
1

Dynamic Memory

Allocation

2

Problem with Arrays

 Sometimes

 Amount of data cannot be predicted beforehand

 Number of data items keeps changing during program

execution

 Example: Seach for an element in an array of N elements

 One solution: find the maximum possible value of N and

allocate an array of N elements

 Wasteful of memory space, as N may be much smaller

in some executions

 Example: maximum value of N may be 10,000, but a

particular run may need to search only among 100

elements

 Using array of size 10,000 always wastes memory

in most cases

3

Better Solution

 Dynamic memory allocation

 Know how much memory is needed after the program

is run

 Example: ask the user to enter from keyboard

 Dynamically allocate only the amount of memory

needed

 C provides functions to dynamically allocate

memory

 malloc, calloc, realloc

4

Memory Allocation Functions

 malloc

 Allocates requested number of bytes and returns a
pointer to the first byte of the allocated space

 calloc

 Allocates space for an array of elements, initializes
them to zero and then returns a pointer to the
memory.

 free

 Frees previously allocated space.

 realloc

 Modifies the size of previously allocated space.

 We will only do malloc and free

5

Allocating a Block of Memory

 A block of memory can be allocated using the
function malloc

Reserves a block of memory of specified size
and returns a pointer of type void

The return pointer can be type-casted to any
pointer type

 General format:

type *p;

p = (type *) malloc (byte_size);

6

Example

p = (int *) malloc(100 * sizeof(int));

 A memory space equivalent to 100 times

the size of an int bytes is reserved

The address of the first byte of the

allocated memory is assigned to the

pointer p of type int

p

400 bytes of space

7

Contd.

 cptr = (char *) malloc (20);

Allocates 20 bytes of space for the pointer cptr
of type char

 sptr = (struct stud *) malloc(10*sizeof(struct
stud));

Allocates space for a structure array of 10
elements. sptr points to a structure element of
type struct stud

Always use sizeof operator to find number of bytes for
a data type, as it can vary from machine to machine

8

Points to Note

 malloc always allocates a block of

contiguous bytes

The allocation can fail if sufficient

contiguous memory space is not available

 If it fails, malloc returns NULL

if ((p = (int *) malloc(100 * sizeof(int))) == NULL)

{

printf (“\n Memory cannot be allocated”);

exit();

}

9

Using the malloc’d Array

 Once the memory is allocated, it can be used with

pointers, or with array notation

 Example:

int *p, n, i;

scanf(“%d”, &n);

p = (int *) malloc (n * sizeof(int));

for (i=0; i<n; ++i)

scanf(“%d”, &p[i]);

The n integers allocated can be accessed as *p, *(p+1),

*(p+2),…, *(p+n-1) or just as p[0], p[1], p[2], …,p[n-1]

10

Example

printf("Input heights for %d

students \n",N);

for (i=0; i<N; i++)

scanf ("%f", &height[i]);

for(i=0;i<N;i++)

sum += height[i];

avg = sum / (float) N;

printf("Average height = %f \n",

avg);

free (height);

return 0;

}

int main()

{

int i,N;

float *height;

float sum=0,avg;

printf("Input no. of students\n");

scanf("%d", &N);

height = (float *)

malloc(N * sizeof(float));

11

Releasing the Allocated Space:

free

 An allocated block can be returned to the

system for future use by using the free function

 General syntax:

free (ptr);

where ptr is a pointer to a memory block which

has been previously created using malloc

 Note that no size needs to be mentioned for the

allocated block, the system remembers it for

each pointer returned

12

Can we allocate only arrays?

 malloc can be used to allocate memory for
single variables also

p = (int *) malloc (sizeof(int));

Allocates space for a single int, which can be
accessed as *p

 Single variable allocations are just special
case of array allocations

Array with only one element

13

malloc()-ing array of structures
typedef struct{

char name[20];

int roll;

float SGPA[8], CGPA;

} person;

void main()

{

person *student;

int i,j,n;

scanf("%d", &n);

student = (person *)malloc(n*sizeof(person));

for (i=0; i<n; i++) {

scanf("%s", student[i].name);

scanf("%d", &student[i].roll);

for(j=0;j<8;j++) scanf("%f", &student[i].SGPA[j]);

scanf("%f", &student[i].CGPA);

}

}

14

Static array of pointers

#define N 20

#define M 10

int main()

{

char word[N], *w[M];

int i, n;

scanf("%d",&n);

for (i=0; i<n; ++i) {

scanf("%s", word);

w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));

strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);

return 0;

}

15

Static array of pointers

#define N 20

#define M 10

int main()

{

char word[N], *w[M];

int i, n;

scanf("%d",&n);

for (i=0; i<n; ++i) {

scanf("%s", word);

w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));

strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);

return 0;

