
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 30

Pointers to Structures

#include "stdio.h"

struct number {

int img;

float real;

};

int main()

{

struct number *ptr;

printf("%d %f\n", ptr->img, ptr->real);

}

Accessing an element of the structure pointed to by ptr :

• via pointer dereferncng : (*ptr).img and (*ptr).real

• Neater method : use ptr->img and ptr->real respectively.
The operator ->is minus sign followed by greater than symbol.

• This will cause segmentation fault. Why?

Pointers to Structures

#include "stdio.h"

struct number {

int img;

float real;

};

int main()

{

struct number *ptr;

printf("%d %f\n", ptr->img, ptr->real);

}

Accessing an element of the structure pointed to by ptr :

• via pointer dereferncng : (*ptr).img and (*ptr).real

• Neater method : use ptr->img and ptr->real respectively.
The operator ->is minus sign followed by greater than symbol.

• This will cause segmentation fault. Why?

Pointers to Structures

#include "stdio.h"

struct number {

int img;

float real;

};

int main()

{

struct number *ptr;

printf("%d %f\n", ptr->img, ptr->real);

}

Accessing an element of the structure pointed to by ptr :

• via pointer dereferncng : (*ptr).img and (*ptr).real

• Neater method : use ptr->img and ptr->real respectively.
The operator ->is minus sign followed by greater than symbol.

• This will cause segmentation fault. Why?

Pointers to Structures

#include "stdio.h"

struct number {

int img;

float real;

};

int main()

{

struct number *ptr;

printf("%d %f\n", ptr->img, ptr->real);

}

Accessing an element of the structure pointed to by ptr :

• via pointer dereferncng : (*ptr).img and (*ptr).real

• Neater method : use ptr->img and ptr->real respectively.
The operator ->is minus sign followed by greater than symbol.

• This will cause segmentation fault. Why?

Pointers to Structures

#include "stdio.h"

struct number {

int img;

float real;

};

int main()

{

struct number *ptr;

printf("%d %f\n", ptr->img, ptr->real);

}

Accessing an element of the structure pointed to by ptr :

• via pointer dereferncng : (*ptr).img and (*ptr).real

• Neater method : use ptr->img and ptr->real respectively.
The operator ->is minus sign followed by greater than symbol.

• This will cause segmentation fault. Why?

Pointers to Structures : Accessing the members

#include <stdio.h>

struct number {

int img;

float real;

};

int main()

{

struct number *ptr;

struct number num;

num.img = 10;

num.real = 0.56;

ptr = #

printf("Via Num : %d %f\n",num.img,num.real);

printf("Via *ptr. : %d %f\n",(*ptr).img,(*ptr).real);

printf("Via ptr-> : %d %f\n",ptr->img,ptr->real);

}

Pointers to Structures: Allocation

#include "stdio.h"

#include "stdlib.h"

struct number {

int img;

float real;

};

int main()

{

struct number *ptr=NULL;

ptr = (struct number *)

malloc (1*sizeof(struct number));

ptr->img = 5;

ptr->real = 5.0;

printf("%d %f\n", ptr->img, ptr->real);

}

Precedence and Association

• Both . and -> associate left to right.

• They are at top of precedence hierarchy

• Example : If we have :
struct rectangle r, *rp = r;

The following forms are equivalent:
r.pt1.x (r.pt1).x

rp->pt1.x (rp->pt1).x

(*rp).pt1.x

typedef in C

• Do not like float being used for fractions data type?

You are not alone. Good news : There is a fix !.

• You can do typedef to rename float to your favorite keyword.

• Syntax : typedef float fraction;

• Then if you use fraction x; it is same as writing float x;.

• This has more implications:You can do typedef for structures!.
struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

typedef struct student STUDENT;

int main() {

STUDENT S1,S2;

S1 = {"CS15B1","Mahendar",18,1);

S2 = S1;

}

typedef in C

• Do not like float being used for fractions data type?
You are not alone.

Good news : There is a fix !.

• You can do typedef to rename float to your favorite keyword.

• Syntax : typedef float fraction;

• Then if you use fraction x; it is same as writing float x;.

• This has more implications:You can do typedef for structures!.
struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

typedef struct student STUDENT;

int main() {

STUDENT S1,S2;

S1 = {"CS15B1","Mahendar",18,1);

S2 = S1;

}

typedef in C

• Do not like float being used for fractions data type?
You are not alone. Good news : There is a fix !.

• You can do typedef to rename float to your favorite keyword.

• Syntax : typedef float fraction;

• Then if you use fraction x; it is same as writing float x;.

