
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 27

Sorting algorithms

• Selection and Insertion both require roughly n2 comparisons
on “worst-case” inputs.

• Insertion sort performs significantly better on nearly sorted
input data.

nearly sorted inputs occur in practice many times

• Several other sorting algorithms (Quick-sort, Bubble-sort,
Heap-sort) exist and many are implemented in libraries.

Link

https://www.toptal.com/developers/sorting-algorithms

Sorting algorithms

• Selection and Insertion both require roughly n2 comparisons
on “worst-case” inputs.

• Insertion sort performs significantly better on nearly sorted
input data.

nearly sorted inputs occur in practice many times

• Several other sorting algorithms (Quick-sort, Bubble-sort,
Heap-sort) exist and many are implemented in libraries.

Link

https://www.toptal.com/developers/sorting-algorithms

Sorting algorithms

• Selection and Insertion both require roughly n2 comparisons
on “worst-case” inputs.

• Insertion sort performs significantly better on nearly sorted
input data.

nearly sorted inputs occur in practice many times

• Several other sorting algorithms (Quick-sort, Bubble-sort,
Heap-sort) exist and many are implemented in libraries.

Link

https://www.toptal.com/developers/sorting-algorithms

Recursive Thinking : Sorting an Array

• Iterative Thinking: We talked about selection sort, insertion
sort.

• Recursive Thinking: Take out the last element, sort the first
n − 1 elements recursively, invoking the same function
recursively. And then insert this last element in the right
position. Hey, this is insertion sort !

• (Different) Recursive Thinking: Divide the array into two
halves, recursively sort them, merge the resulting arrays into
one array keeping the result to be sorted.
This is new ! - called merge sort.

Recursive Thinking : Sorting an Array

• Iterative Thinking: We talked about selection sort, insertion
sort.

• Recursive Thinking: Take out the last element, sort the first
n − 1 elements recursively, invoking the same function
recursively. And then insert this last element in the right
position. Hey, this is insertion sort !

• (Different) Recursive Thinking: Divide the array into two
halves, recursively sort them, merge the resulting arrays into
one array keeping the result to be sorted.
This is new ! - called merge sort.

Recursive Thinking : Sorting an Array

• Iterative Thinking: We talked about selection sort, insertion
sort.

• Recursive Thinking: Take out the last element, sort the first
n − 1 elements recursively, invoking the same function
recursively. And then insert this last element in the right
position.

Hey, this is insertion sort !

• (Different) Recursive Thinking: Divide the array into two
halves, recursively sort them, merge the resulting arrays into
one array keeping the result to be sorted.
This is new ! - called merge sort.

Recursive Thinking : Sorting an Array

• Iterative Thinking: We talked about selection sort, insertion
sort.

• Recursive Thinking: Take out the last element, sort the first
n − 1 elements recursively, invoking the same function
recursively. And then insert this last element in the right
position. Hey, this is insertion sort !

• (Different) Recursive Thinking: Divide the array into two
halves, recursively sort them, merge the resulting arrays into
one array keeping the result to be sorted.
This is new ! - called merge sort.

Recursive Thinking : Sorting an Array

• Iterative Thinking: We talked about selection sort, insertion
sort.

• Recursive Thinking: Take out the last element, sort the first
n − 1 elements recursively, invoking the same function
recursively. And then insert this last element in the right
position. Hey, this is insertion sort !

• (Different) Recursive Thinking: Divide the array into two
halves, recursively sort them, merge the resulting arrays into
one array keeping the result to be sorted.
This is new ! - called merge sort.

Recursive version of Insertion Sort

#include <stdio.h>

void recursiveInsertionSort(int arr[], int n){

if (n <= 1)

return;

recursiveInsertionSort(arr, n-1);

int nth = arr[n-1];

int j = n-2;

while (j >= 0 && arr[j] > nth){

arr[j+1] = arr[j];

j--;

}

arr[j+1] = nth;

}

int main(){

int array[] = {34, 7, 12, 90, 51};

int n = sizeof(array)/sizeof(array[0]);

printf("Unsorted Array:\t");

for (int i=0; i < n; i++)

printf("%d ",array[i]);

recursiveInsertionSort(array, n);

printf("\nSorted Array:\t");

for (int i=0; i < n; i++)

printf("%d ",array[i]);

return 0;

}

Links

• Merge Sort Visualizer (Click on this link).

https://www.hackerearth.com/practice/algorithms/sorting/merge-sort/visualize/

Pointers

int x; : x is the name of a variable that holds data which is of
type integer.

