
CS6111: Foundations of Cryptography Oct 31, 2018

Homework 4
Instructor: Shweta Agrawal Due: Nov 9

Notation. We let || denote the concatenation operator.

Problem 1: Zero Knowledge (9 pts)

Summarize the zero knowledge protocols for graph isomorphism, 3 coloring and Rudrata/Hamiltonian
cycle that we saw in class. Argue correctness and soundness of the protocols formally. Define zero
knowledge. Intuitively, why do you expect the protocols to be zero knowledge (formal proof is not
expected).

Problem 2: Commitment and Encryption (5 pts)

The hiding and binding properties of commitments are reminiscent of the privacy and correctness
properties of an encryption scheme. Discuss the differences between a commitment and an encryption
scheme.

Problem 3: Identification Protocol (6 pts)

In an identification protocol, the prover P proves its identity to verifier V by demonstrating knowl-
edge of a secret known to be associated with P without revealing the secret itself to V . A classic
identification protocol works as follows.

First we fix a cyclic group G of prime order q. Let g be a generator for G. Next we choose a
random x ∈ Zq and set the prover’s secret key SK = x and the verifier’s key PK = gx. Now, the
protocol works as follows:

1. The prover chooses a random r ∈ Zq and sends R = gr to the verifier.

2. The verifier chooses a random challenge c ∈ {1, . . . , B} (for some fixed integer B) and sends c
to the prover.

3. The prover computes z = x · c+ r ∈ Zq and sends z to the verifier.

4. The verifier outputs “yes” if gz = PKc ·R.

Thus, the verifier is convinced that it is speaking to someone who has knowledge of the discrete log
x. We will study the correctness and security of the above protocol.

• (2 pts) Show that an honest prover who follows the protocol will always be accepted by the
verifier (i.e. the verifier will say “yes”).

• (4 pts) Suppose steps 1 and 2 of the protocol were swapped. Show that the resulting protocol
is insecure. That is, an attacker who knows PK but not the secret x can play the role of the
prover and cause the verifier to accept.
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Problem 4: Online-Offline signatures (4 pts)

In the practice problems, we saw the definition of online-offline signatures. The idea of designing
off-line/on-line signatures is to split the (expensive) signing process into two components. The off-
line component will prepare some information σ1 even before the message to be signed is known.
This component could be a little slow since it is done off-line. The on-line component is performed
after the message m arrives.

Let us see another construction. Assume (Gen1,Sign1,Verify1) is a secure one time signature
scheme and (Gen,Sign,Verify) be a regular signature scheme (existentially unforgeable under chosen
message attack). In the offline phase, pick one time keys (sk1, vk1)← Gen1(1k) and sign vk1 using
the regular signing algorithm σ1 = Signsk(vk1). In the online phase, one time sign the message
σ2 = Sign1sk1(m). The overall signature is σ = (σ1, σ2, vk

1).
Is the resulting scheme secure? Prove or provide an attack.

Problem 5: A Different Kind of Signature

The digital signature schemes we have studied so far all offer a property called non-repudiability.
Informally, this property states that, since it is computationally difficult to forge someone’s signature
without knowing their private key, someone can only convincingly disavow a signature if they are
willing to admit that their key has been compromised. This is often a desirable property, since
signatures are no good for many applications if they can be easily revoked. However, there are some
settings in which Alice may wish to authenticate her messages to Bob without committing herself
to the contents in such a permanent way.

For such applications, we may wish to use a designated verifier signature scheme. In such a
scheme, Alice uses Bob’s public key to sign her messages in such a way that Bob could have forged the
signatures himself using his private key. Upon receiving such a signature Bob will know that it came
from Alice, because she is the only other party capable of producing the signature. However, any
third party cannot be sure that Bob was not the signer instead, thus preserving Alice’s deniability.

Formally, a DVS scheme is given by the following four efficiently-computable functions:

• KeyGen(1k)→ (pk, sk) generates a public key and secret key given a security parameter.

• Sign(sksigner, pksigner, pkverifier,m) → σ produces a signature given a message, the signer’s
private key, and the public keys of both the signer and the verifier.

