DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS
CHENNALI - 600036

Building Cryptography for
Distributed Data and Authority

A Thesis
Submitted by
ANSHU YADAV

For the award of the degree
of
DOCTOR OF PHILOSOPHY
May 2023

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS
CHENNALI - 600036

Building Cryptography for
Distributed Data and Authority

A Thesis
Submitted by
ANSHU YADAV

For the award of the degree
of
DOCTOR OF PHILOSOPHY
May 2023

© 2023 Indian Institute of Technology Madras

To
my parents, and

sweet memories of chhota bhaiya

THESIS CERTIFICATE

This is to undertake that the Thesis titled BUILDING CRYPTOGRAPHY FOR

DISTRIBUTED DATA AND AUTHORITY, submitted by me to the Indian Institute
of Technology Madras, for the award of Doctor of Philosophy, is a bonafide record of
the research work done by me under the supervision of Prof. Shweta Agrawal. The
contents of this Thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Fhb (Bda

Chennai 600036. Anshu Yadav

Date: May 25, 2023 SW&WO&
(

Prof. Shweta Agrawal
Research advisor
Associate Professor
Department of CSE
IIT Madras

© 2023 Indian Institute of Technology Madras

II.

LIST OF PUBLICATIONS

PUBLICATIONS FROM THE THESIS

. Shweta Agrawal, Junichi Tomida, Anshu Yadav. Attribute-Based Multi-Input FE

(and more) for Attribute-Weighted Sums. In CRYPTO, 2023. (To appear).

Shweta Agrawal, Mélissa Rossi, Anshu Yadav, Shota Yamada. Constant Input
Attribute Based (and Predicate) Encryption from Evasive and Tensor LWE. In
CRYPTO, 2023. (To appear).

. Shweta Agrawal, Anshu Yadav, Shota Yamada. Multi-input Attribute Based and

Predicate Encryption. In CRYPTO, volume 13507 of LNCS, pages 590-621,
Springer, 2022. https://doi.org/10.1007/978-3-031-15802-5_21.

. Shweta Agrawal, Damien Stehlé, Anshu Yadav. Round-Optimal Lattice-Based

Threshold Signatures, Revisited. In ICALP, pages, volume 229 of LIPIcs, pages
8:1-8:20, Dagstuhl Publishing, 2022. https://doi.org/10.4230/LIPIcs.
ICALP.2022.8

. Shweta Agrawal, Elena Kirshanova, Damien Stehlé, Anshu Yadav. Practical,

Round-Optimal, Lattice-Based Blind Signatures, In ACM-CCS, pages 39-53,
ACM, 2022. https://doi.org/10.1145/3548606.3560650.

OTHER PUBLICATIONS

. Shweta Agrawal, Simran Kumari, Anshu Yadav, Shota Yamada. Trace and Revoke

with Optimal Parameters from Polynomial Hardness. In EUROCRYPT, volume
14006 of LNCS, pages 605-636. Springer, 2023. https://doi.org/10.1007/
978-3-031-30620-4_20

https://doi.org/10.1007/978-3-031-15802-5_21
https://doi.org/10.4230/LIPIcs.ICALP.2022.8
https://doi.org/10.4230/LIPIcs.ICALP.2022.8
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1007/978-3-031-30620-4_20
https://doi.org/10.1007/978-3-031-30620-4_20

ACKNOWLEDGEMENTS

I take this opportunity to thank everyone who has contributed to my journey for Ph.D.
First and foremost, I express my deepest gratitude to my advisor Prof. Shweta Agrawal
for her immense support and guidance throughout this journey. This work would not have
been possible without her active involvement at every stage. I thank her for believing
in me at the time when I was going through a low phase in my career. I feel extremely
blessed that I got the opportunity to work with her. Her constant encouragement has
always kept me motivated. Even beyond research, her advice towards life, in general, has
been invaluable. She has always been there as a strong support in every part of my PhD
journey both at the professional and the personal level. I am deeply grateful and will

always be indebted to her for everything that she has done for me.

I sincerely thank all my co-authors, Prof. Shweta, Dr. Elena Kirshanova from TII Abu
Dhabi, Simran Kumari from IIT Madras, Dr. Mélissa Rossi from ANSSI Paris, Prof.
Damien Stehlé from ENS Lyon, Dr. Junichi Tomida from NTT Japan and Dr. Shota
Yamada from AIST Tokyo, for all the interesting discussions. I got to learn a lot while
working with them. I thank Prof. Damien and Dr. Shota, also for their guidance in
writing papers and preparing conference talks. I am also thankful to Prof. Jung Hee
Cheon and Hyeongmin Choe from Seoul National University, for insightful discussions
on a project that unfortunately could not be successful. I want to thank Prof. Damien
and Dr. Alain Passelegue for inviting me to ENS Lyon for a short visit and for having

fruitful discussions.

I want to thank my current Doctoral Committee members - Prof. Balaram Ravindran,
Prof. John Augustine, Dr. Nishanth Chandran, and Prof. Aishwarya Thiruvengadam, as
well as the previous members - Prof. Narayanaswamy N. S., Prof. Chester Rebeiro, and
Prof. Jayalal Sarma, for their questions, comments, and suggestions during my seminars.

I am thankful to all the anonymous reviewers of our papers for their useful comments.

I also want to thankfully acknowledge Microsoft Research and Google Research for
supporting me with travel grants for presenting our work at ICALP 2022 and ACM CCS

2022, respectively.

I would also like to extend my thanks to the faculties and staff from the Computer Science
Department at IIT Madras. Of special mention are Prof. Shweta and Prof. Jayalal for
their amazing style of teaching with lots of clarity that helped me understand many
difficult concepts with much ease. It was a very good experience sitting through their

lectures.

I want to thank all the members of the Cryptography Cybersecurity and Distributed Trust
(CCD) lab and the previous Theoretical Computer Science (TCS) lab for interesting
discussions during talks and seminars, and also for organizing various fun events. I
particularly want to thank Monosij Maitra, who was a senior Ph.D. student with Shweta.
He has been very helpful during my Ph.D. - in solving my research-related doubts as well
as many other things. I enjoyed having technical discussions with him during my Ph.D. I
would also like to specially mention Simran for all the long discussions, especially while

working on a joint project and for her company in late-night snacking at Usha cafe.

Finally, I am thankful to everyone in my family who contributed in my Ph.D. journey
in different ways. I express my deepest gratitude towards my parents and my brother,
my cousin brother, and my sister for their immense love and strong support. My interest
in mathematics developed due to my father because of his wonderful style of teaching
during my early schooling. He taught me to think logically and to understand different
concepts using relatable examples from daily life. I have no words to thank my parents,
for always believing in me and giving me complete freedom and full support in choosing
my career path and every other choice. I will always be indebted to them for all the
love and care and the sacrifices that they have made. I am extremely thankful to my

brother and sister for being an incredible support system. My brother has always been

the guiding force throughout my journey so far. I thank my sister for always being very
caring and encouraging. My entry into the world of computer science was guided by my
cousin brother. I want to express my special thanks to him for all his help and support. I
must also thank my loving nephews and niece for all the interesting conversations that I
had with them. Talking to them or just about them would help me forget all my problems.

I thank them for being a part of my Ph.D. journey in the most beautiful way.

ABSTRACT

KEYWORDS multi-input predicate encryption; multi-input attribute based
encryption; attribute weighted sums; attribute based multi-input
functional encrytion; multi-client functional encryption; dynamic
decentralized functional encryption; blind signature; one-more-isis;

threshold signature

In the modern era of advanced digital technologies, there exists a plethora of online
applications on the internet including e-commerce, net banking, online games and
movies, and many more. These applications generate huge amount of data which includes
sensitive information of their users, like bank account details, credit card numbers, and
personal details like date of birth, mobile number, address, and such others. This poses
new challenges in ensuring data privacy and secrecy without compromising with the
enormous opportunities of performing useful studies on these data. For example, consider
a researcher who wants to study the correlation between hypertension and the profession
of patients in the age group 30-50 years and hence needs access to records of patients
who fall in this category. The hospital would want to encrypt the records of patients and
provide a decrypting key to the researcher that allows access to only the relevant records
and nothing else. Traditional methods like standard public key encryption (PKE) do
not suffice because anyone having the decryption key gets unrestricted access to all the
records of all the patients. While what we want is a tailored key that lets the researcher
access only the relevant data related only to her research. Advanced tools like functional
encryption (FE), attribute based encryption (ABE), and predicate encryption (PE) give
us such guarantees but are generally defined in a single input setting where the data
is assumed to be held by a single party. In practice, data related to a single entity is
generated independently in parts at different locations. In such a scenario, we would
want to have the same security guarantees as if the data were generated from a single

source. Furthermore, for better security in cryptographic primitives, it is often desired

that the authority is distributed among multiple parties so that there is no single point
of security failure. For example, a user of an online application may want to distribute
his/her key on multiple devices, like smartphone and tablet so that the security is ensured

unless all the devices are compromised.

Motivated by these observations, we study different cryptographic primitives in a
distributed setup. Our work can be broadly viewed in two parts - in the first part, we
study such primitives, where the data to be encrypted is generated in a distributed manner.

In the second part, we focus on primitives with distributed authority.

In the first part, we study ABE, PE, and FE in distributed settings. We initiate the
study of multi-input PE (MIPE) and further develop multi-input ABE (MIABE). We
define MIABE and MIPE in symmetric key setting and formalize the security in standard
indistinguishability (IND) based paradigm against unbounded collusions. We provide the
first construction for 2ABE for NC; using learning with errors (LWE) and pairings and
give a generic compiler that for any constant k, transforms any k-input ABE to k-input
PE. We also provide the first construction of MIABE for NC4 for any constant arity from
evasive LWE assumption, recently introduced independently by Wee (Eurocrypt 2022)
and Tsabary (Crypto 2022). We extend our construction to support functions in P by
using evasive and suitable strengthening of tensor LWE introduced by Wee (Eurocrypt
2022). By combining our compiler with our results for MIABE, we get 2PE for NC, using
LWE and pairings and constant-arity PE for NC; and P from lattice based assumptions

of evasive and tensor LWE that are conjectured to be post-quantum secure.

Furthermore, we extend FE for attribute weighted sums (AWS), recently given by Abdalla
et al. (Crypto 2020), where encryption takes N (unbounded) (public-private) attribute-
value pairs {x;, z; };c[n], the secret key is given for an arithmetic branching programs f,
and the decryption returns the weighted sum 3,y (X;) "z, to the significantly more

challenging multi-party setting and provide the first construction for attribute-based

multi-input FE (MIFE) supporting AWS. We also provide the first constructions of
multi-client FE (MCFE) and dynamic decentralized FE (DDFE) for AWS. Previously,
these primitives were known only for linear functions (or inner products) [Abdalla et
al. (Asiacrypt 2020), Chotard et al. (ePrint 2018), Abdalla et al. (Asiacrypt 2019), and
Chotard et al. (Crypto 2020)].

In the second part, we study advanced digital signature schemes - threshold signatures
and blind signatures. Both the primitives find applications in modern applications like
cryptocurrencies, e-voting, blockchains, etc. Threshold signature is a digital signature
scheme, where the signing power is distributed among N signers such that at least some
threshold # number of signers are needed to generate a valid signature. We improve the
only lattice based construction for ¢-out-of-N access structure with round optimality
by Boneh et al. in terms of efficiency and security. We reduce the signature size from
O(2%) to O(1), where A is the security parameter. Boneh et al’s construction achieve
only selective security, where all the corrupt parties are declared in the beginning. We
give two constructions that achieve (i) partial adaptivity - which allows corruption at any
time, but all the corruptions must be declared together, and (ii) full adaptivity - which

allows corruption at any time in any order.