• This has more implications:You can do typedef for structures!.
struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

typedef struct student STUDENT;

int main() {

STUDENT S1,S2;

S1 = {"CS15B1","Mahendar",18,1);

S2 = S1;

}

typedef in C

• Do not like float being used for fractions data type?
You are not alone. Good news : There is a fix !.

• You can do typedef to rename float to your favorite keyword.

• Syntax : typedef float fraction;

• Then if you use fraction x; it is same as writing float x;.

• This has more implications:You can do typedef for structures!.
struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

typedef struct student STUDENT;

int main() {

STUDENT S1,S2;

S1 = {"CS15B1","Mahendar",18,1);

S2 = S1;

}

typedef in C

• Do not like float being used for fractions data type?
You are not alone. Good news : There is a fix !.

• You can do typedef to rename float to your favorite keyword.

• Syntax : typedef float fraction;

• Then if you use fraction x; it is same as writing float x;.

• This has more implications:You can do typedef for structures!.
struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

typedef struct student STUDENT;

int main() {

STUDENT S1,S2;

S1 = {"CS15B1","Mahendar",18,1);

S2 = S1;

}

typedef in C

• Do not like float being used for fractions data type?
You are not alone. Good news : There is a fix !.

• You can do typedef to rename float to your favorite keyword.

• Syntax : typedef float fraction;

• Then if you use fraction x; it is same as writing float x;.

• This has more implications:You can do typedef for structures!.
struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

typedef struct student STUDENT;

int main() {

STUDENT S1,S2;

S1 = {"CS15B1","Mahendar",18,1);

S2 = S1;

}

typedef in C

• Do not like float being used for fractions data type?
You are not alone. Good news : There is a fix !.

• You can do typedef to rename float to your favorite keyword.

• Syntax : typedef float fraction;

• Then if you use fraction x; it is same as writing float x;.

• This has more implications:You can do typedef for structures!.

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

typedef struct student STUDENT;

int main() {

STUDENT S1,S2;

S1 = {"CS15B1","Mahendar",18,1);

S2 = S1;

}

typedef in C

• Do not like float being used for fractions data type?
You are not alone. Good news : There is a fix !.

• You can do typedef to rename float to your favorite keyword.

• Syntax : typedef float fraction;

• Then if you use fraction x; it is same as writing float x;.

• This has more implications:You can do typedef for structures!.
struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

typedef struct student STUDENT;

int main() {

STUDENT S1,S2;

S1 = {"CS15B1","Mahendar",18,1);

S2 = S1;

}

typedef in C

• Do not like float being used for fractions data type?
You are not alone. Good news : There is a fix !.

• You can do typedef to rename float to your favorite keyword.

• Syntax : typedef float fraction;

• Then if you use fraction x; it is same as writing float x;.

• This has more implications:You can do typedef for structures!.
struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

typedef struct student STUDENT;

int main() {

STUDENT S1,S2;

S1 = {"CS15B1","Mahendar",18,1);

S2 = S1;

}

Precedence & Associativity of operators

Practicing Associativity of -> and .

Given the declaration struct {int len;char *str;} *p;

Expression Action

++p->len

increments len not p; same as ++(p->len)

(++p)->len increments p before accessing len

p++->len increments p after accessing len

*p->str fetches whatever str points to

*p->str++ increments str after accessing.

(*p->str)++ increments whatever str points to.

Practicing Associativity of -> and .

Given the declaration struct {int len;char *str;} *p;

Expression Action

++p->len increments len not p; same as ++(p->len)

(++p)->len

increments p before accessing len

p++->len increments p after accessing len

*p->str fetches whatever str points to

*p->str++ increments str after accessing.

(*p->str)++ increments whatever str points to.

Practicing Associativity of -> and .

Given the declaration struct {int len;char *str;} *p;

Expression Action

++p->len increments len not p; same as ++(p->len)

(++p)->len increments p before accessing len

p++->len

increments p after accessing len

*p->str fetches whatever str points to

*p->str++ increments str after accessing.

(*p->str)++ increments whatever str points to.

Practicing Associativity of -> and .

Given the declaration struct {int len;char *str;} *p;

Expression Action

++p->len increments len not p; same as ++(p->len)

(++p)->len increments p before accessing len

p++->len increments p after accessing len

*p->str

fetches whatever str points to

*p->str++ increments str after accessing.

(*p->str)++ increments whatever str points to.

Practicing Associativity of -> and .

Given the declaration struct {int len;char *str;} *p;

Expression Action

++p->len increments len not p; same as ++(p->len)

(++p)->len increments p before accessing len

p++->len increments p after accessing len

*p->str fetches whatever str points to

*p->str++

increments str after accessing.

