
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 26

Recursive Thinking: Largest Element in an Array

(Better) recursive thinking: Find the largest of the first half, then in the second
half, and then return the largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}

Recursive Thinking: Largest Element in an Array

(Better) recursive thinking: Find the largest of the first half, then in the second
half, and then return the largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}

Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .

Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .

Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .

Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .

Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

Recall: Coding Binary Search

#include <stdio.h>

#define SIZE 1000000

int deepmax(int arr[], int start, int end) {

if (start == end) return arr[start];

else {

int l = deepmax(arr, start+1, end);

if (arr[start] > l) return arr[start];

else return l;

}

}

int shallowmax(int arr[], int start, int end) {

if (start == end) return arr[start];

else {

int mid = (start+end)/2;

int l1 = shallowmax(arr, start, mid);

int l2 = shallowmax(arr, mid+1, end);

if (l1 > l2) return l1;

else return l2;

}

}

main() {

int arr[SIZE];

for (int i=0; i<SIZE; i++) {

arr[i] = i;

}

int max1 = shallowmax(arr, 0, SIZE-1);

printf("shallowmax answer = %d\n", max1);

int max2 = deepmax(arr, 0, SIZE-1);

printf("deepmax answer = %d\n", max2);

}

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations

Recall: Coding Binary Search

#include <stdio.h>

int binarySearch(int array[], int x, int low, int high) {

if (high >= low) {

int mid = low + (high - low) / 2;

// If found at mid, then return it

if (array[mid] == x)

return mid;

// Search the left half

if (array[mid] > x)

return binarySearch(array, x, low, mid - 1);

// Search the right half

return binarySearch(array, x, mid + 1, high);

}

return -1;

}

int main(void) {

int array[] = {3, 4, 5, 6, 7, 8, 9};

int n = sizeof(array) / sizeof(array[0]);

int x = 4;

int result = binarySearch(array, x, 0, n - 1);

if (result == -1)

printf("Not found");

else

printf("Element is found at index %d", result);

}

Sorting an array in decreasing order

Task : Given array of n (n ≤ 1000) numbers. Sort them in
decreasing order of numbers.

15 8 3 12 30 7 9 17 32 19

One possible way: An algorithm

• Find max, place it at first location.

• Sort the array from second location to end.

Called Selection Sort.

Sorting an array in decreasing order

Task : Given array of n (n ≤ 1000) numbers. Sort them in
decreasing order of numbers.

15 8 3 12 30 7 9 17 32 19

One possible way: An algorithm

• Find max, place it at first location.

• Sort the array from second location to end.

Called Selection Sort.

Selection sort

15 8 3 12 30 7 9 17 32 19

32 8 3 12 30 7 9 17 15 19

32 30 3 12 8 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

Pseudo-code :
• while (i ≤ n)

• maxindex = index of the max element in the part of the array
indexed from i to n. Find maxindex. (We have solved this !!)

• swap elements array[i] and array[maxindex]; (We have solved
this too !!)

Selection sort

15 8 3 12 30 7 9 17 32 19

32 8 3 12 30 7 9 17 15 19

32 30 3 12 8 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

Pseudo-code :
• while (i ≤ n)

• maxindex = index of the max element in the part of the array
indexed from i to n. Find maxindex. (We have solved this !!)

• swap elements array[i] and array[maxindex]; (We have solved
this too !!)

Selection sort

15 8 3 12 30 7 9 17 32 19

32 8 3 12 30 7 9 17 15 19

32 30 3 12 8 7 9 17 15 19

...
...

...
...

...
...

...
...

...
...

32 30 19 17 15 12 9 8 7 3

Pseudo-code :
• while (i ≤ n)

• maxindex = index of the max element in the part of the array
indexed from i to n. Find maxindex. (We have solved this !!)

• swap elements array[i] and array[maxindex]; (We have solved
this too !!)

Selection sort

15 8 3 12 30 7 9 17 32 19

32 8 3 12 30 7 9 17 15 19

32 30 3 12 8 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

Pseudo-code :
• while (i ≤ n)

• maxindex = index of the max element in the part of the array
indexed from i to n. Find maxindex.

(We have solved this !!)
• swap elements array[i] and array[maxindex]; (We have solved

this too !!)

Selection sort

15 8 3 12 30 7 9 17 32 19

32 8 3 12 30 7 9 17 15 19

32 30 3 12 8 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

Pseudo-code :
• while (i ≤ n)

• maxindex = index of the max element in the part of the array
indexed from i to n. Find maxindex. (We have solved this !!)

• swap elements array[i] and array[maxindex]; (We have solved
this too !!)

Selection sort

15 8 3 12 30 7 9 17 32 19

32 8 3 12 30 7 9 17 15 19

32 30 3 12 8 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

Pseudo-code :
• while (i ≤ n)

• maxindex = index of the max element in the part of the array
indexed from i to n. Find maxindex. (We have solved this !!)