In blind signatures, there are two parties involved - the user and the signer. The user U,
holding a public key and message, may request a signature from the signer S, holding
a signing key, such that the signer is not able to link a message-signature pair with
a protocol execution, and the user is not able to forge signatures even after multiple
interactions with the signer. We construct the first overall practical round optimal lattice
based blind signature supporting an unbounded number of signature queries. We provide
a detailed estimate of parameters achieved — we obtain a signature of size slightly above
45KB, for a core-SVP hardness of 109 bits. All the run-times are also very small. Its
security stems from a new and arguably natural assumption that we introduce. To gain

confidence in our assumption, we provide a detailed analysis of diverse attack strategies.

vii

CONTENTS

Page

ACKNOWLEDGEMENTS i
ABSTRACT v
LIST OF TABLES XV
LIST OF FIGURES Xvii
NOTATION Xix
CHAPTER 1 INTRODUCTION 1
1.1 Motivation e e e e e e 1
1.2 Overviewofthethesis., 4
1.2.1 DistributedData, 4

1.2.2 Distributed Authority 9

1.3 Organisation of the Thesis 11
CHAPTER 2 PRELIMINARIES 13
2.1 Lattices and Discrete Gaussians 0. 13
2.1.1 Hardness Assumptions 14

2.1.2 Lattice Trapdoors 16

2.2 Public Key Encryption, 16
2.3 Digital Signature Lo 17
2.4 Pseudorandom Function. 18
2.5 Some Useful Lemmas 18

CHAPTER 3 MULTI-INPUT ATTRIBUTE BASED AND PREDICATE

3.1
32
33
34

3.5

ENCRYPTION 21
Introduction 21
OurResults e 24
Technical Overview it 26
Preliminaries 40
3.4.1 Single User Attribute Based Encryption 40
34.2 Lockable Obfuscation 43
3.4.3 Batch Inner Product Functional Encryption 45
3.4.4 Lattice Preliminaries 47
3.4.5 kpABE Scheme by Bonehetal. 49
3.4.6 Bilinear Map Preliminaries 52
Multi-Input Attribute Based and Predicate Encryption 55
3.5.1 Strong Security for k-ABE andk-PE 58

iX

3.6

3.7

3.8

3.9

3.10

3.11

3.5.2 Generalization to Multi-Slot Message Scheme 59

Two-Input ABE for NC1 from Pairingsand LWE 60
3.6.1 Construction L 60
3.6.2 Security e 63
Two-Input ABE for NC1 in Standard Model 74
37.1 Assumption oLl e 74
37.2 Construction e 7
373 Security e 80
Compiling k-ABE to k-PE via Lockable Obfuscation 86
3.8.1 Constructiono 86
382 Security 90
Two-Input PE with Stronger Security 98
39.1 Construction 99
392 Security e 101
Three-Input ABE from Pairings and Lattices 113
3.10.1 Construction Lo e 113
3.10.2 Discussion of Security L. 120
Two-Input ABE for Polynomial Circuits using BV22 120
3.11.1 Construction L 121

CHAPTER 4 CONSTANT INPUT ATTRIBUTE BASED

4.1
4.2
4.3
4.4

4.5

4.6

4.7

ENCRYPTION FROM EVASIVE AND TENSOR LWE 125

Introduction 125
OurResults e 126
Technical Overview it 129
Preliminaries 147
4.4.1 Multi-Input Attribute Based Encryption 147
442 Lattice Preliminaries 150
443 Tensorso e e e e 153
Assumptions and New Implications 154
45.1 Evasive IWE e 154
452 TensorLWEo 158
4.5.3 New Implications for Tensor LWE 159
4.5.4 New Implications from LWE 162
Two-input ABE from Evasive and Tensor LWE 165
4.6.1 Construction e e e e 165
4.6.2 Security e e 169
Multi-Input ABE for Any Constant Arity 180
4.7.1 Construction for NCy Circuits 180
4772 Security e 188
473 AConstructionforP 204
CHAPTER 5 ATTRIBUTE-BASED MULTI-INPUT FE (AND MORE)

FOR ATTRIBUTE-WEIGHTED SUMS 207

Introduction e 207

5.1

5.2 Our Results 210

5.2.1 New Applications 213

5.3 Technical Overview 215

54 Preliminaries 234

5.4.1 ComputationModels 234

5.4.2 Basic Cryptographic Notions 235

5.4.3 Variants of Functional Encryption 239

5.5 Attribute-Based FE for Attribute-Weighted Sums with Inner Product . . . 242

5.5.1 Construction e e 243

552 Security e 245

5.6 Attribute-Based MIFE for Attribute-Weighted Sums 255

5.6.1 Construction 257

5.6.2 Security 258

5.6.3 Amplifying security against Any Keys 261

5.7 Multi-Client FE for Attribute-Weighted Sums 263

S7.1 Construction e e 266

572 Security 266

5.8 Dynamic Decentralized FE for Attribute Weighted Sums 270

5.8.1 Definition 270

5.82 Construction e 273

5.83 Security 276

Appendix L 282

5.A Detailed Comparison with PriorWork 282

5.B Multi-Party Functional Encryption 283

5.B.1 Dynamic Multi-Party Functional Encryption 287

5.B.2 Capturing our primitives in the MPFE framework 291
CHAPTER 6 ROUND-OPTIMAL LATTICE-BASED THRESHOLD

SIGNATURES 295

6.1 Introduction L. L 295

6.2 OurResults 297

6.3 Technical Overview 298

6.4 Preliminaries 306

6.4.1 Threshold Signatures 306

6.4.2 Fully Homomorphic Encryption (FHE) 309

6.4.3 Threshold Fully Homomorphic Encryption. 311

6.4.4 Multi-data Homomorphic Signature 313

6.4.5 RényiDivergence 316

6.4.6 SecretSharing L 318

6.4.7 Lattice preliminaries 320

6.5 More Efficient Threshold Signatures from Lattices 320

6.5.1 Optimizing the Boneh et al scheme using the Rényi Divergence . . 321

6.5.2 Unforgeability 323

6.5.3 Robustness 329

6.5.4 On the Optimality of Our Flooding 330

xi

6.6 Instantiating Threshold Signatures: Rejection-Free Lyubashevsky 333

6.6.1 Construction e 333
6.6.2 Security 334
6.6.3 Optimality of Flooding 337
6.7 Threshold Signatures with Adaptive Security 340
6.7.1 Construction for Partially Adaptive Unforgeability 340
6.7.2 Unforgeability 342
6.7.3 Robustness 349
6.8 Fully Adaptive Unforgeability in the Preprocessing Model 349
6.8.1 Construction 349
6.8.2 Unforgeability 352
6.8.3 Robustness L 357
6.9 Threshold Signatures for t-out-of-N access structures 358
6.9.1 Constructiono 358
6.9.2 Unforgeability 360
6.93 Robustness L Lo 364
6.9.4 Construction for adaptive unforgeability 364

CHAPTER 7 PRACTICAL, ROUND-OPTIMAL LATTICE-BASED

BLIND SIGNATURES 365

7.1 Introduction L. 365
7.2 OurResults. 367
1.3 Our Techniques 367
7.4 Preliminaries e e 375
7.4.1 Blind Signatures 376

7.4.2 Non-Interactive Zero Knowledge Arguments 378

7.5 Starting Point: Instantiating Fischlin’s Blind Signature 379
7.5.1 Construction e e 379

7.5.2 Unforgeability 381

7.5.3 Blindness 383

7.5.4 Efficiency Estimate 384

7.6 Two Round Blind Signature from One-More-ISIS 385
7.6.1 The One-More-ISIS Assumption 385

7.6.2 Constructiono e e e 386

7.6.3 Unforgeability 388

7.6.4 Blindness 391

7.6.5 Concrete Instantiation L. 393

7.6.6 Security Analysis of One-More-ISIS 401
Appendix L 405
7.A Full-fledged Blindness, 405
T.A.1T Construction o ..o e e e 405

7.A.2 Unforgeability, 407

7.A3 Blindness 410
CHAPTER 8 CONCLUSIONS AND FUTURE DIRECTIONS 413

Xii

BIBLIOGRAPHY 419

CURRICULUM VITAE 443

DOCTORAL COMMITTEE 445

Xiii

Table

4.1
4.2

5.1

5.2
5.3

7.1
7.2

8.1
8.2

LIST OF TABLES

Caption Page
Comparison with Related Work in MIPE. 127
Summary of hybrids in the proof of security for 2ABE construction. . . 181
Comparison with related work in MIABE and MIPE.We consider CPA-1
sided security for the comparison with [FFMV23]. 212
Prior state of the art and our results in MIFE, MCFE and DDFE. 214
Detailed summary of prior state of the art and our results in MIFE, MCFE
and DDFE. 282

Instantiation of our blind signature protocol from [LNP22b, Figure 1]. . 398
Concrete parameter selection for the zero-knowledge protocol

from [LNP22b, Figure 10]. 400
Summary of our contributions in the first part of the thesis 414
Summary of our contributions in the second part of the thesis 416

XV

Figure

3.1

32
33
34

5.1
5.2

7.1

7.2

LIST OF FIGURES

Caption Page
Generic group model for bilinear group setting
G =(q,G1,G,Gr,e,g1,g2) and distribution D. 54
Circuit Obfuscated by Slot i Encryptionfor1 <i<k 88
Circuit Obfuscated by Slot 1 Encryption 100
Circuit Obfuscated by Slot 2 Encryption 100
Construction Outline of AGW Multi-Client Scheme. 217
Outline of our constructions of MIFE, MCFE and DDFE. 234
Instantiation of PKE for the construction of blind signature in
Section 7.6.2 L 396
Combinatorial Attack on one-more-ISIS. 402

Xvii

[m,n], form,n e N

[n] forn e N

M (bold capital letter)

v (bold small letter)

DA,cr,c

z)A,O'

ngn(I'eSp. Ofxn)
1,(resp. 0¢)
x|y (resp. X||Y)

Dy ~. D
Dy =~ D,y

D]ED]

NOTATION

{1,...,n}
Matrix M
Vector v

Discrete Gaussian distribution over lattice A with std. deviation
o and mean ¢

Discrete Gaussian distribution over lattice A with std. deviation
o and mean 0

Power set of set §

Base 2 logarithm of x

A negligible function of 4

¢> norm of vector v

{s norm of vector v

Polynomial in 4

Probabilistic Polynomial Time

A matrix of dimensions ¢ X n, having each entry as 1 (resp. 0)
vector (1,...,1) € Zresp. (0,...,0) € Z5)

Horizontal concatenation of vectors x and y (resp. matrices X
and Y)

Distributions D and D, are computationally indistinguishable
Distributions D and D, are statistically indistinguishable

Distributions D and D, are perfectly indistinguishable

Xix

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

The developments in the field of information technology have facilitated easy storage and
access to data generated at different locations. This has further facilitated the performing
of different kinds of studies on these data, like medical research, market analysis, etc.
These data generally contain many sensitive information about the users and therefore, it
poses cryptographic challenges to provide secure and controlled access to it so that only
authorized users can access only the relevant part in an efficient manner. For example,
consider a medical researcher who wants to access medical records of patients from a
hospital to study the efficacy of certain medicine in patients in the age group *60-80’
years having covid and asthma. In this case, we would like to provide the researcher,
restricted access to the records of only those patients who fall in the said group. We
would like to use cryptographic tools to provide this facility. One possible way for
achieving this could be that the hospital encrypts and places the medical records of
all its patients in a public cloud and provides a specialized key to the researcher that
allows her to access the records of only those patients who are relevant to her study.
Clearly, traditional methods, like public key encryption schemes are not enough since
anyone having the decryption key gets unrestricted access to the entire database. There
exist advanced encryption schemes like attribute based encryption (ABE), functional
encryption (FE) that provide such functionality and has seen remarkable progress in
recent years [SWO05; GPSW06; CW14; AFV11; LWI11; LW12; Wat12; GVW13; Weel4;
Attl4; BGG*'14; GVWI15; GV15; BV16; BW07; SBC*07; GVWI1S5; Linl6; Linl7a;
LV16; Agr19; AJL*19; JLMS19; GJLS21; JLS21; JLS22]. In ABE, a message m is
encrypted with respect to a public attribute x (for. e.g. age, gender, and disease can be

attributes of a patient corresponding to which his/her records are encrypted), and the

decryption key is generated corresponding to a function f such that the decryption is
possible iff f(x) = 1. In the stronger notion of predicate encryption (PE), the attributes
are also hidden by the ciphertext. In case of FE, the encryption is done for an input x and
the key is generated for a function f such that on decryption only f(x) is received and

nothing else.

