CS1100 - Introduction to Programming

Instructor: Shweta Agrawal
Lecture 25

CS1100 - Introduction to Programming

Instructor: Shweta Agrawal
Lecture 25

Data Types in C, Operators. Input and the
Output.

Modifying the control flow in Programs
if-else, switch, loops : while, do-while,
for. So far...

Arrays and Strings in C.
Functions & modular programming.

Recursion.

CS1100 - Introduction to Programming

Instructor: Shweta Agrawal
Lecture 25

Data Types in C, Operators. Input and the
Output.

Modifying the control flow in Programs
if-else, switch, loops : while, do-while,
for.

Arrays and Strings in C.
Functions & modular programming.

Recursion.

So far...

Pointers in C, Pass by reference
Dynamic memory allocation

Structures in C

Up Next...

Pointers — Recap

int count; — names a memory cell called count.

Throughout the program the same memory cell gets accessed
when we access count.

The address of count is called its ¢-value.

The value of count (its r-value) may change during the course
of the program.

Pointers — Recap

int count; — names a memory cell called count.

Throughout the program the same memory cell gets accessed
when we access count.

The address of count is called its ¢-value.

The value of count (its r-value) may change during the course
of the program.

int *countptr; — names a memory cell called countptr.

Pointers — Recap

int count; — names a memory cell called count.

Throughout the program the same memory cell gets accessed
when we access count.

The address of count is called its ¢-value.

The value of count (its r-value) may change during the course
of the program.

int *countptr; — names a memory cell called countptr.

Throughout the program the same memory cell gets accessed
when we access countptr as /-value.

However different cells may get accessed when we access
countptr as r-value

Pointers — Recap

int count; — names a memory cell called count.

Throughout the program the same memory cell gets accessed
when we access count.

The address of count is called its ¢-value.

The value of count (its r-value) may change during the course
of the program.

int *countptr; — names a memory cell called countptr.
Throughout the program the same memory cell gets accessed
when we access countptr as /-value.

However different cells may get accessed when we access

countptr as r-value which is the f-value of some other
variable.

An Application : Passing Parameters to Functions
A correct swap function :

#include<stdio.h>
void swap(int *pl, int *p2)

{
int t;
t = *pl;
*pl = *p2;
*p2 = t;

}

int main()

{

int a = 10, b = 20;
swap (&a, &b);
printf ("%d %d",a,b);

An Application : Passing Parameters to Functions

. Incorrect Version :
A correct swap function :

#include<stdio.h>

#include<stdio.h>
hess " void swap(int *pl, int *p2)

void swap(int *pl, int *p2)

. {
ot b int *temp;
t = *;’1 vemp = pl’
*p2 = t; p2 = temp;
} , '
Lt .
zn main () int main()
int a = 10, b = 20; ' int a = 10, b = 20;
swap(&a, &b); Swap(&a &{)) ’
i tf "ood ood-"’ ’b ; 3 ’o y :
) printf("%d %d",a,b) printf("%d %d\n",a,b);

Array of pointers

Goal: We wish to store the names of three students in our class —

“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

Array of pointers

Goal: We wish to store the names of three students in our class —

“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

® What data-structure will you use?

Array of pointers

Goal: We wish to store the names of three students in our class —

“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

® What data-structure will you use?
How about char Names[3] [11]7

Array of pointers

Goal: We wish to store the names of three students in our class —

“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

® What data-structure will you use?
How about char Names[3][11]7
® Use char* Names[3]

Array of pointers

Goal: We wish to store the names of three students in our class —
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.
® What data-structure will you use?
How about char Names[3][11]7
® Use char* Names[3]
® “Names” is an array of pointers to characters.

Array of pointers

Goal: We wish to store the names of three students in our class —
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.
® What data-structure will you use?
How about char Names[3][11]7
® Use char* Names[3]
® “Names” is an array of pointers to characters.
#include<stdio.h>
main() {
char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};
int i;
for (i=0; i<3; i++) {
printf ("%s\n",Names[i]);
}

An array of pointers

Goal: Read the three names from standard input.

An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>

main() {
char *Names[3];
int i;

for (i=0; i<3; i++) {
printf ("Enter Name %d\t", i+1);
scanf ("%s", Names[i]);

An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>
main() {
char *Names[3];
int i;

for (i=0; i<3; i++) {
printf ("Enter Name %d\t", i+1);
scanf ("%s", Names[i]);

}

This program is incorrect! There is no memory allocated for
Names[i]. The program most likely gives a core dump.

An array of pointers — Another program

Goal: Read the three names from standard input.

An array of pointers — Another program

Goal: Read the three names from standard input.

#include<stdio.h>

int main() {
char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf ("%s", temp);

Names[i] = temp;

printf ("String input %s\n",Names[i]);
}
for (i=0; i<3; i++) {

printf ("String output %s\n",Names[i]);
}

An array of pointers — Another program

Goal: Read the three names from standard input.

