
CS1100 – Introduction to Programming

Lecture 7

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Goals:

• Selection statements:
• Single Selection : if
• Double Selection : if else
• Multiple Selection: switch

• Loops:
• while
• for
• do while

• Need for different kinds of selection and loops.

• Control flow for each of the constructs.

Goals:

• Selection statements:
• Single Selection : if
• Double Selection : if else
• Multiple Selection: switch

• Loops:
• while
• for
• do while

• Need for different kinds of selection and loops.

• Control flow for each of the constructs.

Goals:

• Selection statements:
• Single Selection : if
• Double Selection : if else
• Multiple Selection: switch

• Loops:
• while
• for
• do while

• Need for different kinds of selection and loops.

• Control flow for each of the constructs.

Goals:

• Selection statements:
• Single Selection : if
• Double Selection : if else
• Multiple Selection: switch

• Loops:
• while
• for
• do while

• Need for different kinds of selection and loops.

• Control flow for each of the constructs.

Single Selection : if construct

Decide to execute a part of the
program if a condition is true.

Eg : If a number (say meant
to represent marks) is negative
print a warning.

Syntax :
if (condition)
{ Statement Sequence 1 }

Semantics (meaning) :

Single Selection : if construct

Decide to execute a part of the
program if a condition is true.

Eg : If a number (say meant
to represent marks) is negative
print a warning.

Syntax :
if (condition)
{ Statement Sequence 1 }

Semantics (meaning) :

Single Selection : if construct

Decide to execute a part of the
program if a condition is true.

Eg : If a number (say meant
to represent marks) is negative
print a warning.

Syntax :
if (condition)
{ Statement Sequence 1 }

Semantics (meaning) :

Single Selection : if construct

Decide to execute a part of the
program if a condition is true.

Eg : If a number (say meant
to represent marks) is negative
print a warning.

Syntax :
if (condition)
{ Statement Sequence 1 }

Semantics (meaning) :

Single Selection : if construct

Example :

/* Program to display a number

if user enters negative number.

If user enters positive number,

that number won’t be displayed. */

#include <stdio.h>

main()

{

int number;

printf("Enter an integer: ");

scanf("%d", &number);

if (number < 0)

{

printf("You entered %d.\n", number);

}

printf("The if statement is easy.");

}

Semantics (meaning) :

Single Selection : if construct

Example :

/* Program to display a number

if user enters negative number.

If user enters positive number,

that number won’t be displayed. */

#include <stdio.h>

main()

{

int number;

printf("Enter an integer: ");

scanf("%d", &number);

if (number < 0)

{

printf("You entered %d.\n", number);

}

printf("The if statement is easy.");

}

Semantics (meaning) :

Single Selection : if construct

Example :

/* Program to display a number

if user enters negative number.

If user enters positive number,

that number won’t be displayed. */

#include <stdio.h>

main()

{

int number;

printf("Enter an integer: ");

scanf("%d", &number);

if (number < 0)

{

printf("You entered %d.\n", number);

}

printf("The if statement is easy.");

}

Output :

Enter an integer: -2

You entered -2.

The if statement is easy.

Enter an integer: 5

The if statement in C programming is easy.

Single Selection : if construct

Example :

/* Program to display a number

if user enters negative number.

If user enters positive number,

that number won’t be displayed. */

#include <stdio.h>

main()

{

int number;

printf("Enter an integer: ");

scanf("%d", &number);

if (number < 0)

{

printf("You entered %d.\n", number);

}

printf("The if statement is easy.");

}

Output :

Enter an integer: -2

You entered -2.

The if statement is easy.

Enter an integer: 5

The if statement in C programming is easy.

Double Selection : if-else construct

Decide to execute a part of the
program based on a condition
is true and some other part if
condition is false.

Eg : If b2 − 4ac nega-
tive, we should report that the
quadratic has no real roots.
Syntax :

if (condition)
{ Statement Sequence 1 }
else

{ Statement Sequence 2 }

Semantics (meaning) :

Double Selection : if-else construct

Decide to execute a part of the
program based on a condition
is true and some other part if
condition is false.

Eg : If b2 − 4ac nega-
tive, we should report that the
quadratic has no real roots.

