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1 Introduction

In this lecture we will look into the concept of Fully Homomorphic Encryption (FHE). Before
defining it formally, let us consider the following motivating example where a client, say Alice,
wants to compute some function f on her data D and the computation f(D) requires lots of com-
putational resource that she lacks. An ideal thought could be to let the cloud do the computation
on her behalf, which would require Alice to send D to the server, but then she also doesn’t want
the cloud to learn about her data.
A trivial solution that one could think of is to encrypt the data and then send it to the cloud. Note
that if we use a public-key encryption scheme for this task, we can be successful in hiding our
data initially but the cloud won’t be able to do any meaningful computation of the data without
the secret key used for encrypting the data and thus we fail to reach our goal of computation that
manages to hides the data. So is there a way you can let the cloud evaluate the function on your
data and still manage to hide your data from the cloud?

Client Cloud
Enc(D)

−−−−−−−−−−−−−−−−−−−−−−−→
f−−−−−−−−−−−−−−−−−−−−−−−→

Enc(f(D))
←−−−−−−−−−−−−−−−−−−−−−−−

YES! Homomorphic Encryption is the key to this question. Fully Homomorphic Encryption
allows you to do computation on encrypted data for any function. So now, you can encrypt your
data, send it to the cloud, get back the function output on the encrypted data and then use your
secret key to reveal the function value on your data.
In section 2 we will look at some preliminary definitions that will help us in defining and con-
structing a fully homomorphic encryption scheme.

2 Preliminaries

Definition 2.1 (Rings). A ring is a set R equipped with two binary operations + (addition) and ·
(multiplication) satisfying the following :

1. R is an abelian group under addition.

2. R is associative under multiplication and 1 is the multiplicative identity of R.

3. Multiplication is distributive with respect to addition in R

In this class we will either use the ring of integers R = Z or polynomial rings Z[x]/(xd + 1) where
d is a power of 2. For r ∈ R, ||r|| refers to the Euclidean norm of r.



Definition 2.2 (Dot Product). The dot product of two n-dimensional vectors u, v ∈ Rn is defined
as

〈u, v〉 =
n∑
i=1

u[i]v[i]

where the notation u[i] refers to the i-th coefficient of u.

Definition 2.3 (Negligible Function). A function f is negligible if ∀ polynomial p(·), ∃N such that
∀n > N

f(n) <
1

p(n)

Definition 2.4 (Learning With Errors (LWE)). For security parameter λ, let n = n(λ) be an integer
dimension, let q = q(λ) ≥ 2 be an integer, and let χ = χ(λ) be a distribution over Z. The LWEn,q,χ
problem is to distinguish the following two distributions:

1. Sample (~ai, bi) from Zn+1
q

2. Sample ~s← Znq , ~ai ← Znq
Compute bi = 〈~ai, ~s〉+ ei where ei ← χ

The LWEn,q,χ assumption is that the LWEn,q,χ problem is infeasible.

Definition 2.5 (B-bounded distribution). A distribution ensemble {χn}n∈N, supported over the
integers, is called B-bounded if the

Pre←χn [|e| > B] = negl(n)

Theorem 1 (Hardness of LWE). For any integer dimension n, prime integer q = q(n), and B =
B(n) ≥ 2n, there is an efficiently samplable B-bounded distribution χ such that if there exists
an efficient (possibly quantum) algorithm that solves LWEn,q,χ, then there is an efficient quantum
algorithm for solving Õ(qn1.5/B)- approximate worst-case SIVP and gapSVP.

Definition 2.6 (Leftover Hash Lemma (LHL)). Given A ← ZN×(n+1)
q , N ≥ 2(n + 1) log q and

r ← {0, 1}N then {A,AT r} ≈ {A,uniform}.

3 Homomorphic Encryption

A homomorphic encryption scheme HE = (KeyGen,Enc,Dec,Eval) is defined by the following ppt
algorithms:

• KeyGen(1λ): Outputs (pk, evk, sk), the public key pk for encrypting, the evaluation key evk
for evaluating and the secret key sk for decrypting.

• Enc(pk,m): Takes as input the public key pk and a message m and outputs the ciphertext c.

• Eval(evk, f, c1, ...., c`): Takes as input the evaluation key evk, the function f and a tuple of
ciphertexts and outputs cf , the evaluation ciphertext.

• Dec(sk, c): It uses the decryption key sk to decrypt a ciphertext c to recover the plaintext m′

Page 2



Correctness : We say that the above homomorphic scheme is correct if the decryption of the ho-
momorphic evaluation is correct with overwhelming probability. More formally,

Pr[Decsk(Evalevk(f, c1, ...., c`)) 6= f(m1, . . . ,m`)] = negl(λ)

where ci = Encpk(mi) and (pk, evk, sk)← KeyGen(1λ).

Compactness : We say that the above homomorphic scheme is compact if there is a polynomial
p, such that for any key-triplet (pk, evk, sk) ← KeyGen(1λ), the function f , and the ciphertexts ci,
the size of the output Evalevk(f, c1, ...., c`) is not more than p(λ) bits, independent of the size of the
function or the number of inputs to the function. .

Levelled Homomorphic Scheme : A homomorphic encryption scheme HE = (KeyGen,Enc,Dec,Eval)
is called ”levelled” if the KeyGen algorithm takes L as an additional input where L is the maxi-
mum depth of the circuits that can be evaluated by the scheme.

