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Pointers — Recap

int count; — names a memory cell called count.

Throughout the program the same memory cell gets accessed
when we access count.

The address of count is called its ¢-value.

The value of count (its r-value) may change during the course
of the program.

int *countptr; — names a memory cell called countptr.
Throughout the program the same memory cell gets accessed
when we access countptr as /-value.

However different cells may get accessed when we access

countptr as r-value which is the f-value of some other
variable.



An Application : Passing Parameters to Functions
A correct swap function :

#include<stdio.h>
void swap(int *pl, int *p2)

{
int t;
t = *pl;
*pl = *p2;
*p2 = t;

}

int main()

{

int a = 10, b = 20;
swap (&a, &b);
printf ("%d %d",a,b);
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Array of pointers

Goal: We wish to store the names of three students in our class —
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.
® What data-structure will you use?
How about char Names[3][11]7
® Use char* Names[3]
® “Names” is an array of pointers to characters.
#include<stdio.h>
main() {
char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};
int i;
for (i=0; i<3; i++) {
printf ("%s\n",Names[i]);
}
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An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>
main() {
char *Names[3];
int i;

for (i=0; i<3; i++) {
printf ("Enter Name %d\t", i+1);
scanf ("%s", Names[i]);

}

This program is incorrect! There is no memory allocated for
Names[i]. The program most likely gives a core dump.
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#include<stdio.h>

int main() {
char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf ("%s", temp);

Names[i] = temp;

printf ("String input %s\n",Names[i]);
}
for (i=0; i<3; i++) {
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An array of pointers — Another program

Goal: Read the three names from standard input.

#include<stdio.h>
int main() {
char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {
scanf ("%s", temp);
Names[i] = temp;
printf ("String input %s\n

This program is still in-

correct!  All 3 array
Qcanns[pggw to the
ame array temp.

}
for (i=0; i<3; i++) {
printf ("String output %s\n",Names[i]);
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Allocating memory using malloc

malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.

int *ptr;
ptr = (int *) malloc(sizeof (int));
The input to malloc is size of the memory required.

malloc returns a pointer to the memory allocated — the type
of the pointer is (void *).

Note the typecasting into (int *).

Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

This is unlike variables which are unavailable outside their
scope.
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Goal: Read the three names from standard input.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int main() {
char *Names[3]; char temp[100]; int i;
for (i=0; i<3; i++) {
scanf ("%s", temp);
Names [i]=(char *)malloc(sizeof (strlen(temp)));
strcpy (Names[i], temp);
printf("String input %s\n",Names[i]);
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return 0;



An array of pointers — a correct program

Goal: Read the three names from standard input.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int main() {

}

char *Names[3]; char temp[100]; int i;
for (i=0; i<3; i++) {
scanf ("}s", temp);
Names [i]=(char *)malloc(sizeof (strlen(temp)));
strcpy (Names[i], temp);
printf ("String input %s\n",Names[i]);
}
for (i=0; i<3; i++)
printf ("String output %s\n",Names[il);
return 0;

Note the use of malloc and also the stdlib.h
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Some more practice

Consider the following declaration:
char * ptr = “geek”;
What is char x = *(ptr+3); 7

Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

This method is useful when you do not have any address
assigned to the pointer.

Declaration: int *p = NULL
if(ptr) : succeeds if p is not null

if(!ptr) : succeeds if p is null



More practice: Pointers and strings

#include <stdio.h>

#include <string.h>

int main()

{

char str[]="Hello Guru99!'!";

char *p;

p=str;

printf ("First character is:%c\n",*p);
p =p+1;

printf ("Next character is:%c\n",*p);
printf ("Printing all the characters in a string\n");
p=str; //reset the pointer

for(int i=0;i<strlen(str) ;i++)

{

printf ("%c\n",*p) ;

pt+;

}

return O;

}