• swap elements array[i] and array[maxindex];

(We have solved
this too !!)

Selection sort

15 8 3 12 30 7 9 17 32 19

32 8 3 12 30 7 9 17 15 19

32 30 3 12 8 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

Pseudo-code :
• while (i ≤ n)

• maxindex = index of the max element in the part of the array
indexed from i to n. Find maxindex. (We have solved this !!)

• swap elements array[i] and array[maxindex]; (We have solved
this too !!)

Selection sort - from the pseudocode to the program

Pseudo-code :

for i ranging from 1 to n

• maxindex = the index of
the max element in the
part of the array indexed
from i to n. Find
maxindex.

• swap elements array[i]
and array[maxindex];

Program Segment:

for (i=0; i<n; i++)

{

max = i;

for (j=i+1; j<n; j++)

{

if (a[j] > a[max])

max = j;

}

temp = a[i];

a[i] = a[max];

a[max] = temp;

}

Selection sort - from the pseudocode to the program

Pseudo-code :

for i ranging from 1 to n

• maxindex = the index of
the max element in the
part of the array indexed
from i to n. Find
maxindex.

• swap elements array[i]
and array[maxindex];

Program Segment:

for (i=0; i<n; i++)

{

max = i;

for (j=i+1; j<n; j++)

{

if (a[j] > a[max])

max = j;

}

temp = a[i];

a[i] = a[max];

a[max] = temp;

}

Selection sort – number of comparisons

• Which input do we consider?

• Do number of comparisons depend on the particular array
values?

• How does the method perform when the array is nearly sorted?

• Consider a “worst-case” input.

• Irrespective of whether the array is sorted or not, the method
always needs n(n−1)

2 comparisons.

Selection sort – number of comparisons

• Which input do we consider?

• Do number of comparisons depend on the particular array
values?

• How does the method perform when the array is nearly sorted?

• Consider a “worst-case” input.

• Irrespective of whether the array is sorted or not, the method
always needs n(n−1)

2 comparisons.

Selection sort – number of comparisons

• Which input do we consider?

• Do number of comparisons depend on the particular array
values?

• How does the method perform when the array is nearly sorted?

• Consider a “worst-case” input.

• Irrespective of whether the array is sorted or not, the method
always needs n(n−1)

2 comparisons.

Selection sort – number of comparisons

• Which input do we consider?

• Do number of comparisons depend on the particular array
values?

• How does the method perform when the array is nearly sorted?

• Consider a “worst-case” input.

• Irrespective of whether the array is sorted or not, the method
always needs n(n−1)

2 comparisons.

Selection sort – number of comparisons

• Which input do we consider?

• Do number of comparisons depend on the particular array
values?

• How does the method perform when the array is nearly sorted?

• Consider a “worst-case” input.

• Irrespective of whether the array is sorted or not, the method
always needs n(n−1)

2 comparisons.

From Modular Perspective: Selection Sort

Selection Sort: Sort n num-
bers in descending order

Pseudo-code :

for i ranging from 1 to n

• maxindex = the index of
the max element in the
part of the array indexed
from i to n. Find
maxindex.

• swap elements array[i]
and array[maxindex];

Subtasks identified:

findmax(i,n) : find the
index of maxelement in the
subarray from i to n.

swap(i,j) : swap i th and
j th elements of A.

Once this is done (and
solved), here is the remain-
ing code.

for i = 1 to n

{

max = findmax(i,n);

swap(i,max);

}

From Modular Perspective: Selection Sort

Selection Sort: Sort n num-
bers in descending order

Pseudo-code :

for i ranging from 1 to n

• maxindex = the index of
the max element in the
part of the array indexed
from i to n. Find
maxindex.

• swap elements array[i]
and array[maxindex];

Subtasks identified:

findmax(i,n) : find the
index of maxelement in the
subarray from i to n.

swap(i,j) : swap i th and
j th elements of A.

Once this is done (and
solved), here is the remain-
ing code.

for i = 1 to n

{

max = findmax(i,n);

swap(i,max);

}

From Modular Perspective: Selection Sort

Selection Sort: Sort n num-
bers in descending order

Pseudo-code :

for i ranging from 1 to n

• maxindex = the index of
the max element in the
part of the array indexed
from i to n. Find
maxindex.

• swap elements array[i]
and array[maxindex];

Subtasks identified:

findmax(i,n) : find the
index of maxelement in the
subarray from i to n.

swap(i,j) : swap i th and
j th elements of A.

Once this is done (and
solved), here is the remain-
ing code.

for i = 1 to n

{

max = findmax(i,n);

swap(i,max);

}

Insertion Sort

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 12 8 3 30 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

• Although final result is the same, intermediate steps are
different from selection sort.

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 12 8 3 30 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

• Although final result is the same, intermediate steps are
different from selection sort.