Similarly float f;, double d; and char c;.

Pointer variable is a variable
whose value is an address.
Syntax:
data-type *var-name;

Example :
int *ptr; // ptr is declared to be
a variable that can hold the address
of an integer variable.

For instance, it can hold the address
65524 which will be the address of the
variable i.

Pointers

int x; : x is the name of a variable that holds data which is of
type integer. Similarly float f;, double d; and char c;.

Pointer variable is a variable
whose value is an address.
Syntax:
data-type *var-name;

Example :
int *ptr; // ptr is declared to be
a variable that can hold the address
of an integer variable.

For instance, it can hold the address
65524 which will be the address of the
variable i.

Pointers

int x; : x is the name of a variable that holds data which is of
type integer. Similarly float f;, double d; and char c;.

Pointer variable is a variable
whose value is an address.
Syntax:
data-type *var-name;

Example :
int *ptr; // ptr is declared to be
a variable that can hold the address
of an integer variable.

For instance, it can hold the address
65524 which will be the address of the
variable i.

Pointers

int x; : x is the name of a variable that holds data which is of
type integer. Similarly float f;, double d; and char c;.

Pointer variable is a variable
whose value is an address.

Syntax:
data-type *var-name;

Example :
int *ptr; // ptr is declared to be
a variable that can hold the address
of an integer variable.

For instance, it can hold the address
65524 which will be the address of the
variable i.

Pointers

int x; : x is the name of a variable that holds data which is of
type integer. Similarly float f;, double d; and char c;.

Pointer variable is a variable
whose value is an address.
Syntax:
data-type *var-name;

Example :
int *ptr; // ptr is declared to be
a variable that can hold the address
of an integer variable.

For instance, it can hold the address
65524 which will be the address of the
variable i.

Pointers

int x; : x is the name of a variable that holds data which is of
type integer. Similarly float f;, double d; and char c;.

Pointer variable is a variable
whose value is an address.
Syntax:
data-type *var-name;

Example :
int *ptr; // ptr is declared to be
a variable that can hold the address
of an integer variable.

For instance, it can hold the address
65524 which will be the address of the
variable i.

Pointers

int x; : x is the name of a variable that holds data which is of
type integer. Similarly float f;, double d; and char c;.

Pointer variable is a variable
whose value is an address.
Syntax:
data-type *var-name;

Example :
int *ptr; // ptr is declared to be
a variable that can hold the address
of an integer variable.

For instance, it can hold the address
65524 which will be the address of the
variable i.

Initializing and dereferencing a pointer

int *ptr1; // ptr1 is the address of an integer variable.

char *ptr2; // ptr2 is the address of a character variable.

Question : Which integer/character are ptr1/ptr2 pointing to?
Undetermined until pointer is initialized.

• Assigning an address a pointer : Using & symbol in front
of any variable in C will give the address of the memory
location assigned to it.
Example : ptr1 = &x assigns the address of the location
where variable x is stored to the pointer variable ptr1.

• Dereferencing a pointer : Accessing the variable pointed to
by a pointer. Use the * operator.
Example : *ptr1 gives the value stored in the memory
location that the ptr1 points to (if it does !).

Initializing and dereferencing a pointer

int *ptr1; // ptr1 is the address of an integer variable.
char *ptr2; // ptr2 is the address of a character variable.

Question : Which integer/character are ptr1/ptr2 pointing to?
Undetermined until pointer is initialized.

• Assigning an address a pointer : Using & symbol in front
of any variable in C will give the address of the memory
location assigned to it.
Example : ptr1 = &x assigns the address of the location
where variable x is stored to the pointer variable ptr1.

• Dereferencing a pointer : Accessing the variable pointed to
by a pointer. Use the * operator.
Example : *ptr1 gives the value stored in the memory
location that the ptr1 points to (if it does !).

Initializing and dereferencing a pointer

int *ptr1; // ptr1 is the address of an integer variable.
char *ptr2; // ptr2 is the address of a character variable.

Question : Which integer/character are ptr1/ptr2 pointing to?

Undetermined until pointer is initialized.

• Assigning an address a pointer : Using & symbol in front
of any variable in C will give the address of the memory
location assigned to it.
Example : ptr1 = &x assigns the address of the location
where variable x is stored to the pointer variable ptr1.