(*p->str)++ increments whatever str points to.

Practicing Associativity of -> and .

Given the declaration struct {int len;char *str;} *p;

Expression Action

++p->len increments len not p; same as ++(p->len)

(++p)->len increments p before accessing len

p++->len increments p after accessing len

*p->str fetches whatever str points to

*p->str++ increments str after accessing.

(*p->str)++

increments whatever str points to.

Practicing Associativity of -> and .

Given the declaration struct {int len;char *str;} *p;

Expression Action

++p->len increments len not p; same as ++(p->len)

(++p)->len increments p before accessing len

p++->len increments p after accessing len

*p->str fetches whatever str points to

*p->str++ increments str after accessing.

(*p->str)++ increments whatever str points to.

Code Examples - 1

#include <stdio.h>

typedef struct complex {

float real;

float imag;

} complex;

complex add(complex n1, complex n2);

int main() {

complex n1, n2, result;

printf("For 1st complex number \n");

printf("Enter the real and imaginary parts: ");

scanf("%f %f", &n1.real, &n1.imag);

printf("\nFor 2nd complex number \n");

printf("Enter the real and imaginary parts: ");

scanf("%f %f", &n2.real, &n2.imag);

result = add(n1, n2);

printf("Sum = %.1f + %.1fi", result.real, result.imag);

return 0;

}

complex add(complex n1, complex n2) {

complex temp;

temp.real = n1.real + n2.real;

temp.imag = n1.imag + n2.imag;

return (temp);

}

Code Examples - 2

#include <stdio.h>

struct TIME {

int seconds;

int minutes;

int hours;

};

void differenceBetweenTimePeriod(struct TIME t1, struct TIME t2, struct TIME *diff);

int main() {

struct TIME startTime, stopTime, diff;

printf("Enter the start time. \n");

printf("Enter hours, minutes and seconds: ");

scanf("%d %d %d", &startTime.hours, &startTime.minutes, &startTime.seconds);

printf("Enter the stop time. \n");

printf("Enter hours, minutes and seconds: ");

scanf("%d %d %d", &stopTime.hours, &stopTime.minutes, &stopTime.seconds);

differenceBetweenTimePeriod(startTime, stopTime, &diff);

printf("\nTime Difference: %d:%d:%d - ", startTime.hours, startTime.minutes, startTime.seconds);

printf("%d:%d:%d ", stopTime.hours, stopTime.minutes, stopTime.seconds);

printf("= %d:%d:%d\n", diff.hours, diff.minutes, diff.seconds);

return 0;

}

void differenceBetweenTimePeriod(struct TIME start, struct TIME stop, struct TIME *diff) {

while (stop.seconds > start.seconds) {

--start.minutes;

start.seconds += 60; }

diff->seconds = start.seconds - stop.seconds;

while (stop.minutes > start.minutes) {

--start.hours;

start.minutes += 60; }

diff->minutes = start.minutes - stop.minutes;

diff->hours = start.hours - stop.hours;

}

Shweta Agrawal
In this code, start time is being
taken as higher than stop time.

Code Examples - 3

#include <stdio.h>

#include <stdlib.h>

struct course {

int marks;

char subject[30];

};

int main() {

struct course *ptr;

int noOfRecords;

printf("Enter the number of records: ");

scanf("%d", &noOfRecords);

// Memory allocation for noOfRecords structures

ptr = (struct course *)malloc(noOfRecords * sizeof(struct course));

for (int i = 0; i < noOfRecords; ++i) {

printf("Enter subject and marks:\n");

scanf("%s %d", (ptr + i)->subject, &(ptr + i)->marks);

}

printf("Displaying Information:\n");

for (int i = 0; i < noOfRecords; ++i) {

printf("%s\t%d\n", (ptr + i)->subject, (ptr + i)->marks);

}

free(ptr);

return 0;

}

Code Examples - 4

#include <stdio.h>

#include <stdlib.h>

struct person {

int age;

float weight;

char name[30];

};

int main()

{

struct person *ptr;

int i, n;

printf("Enter the number of persons: ");

scanf("%d", &n);

ptr = (struct person*) malloc(n * sizeof(struct person));

for(i = 0; i < n; ++i) {

printf("Enter first name and age respectively: ");

scanf("%s %d", (ptr+i)->name, &(ptr+i)->age); }

printf("Displaying Information:\n");

for(i = 0; i < n; ++i)

printf("Name: %s\tAge: %d\n", (ptr+i)->name, (ptr+i)->age);

return 0;

}

