑

∑ ∑

∑ ∑

∑ ∑

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

−−=

−−=

−−=

−−=

i

i i

i i

i i
d

jviu

jviuvu

jyixyxf

jyixyxfyxf

),(F

]}),([*),(F

]}),({[F*)},(F{

)]},()[,({F)},({F

δ

δ

δ

Smoothing - Spatial Domain

The simplest approach is neighborhood averaging, where each
pixel is replaced by the average value of the pixels contained in some
neighborhood about it. The simplest case is probably to consider the
group of pixels centered on the given pixel, and to replace the central
pixel value by the un-weighted (for weighted - Gaussian function is
commonly used) average of these (nine, in case of 3*3 neighborhood)
pixels.

For example, the central pixel in Figure below is replaced by the
value 13 (the nearest integer to the average).

If any one of the pixels in the neighborhood has a faulty value
due to noise, this fault will now be smeared over nine pixels as the
image is smoothed. This tends to blur the image.

A better approach is to use a median filter.

A similar neighborhood around the pixel under consideration is
used, but this time the pixel value is replaced by the median pixel value
in the neighborhood.

Thus, if we have a 3*3 neighborhood, we write the 9 pixel values
in sorted order, and replace the central pixel by the fifth highest value.
For example, again taking the data shown in Figure above, the central
pixel is replaced by the value 12.

This approach has two advantages.

• Occasional spurious high or low values are not averaged in --
they are ignored

• The sharpness of edges is preserved. To see the latter, consider
the pixel data shown in the next slide.

When the neighborhood covers the left-hand nine pixels, the
median value is 10; when it covers the right hand ones, the median value
is 20; thus the edge is preserved.

• If there are large amounts of noise in an image, more than one
pass of median filtering may be useful to further reduce the noise.

• A rather different real space technique for smoothing is to
average multiple copies of the image.

• The idea is that over several images, the noise will tend to cancel
itself out if it is independent from one image to the next.

• Statistically, we expect the effects of noise to be reduced by a
factor n-1/2, if we use n images. One particular situation where this
technique is of use, is in low lighting conditions.

Original Image Median Filtered Image

Noisy Image

Original Image Median Filtered Image

Noisy Image

Original Image Median Filtered Image

Noisy Image

Original Image Noisy Image

Median Filtered Image Filtered using Wiener Filter

Original Image Noisy Image

Median Filtered Image Filtered using Wiener Filter

References

1. “Digital Image Processing”; R. C. Gonzalez and R. E. Woods;
Addison Wesley; 1992+.

2. “Fundamentals of Digital Image Processing”; Anil K Jain;
Prentice Hall of India; 1995+.

3. “Digital Image Processing and Computer Vision”; Robert J.
Schallkoff; John Wiley and Sons; 1989+.

4. “ Pattern Recognition: Statistical. Structural and Neural
Approaches”; Robert J. Schallkoff; John Wiley and Sons; 1992+.

5. “Algorithms for Image Processing and Computer Vision”; J. R.
Parker; John Wiley and Sons; 1997+.

	Comparison of the effects of filtering