Note that the above solutions implicitly assume a single source of input - ABE/PE
assume that the message m is generated at a single source and is encrypted with respect
to a single attribute x. Similarly, in the case of FE, the input x is assumed to be generated
and encrypted at a single source. However, we observe that different parts of a single
logical data may be generated independently in multiple locations and it is often pertinent
to consider the input as a concatenation of these correlated partial inputs. For instance, a
patient is likely to visit different medical centers for the treatment of different diseases
and his/her overall medical record is a concatenation of the medical data generated at
different centers. Similarly, a company is likely to conduct research and development
related to a given technology in different locations but the complete data pertaining to
that technology is a concatenation of these. Now, it may be desirable to provide restricted
access to relevant consumers of the data, exactly as before, but with the caveat that the

input was generated in a distributed manner and is encoded in multiple ciphertexts.

One trivial solution to the above situation can be that the records generated at each
department/center are collected at a central repository where they can then be treated
as a single data. But it poses two challenges: (i) how to transfer the data to the central
repository? If we send the data in plain, it raises security issues. Alternatively, each
center can first encrypt the locally generated data with the repository’s public key and
then send this encrypted data. The repository can use its secret key to decrypt and then
re-encrypt using ABE/PE or FE. However, this method is too cumbersome and wasteful.
(i1) One may desire to use a public cloud for storage in which case the solution proposed

in (i) will be doubly inefficient.

Instead, what we would actually want is to be able to provide the same functionality and
security guarantees as in the single input setting in an efficient manner. In particular,
we would want that each part of the data is independently encrypted at the source and
placed on the cloud directly. For decryption, we would want to simply concatenate the
independently generated ciphertexts into a single ciphertext and perform decryption as if

the ciphertext is generated from a single source.

To further enhance the security against secret key getting compromised, in any
cryptographic primitive, it is desired that the trust is distributed among multiple parties
so that there is no single point of security failure. For example, consider a user who uses
Google Pay on his/her phone. Now, if someone gets access to his/her phone, then this
will completely break the security and the money will be lost. Such an attack can be
addressed by distributing the key for GPay on multiple devices, like the user’s phone,
laptop, tablet, etc. such that access to at least two or more devices is needed to make any
transaction. This reduces the security risk due to key compromise since probability of
compromising a single key is higher than compromising two or more keys. Another
familiar example is that of two-step authentication used by several online portals, like net
banking, Gmail etc., which requires both the password and the OTP sent on the user’s
phone for login. This, again, ensures that unless both the login password and the users’

phone are compromised, the user’s account remains secure.

Motivated by these observations, the central theme of this thesis is to study various
cryptographic primitives in distributed setups. In particular, we study multi-input
ABE/PE, multi-party FE, threshold signatures, and blind signatures. Our contributions
include formalizing the definitions for MIABE and MIPE and providing their first
constructions under various assumptions. We also provide the first constructions for
different forms of multi-party FE for attribute weighted sums (AWS) functionality.
We improve the only known construction for round-optimal threshold signatures from

lattice based assumptions in terms of efficiency and security properties. Lattice based

assumptions have the advantage of conjectured post quantum security. Finally, we give
the first overall practical and round-optimal construction of blind signatures from a
lattice based assumption that we introduce. We also study our assumption from different
possible attack strategies to gain more confidence in its hardness. Below we give a brief

overview of our thesis.

1.2 OVERVIEW OF THE THESIS
The thesis can be broadly viewed in two parts. In the first part, we study cryptographic
primitives in multi-input setting where data is generated in a distributed way. The second

part focuses on primitives supporting distributed authority.

1.2.1 Distributed Data

In the first part, we study ABE, PE, and FE in multi-input setting. We begin with initiating
the study of multi-input predicate encryptions and extend the study of multi-input attribute
based encryption. Even though both ABE and PE have been widely studied and have
seen remarkable progress [SW05; GPSW06; BW07; KSWO08; LOS*10; OT10; OT12;
CW14; AFV11; LWI11; LW12; Watl2; GVW13; Weel4; Attl4; BGG'14; GVW15;
GV15; BV16; BW07; SBC*07; KSW08; GVW15], all the known constructions, prior to
our work, were limited to single input setting. While the more realistic setting of multi-
inputs has been studied for other related primitives like fully homomorphic encryption
(FHE) and functional encryption (FE) [LATVI12; CM15; MW16], [GGG*14; AJ15;
AGRW17; DOT18; ACF"18; CDG*18a; Tom19; ABKW19; ABG19; LT19; AGT21a],
in case of ABE and PE, there has been no significant work. While the idea of ABE was
introduced in the context of constructing witness encryption (WE) [BJK* 18], it was not
formally defined and no construction was given. In the case of PE there has been no

prior study at all.

We argue that the multi-input setting is important even in the context of ABE and PE

and generalizing these primitives to support multiple sources enables a host of new

and natural applications. For concreteness, we continue with the previous example of
hospital in more detail. As before, consider a doctor who wants to understand the relation
between Covid and other medical conditions such as asthma or cancer, each of which are
treated at different locations. The records of a given patient are encrypted independently
and stored in a central repository, and the doctor can be given a key that filters stored
(encrypted) records according to criteria such as condition = ‘Covid’ and condition =
‘asthma’ and age group =‘60-80° and enables decryption of these. Similarly, a company
(e.g. IBM) that conducts research in quantum technologies is likely to have different
teams for theoretical and experimental research, and these teams are likely to work in
different locations — indeed, even members of the same team may not be co-located.
Data pertaining to the research could be stored encrypted in a central location where
individual ciphertexts are generated independently, and the company may desire to give
restricted access to a patent office. As a third example, a company may have been sued for
some malpractice, and the data pertinent to the case could span multiple locations. Now

the company may wish to provide restricted access to a law firm that enables decryption

only of the data pertaining to the lawsuit, encrypted independently by multiple sources.

Multi-input attribute based encryption (MIABE) or predicate encryption (MIPE) arise
as natural fits to the above applications. Similarly to the single input case, the secret
key corresponds to a function f but the arity of this function can now be k > 1 — we
may have k ciphertexts generated independently encoding (X;, m;);c[x], and decryption
reveals (my,...,my) if and only if f(xy,...,X;) = 1. Indeed, any application of single
input ABE and PE where the underlying data is generated in multiple locations and is
correlated in meaningful ways can benefit from the abstraction of multi-input ABE and

PE.

We begin with formalizing the definition of MIPE and MIABE and their security under
unbounded collusions. We construct two-input ABE (2ABE) using LWE and pairings.

Our construction leverages the surprising connection that we observe between the

techniques developed in the context of succinct CPABE to a seemingly unrelated setting
of multi-input KpPABE. We then give a generic compiler that for a constant k, transforms
any k-input ABE (KABE) to k-input PE (KPE). Our compiler uses the tool of Lockable
Obfuscation (LO) defined by [GKW17; WZ17] for translating single input ABE to PE in
much more challenging setting of MIABE to MIPE. We note that LO can be instantiated
from LWE. Using our compiler with our results for KABE, we get constructions for
2PE. We then give constructions for 3ABE for NC; and 2ABE for polynomial circuits
by leveraging the techniques developed in [BV22] in context of constructing succinct
ciphertext policy ABE (CPABE) for polynomial circuits. Similar to [BV22], these

constructions are heuristic.

We then extend our result for MIABE to support any constant arity, k using recently
introduced lattice based assumptions of evasive and tensor LWE [Wee22; Tsa22]. We
provide construction of MIABE for the function class NC; for any constant arity from
evasive LWE assumption. We further extend our construction to support the function
class P by using evasive and a suitable strengthening of tensor LWE. For the special case
of arity 2, we need only the assumptions introduced by Wee, i.e. evasive LWE for NC;

and evasive plus tensor LWE for P (i.e. we do not need to strengthen tensor LWE).

We further continue with the same thread of distributed data where we now focus on

constructing FE in the decentralized setting.

While initially defined and constructed in the single input setting, i.e. with only one
encryptor and one key generator, FE soon began to be generalized to distributed settings
to capture the decentralized nature of both data and authority in the modern world.
Computation on encrypted data generated independently at multiple sources, with
fine-grained control on which data may be combined and with secret keys supporting
decryption of meaningful aggregate functionalities, holds the promise of making FE

much more relevant for real-world applications. These generalizations took different

forms, from multi-input FE (miFE) [GGG™*14] to multi-client FE (MCFE) [CDG™"18a]
to dynamic decentralized FE (DDFE) [CDSG*20] and such others [ACF*20]. These
generalizations were captured via the abstraction of multi-party FE (MPFE) [AGT21b],
which sought to unify these different notions in a single framework. In this thesis, we

study these primitives for attribute weighted sums functionality (AWS).

The Attribute-Weighted Sums Functionality: Recently, Abdalla, Gong, and Wee
[AGW20] introduced the functionality of Attribute-Weighted Sums (AWS) which
supports computation of aggregate statistics on encrypted databases. Concretely,
consider a database with N attribute-value pairs (X;,Z;);c[x] Where Xx; is a public
attribute associated with user i, and z; is private. Given a function f, the AWS

functionality on input (X;, Z;);c[n) is defined as
. T .
PO

The AWS functionality is very natural, and Abdalla, Gong, and Wee suggested several
compelling applications for it — for example, when f is a Boolean predicate then AWS
can capture (i) the average salaries of minority groups holding a particular job title —
here, z; represents salary, while f(x;) tests for membership in the minority group, (ii)
approval ratings of an election candidate amongst specific demographic groups in a
particular state — here, z; is the rating, while f(x;) computes membership in said group.
Similarly, when z; is Boolean, AWS can capture the average age of smokers with lung

cancer, where z; is lung cancer and f computes the average age.

Distributing the Data: Abdalla et al’s construction work in the single input setting,
where all the N attribute-value pairs are held by a single party who performs the
encryption. We argue that for several applications of AWS, including the motivating

examples provided by [AGW20], the data (x;, Z;);c[n] is likely to be distributed across

multiple sources which must compute ciphertexts independently. Concretely, in the
example of computing average salaries of minority groups holding a particular job title,
the data about the individuals would be generated across organizations, which are unlikely
to even be in the same location. Similarly, when we compute whether a user is in a
specific demographic group in a particular state, it is natural that user data would be
distributed across different states, indeed even across different cities in a given state. In
the third example, data about patients with lung cancer will naturally be generated and
maintained at different hospitals that offer treatment for lung cancer, which would again

be distributed geographically.