• Dereferencing a pointer : Accessing the variable pointed to
by a pointer. Use the * operator.
Example : *ptr1 gives the value stored in the memory
location that the ptr1 points to (if it does !).

Initializing and dereferencing a pointer

int *ptr1; // ptr1 is the address of an integer variable.
char *ptr2; // ptr2 is the address of a character variable.

Question : Which integer/character are ptr1/ptr2 pointing to?
Undetermined until pointer is initialized.

• Assigning an address a pointer : Using & symbol in front
of any variable in C will give the address of the memory
location assigned to it.
Example : ptr1 = &x assigns the address of the location
where variable x is stored to the pointer variable ptr1.

• Dereferencing a pointer : Accessing the variable pointed to
by a pointer. Use the * operator.
Example : *ptr1 gives the value stored in the memory
location that the ptr1 points to (if it does !).

Initializing and dereferencing a pointer

int *ptr1; // ptr1 is the address of an integer variable.
char *ptr2; // ptr2 is the address of a character variable.

Question : Which integer/character are ptr1/ptr2 pointing to?
Undetermined until pointer is initialized.

• Assigning an address a pointer : Using & symbol in front
of any variable in C will give the address of the memory
location assigned to it.

Example : ptr1 = &x assigns the address of the location
where variable x is stored to the pointer variable ptr1.

• Dereferencing a pointer : Accessing the variable pointed to
by a pointer. Use the * operator.
Example : *ptr1 gives the value stored in the memory
location that the ptr1 points to (if it does !).

Initializing and dereferencing a pointer

int *ptr1; // ptr1 is the address of an integer variable.
char *ptr2; // ptr2 is the address of a character variable.

Question : Which integer/character are ptr1/ptr2 pointing to?
Undetermined until pointer is initialized.

• Assigning an address a pointer : Using & symbol in front
of any variable in C will give the address of the memory
location assigned to it.
Example : ptr1 = &x assigns the address of the location
where variable x is stored to the pointer variable ptr1.

• Dereferencing a pointer : Accessing the variable pointed to
by a pointer. Use the * operator.
Example : *ptr1 gives the value stored in the memory
location that the ptr1 points to (if it does !).

Initializing and dereferencing a pointer

int *ptr1; // ptr1 is the address of an integer variable.
char *ptr2; // ptr2 is the address of a character variable.

Question : Which integer/character are ptr1/ptr2 pointing to?
Undetermined until pointer is initialized.

• Assigning an address a pointer : Using & symbol in front
of any variable in C will give the address of the memory
location assigned to it.
Example : ptr1 = &x assigns the address of the location
where variable x is stored to the pointer variable ptr1.

• Dereferencing a pointer : Accessing the variable pointed to
by a pointer. Use the * operator.

Example : *ptr1 gives the value stored in the memory
location that the ptr1 points to (if it does !).

Initializing and dereferencing a pointer

int *ptr1; // ptr1 is the address of an integer variable.
char *ptr2; // ptr2 is the address of a character variable.

Question : Which integer/character are ptr1/ptr2 pointing to?
Undetermined until pointer is initialized.

• Assigning an address a pointer : Using & symbol in front
of any variable in C will give the address of the memory
location assigned to it.
Example : ptr1 = &x assigns the address of the location
where variable x is stored to the pointer variable ptr1.

• Dereferencing a pointer : Accessing the variable pointed to
by a pointer. Use the * operator.
Example : *ptr1 gives the value stored in the memory
location that the ptr1 points to (if it does !).

Demo 1 : Initializing and dereferencing

Example 1 : Initializing and dereferencing

• Example :
int x, y, *ptr1;

ptr1 = &x; Initializing ptr1

x = 10;

y = *ptr1; Dereferencing ptr1

x++;

• What are the values of x, y, *ptr1?

• after this, in the same program ...
suppose we add :
ptr1 = &y;

(*ptr1)++;

• What are the values of x, y, *ptr1?

Example 1 : Initializing and dereferencing

• Example :
int x, y, *ptr1;

ptr1 = &x; Initializing ptr1

x = 10;

y = *ptr1; Dereferencing ptr1

x++;

• What are the values of x, y, *ptr1?

• after this, in the same program ...
suppose we add :
ptr1 = &y;

(*ptr1)++;

• What are the values of x, y, *ptr1?

Example 1 : Initializing and dereferencing

• Example :
int x, y, *ptr1;

ptr1 = &x; Initializing ptr1

x = 10;

y = *ptr1; Dereferencing ptr1

x++;

• What are the values of x, y, *ptr1?