Syntax :

if (condition)
{ Statement Sequence 1 }
else

{ Statement Sequence 2 }

Semantics (meaning) :

Double Selection : if-else construct

Decide to execute a part of the
program based on a condition
is true and some other part if
condition is false.

Eg : If b2 − 4ac nega-
tive, we should report that the
quadratic has no real roots.
Syntax :

if (condition)
{ Statement Sequence 1 }
else

{ Statement Sequence 2 }

Semantics (meaning) :

Double Selection : if-else construct

Decide to execute a part of the
program based on a condition
is true and some other part if
condition is false.

Eg : If b2 − 4ac nega-
tive, we should report that the
quadratic has no real roots.
Syntax :

if (condition)
{ Statement Sequence 1 }
else

{ Statement Sequence 2 }

Semantics (meaning) :

Double Selection : if-else construct - Example

Example :

// Program to check whether an

// integer entered by the user

// is odd or even

#include <stdio.h>

int main()

{

int number;

printf("Enter an integer: ");

scanf("%d",&number);

// True if remainder is 0

if(number%2 == 0)

printf("%d is an even integer.",number);

else

printf("%d is an odd integer.",number);

return 0;

}

Semantics (meaning) :

Double Selection : if-else construct - Example

Example :

// Program to check whether an

// integer entered by the user

// is odd or even

#include <stdio.h>

int main()

{

int number;

printf("Enter an integer: ");

scanf("%d",&number);

// True if remainder is 0

if(number%2 == 0)

printf("%d is an even integer.",number);

else

printf("%d is an odd integer.",number);

return 0;

}

Semantics (meaning) :

How do we specify conditions?

• Specified using relational and equality operators.

• Relational: >,<,>=, <=

• Equality: ==, ! =

• Usage: for a,b values or variables
a > b, a < b, a >= b, a <= b, a == b, a ! = b

• A condition is satisfied or true, if the relational operator, or
equality is satisfied.

• For a = 3, and b = 5:
• a < b, a <= b, and a ! = b are true.
• a > b, a >= b, a == b are false.

• Expression can contain relational, logical or equality operators.

Relational <= < > >=

Equality == ! =

Logical && ||

How do we specify conditions?

• Specified using relational and equality operators.

• Relational: >,<,>=, <=

• Equality: ==, ! =

• Usage: for a,b values or variables
a > b, a < b, a >= b, a <= b, a == b, a ! = b

• A condition is satisfied or true, if the relational operator, or
equality is satisfied.

• For a = 3, and b = 5:
• a < b, a <= b, and a ! = b are true.
• a > b, a >= b, a == b are false.

• Expression can contain relational, logical or equality operators.

Relational <= < > >=

Equality == ! =

Logical && ||

How do we specify conditions?

• Specified using relational and equality operators.

• Relational: >,<,>=, <=

• Equality: ==, ! =

• Usage: for a,b values or variables
a > b, a < b, a >= b, a <= b, a == b, a ! = b

• A condition is satisfied or true, if the relational operator, or
equality is satisfied.

• For a = 3, and b = 5:
• a < b, a <= b, and a ! = b are true.
• a > b, a >= b, a == b are false.

• Expression can contain relational, logical or equality operators.

Relational <= < > >=

Equality == ! =

Logical && ||

How do we specify conditions?

• Specified using relational and equality operators.

• Relational: >,<,>=, <=

• Equality: ==, ! =

• Usage: for a,b values or variables
a > b, a < b, a >= b, a <= b, a == b, a ! = b

• A condition is satisfied or true, if the relational operator, or
equality is satisfied.

• For a = 3, and b = 5:
• a < b, a <= b, and a ! = b are true.
• a > b, a >= b, a == b are false.

• Expression can contain relational, logical or equality operators.

Relational <= < > >=

Equality == ! =

Logical && ||

How do we specify conditions?

• Specified using relational and equality operators.

• Relational: >,<,>=, <=

• Equality: ==, ! =

• Usage: for a,b values or variables
a > b, a < b, a >= b, a <= b, a == b, a ! = b

• A condition is satisfied or true, if the relational operator, or
equality is satisfied.