Thus, to capture data generation by independent sources, we extend FE for AWS to the
multi-party setting. Concretely, we focus on the construction of the following primitives

for AWS functionality:

1. Multi-Input FE (MIFE): The primitive of multi-input FE (MIFE) [GGG™14] allows
the input to a function to be distributed among multiple (say n) parties. In more
detail, the i party encrypts its input z; to obtain ct;, a key authority holding a
master secret generates a functional key sk and these enable the decryptor to
compute f(zp,...,Z,) and nothing else.

We consider a further generalization of MIFE, namely attribute-based MIFE
introduced by Abdalla et al.[ACGU20], which enables greater control on the
leakage inherent by the functionality of MIFE, making it more suitable for practical
applications. In an AB-MIFE for some functionality f, an attribute y; is associated
with a ciphertext for slot 7, in addition to an input z;. The secret key is associated
with an access control policy g in addition to the function input ¢. Decryption
first checks if g(y1,...,ys) = 1, and if so, it computes the MIFE functionality

f({z}, 0.

2. Multi-Client FE (MCFE): MCFE [GGG*'14; CDG"18a; CDG"*18b] is a
generalization of MIFE. In MCFE, the inputs z; are additionally associated with
public “labels” L; and inputs can only be combined with other inputs that share
the same label. As in MIFE, a functional key sk is provided which allows the
decryptor to compute f(zi,...,Z,) as long as the corresponding labels match, i.e.
Li=...=L,.

3. Dynamic Decentralized FE (DDFE): DDFE [CDSG*20], as the name suggests, is
a decentralized variant of FE, where not only can ciphertexts be generated locally
and independently but so can the keys. In DDFE for some functionality f, the

setup step is localized and run independently by users, letting them generate their
private and public keys individually. During encryption, the set of users with
whom a given input or key object should be combined can be chosen dynamically.
In more detail, each party can specify the set of parties with which its input may
be combined, a label that controls which values should be considered together
and the input z; itself. Similarly, every user can also generate a key object which
specifies the set of parties with which the key may be combined, and a key vector
¢;. For decryption, the ciphertexts and keys from the parties who mutually agree
to combine their inputs and keys are put together to compute f({z;};, {¢;};).

We note that DDFE implies MCFE which implies MIFE!.

1.2.2 Distributed Authority
In the second part, we construct threshold signatures and blind signatures from lattice

based assumptions.

Threshold signature schemes [Des94] enable distribution of the signature issuing
capability to multiple users to mitigate the threat of signing key compromise. In more
detail, in a r-out-of-N threshold signature scheme, each of the N parties holds a partial
signing key and any set of at least ¢ parties can participate in a protocol to generate a
signature. The security requires that any set of less than ¢ parties cannot generate a

signature. Thus, it provides security against # — 1 corruptions.

While threshold signatures have been studied for a long time [Lin17b; DKLS18; CCL*19;
GGN16; GG18; LN18; DKLS19; DOK*20; CCL*20; CGG*20; GKSS20; DIN*20;
GG20; BKP13], they have received renewed attention in recent years due to numerous
applications in modern topics such as cryptocurrencies and blockchains. Most prior
work has focused on creating distributed versions of ECDSA or Schnorr signatures
LN18; GG18; DKLS19; CCL*19; CCL*20 which are not quantum secure. From
lattice based assumptions, which are conjectured to be post quantum secure, the results
are either not round optimal [CS19] or work only for more restrictive N-out-of-N

access structure [DOTT21]. The only lattice-based, round-optimal threshold signature

n this work, we use the term MCFE as a generalization of MIFE, so that it allows multiple uses of labels
[CDG™"18Db]. In contrast, a weaker notion of MCFE, where each label can be used only once, does not
imply MIFE [GGG*14; CDG™"18a].

construction for 7-out-of-N access structure is by Boneh er al [BGG*18], relying on
the Learning With Errors problem (LWE). While their construction provides the first
feasibility result, it has several limitations, which we address in this work. Firstly, they
use the so-called technique of noise flooding which hides a sensitive noise into much
larger noise, often known as flooding. Their construction uses exponential flooding which
results in signature size of O (A%), where A is the security parameter. We reduce the noise
flooding from exponential to polynomial by performing a careful analysis using Rényi
divergence based distance measurement instead of statistical distance. This helps us bring
down the signature size to O(1,1og? Q), where A is the security parameter and Q is the
number of signing queries. Second, the construction of [BGG™ 18] achieves only selective
security, where the corrupt members need to be declared apriori. We provide two new
constructions: (1) the first construction achieves partial adaptivity, where members can
be corrupted at any stage, but all the corruptions need to be declared at once, and (ii)
the second one achieves full adaptivity, where corruptions can happen in any order. Our
fully adaptive construction, however, has the limitation that the signing key size grows
with the number of signing queries, Q. Finally, to instantiate [BGG*18] scheme, we
need a homomorphism-friendly signature scheme, for which we provide a variant of
Lyubashevsky’s signature [Lyul2] scheme which uses rejection sampling which renders
it unsuitable for homomorphic computation. We trade off rejection sampling at a cost of

adding a moderate noise of polynomial size.

We then continue the thread of studying distributed authority based primitives, with
blind signatures. Blind signatures find numerous applications like e-voting, e-cash,
cryptocurrencies, and many more. They are like standard digital signature schemes, but
now the message and the signing key are held by two different parties, the user ()
and the signer (S). The user, U, holding a public key and message, m may request a
signature from the signer S, such that the signer is not able to link a message-signature
pair with a protocol execution, and the user is not able to forge signatures even after

multiple interactions with the signer.

10

While there exist many practical blind signatures from number-theoretic assumptions,
the situation is far less satisfactory from post-quantum assumptions. In this work, we
propose the first overall practical, lattice-based blind signature, supporting an unbounded
number of signature queries and additionally enjoying optimal round complexity. We
provide a detailed estimate of parameters achieved — we obtain a signature of size slightly
above 45KB, for a core-SVP hardness of 109 bits. The run-times of the signer, the
user, and the verifier are also very small. The security of our construction stems from
a new and arguably natural assumption which we introduce, called the one-more-ISIS
assumption. This assumption can be seen as a lattice analogue of the one-more-RSA
assumption by Bellare et al [JoC’03]. To gain confidence in our assumption, we provide

a detailed analysis of diverse attack strategies.

1.3 ORGANISATION OF THE THESIS

The rest of the thesis is organized as follows: we provide some preliminaries, used
commonly in multiple chapters, in the thesis, in Chapter 2. In Chapter 3, we describe
our constructions for 2ABE for NC; using LWE and pairings and heuristic constructions
of 3ABE for NC; and 2ABE for P. We also define our kABE to kPE compiler in the
same chapter. We extend our construction of MIABE to support any constant arity using
evasive and tensor LWE in Chapter 4. In chapter 5, we define our constructions of
multi-party functional encryption for AWS. In Chapter 6, we describe our constructions
for threshold signatures. We introduce our assumption of one-more-ISIS and describe
our construction of blind signature based on the assumption in Chapter 7. In Chapter 8,

we conclude the thesis and discuss interesting directions for future work.

11

CHAPTER 2
PRELIMINARIES

In this chapter, we provide some preliminaries commonly used in this thesis. Additional

preliminaries are given in respective chapters.

2.1 LATTICES AND DISCRETE GAUSSIANS

In this section, we provide definitions of lattices and discrete Gaussian distributions.
Definition 2.1 (Lattice). An m-dimensional lattice A is a discrete additive subgroup of
R™. For an integer n < m and a rank n matrix B € R™", A(B) = {Bx : x € Z"} is the
lattice generated by integer linear combinations of columns of matrix B. The matrix B is
called a basis of the lattice.

Definition 2.2 (Integral lattice). An m-dimensional integral lattice A is a full-rank
subgroup of Z™. Among these lattices are the “g-ary” lattices defined as follows: for any

integer ¢ > 2 and any A € Z™", we define
A;(A) = {e€Z":A-e=0modq}.
For a vector u € Zj, we define the following coset of AqL(A):
Ap(A) = {e€Z":A-e=umodg}.

We have AJ(A) = A, (A) +t for any t such that A - t = u mod g.

Definition 2.3 (Gaussian distribution). For any vector ¢ € R™ and any real s > 0, the
(spherical) Gaussian function with standard deviation parameter s and center ¢ is defined
as:

_ol2
Vx € R™, pse(X) = exp (—M) .
s

The Gaussian distribution is D; ¢(X) = ps.c(X)/s™.

The (spherical) discrete Gaussian distribution over a lattice A € R, with standard

deviation parameter s > 0 and center c is defined as:

Ps,e(X)
VX (S A,DA, s = ’—,
e Ps.e(N)
where p;sc(A) = Yxen Ps.c(X). When ¢ = 0, we omit the subscript c.
Definition 2.4 (Smoothing parameter). The smoothing parameter of an m-dimensional

lattice A with respect to € > 0, denoted by 7r.(A), is the smallest s > 0, such that

p1/s(A*\{0}) < e.

2.1.1 Hardness Assumptions

We will need the Learning With Errors (LWE) problem, which is known to be at least as
hard as certain standard lattice problems in the worst case [Reg09; BLP*13] when it is
appropriately parameterized.

Definition 2.5 (Learning With Errors (LWE)). Let g, n, m, a be functions of a parameter A
and y be some distribution over Z. Forasecrets € Zg, the distribution Ay, s over Zy XZ,
is obtained by sampling a«<Z7 and an e« y, and returning (a, (a,s) +e) € ZZ”. The
Learning With Errors problem LWE, ,, ,, is as follows: For s«Zp, the goal is to

distinguish between the distributions:
Do(s) := UZy™"*D) and D (s) = (Agys)

We say that a PPT algorithm A solves LWE, ,, .., if it distinguishes Do(s) and D1 (s)
with non-negligible advantage (over the random coins of (A and the randomness of the
samples), with non-negligible probability over the randomness of s.

Subexponential LWE: Here we allow the adversary A to run in 2°Y time and win with
272 advantage (over the random coins of A and the randomness of the samples), with

272 probability over the randomness of s.

When y = Dz 44, we denote the LWE distribution as A, , o s and the LWE problem as
LWE, 1. im.a

14

Definition 2.6 (Short Integer Solution (SIS)). Let g, n, m, 8 be functions of a parameter A.
An instance of the SIS, »» g problem is a matrix A«Z7"™". A solution to the problem is
a nonzero vector v € Z™ such that ||v|| < Sand A - v=0 mod g.

In order for the above problem to not be vacuously hard, we need to have 8 > mg"/™.

This ensures that there exists a solution v.

Like LWE, the SIS problem is known to be at least as hard as certain lattice problems
in the worst case [Ajt96; MRO7; GPVO08], when it is appropriately parameterized. The
same holds for the inhomogeneous version of the SIS problem stated below.

Definition 2.7 (Inhomogeneous Short Integer Solution (I1SIS)). Let g, n, m, 8 be functions
of a parameter A. An instance of the ISIS; ,, » s problem is a matrix A«Z™" and a
vector t—Zy. A solution to the problem is a vector v € Z™ such that [[v|| < 8 and
A-v=t mod gq.

The SIS (and ISIS) problems can be defined for other norms as well. In Chapter 7, we

also use the following version of ISIS:

Let A<—ZZX’”, s—{-d,...,0,...,d}" and t = As. Then given A, t, the task is to find
s'e{-d,...,0,...,d}" such that As’ = t.

