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Recursive Thinking: Largest Element in an Array

(Better) recursive thinking: Find the largest of the first half, then in the second
half, and then return the largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}
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Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .
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What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.
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Recall: Coding Binary Search

#include <stdio.h>

#define SIZE 1000000

int deepmax(int arr[], int start, int end) {

if (start == end) return arr[start];

else {

int l = deepmax(arr, start+1, end);

if (arr[start] > l) return arr[start];

else return l;

}

}

int shallowmax(int arr[], int start, int end) {

if (start == end) return arr[start];

else {

int mid = (start+end)/2;

int l1 = shallowmax(arr, start, mid);

int l2 = shallowmax(arr, mid+1, end);

if (l1 > l2) return l1;

else return l2;

}

}

main() {

int arr[SIZE];

for (int i=0; i<SIZE; i++) {

arr[i] = i;

}

int max1 = shallowmax(arr, 0, SIZE-1);

printf("shallowmax answer = %d\n", max1);

int max2 = deepmax(arr, 0, SIZE-1);

printf("deepmax answer = %d\n", max2);

}



Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations
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Recall: Coding Binary Search

#include <stdio.h>

int binarySearch(int array[], int x, int low, int high) {

if (high >= low) {

int mid = low + (high - low) / 2;

// If found at mid, then return it

if (array[mid] == x)

return mid;

// Search the left half

if (array[mid] > x)

return binarySearch(array, x, low, mid - 1);

// Search the right half

return binarySearch(array, x, mid + 1, high);

}

return -1;

}

int main(void) {

int array[] = {3, 4, 5, 6, 7, 8, 9};

int n = sizeof(array) / sizeof(array[0]);

int x = 4;

int result = binarySearch(array, x, 0, n - 1);

if (result == -1)

printf("Not found");

else

printf("Element is found at index %d", result);

}



Sorting an array in decreasing order

Task : Given array of n (n ≤ 1000) numbers. Sort them in
decreasing order of numbers.

15 8 3 12 30 7 9 17 32 19

One possible way: An algorithm

• Find max, place it at first location.

• Sort the array from second location to end.

Called Selection Sort.
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Selection sort

15 8 3 12 30 7 9 17 32 19

32 8 3 12 30 7 9 17 15 19

32 30 3 12 8 7 9 17 15 19
...

...
...

...
...

...
...

...
...

...

32 30 19 17 15 12 9 8 7 3

Pseudo-code :
• while (i ≤ n )

• maxindex = index of the max element in the part of the array
indexed from i to n. Find maxindex. (We have solved this !!)

• swap elements array[i] and array[maxindex]; (We have solved
this too !!)
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Selection sort - from the pseudocode to the program

Pseudo-code :

for i ranging from 1 to n

• maxindex = the index of
the max element in the
part of the array indexed
from i to n. Find
maxindex.

• swap elements array[i]
and array[maxindex];

Program Segment:

for (i=0; i<n; i++)

{

max = i;

for (j=i+1; j<n; j++)

{

if (a[j] > a[max])

max = j;

}

temp = a[i];

a[i] = a[max];

a[max] = temp;

}
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Selection sort – number of comparisons

• Which input do we consider?

• Do number of comparisons depend on the particular array
values?

• How does the method perform when the array is nearly sorted?

• Consider a “worst-case” input.

• Irrespective of whether the array is sorted or not, the method
always needs n(n−1)

2 comparisons.
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From Modular Perspective: Selection Sort

Selection Sort: Sort n num-
bers in descending order

Pseudo-code :

for i ranging from 1 to n

• maxindex = the index of
the max element in the
part of the array indexed
from i to n. Find
maxindex.

• swap elements array[i]
and array[maxindex];

Subtasks identified:

findmax(i,n) : find the
index of maxelement in the
subarray from i to n.

swap(i,j) : swap i th and
j th elements of A.

Once this is done (and
solved), here is the remain-
ing code.

for i = 1 to n

{

max = findmax(i,n);

swap(i,max);

}
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• Although final result is the same, intermediate steps are
different from selection sort.
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// Array i ndex s t a r t s from 0 .

f o r ( i =1; i<= n−1; i ++) {
j = i ;
i f (A [ j ] <= A [ j −1])

continue ;
// Now A[ j ] > A[ j −1]

// swap A[ j ] w i th A[ j −1] t i l l . . . ?
}



Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r ( i =1; i<= n−1; i ++) {
j = i ;
i f (A [ j ] <= A [ j −1])

continue ;
// Now A[ j ] > A[ j −1]

// swap A[ j ] w i th A[ j −1] t i l l . . . ?
}



Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r ( i =1; i<= n−1; i ++) {
j = i ;
i f (A [ j ] <= A [ j −1])

continue ;
// Now A[ j ] > A[ j −1]

// swap A[ j ] w i th A[ j −1] t i l l . . . ?
}



Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r ( i =1; i<= n−1; i ++) {
j = i ;
i f (A [ j ] <= A [ j −1])

continue ;
// Now A[ j ] > A[ j −1]

// swap A[ j ] w i th A[ j −1] t i l l . . . ?
}



Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .

f o r ( i =1; i<= n−1; i ++) {
j = i ;
i f (A [ j ] <= A [ j −1])

continue ;
// Now A[ j ] > A[ j −1]

// swap A[ j ] w i th A[ j −1] t i l l . . . ?
}



Insertion Sort

15 8 3 12 30 7 9 17 32 19

15 8 3 12 30 7 9 17 32 19

15 8 12 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

15 12 8 3 30 7 9 17 32 19

// Array i ndex s t a r t s from 0 .
f o r ( i =1; i<= n−1; i ++) {

j = i ;
i f (A [ j ] <= A [ j −1])

continue ;
// Now A[ j ] > A[ j −1]
whi le (A [ j ] > A [ j −1]) {

// Swap A[ j ] and A[ j −1]
j = j −1;

}
}

What happens
for j=4?
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correct?

No!
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j = i ;
whi le (A [ j ]>A [ j −1] && j >0) {

// Swap A[ j ] and A[ j −1]
j = j −1;

}
}

• Note j > 0

• Is it
correct?
No!



Insertion Sort

// Array i ndex s t a r t s from 0 .

f o r ( i =1; i<= n−1; i ++) {
j = i ;
whi le ( j >0 && A [ j ]>A [ j −1]) {

// Swap A[ j ] and A[ j −1]
j = j −1;

}
}

• Need to check (j > 0) before checking A[j] > A[j-1]!

• Note the use of short-circuiting.



Insertion Sort – another way
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// Array i ndex s t a r t s from 0 .

f o r ( i =1; i<=n−1; i ++) {
x = A [ i ] ;
j = i −1;
whi le (−−−−−−−) {

A [ j +1] = A [ j ] ;
j = j −1;

}
}
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// Array i ndex s t a r t s from 0 .

f o r ( i =1; i<=n−1; i ++) {
x = A [ i ] ;
j = i −1;
whi le ( j >= 0 && x > A [ j ] ) {
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j = j −1;

}
A [ j +1] = x ;

}

• Note j ≥ 0
(line 6).

• See line 10.
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