• For a = 3, and b = 5:
• a < b, a <= b, and a ! = b are true.
• a > b, a >= b, a == b are false.

• Expression can contain relational, logical or equality operators.

Relational <= < > >=

Equality == ! =

Logical && ||

How do we specify conditions?

• Specified using relational and equality operators.

• Relational: >,<,>=, <=

• Equality: ==, ! =

• Usage: for a,b values or variables
a > b, a < b, a >= b, a <= b, a == b, a ! = b

• A condition is satisfied or true, if the relational operator, or
equality is satisfied.
• For a = 3, and b = 5:

• a < b, a <= b, and a ! = b are true.
• a > b, a >= b, a == b are false.

• Expression can contain relational, logical or equality operators.

Relational <= < > >=

Equality == ! =

Logical && ||

How do we specify conditions?

• Specified using relational and equality operators.

• Relational: >,<,>=, <=

• Equality: ==, ! =

• Usage: for a,b values or variables
a > b, a < b, a >= b, a <= b, a == b, a ! = b

• A condition is satisfied or true, if the relational operator, or
equality is satisfied.
• For a = 3, and b = 5:

• a < b, a <= b, and a ! = b are true.
• a > b, a >= b, a == b are false.

• Expression can contain relational, logical or equality operators.

Relational <= < > >=

Equality == ! =

Logical && ||

An Example Problem

Accept a character from {W, A, B} and output appropriate
message about the grade.

#include<stdio.h>

int main() {

char input;

printf("Input a character:\t");

scanf ("%c", &input);

if (input == ’W’) {

printf("Attendance is below 85 %%\n");

}

if (input == ’A’) {

printf("Marks between 90--100 %%\n");

}

if (input == ’B’) {

printf("Marks between 80--90 %% \n");

}

else {

printf("Invalid Character. Enter one of W, A, B\n");

}

return 0;

}

Program prints error mes-
sage even when we en-
ter valid characters ‘W’ or
‘A’.

An Example Problem

Accept a character from {W, A, B} and output appropriate
message about the grade.

#include<stdio.h>

int main() {

char input;

printf("Input a character:\t");

scanf ("%c", &input);

if (input == ’W’) {

printf("Attendance is below 85 %%\n");

}

if (input == ’A’) {

printf("Marks between 90--100 %%\n");

}

if (input == ’B’) {

printf("Marks between 80--90 %% \n");

}

else {

printf("Invalid Character. Enter one of W, A, B\n");

}

return 0;

}

Program prints error mes-
sage even when we en-
ter valid characters ‘W’ or
‘A’.

An Example Problem

Accept a character from {W, A, B} and output appropriate
message about the grade.

#include<stdio.h>

int main() {

char input;

printf("Input a character:\t");

scanf ("%c", &input);

if (input == ’W’) {

printf("Attendance is below 85 %%\n");

}

if (input == ’A’) {

printf("Marks between 90--100 %%\n");

}

if (input == ’B’) {

printf("Marks between 80--90 %% \n");

}

else {

printf("Invalid Character. Enter one of W, A, B\n");

}

return 0;

}

Program prints error mes-
sage even when we en-
ter valid characters ‘W’ or
‘A’.

An Example Problem

Accept a character from {W, A, B} and output appropriate
message about the grade.

#include<stdio.h>

int main() {

char input;

printf("Input a character:\t");

scanf ("%c", &input);

if (input == ’W’) {

printf("Attendance is below 85 %%\n");

}

if (input == ’A’) {

printf("Marks between 90--100 %%\n");

}

if (input == ’B’) {

printf("Marks between 80--90 %% \n");

}

else {

printf("Invalid Character. Enter one of W, A, B\n");

}

return 0;

}

Program prints error mes-
sage even when we en-
ter valid characters ‘W’ or
‘A’.

A correct program.

Accept a character from {W, A, B} and output appropriate
message about the grade.

#include<stdio.h>

int main() {

char input;

printf("Input a character :\t");

scanf ("%c", &input);

if (input == ’W’) {

printf("Attendance is below 85 %%\n");

}

else if (input == ’A’) {

printf("Marks between 90--100 %%\n");

}

else if (input == ’B’) {

printf("Marks between 80--90 %% \n");

}

else {

printf("Invalid Character. Enter one of W, A, B\n");

}

return 0;

}

Is this correct?