The following lemma provides bound on the size of vectors sampled from discrete
Gaussian distribution.

Lemma 2.1 ([Lyul2, Lemma 4.4]). The following hold.
1. Forany k > 0, Pr[|z]| > ko; zDz] < 2exp(—k?/2).
2. Forany o > 3/\N2n, He(Dzm y) > m.
3. Forany k > 1,

Prl|izl| > kovm; zeDom y] < k™ exp(%(l ~ k?)).

15

2.1.2 Lattice Trapdoors

We will use algorithms for generating a random lattice with a trapdoor, and for sampling
short vectors in a lattice coset. The first algorithm is derived from [Ajt99; GPV0S; MP12],
whereas the second is derived from [Kle00; GPV0S; BLP*13].

Lemma 2.2. Let g, n, m be positive integers with g > 2 and m > 6nlog, q.

There is a PPT algorithm TrapGen(q, n, m) that with probability 1 — 2=%" outputs a
pair (A, T) € ZZ™" X Z™™ such that A is within 2790 sratistical distance to uniform

in ;)™ and T is a basis for Ay (A).

There is a PPT algorithm SamplePre(A, T, u, o), which takes as input the above pair
(A, T), avector u € Zy and a sufficiently large o = Q(«/nlog g logm) and outputs a
vector e from Dpv(a) o Further, with probability 272" we have ||e|| < o/m.

For our purpose, we assume that the SamplePre algorithm provides the same output
when invoked with the same input — this can be ensured by generating the randomness

used by the algorithm using a PRF (with the given input as argument).

2.2 PUBLIC KEY ENCRYPTION

Definition 2.8 (Public Key Encryption (PKE)). A PKE scheme is a tuple of PPT

algorithms denoted by PKE = (KeyGen, Enc, Dec) defined as follows:

+ KeyGen(11) — (pk, sk): The KeyGen algorithm is a probabilistic algorithm. It
takes as input a security parameter A, and outputs a public key pk and a secret key
sk.

* Enc(pk,m) — ct: The Enc algorithm is a probabilistic algorithm. It takes as
input a public key pk and a message m and outputs an encryption ct of m.

» Dec(sk, ct) — m’: The decryption algorithm is a deterministic algorithm. It takes
as input a (secret) decryption key sk and a ciphertext ct and outputs a message m’.

Correctness. For correctness, we require that for all A and for all m, following holds.

For (pk, sk) < KeyGen(1%), ct < Enc(pk, m), we have that Pr[Dec(sk, ct) = m] >

16

1 -,
IND-CPA Security A PKE scheme is IND-CPA secure if for any adversary PPT adversary

A the output of the following experiment Exptg\‘KEE%PA(11) is 1 with negligible probability.

1. The challenger runs generates (pk, sk) < KeyGen(1%) and sends pk to A.

2. A then outputs two messages mq and m.

3. The challenger samples a bit b < {0, 1} and returns ct « Enc(pk, m;) to A.
4. A outputs a bit b’.

5. The experiment outputs 1 if b” = b.

2.3 DIGITAL SIGNATURE

Definition 2.9 (Digital Signature). A digital signature scheme is a tuple of PPT algorithms

denoted by Sig = (KeyGen, Sign, Verify) defined as follows:

» KeyGen(11) — (vk, sk): The KeyGen algorithm is a probabilistic algorithm. It
takes as input a security parameter A and outputs a verification key vk and a secret
signing key sk.

 Sign(sk,m) — o: The Sign algorithm is a probabilistic algorithm. It takes as
input a signing key sk and a message m € {0, 1}* and outputs a signature o .

* Verify(vk, m, o) — accept/reject: The verification algorithm is a deterministic
algorithm. It takes as input a verification key vk, a message m, and a signature o,
and outputs accept or reject.

Correctness. For correctness, we require that for all A, the following holds. For
(vk, sk) — KeyGen(11), o — Sign(sk,m), we have that
Pr[Verify (vk, m, o) = accept] > 1 — 7@,

Unforgeability A TS scheme is unforgeable if for any adversary PPT adversary (A the

uf

Sig, #(11) is 1 with negligible probability.

output of the following experiment Expt

1. The challenger runs generates (vk, sk) < KeyGen(1%) and sends vk to A.

2. Adversary A then issues polynomial number signing queries, where for each query

17

it outputs a message m € {0, 1}*.
3. The challenger computes o, as Sign(sk, m) and provides it to A.
4. At the end of the experiment, A outputs a message-signature pair (m*, o*).

5. The experiment outputs 1 if the following condition is met: m* was not queried
previously as a signing query and Verify(vk, m*, c*) = accept.

2.4 PSEUDORANDOM FUNCTION

Definition 2.10 (Pseudorandom functions (PRF)). A pseudorandom function (PRF)
family ¥ = {PRFX}kcx with a key space %K, a domain X, and a range Y is a function
family that consists of functions PRFK : X — Y. Let R be a set of functions consisting
of all functions whose domain and range are X and Y respectively. A PRF family 7 is

said to be secure if for any PPT adversary (A, the following condition holds,
| Pr[APRFO (1) = 1] = Pe[ARO (11) = 1]] < negl(4),

where K «— K and R «— R.

2.5 SOME USEFUL LEMMAS

Lemma 2.3 (Leftover Hash Lemma). Let H = {h : X—>Y} be a 2-universal hash
function family. Then for any random variable X € X, for € > 0 such that log |Y| <

Ho(X) —2log(1/e), the distributions
(h, k(X)) and (h, U (Y))
are within statistical distance &.

Further, the family {A € Z7 : r +— Ar} is 2-universal for any prime q.

Lemma 2.4 (Smudging Lemma [WWW22). Let A be a security parameter. Take any

18

a € 7 where |a| < B. Suppose y > BA“D. Then the statistical distance between the

distributions {z : z < Dz, } and {z+ a : z «— Dz, } is negl(A).

19

CHAPTER 3

MULTI-INPUT ATTRIBUTE BASED AND
PREDICATE ENCRYPTION

In this, and the next chapter, we study multi-input attribute based and predicate encryption

where the data to be encrypted is distributed among different parties.

3.1 INTRODUCTION

Attribute based encryption (ABE) is a generalization of public key encryption which
enables fine grained access control on encrypted data. In an ABE scheme, the ciphertext
is associated with a secret message m and a public attribute vector x while a secret
key is associated with a function f. Decryption succeeds to reveal m if and only if
f(x) = 1. Security seeks ciphertext indistinguishability in the presence of collusion
attacks, namely an adversary possessing a collection of keys {sK , };c[poly] should not be
able to distinguish between ciphertexts corresponding to (X, mg) and (X, m;) unless one
of the keys sk . is individually authorised to decrypt, i.e. fi-(x) = 1. ABE comes in two
flavours — “key-policy” and “ciphertext-policy”, depending on whether the function f is

embedded in the key or the ciphertext.

The stronger notion of predicate encryption (PE) [BW07; SBC*07; KSW08; GVW15]
further requires the attribute vector x to be hidden so that ciphertexts corresponding
to (xo, mo) and (x;, m) remain indistinguishable so long as f;(x9) = f;(x;) = 0 for all

secret keys {SKy, }ic[poty] seen by the adversary.

Both ABE and PE have been widely studied, and possess elegant instantiations from
a variety of assumptions [SWO05; GPSW06; BW07; KSW08; LOS*10; OT10; OT12;
CW14; AFV11; LWI11; LWI12; Watl2; GVW13; Weel4; Attl4; BGG'14; GVW15;

GV15; BV16; BW07; SBC*07; KSW08; GVW15]. Despite all this amazing progress,
however, all known constructions supported the single input setting — namely, the function
S embedded in the secret key sk s has arity one, so that the secret key can be used to decrypt
only a single ciphertext at a time. While the more realistic multi-input setting has been
studied for other closely related notions such as fully homomorphic encryption [LATV12;
CM15; MW 16] and functional encryption [GGG*14; AJ15; AGRW17;DOT18; ACF*18;
CDG"18a; Tom19; ABKW19; ABG19; LT19; AGT21a], this was not investigated at all in
the context of predicate encryption, and only sparingly [BJK*18] in the context of attribute
based encryption, prior to our work. In concurrent work, Francati et al. [FFMV23]
provided multi-input PE schemes for restricted functionality of conjunctions of bounded
polynomial depth from LWE in a weaker security model that does not allow collusions.

A more detailed comparison with their results is given in Chapter 4.

Prior Work. Brakerski et al. [BJK*18] studied the notion of MIABE and showed that
MIABE for polynomial arity implies witness encryption (WE). However, though they
provided the first definition of MIABE, they only used it as a new pathway for achieving
witness encryption, not as a notion with its own applications — in their definition, only
the first encryptor has any input, since this suffices for WE. They do not consider strong
notions of security or provide any constructions of MIABE. They also defined the notion
of non-trivially exponentially efficient witness encryption (XWE), where the encryption
run-time is only required to be much smaller than the trivial 2" bound for NP relations
with witness size m. They show how to construct such XWE schemes for all of NP
with encryption run-time 2/ using the single input ABE by [GVW13]. For encryption
run-time 27", the term vy is denoted as compression factor, and they explicitly left open

the problem of constructing XWE schemes with an improved compression factor.

ABE and PE as special cases of functional encryption (FE): Both ABE and PE can

be captured as special cases of functional encryption [SWO05; BSW11], which has been

22

studied extensively, in both the single-input [SW05; BSW11; GVW13; BGG*14] and
multi-input setting [GGG*14; AJ15; AGRW17; DOT18; ACF*18; CDG*18a; Tom19;
ABKW19; ABG19; LT19; AGT21a]. Recall that in functional encryption (FE), a secret
key is associated with a function f, a ciphertext is associated with an input x and
decryption allows to recover f(x) and nothing else. It is easy to see that PE and
ABE are both special cases of FE — in particular, both PE and ABE achieve the same
functionality but restrict the security requirements of FE. In PE, we ask that the attribute
x be hidden but only when the adversary does not see any decrypting keys, namely
fi(x) = 0 for all function keys f; received by the adversary. On the other hand, in FE, the
attacker may request a key sk ¢, so long as f* does not distinguish the challenge messages
(X0, mo), (X1, m1), namely, we may have f(xg) = f(x;) = 1 so long as my = m;'. In the
even weaker ABE, we do not ask any notion of hiding for x, and this may be provided in

the clear with the ciphertext.

Why not Functional Encryption? The informed reader may wonder what is the
advantage of studying primitives like MIPE or MIABE when these are special cases
of multi-input functional encryption (miFE), which has recently been constructed
from standard assumptions [JLS21; AJ15]. It was shown by [AJ15; BV15a] that FE
satisfying a certain efficiency property (known as compactness) implies multi-input
functional encryption, which in turn implies the powerful primitive of indistinguishability
obfuscation (i0) [BGI*01]. A long line of exciting works endeavoured to construct
compact FE (and hence iO) from standard assumptions [Lin16; Lin17a; LV16; Agr19;
AJL*19; JLMS19; GJLS21], coming ever-closer, until the very recent work of Jain,
Lin and Sahai closed the last remaining gap and achieved this much sought after goal
[JLS21; JLS22]. In [JLS21; JLS22], the authors provide a construction for compact
FE, which in turn implies miFE for polynomial arity (albeit with exponential loss in the

reduction).

"'We note that a message m separate from attribute x is not required in the definition of FE, but we include
it here for simpler comparison with PE and ABE.

