
CS6111: Foundations of Cryptography August 24, 2018

Homework 1
Instructor: Shweta Agrawal Due: Sept 5th, 2018

Problem 1: Negligible Functions (2+16+3 pts)

In cryptography, we usually define security by requiring that the probability of some undesirable
event (e.g. Eve guesses the message) be so small that one would never notice it. To that end, we
define a negligible function as follows:

Definition 1. (Negligible function) A function ν(k) : N 7→ [0, 1] is called negligible if for every
polynomial p, there exists some k0 ≥ 1 such that for all k > k0, ν(k) < |1/p(k)|.

In this problem we will develop some intuition for this useful concept and how to work with it.

a. Give an example of a negligible function ν(k) where ν(k) > 0 for all k.

b. Suppose that ν is a negligible function. Let p be a polynomial such that p(k) ≥ 0 for all k > 0.
Which of the following functions are negligible?

1) ν(p(k))

2) p(ν(k))

3)
∑p(k)
i=1 νi(k), where each νi is negligible

4) ν(k) ∗ p(k)

5) ν(k)
1

p(k)

6) ν(k)
1
c , for some positive constant c

7) 1
p(k) − ν(k)

8) ν(k)−c, for some positive constant c

c. Suppose that ε : N 7→ [0, 1] is not a negligible function. Does it follow that for some polynomial
p (where p(k) > 0 for all k) and some k0, ε(k) > 1/p(k) for all k > k0? If your answer is yes,
prove it. If your answer is no, give a counter-example.

Problem 2: One-Way Function: Definition (3+3 pts)

Recall the standard definition for a one-way function: A function f : {0, 1}∗ → {0, 1}∗ is called
one-way if the following two conditions hold:

1. Easy to compute: There exists a deterministic polynomial-time algorithm A such that on
input x, algorithm A outputs f(x) (i.e. (A(x) = f(x)).

2. Hard to invert: For every probabilistic polynomial-time algorithm A, there exists a negligible
function ν such that :

Pr
(
A(1k, f(x))→ x′ | x R← {0, 1}k ∧ f(x′) = f(x)

)
≤ ν(k)

Notation: The above notation x
R← {0, 1}k means that x of length k is chosen uniformly at

random from the set of k bit strings. The notation A(1k, f(x)) → x′ denotes that A takes
as input (1k, f(x)) and returns x′. The probability that A succeeds (i.e. f(x′) = f(x)) is
negligible.

HW 1-1

Suppose we define the “hard to invert” part differently: A function f : {0, 1}∗ → {0, 1}∗ is called
uninvertible if it is easy to compute f (as defined above), but there does not exist a probabilistic
polynomial-time algorithm A such that, for every string x, on input (1k, f(x)), A outputs x′ such
that f(x) = f(x′).

a. Show that if f is a one-way function, then it is an uninvertible function.

b. Below is a proof that an uninvertible function is also one-way. Is this proof correct? If not,
describe where it went wrong (potentially in more than one place).

Reduction: We show that an algorithm A that breaks the “one-wayness” of f also breaks
that “uninvertibleness” of A. Thus, the reduction accomplishes the contrapositive: not one-
way implies not uninvertible.

The reduction proceeds as follows: on input y = f(x), run A, giving it input y. With non-
negligible probability, A outputs x′ such that f(x′) = y = f(x). If A outputs such x′, output
it. Else, run A again until it does.

Analysis of the reduction: Correctness follows because the reduction does not halt until it
finds a correct x′. Expected polynomial-time follows because A outputs a correct x′ with
non-negligible probability ε(k), and ε(k) ≥ 1/p(k) for some polynomial p(k), so we need to run
A 1/ε(k) ≤ p(k) times before it produces a correct x′.

Therefore, if f is an uninvertible function, then it is also a one-way function.

Problem 3: Combining OWF (3+3+3 pts)

Let f, g be length preserving one way functions, i.e. |f(x)| = |x|. We will construct new functions
f ′ using arbitrary one-way f, g. Prove or disprove that f ′ is one way for each of the following
constructions. If it is, prove it, else provide a counter example.

a. f ′(x) = f(x)⊕ g(x)

b. f ′(x) = f(f(x))

c. f ′(x1||x2) = f(x1)||g(x2) (here || denotes concatenation)

Problem 4: RSA.(4 pts)

In class we saw the RSA trapdoor permutation. In this problem we construct a candidate encryption
scheme from RSA. Recall that we have a public modulus n = p · q where p, q are large primes. A
user’s public key is e ∈ Z∗φ(n) and secret key is d s.t. e · d = 1 mod φ(n). To encrypt a message m,

a user computes the ciphertext as CT = me mod n and to decrypt she computes CTd mod n.
Assume that Sita and Ram have RSA keys with the same public modulus n but with different

public exponents es and er respectively where es and er are relatively prime. Say that RSA en-
cryption is used to send the same message m to both Sita and Ram. Prove that if Ravan knows
n, es, er and sees the two ciphertexts cs = mes mod n and cr = mer mod n, he can reconstruct the
message m.

Note: this question illustrates the problem of using deterministic (as against randomized) en-
cryption.

HW 1-2

Problem 5: Definitions (5 pts)

Write down the definitions of eavesdropping adversary and Chosen-Plaintext-Attack (CPA) security
that we saw in class for symmetric key encryption. Notice that CPA security gives more power to
the adversary. Argue why CPA security is the better definition of the two.

HW 1-3