Accept a character from {W, A, B} and output appropriate
message.

#include<stdio.h>

int main() {

char input, W, A, B;

printf("Input a character :\t");

scanf ("%c", &input);

if (input == W) {

printf("Attendance is below 85 %%\n");

}

else if (input == A) {

printf("Marks between 90--100 %%\n");

}

else if (input == B) {

printf("Marks between 80--90 %% \n");

}

else {

printf("Invalid Character. Enter one of W, A, B\n");

}

return 0;

}

Notice the variables W, A,
B declared. What is the
output of the program?

Is this correct?

Accept a character from {W, A, B} and output appropriate
message.

#include<stdio.h>

int main() {

char input, W, A, B;

printf("Input a character :\t");

scanf ("%c", &input);

if (input == W) {

printf("Attendance is below 85 %%\n");

}

else if (input == A) {

printf("Marks between 90--100 %%\n");

}

else if (input == B) {

printf("Marks between 80--90 %% \n");

}

else {

printf("Invalid Character. Enter one of W, A, B\n");

}

return 0;

}

Notice the variables W, A,
B declared. What is the
output of the program?

Is this correct?

Accept a character from {W, A, B} and output appropriate
message.

#include<stdio.h>

int main() {

char input, W, A, B;

printf("Input a character :\t");

scanf ("%c", &input);

if (input == W) {

printf("Attendance is below 85 %%\n");

}

else if (input == A) {

printf("Marks between 90--100 %%\n");

}

else if (input == B) {

printf("Marks between 80--90 %% \n");

}

else {

printf("Invalid Character. Enter one of W, A, B\n");

}

return 0;

}

Notice the variables W, A,
B declared. What is the
output of the program?

variable vs character constant

• if (input == W)
• comparing a variable input with another variable W.
• What is the value of the variable W?

• If W is a character and is initialized to W, you will have
desired behaviour.

• if (input == ‘W’)
• comparing a variable input with character constant W.

• In C, we can define some variables to be constants as well.
• const float PI = 3.14;
• const int myConstant = 71289;
• const char gradeW = ’W’;

• Recall what are valid variables names.

variable vs character constant

• if (input == W)
• comparing a variable input with another variable W.
• What is the value of the variable W?
• If W is a character and is initialized to W, you will have

desired behaviour.

• if (input == ‘W’)
• comparing a variable input with character constant W.

• In C, we can define some variables to be constants as well.
• const float PI = 3.14;
• const int myConstant = 71289;
• const char gradeW = ’W’;

• Recall what are valid variables names.

variable vs character constant

• if (input == W)
• comparing a variable input with another variable W.
• What is the value of the variable W?
• If W is a character and is initialized to W, you will have

desired behaviour.

• if (input == ‘W’)
• comparing a variable input with character constant W.

• In C, we can define some variables to be constants as well.
• const float PI = 3.14;
• const int myConstant = 71289;
• const char gradeW = ’W’;

• Recall what are valid variables names.

variable vs character constant

• if (input == W)
• comparing a variable input with another variable W.
• What is the value of the variable W?
• If W is a character and is initialized to W, you will have

desired behaviour.

• if (input == ‘W’)
• comparing a variable input with character constant W.

• In C, we can define some variables to be constants as well.
• const float PI = 3.14;
• const int myConstant = 71289;
• const char gradeW = ’W’;

• Recall what are valid variables names.

Are the parenthesis needed?

Accept a character from {W, A, B} and output appropriate
message.

#include<stdio.h>

int main() {

char input;

printf("Input a character :\t");

scanf ("%c", &input);

if (input == ’W’) {

printf("Attendance is below 85 %%\n");

}

else if (input == ’A’) {

printf("Marks between 90--100 %%\n");

}

else if (input == ’B’) {

printf("Marks between 80--90 %% \n");

}

else {

printf("Invalid Character. Enter one of W, A, B\n");

}

return 0;

}

How is the nesting?

Accept a character from {W, A, B} and output appropriate
message.