23

Going via the route of compact FE, we obtain an exciting feasibility result for miFE and
hence MIABE as well as MIPE. However, we argue that using something as strong as
miFE or iO to construct MIABE and MIPE is undesirable, and indeed an “overkill” for

the following reasons:

* Assumptions: Compact FE of [JLS21] is constructed via a careful combination
of 4 assumptions — Learning Parity with Noise (LPN), Learning With Errors
(LWE), SXDH assumption on Pairings, and pseudorandom generators computable
in constant depth. In the follow-up work of [JLS22], this set of assumptions was
trimmed to exclude LWE. Therefore any construction built using compact FE must
make at least this set of assumptions, which is restrictive. A major goal in the
theory of cryptography is developing constructions from diverse assumptions.

* Complexity: The construction of compact FE is extremely complex, comprising
a series of careful steps, and this must then be lifted to miFE using another
complex construction [AJ15]. Unlike FE, both PE and ABE are much simpler,
“all or nothing” primitives and permit direct constructions in the single-input
setting [GVW13; BGG*14; GVW15]. Do we need the full complexity of an miFE
construction to get MIPE or MIABE? Indeed, even in the context of miFE, there is
a large body of work that studies direct constructions for smaller function classes
such as linear and quadratic functions [AGRW17; DOT18; ACF*18; CDG"18a;
Tom19; ABKW19; ABG19; LT19; AGT21a].

* New Techniques: Finally and most importantly, we believe that it is extremely
useful to develop new techniques for simpler primitives that are not known to be
in obfustopia, and provide direct constructions. While direct constructions are
likely to be more efficient, and are interesting in their own right, they may also
lead to new pathways even for obfustopia primitives such as witness encryption
or compact FE. Note that the only known construction of FE from standard
assumptions is by [JLS21; JLS22], which makes crucial (and surprising) use of
LPN in order to overcome a technical barrier — is LPN necessary for other primitives
implied by compact FE? We believe that exploring new methods to construct
weaker primitives is of central importance in developing better understanding of
cryptographic assumptions, their power and limits.

3.2 OUR RESULTS
In this chapter, we initiate the study of multi-input predicate and attribute based encryption

(MIABE and MIPE) and make the following contributions:

1. Formalizing Security: We provide definitions for MIABE and MIPE in the symmetric
key setting and formalize two security notions in the standard indistinguishability

24

(IND) paradigm, against unbounded collusions. The first (regular) notion of
security assumes that the attacker does not receive any decrypting keys, as is
standard in the case of PE/ABE. The second strong notion, allows some decrypting
queries in restricted settings.

. Two-input ABE for NC| from LWE and Pairings: We provide the first constructions
for two-input key-policy ABE for NC;| from LWE and pairings. Our construction
leverages a surprising connection between techniques recently developed by
Agrawal and Yamada [AY20] in the context of succinct single-input ciphertext-
policy ABE, to the seemingly unrelated problem of rwo-input key-policy ABE.
Similarly to [AY20], our construction is proven secure in the bilinear generic group
model. By leveraging inner product functional encryption and using (a variant
of) the KOALA knowledge assumption, we obtain a construction in the standard
model analogously to Agrawal, Wichs and Yamada [AWY20].

. Heuristic two-input ABE for P from Lattices: We show that techniques developed
for succinct single-input ciphertext-policy ABE by Brakerski and Vaikuntanathan
[BV22] can also be seen from the lens of MIABE and obtain the first two-input
key-policy ABE from lattices for P. Similarly to [BV22], this construction is
heuristic.

. Heuristic three-input ABE and PE for NC| from Pairings and Lattices: We
obtain the first three-input ABE for NC; by harnessing the powers of both the
Agrawal-Yamada [AY?20] and the Brakerski-Vaikuntanathan [BV22] constructions.

. Multi-input ABE to multi-input PE via Lockable Obfuscation: We provide a
generic compiler that lifts multi-input ABE to multi-input PE by relying on the
hiding properties of Lockable Obfuscation (LO) by Wichs-Zirdelis and
Goyal-Koppula-Waters (FOCS 2018), which can be based on LWE. Our compiler
generalises such a compiler for single-input setting to the much more challenging
setting of multiple inputs. By instantiating our compiler with our new two and
three-input ABE schemes, we obtain the first constructions of two and three-input
PE schemes.

In Chapter 4, we extend our results to any constant arity for class NC; and P under recently

introduced lattice-based assumptions of evasive and tensor LWE [Tsa22; Wee22].

Our constructions of multi-input ABE provide the first improvement to the compression

factor (from 1/2 to 1/3 or 1/4) of non-trivially exponentially efficient Witness Encryption

defined by Brakerski et al. [BJK*18] without relying on compact functional encryption

or indistinguishability obfuscation. We believe that the unexpected connection between

25

succinct single-input ciphertext-policy ABE and multi-input key-policy ABE may lead to

a new pathway for witness encryption.

3.3 TECHNICAL OVERVIEW
In this section, we begin with an overview of our modeling of multi-input attribute
based and predicate encryption followed by an overview of the techniques used in our

constructions and proof strategies.

Modeling Multi-Input Attribute Based and Predicate Encryption. Our first
contribution is to model multi-input attribute based encryption (MIABE) and predicate
encryption (MIPE) as relevant primitives in their own right. To begin, we observe that
similarly to multi-input functional encryption (miFE) [GGG™14], these primitives are
meaningful primarily in the symmetric key setting where the encryptor requires a secret
key to compute a ciphertext. This is to prevent the primitive becoming trivial due to
excessive leakage occurring by virtue of functionality. In more detail, let us say k

encryptors compute an unbounded number ciphertexts in each slot, i.e.

J

Do (Xi, m{{)} je[poly] and the adversary obtains secret keys corresponding to

J
{(x{,m
functions {fi}ie[poly;- In the multi-input setting, ciphertexts across slots can be
combined, allowing the adversary to compute f,'(X{l,ij, - ,Xik) for any indices
i,j1,.--,Jx € [poly]. In the public key setting, an adversary can easily encrypt
messages for various attributes of its choice and decrypt these with the challenge

ciphertext in a given slot to learn a potentially unbounded amount of information. > Due

to this, we believe that the primitives of MIABE and MIPE are meaningful in the

2The triviality of public-key MIABE depends on the function class being supported. For example, consider
the inner product functionality (which is in NC;) defined as - let fy(x1,x2) = 1 if (v,x||x2) = O,
where x| and x; are inputs in the ciphertext and v is in the key. Given a slot-1 ciphertext CT(x, m)
we would like to argue that m; remains hidden. However, in the public key case, it is possible to
compute slot-2 ciphertext CT,(x,, m,) so that for any v, X; (note that these are public) the decryption
condition can be satisfied and the message m can be recovered. This argument can also be extended
to some interesting polynomials. On the other hand, there are function classes in NCy, such as 3-SAT
where it would be hard for the attacker to find a satisfying input and even the public key setting would
not create excessive leakage (although it is unclear if such a functionality is useful in practice).

26

symmetric key setting where encryption also requires a secret key.

For security, we require the standard notion of ciphertext indistinguishability in the
presence of collusion attacks, as in the single-input setting. Recall that in the single-input
setting, the adversary cannot request any decrypting keys for challenge ciphertexts to
prevent trivial attacks. However, since we are in the symmetric key setting where the
adversary cannot encrypt herself, we propose an additional notion of strong security which
also permits the adversary to request decrypting ciphertexts in some cases. In more detail,
for the case of MIABE, our strong security game allows the attacker to request function
keys for { f; }ie[poly] and ciphertexts for tuples {(x 1My, 1) (Xi, mig)} Bef0.1}.j€lpoly]
so that it may hold that ﬁ(x{l, . ,X{C") = 1 for some i, ji, ..., jx € [poly] as long as

the challenge messages do not distinguish, i.e. (m{fo = m{ll e, (mi’:o = m{;’fl). For
the case of MIPE, we analogously define a strong version of security by asking that if
ﬁ(Xlﬁ, .. .,X{f) = 1 holds for some i, ji, ..., jx € [poly] and B8 € {0, 1}, then it is also
true that (Xlo,...]ko)—(xll,... 1) and (mlo,..., 0)—(m11,...,mﬁ1). For

more details, please see Section 3.5.

Constructing Two Input ABE from LWE and Bilinear GGM. In constructing
two input ABE (2ABE), the main difficulty is to satisfy two seemingly contradicting
requirements at the same time: (1) the two ciphertexts should be created independently,
(2) these ciphertexts should be combined in a way that decryption is possible. If we look
at specific ABE schemes (e.g., [GPSW06; BGG*14]), it seems that these requirements
cannot be satisfied simultaneously. If we want to satisfy the second requirement, the two
ciphertexts should have common randomness. However to satisty the first requirement,
the randomness in the two ciphertexts needs to be sampled independently. An approach
might be to fix the randomness and put it into the master secret key which is then used by
both ciphertexts — but this will compromise security since fresh randomness is crucial in

safeguarding semantic security.

27

Generating Joint Randomness: For resolving this problem, we consider a scheme that
modifies two independently generated ciphertexts so that they have common randomness
and then “joins” them. This common randomness is jointly generated using
independently chosen randomness in each ciphertext by using a pairing operation.
Specifically, we compute a ciphertext for slot 1 with randomness #; and encode it in G
and similarly, for slot 2 with randomness #, in G, where G : G| X G, — Gr is a pairing
group with prime order g. Then, both ciphertexts may be combined to form a new
ciphertext with respect to the randomness #1f; on Gr. This approach seems to be
promising, because we can uniquely separate every pair of ciphertexts, since each pair
(i, j) will have unique randomness t’i té. In the generic group model, this is sufficient to
prohibit “mix and match” attacks that try to combine components of different ciphertexts

in the same slot.

Moving Beyond Degree 2: However, since we “used up" the pairing operation here, it
appears we cannot perform more than linear operations on the generated ciphertext, which
would severely restrict the function class supported by our construction. In particular,
pairing based ABE schemes seem not to be compatible with the above approach, because
these require additional multiplication in the exponent during decryption, which cannot
be supported using a bilinear map. However, at this juncture, a trick suggested by
Agrawal and Yamada [AY20] comes to our rescue — to combine lattice based ABE with

bilinear maps in a way that lets us get the “best of both”.

At a high level, the Agrawal-Yamada trick rests on the observation that in certain lattice
based ABE schemes [BGG*14; GV15], decryption is structured as follows: (i) evaluate
the circuit f on ciphertext encodings of x, (ii) compute a matrix-vector product of the
ciphertext matrix and secret key vector, (iii) perform a rounding operation to recover the
message. Crucially, step (i) in the above description is in fact a linear operation over the

encodings, even for circuits in P, and the only nonlinear part of decryption is the

28

rounding operation in step (iii). They observe that steps (i) and (ii) may be done
“upstairs” in the exponent and step (iii) may be done “downstairs” by recovering the
exponent brute force, when it is small enough. Importantly, the exponent is small
enough when the circuit class is restricted to NC; using asymmetry in noise growth
[GV15; GVWI13]. While this idea was developed in the context of a single-input
ciphertext-policy ABE, it appears to be exactly what we need for two-input key-policy

ABE!

Perspective: Connection to Broadcast Encryption: In hindsight, the application of
optimal broadcast encryption requires succinctness of the ciphertext, which recent
constructions [BV22; AY20; AWY20] obtain by relying on the decomposability of
specific ABE schemes [BGG*14; GV15] — this decomposability is also what the
multi-input setting intrinsically requires, albeit for a different reason. In more detail,
decomposability means that the ciphertext for a vector x can be decomposed into x|
ciphertext components each encoding a single bit x;, and these components can be tied
together using common randomness to yield a complete ciphertext. The bit by bit
encoding of the vector allows 2|x| ciphertext components, each component encoding
both bits for a given position, to together encode 2/¥! possible values of x, which leads to
the succinctness of ciphertext in optimal broadcast encryption schemes
[BV22; AY20; AWY?20]. In the setting of multi-input ABE, decomposability allows to
morph independently generated full ciphertexts with distinct randomness to components
of a single ciphertext with common randomness. The randomness is “merged” using
pairings (or lattices, see below) and the resultant ciphertext can now be treated like the

ciphertext of a single input scheme.