In the next section we will look at the building blocks of the fully homomorphic encryption
scheme. We will see a public-key scheme used in [Bra12] that naturally is somewhat homomor-
phic with respect to addition. Then we will use the techniques from [BGV] to make this scheme
fully homomorphic.

4 Regev’s Ecryption Scheme

Let q = q(n) be an integer function, χ = χ(n) be a B-bounded distribution ensemble over Z and
N , (n+ 1) · (log q +O(1)). The scheme Regev is defined as follows:

• Regev.SecretKeyGen(1n): Sample ~s← Znq . Outputs sk = ~s.

• Regev.PublicKeyGen(sk) : Let N = (n+ 1) log q.

– Sample A← ZN×nq , ~e← χN .

– Compute b = [A~s+ ~e], P = [b|| −A] ∈ ZN×(n+1)
q .

– Output pk = P

• Regev.Encpk(m) for m ∈ {0, 1}:

– Sample ~r ← {0, 1}N

– Compute ~c =
[
P T~r +

⌊ q
2

⌋
~m
]
q
∈ Z(n+1)

q where ~m = (m, . . . , 0)

• Regev.Decsk(~c):

– Compute [〈~c, (1, ~s)〉]q , d

– Output
[⌊

2 · dq
⌉]

2
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4.1 Correctness

We shall prove that the algorithm Regev.Dec will decrypt correctly.

We have ~c = (P T~r +
⌊q
2

⌋
~m) mod q

So, 〈~c, (1, ~s)〉 = 〈P T~r +
⌊q
2

⌋
~m, (1, ~s)〉 mod q

= 〈P T~r, (1, ~s)〉+
⌊q
2

⌋
〈(m, . . . , 0), (1, ~s)〉 mod q

= ~rTP · (1, ~s) +
⌊q
2

⌋
m mod q

= ~rT ([b|| −A]) · (1, ~s) +
⌊q
2

⌋
m mod q

= ~rT (b−A~s) +
⌊q
2

⌋
m mod q

= 〈~r,~e〉+
⌊q
2

⌋
m mod q

Here ~r ← {0, 1}N in Regev.Enc and e← χN where χ is B-bounded. So we have,

|〈~r, e〉| =

∣∣∣∣∣
N∑
i=1

riei

∣∣∣∣∣ ≤
N∑
i=1

ri|ei| ≤
N∑
i=1

B = N ·B

Let e = 〈~r, e〉. So we have 〈~c, (1, ~s)〉 =
⌊ q
2

⌋
m+ e.

Lemma 1. Let ~s ∈ Zn be some vector, and let ~c ∈ Z(n+1)
q be such that 〈~c, (1, ~s)〉 =

⌊ q
2

⌋
m + e with

m ∈ {0, 1} and |e| <
⌊ q
2

⌋
/2. Then Regev.Decsk(c) = m

Proof. We have 〈~c, (1, ~s)〉 =
⌊ q
2

⌋
m+ e , so[⌊

2 · d
q

⌉]
2

=

[⌊
2 ·
⌊ q
2

⌋
m+ e

q

⌉]
2

For m = 0,
⌊ q
2

⌋
m+ e ∈ (−(q − 1)/4, q/4). So the output of the decryption algorithm,⌊

2 ·
⌊ q
2

⌋
m+ e

q

⌉
∈
(
−1

2
+

1

2q
,
1

2

)
which is closer to 0.

When m = 1,
⌊ q
2

⌋
m+ e ∈ ((q − 1)/4, 3q/4). So the output of the decryption algorithm,⌊

2 ·
⌊ q
2

⌋
m+ e

q

⌉
∈
(
1

2
− 1

2q
,
3

2

)
which is closer to 1.
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4.2 Security

Let us first look at the security game for any public-key encryption scheme

Challenger Adversary(A)

Generates (pk, sk)
pk−−−−−−−−−−−−−−−−−−−−−−−→

m0,m1←−−−−−−−−−−−−−−−−−−−−−−−

Sample b← {0, 1}
Enc(pk,mb)−−−−−−−−−−−−−−−−−−−−−−−→

b′←−−−−−−−−−−−−−−−−−−−−−−− Guess b′

The adversaryAwins the game if b = b′. The scheme is said to be semantically secure if Pr[Awins ] ≤
1/2 + negl(λ).
Now consider any adversary A for the above Regev’s scheme. The adversary can see the public
key P = [b||−A] and the ciphertext ~c =

[
P T~r +

⌊ q
2

⌋
~m
]
q

. We can argue the security of the Regev’s
scheme in two steps using LWE assumption and leftover hash lemma as follows:

• First we use the LWE assumption to replace b = [A~s+~e] in the public key P with a uniformly
random vector b′ ← ZN×(n+1)

q .

• Now since A is chosen uniformly at random from ZN×nq in Regev.PublicKeyGen and b′ is
uniformly random, so our public key P = [b′|| − A] is uniformly random. Also we have
N ≥ 2(n + 1) log q and ~r ← {0, 1}N , so by LHL, P T~r is statistically indistinguishable from
some P ′ ← Z(n+1)

q . So the encryption algorithm computing ~c =
[
P ′ +

⌊ q
2

⌋
~m
]
q

acts as a
one time pad for our message bit. So our message is going to be information theoretically
hidden.

So any adversary A for the above scheme cannot guess the bit b′ correctly with probability better
than 1/2+negl(n).
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