}

4

Tendulkar

Sourav

Khan

India

w[0] = Tendulkar

w[1] = Sourav

w[2] = Khan

w[3] = India

Output

16

w

0

1

2

3

9

How it will look like

T e n d u l k a r \0

S o u r a v \0

K h a n \0

I n d i a \0

17

Pointers to Pointers

 Pointers are also variables (storing addresses),

so they have a memory location, so they also

have an address

 Pointer to pointer – stores the address of a

pointer variable

int x = 10, *p, **q;

p = &x;

q = &p;

printf(“%d %d %d”, x, *p, *(*q));

will print 10 10 10 (since *q = p)

18

Allocating Pointer to Pointer

int **p;

p = (int **) malloc(3 * sizeof(int *));

p

p[2]

p[1]

p[0]

int ** int *

int *

int *

19

Dynamic Arrays of pointers

int main()

{

char word[20], **w; /* “**w” is a pointer to a pointer array */

int i, n;

scanf("%d",&n);

w = (char **) malloc (n * sizeof(char *));

for (i=0; i<n; ++i) {

scanf("%s", word);

w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));

strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i, w[i]);

return 0;

}

20

Dynamic Arrays of pointers

int main()

{

char word[20], **w; /* “**w” is a pointer to a pointer array */

int i, n;

scanf("%d",&n);

w = (char **) malloc (n * sizeof(char *));

for (i=0; i<n; ++i) {

scanf("%s", word);

w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));

strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i, w[i]);

return 0;

}

5

India

Australia

Kenya

NewZealand

SriLanka

w[0] = India

w[1] = Australia

w[2] = Kenya

w[3] = NewZealand

w[4] = SriLanka

Output

21

w 0

1

2

3

4

How this will look like

I n d i a \0

S r i L a n k a \0

A u s t r a l I a \0

K e n y a \0

N e w Z e a l a n d \0

22

Dynamic Allocation of 2-d Arrays

 Recall that address of [i][j]-th element is found
by first finding the address of first element of i-
th row, then adding j to it

 Now think of a 2-d array of dimension [M][N]
as M 1-d arrays, each with N elements, such
that the starting address of the M arrays are
contiguous (so the starting address of k-th
row can be found by adding 1 to the starting
address of (k-1)-th row)

 This is done by allocating an array p of M
pointers, the pointer p[k] to store the starting
address of the k-th row

23

Contd.

 Now, allocate the M arrays, each of N
elements, with p[k] holding the pointer for
the k-th row array

 Now p can be subscripted and used as a
2-d array

 Address of p[i][j] = *(p+i) + j (note that
*(p+i) is a pointer itself, and p is a pointer
to a pointer)

24

Dynamic Allocation of 2-d Arrays
int **allocate (int h, int w)

{

int **p;

int i, j;

p = (int **) malloc(h*sizeof (int *));

for (i=0;i<h;i++)

p[i] = (int *) malloc(w * sizeof (int));

return(p);

}

Allocate array

of pointers

Allocate array of

integers for each

row

void read_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

for (j=0;j<w;j++)

scanf ("%d", &p[i][j]);

}

Elements accessed

like 2-D array elements.

25

void print_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

{

for (j=0;j<w;j++)

printf ("%5d ", p[i][j]);

printf ("\n");

}

}

Contd.
int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

read_data (p, M, N);

printf ("\nThe array read as \n");

print_data (p, M, N);

return 0;

}

26

void print_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

{

for (j=0;j<w;j++)

printf ("%5d ", p[i][j]);

printf ("\n");

}

}

Contd.
int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

read_data (p, M, N);

printf ("\nThe array read as \n");

print_data (p, M, N);

return 0;

}

Give M and N

3 3

1 2 3

4 5 6

7 8 9

The array read

as

1 2 3

4 5 6

7 8 9

27

Memory Layout in Dynamic Allocation
int **allocate (int h, int w)

{

int **p;

int i, j;

p = (int **)malloc(h*sizeof (int *));

for (i=0; i<h; i++)

printf(“%10d”, &p[i]);

printf(“\n\n”);

for (i=0;i<h;i++)

p[i] = (int *)malloc(w*sizeof(int));

return(p);

}

int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

for (i=0;i<M;i++) {

for (j=0;j<N;j++)

printf ("%10d", &p[i][j]);

printf(“\n”);

}

return 0;

}

28

Output

3 3

31535120 31535128 31535136

31535152 31535156 31535160

31535184 31535188 31535192

31535216 31535220 31535224

Starting address of each

row, contiguous (pointers

are 8 bytes long)

Elements in each

row are contiguous