Adapting to the 2ABE Setting: Let us recall the structure of the ciphertext in scheme of

Boneh et al. [BGG*14], which is denoted as BGG + 18 hereafter. As discussed above, a

29

ciphertext for an attribute x € [2¢]° in BGG + 18 is generated by first generating LWE
encodings (their exact structure is not important for this overview) for all possible values
of the attribute x, namely, {¥/; 5 }ic[2¢],b{0,1) (along with other components which are not
relevant here) and then selecting {y; , }ic[2¢) based on x, where x; is the i-th bit of the

attribute string x.

Given the above structure, a candidate scheme works as follows. The setup algorithm
computes encodings for all possible x, namely {i;;};, and puts them into the master
secret key. The encryptor for slot 1 chooses #1 < Z, and encodes (¢, {t1¥ix, ; }ie[¢]) in
the exponent of Gy. Similarly, the encryptor for slot 2 chooses #, « Z, and encodes
(12, {t2¥ixs;_, }iee+1,2¢1) In the exponent of G». In decryption, we compute a pairing
of matching components of the two ciphertexts to obtain (t112, {t1t2¥; x, }ic[2¢]) in the
exponent of Gr. Using the BGG + 18 decryption procedure described above, we may
perform linear operations to evaluate the circuit, apply the BGG + 18 secret key and
obtain the message plus noise in the exponent, which is brought “downstairs” by brute

force to perform the rounding and recover the message.

Challenges in Proving Security. While the above sketch provides a construction template,
security is far from obvious. Indeed, some thought reveals that the multi-input setting
creates delicate attack scenarios that need care to handle. As an example, consider
the strong security definition which allows the adversary to request ciphertexts that are
decryptable by secret keys so long as they do not lead to a distinguishing attack. For
simplicity, let us restrict to the setting where only the slot 1 ciphertext carries a message
and slot 2 ciphertexts carry nothing except attributes (this restriction can be removed).
Now, a slot 1 ciphertext may carry a message that depends on the challenger’s secret bit
as long as it is not decryptable by any key. However, slot 2 ciphertexts may participate
in decryption with other slot 1 ciphertexts that do not encode the challenge bit, and

decryption can (and does) lead to randomness leakage of participating ciphertexts. When

3The length of the attribute is set to 2¢ to match our two-input setting.

30

such a “leaky” slot 2 ciphertext is combined with the challenge slot 1 ciphertext for

decryption, security breaks down.

For concreteness, let us consider the setting where the adversary makes slot 1 ciphertext
queries for (xi, (mg,m1)) and (x}, (m(,m})) and slot 2 ciphertext query for (x2).
Furthermore, the adversary makes a single key query for a circuit F such that F(x;,x) =0
(unauthorized) and F(x),xz) = 1 (authorized). Note that to prevent trivial attacks, we
pose the restriction that m(, = m/, but we may have mo # m;. In this setting, the 2ABE
construction described above is not secure since the noise associated with the slot 2
ciphertext for x; leaks during decryption of the jointly generated ciphertext for (X, x2)

and this prevents using BGG + 18 security for the pair (X, X3).

To resolve the above problem, we need to somehow “disconnect” randomness used in the
challenge ciphertexts of slot 1 from randomness used in leaky/decrypting ciphertexts of
other slots. This is tricky since the multi-input setting insists that ciphertexts be combined
across slots in an unrestricted way. Fortunately, another technique developed [AY?20]
for a completely different reason comes to our assistance — we discontinue encoding the
BGG + 18 ciphertexts in 2ABE ciphertexts for slot 2, so that even if a slot 2 ciphertext is
decrypted, this does not affect the security of the BGG + 18 encoding. Instead, we encode
a binary “selection vector" in the exponent of G;, which enables the decryptor to recover
¥2.x,, When matching positions of slot 1 and slot 2 ciphertext components are paired. In
the context of broadcast encryption (i.e. succinct ciphertext-policy ABE) [AY?20] this
trick was developed because the key generator could not know the randomness used by
the encryptor, and moreover this randomness is unbounded across unbounded ciphertexts.
In our setting, this trick instead allows to break the leakage of correlated randomness
caused by combining ciphertexts across different slots, some of which may be challenge
ciphertexts and others of which may be decrypting ciphertexts. However, though we
made progress we are still not done and the formal security argument still be required to

address several issues — please see Section 3.6 for more details.

31

Constructing 2ABE in the Standard Model. We next turn to adapting the construction
to the standard model — a natural starting point is the standard model adaptation of
[AY20] by Agrawal, Wichs and Yamada [AWY20] which is based on a non-standard
knowledge type assumption KOALA on bilinear groups. Our proof begins with these
ideas but again departs significantly due to the nuanced security game of the multi-input
setting — indeed, we will run into subtle technical issues related to the distribution of

auxiliary information which will require us to formulate a variant of KOALA.

We first outline our construction, which uses a version of inner product functional
encryption (IPFE), where one can directly encrypt group elements (rather than Z,
elements) and can generate a secret key for group elements. Thus, a ciphertext may
encrypt a vector [v]; and a secret key is for [w], and the decryption result of the
ciphertext using the secret key is [(v,w)]r. Using IPFE and ideas similar to our first
construction discussed above, we encode vectors into ciphertexts and secret keys so that
the decryption result ends up with the BGG + 18 ciphertext randomized by a secret key
specific randomness #. In more detail, a slot 1 ciphertext is an IPFE ciphertext encoding
[v, 0], and a slot 2 ciphertext is an IPFE secret key encoding [fw, 0], so that [z{v,w)]|r
is recovered upon decryption, which is a corresponding BGG + 18 ciphertext randomized
by ¢ on the exponent. Here, the last O entries are used for the security proof. We note that
compared to the solution in bilinear generic group model we explained, we dropped the
randomness on the ciphertext encoding and only the secret key encoding is randomized
by ¢. The reason why the randomness on the ciphertext encoding can be removed is that
the encoding is already protected by the IPFE and this change allows to simplify the

construction and proof.

In the security game, we will have {ct) := IPFE.Enc([v®?,0];)}; and
{sk') := IPFE.sk([tw, 0],)},, where ct) is the i-th slot 1 ciphertext and sk¥) is the
i-th slot 2 ciphertext. Let us say that the adversary requests Q ciphertexts in each slot.

The security proof is by hybrid argument, where slot 1 ciphertexts are changed from

32

ciphertexts for challenge bit O to 1 one by one. Now, to change the message in a slot 1
ciphertext i*, we must account for its combination with all slot 2 ciphertexts — note that
such a constraint does not arise in single input ABE/BE [AWY?20]. To handle this, we
leverage the power of IPFE so that the Q second slot ciphertexts hardcode the decryption
value for the chosen slot 1 ciphertext i* and behave as before with other slot 1
ciphertexts. A bit more explicitly, the j-th secret key may be hardwired with
([t],, [{)BGG + 18.ct\)],), where BGG + 18.ct!/) is a set of BGG + 18 ciphertexts
derived from v\ and w(/). We note that since {BGG + 18.ct/)}; are derived from the

same vector V(i*), their distribution is mutually correlated.

At this stage, we have a vector of BGG + 18 ciphertexts encoded in the exponent,
randomized with a unique random term /) and would like to change the ciphertexts
BGG + 18.ct') into random strings using the security of BGG + 18. A similar situation
was dealt with by [AWY20], who essentially showed that if BGG + 18.ct/) is individually
pseudorandom given an auxiliary information aux, then by a variant of the KOALA
assumption, {[t],, [{"BGG + 18.ct)],} ; looks pseudorandom, even if ciphertexts
are mutually correlated for j € [Q]. However, this idea is insufficient for our setting
due to the distribution of the auxiliary information. In more detail, for the construction
of [AWY20], it sufficed to have a single BGG + 18 secret key in aux, since their
construction only needed a single key secure BGG + 18. By applying a standard trick
in lattice cryptography, they could sample the secret key first (setting other parameters
accordingly) and thus regard aux as a random string. In contrast, our scheme crucially
requires multiple BGG + 18 secret keys, which can no longer be considered as random
strings. This necessitates formulating a variant of the KOALA assumption whose
distribution of the auxiliary input is structured rather than random. We do not know how
to weaken this assumption using our current techniques and leave this improvement as

an interesting open problem. For more details, please see Section 3.7.

33

Compiling multi-input ABE to multi-input PE. Next, we discuss how to lift k-input
MIABE to k-input MIPE. For the purposes of the introduction, let us focus on the case of
k = 2. As a warm-up, we begin with the simpler setting of standard security, i.e. where

there are no decrypting ciphertexts.

The natural first idea to construct MIPE is to replace the single input ABE, BGG + 18 in
our 2ABE scheme by single input PE, which has been constructed for all polynomial
circuits by Gorbunov, Vaikuntanathan and Wee [GVW15]. However, this idea quickly
runs into an insurmountable hurdle — for our construction template, we need to bound the
decryption noise by polynomial so that it can be recovered by brute force computation of
discrete log in the final step. This is possible for ABE supporting NC; using asymmetric
noise growth [GV15]. In the context of PE however, we do not know how to restrict
the noise growth to polynomial — this is due to the usage of the fully homomorphic
encryption in the scheme, which extends the depth of the evaluated circuit beyond what

can be handled.

An alternative path to convert ABE to PE in the single input setting uses the machinery of
Lockable Obfuscation (LO) [GKW17; WZ17]. Lockable obfuscation allows to obfuscate
a circuit C with respect to a lock value 8 and a message m. The obfuscated circuit on input
x outputs m if C(x) = B and L otherwise. For security, LO requires that if 5 has high
entropy in the view of the adversary, the obfuscated circuit should be indistinguishable

from a garbage program that does not carry any information.

Single to Multiple Inputs. The conversion in the single input setting is as follows. To
encrypt a message m for an attribute x, we first encrypt a random value g using the
ABE to obtain an ABE cipheretxt ct. We then construct a circuit C[ct] that hardwires ct
in it, takes as input an ABE secret key and decrypts the hardwired ciphertext using it.
We obfuscate C|[ct] with respect to the lock value 8 and the message m. The final PE

ciphertext is the obfuscated circuit. It is easy to see that the PE scheme has correctness,

34

since if the decryption is possible, S is recovered inside the obfuscated circuit and the
lock is unlocked. By the correctness of LO, the message is revealed. In the security
proof, we first change f encrypted inside ct to a zero string. This is possible using the
security of ABE. Now the lock value 8 has high entropy from the view of the adversary.
We then erase the information inside the obfuscated circuit, which includes the attribute

information, using the security of LO.

Some thought reveals that the above conversion breaks down completely in the multi-input
setting. For instance, if we apply the above conversion to a slot 1 ciphertext, the resulting
obfuscation expects to receive slot 2 ciphertext in the clear. However, a slot 2 ciphertext of
PE must also constitute an obfuscated circuit since otherwise the attribute associated with
it will be leaked. But then there is no way to communicate between the two ciphertexts,

both of which are obfuscated circuits!