#include<stdio.h>
int main() {
char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {
scanf ("%s", temp);
Names[i] = temp;
printf ("String input %s\n

This program is still in-

correct! All 3 array
Qcanns[pggw to the
ame array temp.

}
for (i=0; i<3; i++) {
printf ("String output %s\n",Names[i]);

Allocating memory using malloc

® malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.

Allocating memory using malloc

® malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.
® int *ptr;
ptr = (int *) malloc(sizeof (int));

Allocating memory using malloc

malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.
int *ptr;

ptr = (int *) malloc(sizeof (int));

The input to malloc is size of the memory required.

malloc returns a pointer to the memory allocated — the type
of the pointer is (void *).

Allocating memory using malloc

malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.

int *ptr;
ptr = (int *) malloc(sizeof (int));
The input to malloc is size of the memory required.

malloc returns a pointer to the memory allocated — the type
of the pointer is (void *).

Note the typecasting into (int *).

Allocating memory using malloc

malloc — memory allocator — is a function that allocates
memory to the program and returns a pointer to that memory.

int *ptr;
ptr = (int *) malloc(sizeof (int));
The input to malloc is size of the memory required.

malloc returns a pointer to the memory allocated — the type
of the pointer is (void *).

Note the typecasting into (int *).

Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

This is unlike variables which are unavailable outside their
scope.

An array of pointers — a correct program

Goal: Read the three names from standard input.

An array of pointers — a correct program

Goal: Read the three names from standard input.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int main() {
char *Names[3]; char temp[100]; int i;
for (i=0; i<3; i++) {
scanf ("%s", temp);
Names [i]=(char *)malloc(sizeof (strlen(temp)));
strcpy (Names[i], temp);
printf("String input %s\n",Names[i]);
}
for (i=0; i<3; i++)
printf ("String output %s\n",Names[il);
return 0;

An array of pointers — a correct program

Goal: Read the three names from standard input.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int main() {

}

char *Names[3]; char temp[100]; int i;
for (i=0; i<3; i++) {
scanf ("}s", temp);
Names [i]=(char *)malloc(sizeof (strlen(temp)));
strcpy (Names[i], temp);
printf ("String input %s\n",Names[i]);
}
for (i=0; i<3; i++)
printf ("String output %s\n",Names[il);
return 0;

Note the use of malloc and also the stdlib.h

2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18,20}, {25,26,27}};
How to reference these elements using pointers?

2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18,20}, {25,26,27}};
How to reference these elements using pointers?

In general, nums[i][j] is equivalent to *(*(nums-i)+j)

Pointer Notation Array Notation Value
*("nums) nums[0][0] 16
*(*nums+1) nums[0][1] 18
*(*nums+2) nums[0][2] 20
((nums + 1)) nums[1]1[0] 25
F(*(nums + 1)+1) nums[1][1] 26
*("(nums + 1)+2) nums[1][2] 27

2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18,20}, {25,26,27}};
How to reference these elements using pointers?

In general, nums[i][j] is equivalent to *(*(nums-i)+j)

Pointer Notation Array Notation Value
*("nums) nums[0][0] 16
*(*nums+1) nums[0][1] 18
*(*nums+2) nums[0][2] 20
((nums + 1)) nums[1]1[0] 25
F(*(nums + 1)+1) nums[1][1] 26
*("(nums + 1)+2) nums[1][2] 27

Some more practice

® Consider the following declaration:
char * ptr = “geek”;

Some more practice

® Consider the following declaration:
char * ptr = “geek”;

® What is char x = *(ptr+3); ?

Some more practice

® Consider the following declaration:
char * ptr = “geek”;

e What is char x = *(ptr+3); 7

® Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

Some more practice

Consider the following declaration:

char * ptr = “geek”;

What is char x = *(ptr+3); ?

Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

This method is useful when you do not have any address
assigned to the pointer.

Some more practice

Consider the following declaration:

char * ptr = “geek”;

What is char x = *(ptr+3); ?

Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

This method is useful when you do not have any address
assigned to the pointer.

Declaration: int *p = NULL

Some more practice

Consider the following declaration:
char * ptr = “geek”;

What is char x = *(ptr+3); 7

Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

This method is useful when you do not have any address
assigned to the pointer.

Declaration: int *p = NULL

if(ptr) : succeeds if p is not null

Some more practice

Consider the following declaration:
char * ptr = “geek”;
What is char x = *(ptr+3); 7

Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

This method is useful when you do not have any address
assigned to the pointer.

Declaration: int *p = NULL
if(ptr) : succeeds if p is not null

if(!ptr) : succeeds if p is null

More practice: Pointers and strings

#include <stdio.h>

#include <string.h>

int main()

{

char str[]="Hello Guru99!'!";

char *p;

p=str;

printf ("First character is:%c\n",*p);
p =p+1;

printf ("Next character is:%c\n",*p);
printf ("Printing all the characters in a string\n");
p=str; //reset the pointer

for(int i=0;i<strlen(str) ;i++)

{

printf ("%c\n",*p) ;

pt+;

}

return O;

}