• after this, in the same program ...
suppose we add :
ptr1 = &y;

(*ptr1)++;

• What are the values of x, y, *ptr1?

Example 1 : Initializing and dereferencing

• Example :
int x, y, *ptr1;

ptr1 = &x; Initializing ptr1

x = 10;

y = *ptr1; Dereferencing ptr1

x++;

• What are the values of x, y, *ptr1?

• after this, in the same program ...
suppose we add :
ptr1 = &y;

(*ptr1)++;

• What are the values of x, y, *ptr1?

Example 1 : Initializing and dereferencing

• Example :
int x, y, *ptr1;

ptr1 = &x; Initializing ptr1

x = 10;

y = *ptr1; Dereferencing ptr1

x++;

• What are the values of x, y, *ptr1?

• after this, in the same program ...
suppose we add :
ptr1 = &y;

(*ptr1)++;

• What are the values of x, y, *ptr1?

Example 2 : First programs using pointer manipulation

#include<stdio.h>

int main() {

int count;

int *countPtr;

count = 10;

countPtr = &count;

printf("count = %d\n", count);

printf("count via countPtr = %d\n", *countPtr);

printf("address of count = %p\n", &count);

printf("value of countPtr = %x\n", countPtr);

}

Example 3 : Second program using pointers

#include <stdio.h>

int main(){

int* pc;

int c;

c=22;

printf("Address of c:%p\n",&c);

printf("Value of c:%d\n\n",c);

pc=&c;

printf("Address stored in the pointer pc:%p\n",pc);

printf("Content of location pointed to by pc:%d\n\n",*pc);

c=11;

printf("Address stored in the pointer pc:%p\n",pc);

printf("Content of location pointed to by pc:%d\n\n",*pc);

*pc=2;

printf("Address of c:%p\n",&c);

printf("Value of c:%d\n\n",c);

return 0;

}

An Application : Passing Parameters to Functions

Predict the output of the following program:

#include<stdio.h>

void swap(int x, int y)

{

int t;

t = x;

x = y;

y = t;

}

int main()

{

int a = 10, b = 20 ;

swap(a,b);

printf("%d %d",a,b);

}

• Error : No swapping
happens.

• Our usual solution : Make
a and b global variables.

• This is convenient but
dangerous - because there
may be other functions
which uses these variables.

• Here is a more elegant
solution : pass pointers
holding the addresses of a
and b to the function.

An Application : Passing Parameters to Functions

Predict the output of the following program:

#include<stdio.h>

void swap(int x, int y)

{

int t;

t = x;

x = y;

y = t;

}

int main()

{

int a = 10, b = 20 ;

swap(a,b);

printf("%d %d",a,b);

}

• Error : No swapping
happens.

• Our usual solution : Make
a and b global variables.

• This is convenient but
dangerous - because there
may be other functions
which uses these variables.

• Here is a more elegant
solution : pass pointers
holding the addresses of a
and b to the function.

An Application : Passing Parameters to Functions

Predict the output of the following program:

#include<stdio.h>

void swap(int x, int y)

{

int t;

t = x;

x = y;

y = t;

}

int main()

{

int a = 10, b = 20 ;

swap(a,b);

printf("%d %d",a,b);

}

• Error : No swapping
happens.

• Our usual solution : Make
a and b global variables.

• This is convenient but
dangerous

- because there
may be other functions
which uses these variables.

• Here is a more elegant
solution : pass pointers
holding the addresses of a
and b to the function.

An Application : Passing Parameters to Functions

Predict the output of the following program:

#include<stdio.h>

void swap(int x, int y)

{

int t;

t = x;

x = y;

y = t;

}

int main()

{

int a = 10, b = 20 ;

swap(a,b);

printf("%d %d",a,b);

}

• Error : No swapping
happens.

• Our usual solution : Make
a and b global variables.

• This is convenient but
dangerous - because there
may be other functions
which uses these variables.

• Here is a more elegant
solution : pass pointers
holding the addresses of a
and b to the function.

An Application : Passing Parameters to Functions

Predict the output of the following program:

#include<stdio.h>

void swap(int x, int y)

{

int t;

t = x;

x = y;

y = t;

}

int main()

{

int a = 10, b = 20 ;

swap(a,b);

printf("%d %d",a,b);

}

• Error : No swapping
happens.

• Our usual solution : Make
a and b global variables.

• This is convenient but
dangerous - because there
may be other functions
which uses these variables.