• FakeSign(skverifier, pkverifier, pksigner,m) → σ produces a signature given a message, the
verifier’s private key, and the public keys of both the signer and the verifier.

• V erify(skverifier, pkverifier, pksigner,m, σ) → b outputs 1 for accept and 0 for reject given a
message and signature, the verifier’s private key, and the public keys of both the signer and
the verifier.

In order for a DVS scheme to be correct, the following must hold:

• Pr[σ ← Sign(sks, pks, pkv,m); b ← V erify(skv, pkv, pks,m, σ) : b = 1] = 1 for all key pairs
(pks, sks) and (pkv, skv) in the domain of KeyGen and for all m in the message domain. In
other words, signatures produced by the signer must always verify.

• Pr[σ ← FakeSign(skv, pkv, pks,m); b ← V erify(skv, pkv, pks,m, σ) : b = 1] = 1 for all key
pairs (pks, sks) and (pkv, skv) in the domain of KeyGen and for all m in the message domain.
In other words, signatures produced by the verifier must always verify.

The two key security properties of a DVS scheme are as follows:
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• Unforgeability: For all PPT adversaries A there exists some negligible ν such that

Pr[(pks, sks), (pkv, pks)← KeyGen(1k);

(m∗, σ∗, QSign, QFakeSign)←
AOSign(sks,pks,pkv,·),OFakeSign(skv,pkv,pks,·),OV erify(skv,pkv,pks,·,·)(pks, pkv);

b← V erify(skv, pkv, pks,m
∗, σ∗) : m∗ 6∈ Q ∧ b = 1]

≤ ν(k)

where QSign is the list of OSign queries made by A and QFakeSign is the list of OFakeSign
queries made by A. In other words, no PPT adversary can find even an existential forgery
with non-negligible probability, even when given the public keys of both parties and oracle
access to the signing and verification functions.

• Non-transferability: For all PPT adversaries A there exists some negligible ν such that for all
messages m and all signer and verifier key pairs (pks, sks) and (pkv, skv)

Pr[(pks, sks), (pkv, pks)← KeyGen(1k);

σ0 ← Sign(sks, pks, pkv,m);σ1 ← FakeSign(skv, pkv, pks,m);

b← {0, 1}; b′ ← A(pks, sks, pkv, skv, σb) : b′ = b] ≤ 1/2 + ν(k)

In other words, a signature computed by the signer is indistinguishable from a signature
computed by the verifier.

Suppose Alice and Bob have agreed on a large k-bit prime q ahead of time, and some generator
g for Z∗q . In addition, let Fk : Z∗q → Z∗q be a family of PRFs with keys in Z∗q . Then the following
scheme is a DVS:

• KeyGen: Choose x at random from Zq and output gx as the public key and x as the private
key.

• Sign: Choose r at random from Zq
∗, and compute k = pksks

v and m∗ = m · r mod q. Output
σ = (r, Fk(m∗)).

• FakeSign: Choose r at random from Zq
∗, and compute k = pkskv

s and m∗ = m · r mod q.
Output σ = (r, Fk(m∗)).

• V erify: Compute k = pkskv
s and m∗ = m · r mod q. Output 1 if σ = (r, Fk(m∗)), 0 otherwise.

a. Prove that this scheme is correct.

b. Prove that this scheme is perfectly non-transferable. In other words, prove that the probability
of the signer outputting a particular signature is exactly the same as the probability of the
verifier outputting that signature, for all possible messages and key pairs.

c. Prove that this scheme is computationally unforgeable using a hybrid argument:

(a) Consider a modified game G1 in which Sign, FakeSign, and V erify use some fixed
random element of Z∗q in place of the computed value k. Prove using a reduction that
no PPT adversary can distinguish between this game and the original forging game G0

if DDH assumption holds.

(b) Consider a modified game G2 in which Sign, FakeSign, and V erify use a truly random
function in place of the PRF family F . Prove using a reduction that no PPT adversary
can distinguish between this game and the previous game G1 if F is a family of PRFs.

(c) Conclude by the hybrid argument that since G0 and G2 are indistinguishable games. How
often can an adversary expect to succeed when playing G2? What does this tell you about
the same adversary’s success probability when playing G0?
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