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 12 8 3 30 7 9 17 15 19

...
...

...
...

...
...

...
...

...
...

32 30 19 17 15 12 9 8 7 3

• Although final result is the same, intermediate steps are
different from selection sort.

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 12 8 3 30 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

• Although final result is the same, intermediate steps are
different from selection sort.

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 12 8 3 30 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

• Although final result is the same, intermediate steps are
different from selection sort.

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<= n−1; i ++) {
j = i ;
i f (A [j] <= A [j −1])

continue ;
// Now A[j] > A[j −1]

// swap A[j] w i th A[j −1] t i l l . . . ?
}

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<= n−1; i ++) {
j = i ;
i f (A [j] <= A [j −1])

continue ;
// Now A[j] > A[j −1]

// swap A[j] w i th A[j −1] t i l l . . . ?
}

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<= n−1; i ++) {
j = i ;
i f (A [j] <= A [j −1])

continue ;
// Now A[j] > A[j −1]

// swap A[j] w i th A[j −1] t i l l . . . ?
}

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<= n−1; i ++) {
j = i ;
i f (A [j] <= A [j −1])

continue ;
// Now A[j] > A[j −1]

// swap A[j] w i th A[j −1] t i l l . . . ?
}

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<= n−1; i ++) {
j = i ;
i f (A [j] <= A [j −1])

continue ;
// Now A[j] > A[j −1]

// swap A[j] w i th A[j −1] t i l l . . . ?
}

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .
f o r (i =1; i<= n−1; i ++) {

j = i ;
i f (A [j] <= A [j −1])

continue ;
// Now A[j] > A[j −1]
whi le (A [j] > A [j −1]) {

// Swap A[j] and A[j −1]
j = j −1;

}
}

What happens
for j=4?

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .
f o r (i =1; i<= n−1; i ++) {

j = i ;
i f (A [j] <= A [j −1])

continue ;
// Now A[j] > A[j −1]
whi le (A [j] > A [j −1]) {

// Swap A[j] and A[j −1]
j = j −1;

}
}

What happens
for j=4?

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<= n−1; i ++) {
j = i ;
whi le (A [j]>A [j −1] && j >0) {

// Swap A[j] and A[j −1]
j = j −1;

}
}

• Note j > 0

• Is it
correct?

No!

Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<= n−1; i ++) {
j = i ;
whi le (A [j]>A [j −1] && j >0) {

// Swap A[j] and A[j −1]
j = j −1;

}
}

• Note j > 0

• Is it
correct?
No!

Insertion Sort

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<= n−1; i ++) {
j = i ;
whi le (j >0 && A [j]>A [j −1]) {

// Swap A[j] and A[j −1]
j = j −1;

}
}

• Need to check (j > 0) before checking A[j] > A[j-1]!

• Note the use of short-circuiting.

Insertion Sort – another way

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 3 3 30 7 9 17 32 19

15 8 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<=n−1; i ++) {
x = A [i] ;
j = i −1;
whi le (−−−−−−−) {

A [j +1] = A [j] ;
j = j −1;

}
}

Insertion Sort – another way

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 3 3 30 7 9 17 32 19

15 8 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<=n−1; i ++) {
x = A [i] ;
j = i −1;
whi le (−−−−−−−) {

A [j +1] = A [j] ;
j = j −1;

}
}

Insertion Sort – another way

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 3 3 30 7 9 17 32 19

15 8 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<=n−1; i ++) {
x = A [i] ;
j = i −1;
whi le (−−−−−−−) {

A [j +1] = A [j] ;
j = j −1;

}
}

Insertion Sort – another way

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 3 3 30 7 9 17 32 19

15 8 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<=n−1; i ++) {
x = A [i] ;
j = i −1;
whi le (−−−−−−−) {

A [j +1] = A [j] ;
j = j −1;

}
}

Insertion Sort – another way

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 3 3 30 7 9 17 32 19

15 8 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<=n−1; i ++) {
x = A [i] ;
j = i −1;
whi le (j >= 0 && x > A [j]) {

A [j +1] = A [j] ;
j = j −1;

}
A [j +1] = x ;

}

• Note j ≥ 0
(line 6).

• See line 10.

Insertion Sort – another way

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 3 3 30 7 9 17 32 19

15 8 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<=n−1; i ++) {
x = A [i] ;
j = i −1;
whi le (j >= 0 && x > A [j]) {

A [j +1] = A [j] ;
j = j −1;

}
A [j +1] = x ;

}

• Note j ≥ 0
(line 6).

• See line 10.

Insertion Sort – another way

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 3 3 30 7 9 17 32 19

15 8 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r (i =1; i<=n−1; i ++) {
x = A [i] ;
j = i −1;
whi le (j >= 0 && x > A [j]) {

A [j +1] = A [j] ;
j = j −1;

}
A [j +1] = x ;

}

• Note j ≥ 0
(line 6).

• See line 10.

