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In this lecture, we will be studying the quadratic homomorphic encryption (qFHE) in the secret key setting
of [BV11].

1 Symmetric Key Encryption

Let = be the security parameter, @ be the modulus and j be the error distribution for the scheme. Let SKE =

{keygen, enc, dec} be a symmetric key encryption scheme described below.

∗ B: ← SKE.keygen(1=). On receiving the security parameter = as input, it samples s ← Z=@ and sets
B: = s.

∗ (a, 1) ← SKE.enc(B:,<). It takes input as a secret key B: , a message < ∈ {0, 1} and performs the
following steps.

1. sample a ∈ Z=@ and 4 ∈ j ,

2. compute 1 =< a, s > +4 +<(@+12 ),
3. output the ciphertext 2C = (a, 1).

∗ < ← SKE.dec(B:, 2C). It computesF = 1− < a, s >. Note that s = B: .

1. If @

2 ≤ |F | ≤ @ then output 1.
2. Otherwise output 0.

Note that the correctness of this algorithm follows provided |4 | < @

4 . The security of SKE relies on the
hardness of learning with errors problem.

Homomorphic Operations on the Above Symmetric Key Encryption SKE.

Let 21, 22 be two ciphertexts such that 28 = (a8 , 1 =< a8 , s > +48 +<8 (@+12 )) for 8 = 1, 2.

• It is easy to see that the scheme is additively homomorphic as explained below.
If we set 2 = 21 + 22 mod @ de�ned by

2 = (a, 1) =
(
a1 + a2, < a1 + a2, s > +(41 + 42) + (<1 +<2)

(@ + 1
2

) )
then

1− < a1 + a2, s >= (41 + 42) + (<1 +<2)
(@ + 1

2
)
.

Thus, if we set the parameters in such a way that the accumulated noise 41 + 42 remains bounded above
by @

4 then we get a valid encryption of<1 +<2.

• We now understand the ideas of [BV11] to get the above scheme SKE to bemultiplicatively homomorphic.
If we look from the other way, we actually want is the encryption of<1 ·<2, given the encryption of
<1 and<2. In other words, we want the encoding of<1<2

(@+1
2

)
. We already have

11− < a1, s >≈<1
(@ + 1

2
)
,
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12− < a2, s >≈<2
(@ + 1

2
)
.

That is 2(11− < a1, s >) (12− < a2, s >) ≈<1<2
(@+1

2
)
mod @.

Let us recall the tensor product and the product of two inner products.

1. Let w = (F1,F2, . . . ,FB) ∈ ZB and z = (I1, I2, . . . , IC ) ∈ ZC then

w ⊗ z = (F8I 9 )(8, 9) ∈[B ] [C ] ∈ ZBC .

2. < u1, v1 >< u2, v2 >=< u1 ⊗ u2, v1 ⊗ v2 >.

Let t = (−s, 1). There are two things that needs to be noted. Firstly,

< 21, t >< 22, t >= (< −a1, s > +11) (< −a2, s > +12) = (11− < a1, B >) (12− < a2, s >) .

Secondly, from the above de�nition we get < 21, t >< 22, t >=< 21 ⊗ 22, t ⊗ t > . Also,

2 < 21 ⊗ 22, t ⊗ t > = 2 < 21, t >< 22, t >

= 2
(
41 +<1

(@ + 1
2

) ) (
42 +<2

(@ + 1
2

) )
= 24142 + (<142 +<241) +<1<2

(@ + 1
2

)
(1)

Thus, 2 < 21 ⊗ 22, t ⊗ t >= 2 < 21, t >< 22, t >=<1<2
(@+1

2
)
+ =>8B4.

The above explanation says that 221 ⊗ 22 is the new ciphertext w.r.t the new secret key t ⊗ t. From the
de�nition of tensor product, it is clear that the size of the ciphertext and noise grows rapidly. More
speci�cally, dimension = changes to =2. Following this way will limit the expressiveness of the multi-
plicative circuit. That is, if we take the multiplicative operation 8 times then the dimension increases to
=2

8 . In other words, the max depth the multiplicative circuit can support is log log=. Also, if we look at
Equation (1) we notice that the growth in the error is quadratic. Next, our job is to bring the dimension
=2 back to =. In [BV11], the technique of reducing the dimension is called DIMENSION REDUCTION.
Let �<D;C = 221 ⊗ 22 and the new secret key = t ⊗ t.

Dimension Reduction

We want to reduce the complexity of the decryption without decreasing the homomorphic capacity.
We therefore provide some “extra stu�" that lets us bring the dimension =2 (after one multiplication)
back down to =. The idea here is to apply a transformation B ∈ Z=×=2 (publicly known) to �<D;C such
that the high dimension �<D;C (wrt t1 ⊗ t1) comes down to a low dimensional �=4F (wrt t2). Roughly
speaking we encrypt t1 ⊗ t1 under t2 with a relatively larger modulus. We know that
< t1 ⊗ t1, 221 ⊗ 22 >≈<1<2

(@+1
2

)
i.e., (t1 ⊗ t1))�<D;C ≈<1<2

(@+1
2

)
. Let B) · t2 = t1 ⊗ t1 then (B) · t2)) ·

�<D;C = t)2 ·�=4F where �=4F = B ·�<D;C .
Next, we need to specify the matrix B and the new secret key t2 such that B) t2 ≈ t1 ⊗ t1. Let us sample
s2 ← Z=@ and set t2 = (−s2, 1). Letk8 9 for all 8, 9 ∈ [=] be the columns of B such that

k8 9 = �̃=2 (C18 , C19 ) = (a8 9 , < a8 9 , s2 > +48 9 + C18C19 ).

Roughly speaking, the entries of the matrix B can be seen as the encryptions of old long key s1 ⊗ s1
under the new short key s2. Observe that

< k8 9 , t2 >≈ t18t19 (2)

Thus, the way we have speci�edk8 9 and from Equation (2), we see that B) t2 ≈ t1 ⊗ t1.
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In the next lecture, we will continue our discussion on dimension reduction techniques. Observe that
�=4F = B ·�<D;C is low dimensional and decrypts correctly. However the noise grows hugely due to the large
normed vector 221 ⊗ 22. In next class, we will see how the bit decomposition technique helps us to reduce the
error growth and allows us to take the depth of the circuit to be log= which was log log= earlier.
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