#include<stdio.h>

int main() {

char input;

printf("Input a character :\t");

scanf ("%c", &input);

if (input == ’W’)

printf("Attendance is below 85 %%\n");

else {

if (input == ’A’)

printf("Marks between 90--100 %%\n");

else {

if (input == ’B’)

printf("Marks between 80--90 %% \n");

else

printf("Invalid Character. Enter one of W, A, B\n");

}

}

return 0;

}

if else: example2

If a student gets less than 40 marks, report that s/he has to repeat
the course. If student gets greater than 75 marks, report that s/he
got distinction.

#include<stdio.h>

main() {

int marks;

printf("Enter your marks: \t");

scanf("%d", &marks);

if (marks > 40)

if (marks > 75)

printf("You got distinction\n");

else

printf("You need to repeat the course\n");

}

• No errors during
compilation or
execution.

• Does not produce
desired behaviour.

• else pairs with the
latest unpaired if.

• referred to as a
“dangling else
problem.”

if else: example2

If a student gets less than 40 marks, report that s/he has to repeat
the course. If student gets greater than 75 marks, report that s/he
got distinction.

#include<stdio.h>

main() {

int marks;

printf("Enter your marks: \t");

scanf("%d", &marks);

if (marks > 40)

if (marks > 75)

printf("You got distinction\n");

else

printf("You need to repeat the course\n");

}

• No errors during
compilation or
execution.

• Does not produce
desired behaviour.

• else pairs with the
latest unpaired if.

• referred to as a
“dangling else
problem.”

if else: example2

If a student gets less than 40 marks, report that s/he has to repeat
the course. If student gets greater than 75 marks, report that s/he
got distinction.

#include<stdio.h>

main() {

int marks;

printf("Enter your marks: \t");

scanf("%d", &marks);

if (marks > 40)

if (marks > 75)

printf("You got distinction\n");

else

printf("You need to repeat the course\n");

}

• No errors during
compilation or
execution.

• Does not produce
desired behaviour.

• else pairs with the
latest unpaired if.

• referred to as a
“dangling else
problem.”

if else: example2 – correct program

If a student gets less than 40 marks, report that he has to repeat
the course. If student gets greater than 75 marks, report that he
got distinction.

#include<stdio.h>

main() {

int marks;

printf("Enter your marks: \t");

scanf("%d", &marks);

if (marks > 40) {

if (marks > 75)

printf("You got distinction\n");

}

else

printf("You need to repeat the course\n");

}

• Draw the control
flow of the
program.

if else: example2 – observe carefully

If a student gets less than 40 marks, report that he has to repeat
the course. If student gets greater than 75 marks, report that he
got distinction.

#include<stdio.h>

main() {

int marks;

printf("Enter your marks: \t");

scanf("%d", &marks);

if (marks > 40) {

if (marks > 75);

printf("You got distinction\n");

}

else

printf("You need to repeat the course\n");

}

• What is the output
of the program on
• 40, 50, 75, 85

• Note the semicolon
if (marks > 75);

• Semicolon is a
statement
terminator.

if else: example2 – observe carefully

If a student gets less than 40 marks, report that he has to repeat
the course. If student gets greater than 75 marks, report that he
got distinction.

#include<stdio.h>

main() {

int marks;

printf("Enter your marks: \t");

scanf("%d", &marks);

if (marks > 40) {

if (marks > 75);

printf("You got distinction\n");

}

else

printf("You need to repeat the course\n");

}

• What is the output
of the program on
• 40, 50, 75, 85

• Note the semicolon
if (marks > 75);

• Semicolon is a
statement
terminator.

if else: example2 – observe carefully

If a student gets less than 40 marks, report that he has to repeat
the course. If student gets greater than 75 marks, report that he
got distinction.

#include<stdio.h>

main() {

int marks;

printf("Enter your marks: \t");

scanf("%d", &marks);

if (marks > 40) {

if (marks > 75);

printf("You got distinction\n");

}

else

printf("You need to repeat the course\n");

}

• What is the output
of the program on
• 40, 50, 75, 85

• Note the semicolon
if (marks > 75);

• Semicolon is a
statement
terminator.