• Here is a more elegant
solution : pass pointers
holding the addresses of a
and b to the function.

An Application : Passing Parameters to Functions (a
review of Swap)

Fixing the error:

#include<stdio.h>

void swap(int *p1, int *p2)

{

int t;

t = *p1;

*p1 = *p2;

*p2 = t;

}

int main()

{

int a = 10, b = 20;

swap(&a, &b);

printf("%d %d",a,b);

}

An Application : Passing Parameters to Functions

Fixing the error :

#include<stdio.h>

void swap(int *p1, int *p2)

{

int t;

t = *p1;

*p1 = *p2;

*p2 = t;

}

int main()

{

int a = 10, b = 20;

swap(&a, &b);

printf("%d %d",a,b);

}

Original Version :

#include<stdio.h>

void swap(int x, int y)

{

int t;

t = x;

x = y;

y = t;

}

int main()

{

int a = 10, b = 20 ;

swap(a,b);

printf("%d %d",a,b);

}

What just happened : Pass by reference

• In C all arguments are passed by value.

That is, when the
function is invoked the values of the arguments are copied to
the new variables in the function definition and they are used
inside the function.

• However, some functions need to modify the arguments sent
to them.

• This is achieved by passing the address of the variable.
• The caller uses &var-name to pass it to the function.
• The function prototype must accept a pointer to the

appropriate data type.

What just happened : Pass by reference

• In C all arguments are passed by value. That is, when the
function is invoked the values of the arguments are copied to
the new variables in the function definition and they are used
inside the function.

• However, some functions need to modify the arguments sent
to them.

• This is achieved by passing the address of the variable.
• The caller uses &var-name to pass it to the function.
• The function prototype must accept a pointer to the

appropriate data type.

What just happened : Pass by reference

• In C all arguments are passed by value. That is, when the
function is invoked the values of the arguments are copied to
the new variables in the function definition and they are used
inside the function.

• However, some functions need to modify the arguments sent
to them.

• This is achieved by passing the address of the variable.
• The caller uses &var-name to pass it to the function.
• The function prototype must accept a pointer to the

appropriate data type.

What just happened : Pass by reference

• In C all arguments are passed by value. That is, when the
function is invoked the values of the arguments are copied to
the new variables in the function definition and they are used
inside the function.

• However, some functions need to modify the arguments sent
to them.

• This is achieved by passing the address of the variable.

• The caller uses &var-name to pass it to the function.
• The function prototype must accept a pointer to the

appropriate data type.

What just happened : Pass by reference

• In C all arguments are passed by value. That is, when the
function is invoked the values of the arguments are copied to
the new variables in the function definition and they are used
inside the function.

• However, some functions need to modify the arguments sent
to them.

• This is achieved by passing the address of the variable.
• The caller uses &var-name to pass it to the function.

• The function prototype must accept a pointer to the
appropriate data type.

What just happened : Pass by reference

• In C all arguments are passed by value. That is, when the
function is invoked the values of the arguments are copied to
the new variables in the function definition and they are used
inside the function.

• However, some functions need to modify the arguments sent
to them.

• This is achieved by passing the address of the variable.
• The caller uses &var-name to pass it to the function.
• The function prototype must accept a pointer to the

appropriate data type.

Another Swap function

#include<stdio.h>

void swap(int *p1, int *p2)

{

int *temp;

printf ("before (in function) %p %p\n", p1, p2);

temp = p1;

p1 = p2;

p2 = temp;

printf ("(after (in function) %p %p\n", p1, p2);

}

int main()

{

int a = 10, b = 20;

printf ("in main (before swap) %d %d %p %p\n", a, b, &a, &b);

swap(&a, &b);

printf("%d %d\n",a,b);

printf ("in main (after swap) %d %d %p %p\n", a, b, &a, &b);

}

Why does this function not
achieve the desired swap?

Another Swap function

#include<stdio.h>

void swap(int *p1, int *p2)

{

int *temp;

printf ("before (in function) %p %p\n", p1, p2);

temp = p1;

p1 = p2;

p2 = temp;

printf ("(after (in function) %p %p\n", p1, p2);

}

int main()

{

int a = 10, b = 20;

printf ("in main (before swap) %d %d %p %p\n", a, b, &a, &b);

swap(&a, &b);

printf("%d %d\n",a,b);

printf ("in main (after swap) %d %d %p %p\n", a, b, &a, &b);

}

Why does this function not
achieve the desired swap?