To overcome this barrier, we develop a delicate nested approach which takes advantage of
the fact that LO is powerful enough to handle general circuits. To restore communication
between two ciphertexts while maintaining attribute privacy, we obfuscate a circuit for
slot 1 that takes as input another obfuscated circuit for slot 2 and runs this inside itself.
In more detail, the outer LO takes as input the “inner” LO circuit and the 2ABE secret key
2ABE.sks. The inner LO instance encodes the circuit for 2ABE decryption with the LO
message as an SKE secret and the lock value as random tag . It also has hardcoded in it
the slot 2 2ABE ciphertext 2ABE.ct, with message 5. The other piece of 2ABE, namely
the slot 1 ciphertext 2ABE.ct; is hardwired in the outer LO. The outer LO encodes a
circuit which runs the inner LO on inputs 2ABE.ct; and 2ABE.sk ;. By correctness of
the inner LO, the 2ABE decryption with 2ABE.ct;, 2ABE.ct; and 2ABE.sk is executed
and if the functionality is satisfied, the inner LO outputs the SKE secret key. Thus, the
SKE secret key signals whether the inner LO is unlocked, and if so, uses the recovered
key to decrypt an SKE ciphertext which is hardcoded in the circuit. This ciphertext

encrypts some random y which is also set as the lock value of outer LO. If the SKE

35

decryption succeeds, the lock value matches the decrypted value and outputs the message
m which is the message in the outer LO. We note that the same SKE secret key must be

used for both the inner and outer LO for them to effectively communicate.

Supporting Strong Security. This construction lends itself to a proof of security for the
standard game where decrypting ciphertexts are not allowed, although via an intricate
sequence of hybrids especially for the case of general k. We refer the reader to Section 3.8
for details and turn our attention to the far more challenging case of strong security. In the
setting of strong security, the proof fails — note that once any slot 2 ciphertext is decrypted,
we no longer have the guarantee that the message value of the inner obfuscation is hidden.
Since this message is a secret key of an SKE scheme and is used to encrypt the lock

values for slot 1 ciphertexts, security breaks down once more.

To overcome this hurdle, we must make the construction more complex so that the message
value of the inner obfuscation is no longer a global secret and does not compromise
security even if revealed. To implement this intuition, we let the inner obfuscation output
a slot 2 (strong) 2ABE ciphertext when the lock is unlocked, which is then used to
perform 2ABE decryption in the circuit of the outer LO. Now, even if the security of a
inner obfuscated circuit is compromised, this does not necessarily mean that the security
of the entire system is compromised because of the guarantees of the strong security
game of 2ABE. While oversimplified, this intuition may now be formalized into a proof.

For more details, please see Section 3.9.

Constructing 3ABE from Pairings and Lattices. Finally, we discuss our candidate
construction for three input ABE scheme based on techniques developed by Brakerski and
Vaikuntanathan [BV22] in conjunction with our 2ABE construction in Section 3.6.1. The
work of Brakerski and Vaikuntanathan [BV22] provided a clever candidate for succinct
ciphertext-policy ABE for P from lattices. Their construction also uses decomposability

in order to achieve succinctness which is the starting point for the multi-input setting

36

as discussed above. Additionally, they provide novel ways to handle the lack of shared
randomness between the key generator and encryptor — while [AY20] use pairings to
generate shared randomness, [BV22] use lattice ideas and it is this part which makes their
construction heuristic. Here, we show that the algebraic structure of their construction
not only fits elegantly to the demands of the two-input setting, but can also be made
compatible with our current 2ABE construction to amplify arity to three! This surprising
synergy between two completely different candidates of broadcast encryption, namely
Agrawal-Yamada and Brakerski-Vaikuntanathan, created by decomposability and novel
techniques of handling randomness, already provides an XWE of compression factor 1/4
as against the previous best known 1/2 [BJK* 18], and may lead to other applications as

well.

Recap of the Brakerski-Vaikuntanathan construction. To dig deeper into our construction,
let us first recap the core ideas of [BV22]. First recall the well known fact that security of
BGG + 18 encodings is lost when we have two encodings for the same position encoding
a different bit, namely, ;o = sB; + ;0 and ;| = s(B; + G) + ¢; |, where s is a LWE
secret, B; is a matrix, and e; 5 is an error vector for b € {0, 1}. What [BV22] suggested is,
if we augment BGG + 18 encodings and mask them appropriately, then both encodings
can be published and still hope to be secure. Namely, they change BGG + 18 encodings
to be ¢, = S(B; + bG) + E; ;,, where we replace the vector s with a matrix S. They then

mask the encodings by public (tall) matrices {C; p}; 5 as
Ui = CipSip +S(B; +bG) +E;

where {§i,b}i,b are random secret matrices. By releasing appropriate information, one
can recover BGG + 18 encodings with different LWE secrets. In more detail, we can
publish a short vector ty for any binary string x that satisfies txC; ,, = 0 (and t,C; |y, is

random) for all i. This allows us to compute

tx (Ci,x,—gi,x,- +S(B; +x;G) + Ei,xi) =t,S(B; +x;G) + t,E; , = sx(B; +x;G) + ey x,

37

where we set sy = tS and ey, = tyE; ;. Namely, we can obtain BGG + 18 samples
specific to the string x. This is similar to the idea of using pairings to choose the
appropriate encoding based on the attribute string, which is used in our two-input ABE
with strong security. Similarly to that case, the obtained encodings are randomized by
the user specific randomness. One of the heuristic aspects of [BV22] is that in order for
their scheme to be secure, we have to assume that there is no meaningful way to combine

the BGG + 18 samples obtained from different vectors tyx and ty .

Let us now adapt these techniques to provide a construction of two-input ABE. In our
candidate, {B;}; and {C;;}; matrices are made public.* An encryptor for the slot 1

computes fori € [€],b € {0, 1}:

{Wir, =SB; +x1,G) +Ei },, {‘://\i,b = CsipSesip + S(Besi + bG) + Ef+i,b} ,

i
where x1; denotes the i-th bit of the attribute x; for slot 1, £ denotes the length of an
attribute, and S and §,~, » are freshly chosen by the encryptor. Intuitively, this is a partially
stripped off version of the encodings in [BV22]. We believe this does not harm security,
because the encryptor provides one out of two encodings for each position that is not
masked by Ci,b/S\i,b. The encryptor for slot 2 generates a vector ty, such that ty,C; , ., = 0
for all i € [€]. The secret key for function F is simply BGG + 18 secret key for the same
function. In the decryption, the decryptor uses ty, to choose BGG + 18 encodings for
attribute x, from {{ﬁ\i,h}i,b. The obtained encodings are with respect to the LWE secret
txS. The decryptor can also choose BGG + 18 encodings for attribute x; from {;};.
These obtained encodings constitutes a BGG + 18 ciphertext for attribute (xy, X;), which
can be decrypted by the BGG + 18 secret key. The intuition about security in [BV22]
is that the BGG + 18 encodings obtained by using ty vectors cannot be combined in a

meaningful way due to the different randomness.

Amplifying Arity. We now amplify arity by leveraging the above techniques in conjunction

“The construction described here is simplified. For example, we omit the additional message carrying
part in the construction, which is not necessary for the overview.

38

with our pairing based construction. Our idea is to develop the scheme so that the
decryptor can recover the above partially stripped off version of the encoding in the
exponent from slot 1 and slot 2 ciphertexts by using the pairing operations, where the
encodings may be randomized. Then, slot 3 ciphertext corresponds to a vector ty,, which
annihilates C;;, matrices for corresponding positions to the attribute x3. To do so, an

encryptor for the first slot encodes

(t1Wix Yiere, {E1WinYielee1201be000)s {01Wib Hie[aes1 30) befo.1)

of the exponent of G|, where #; is freshly chosen randomness by the encryptor. An
encryptor for the second slot encodes 1, f,dy, in the exponent of G, where ¢, is freshly
chosen randomness by the encryptor and dy, is a selector vector that chooses ¢; ., ; out
of (¥ 0,¥i1) by the pairing operation. Concretely, dx, = {d;}i», Where d;, = 1 if
b = x; and O otherwise. These vectors are randomized by position-wise randomness
as 1s the case for our other schemes. Finally, an encryptor for slot 3 with attribute x3

chooses ty, such that ty,Cozy;x,,; = 0.

A somewhat worrying aspect of the candidate above may be that both 71y, o and #1y;
are encoded on G;. However, this is also the case for [AY20] and as in that work, these
two encodings are randomized by the position-wise randomness and cannot be combined
in a meaningful way (at least in the GGM). The only way to combine them is to take a
pairing product with G, elements. However, after the operation, we end up with partially
stripped encoding that is randomized with #1#,. Therefore, a successful attack against
the scheme may end up with attacking a partially stripped version of [BV22], which we

expect to be as secure as the original scheme. Please see Section 3.10 for more details.

Organisation of the chapter. The rest of the chapter is organised as follows. In
Section 3.4, we provide the preliminaries used in this chapter. In Section 3.5, we define
MIABE and MIPE. We construct 2ABE for NC; from LWE and pairings in Section 3.6.

In Section 3.7, we provide the construction of 2ABE for NC; in standard model from

39

KOALA assumption. We define our compiler for KABE to KPE in Section 3.8. This
compiler works for the weaker security. The compiler for 2PE with stronger security
is given in Section 3.9. We provide our heuristic constructions for 3BABE for NC; and

2ABE for P in Sections 3.10 and 3.11, respectively.

3.4 PRELIMINARIES

Notation used in this chapter. By default, in this chapter, we treat a vector as a
row vector. For any vector x of length ¢, we let x; denote the i-th coordinate of x, for
i € [€]. We use 1yx,, (resp. Ox;,) to represent a matrix of dimensions ¢ X m having
each entry as 1 (resp. 0). Similarly, we write 1, (resp. 0,) to represent (1,...,1) € Zg
((0,...,0) € Z7) We say a function f(n) is negligible if it is O (n™¢) for all ¢ > 0, and
we use negl(n) to denote a negligible function of n. We say f(n) is polynomial if it is
O (n°) for some constant ¢ > 0, and we use poly(n) to denote a polynomial function
of n. For two distributions 9, D>, we use the notation D, =, D, to denote that a
PPT adversary cannot distinguish between the distributions 9 and 9, except only with

negligible distinguishing advantage.

3.4.1 Single User Attribute Based Encryption

For ease of readability, we define single user CPABE and kpABE below.

Let R={Ry: Ay x By — {0, 1}}, be a relation where A, and B, denote “ciphertext
attribute" and “key attribute” spaces. An attribute-based encryption (ABE) scheme for R

is defined by the following PPT algorithms:

Setup(11) — (mpk, msk): The setup algorithm takes as input the unary representation
of the security parameter A and outputs a master public key mpk and a master

secret key msk.

Enc(mpk, X, u) — ct: The encryption algorithm takes as input a master public key mpk,

40

a ciphertext attribute X € A,, and a message bit . It outputs a ciphertext ct.

KeyGen(mpk, msk, Y) — sky: The key generation algorithm takes as input the master
public key mpk, the master secret key msk, and a key attribute Y € B,. It outputs

a private key sky.

Dec(mpk,ct, X,sky,Y) — u or L: We assume that the decryption algorithm is
deterministic. The decryption algorithm takes as input the master public key mpk,
a ciphertext ct, ciphertext attribute X € A,, a private key sky, and private key
attribute Y € B,. It outputs the message u or L which represents that the
ciphertext is not in a valid form.

Definition 3.1 (Correctness). An ABE scheme for relation family R is correct if for all

A1eN, X e A)Y € Bysuch that R(X,Y) =1, and for all messages u € g,

(mpk, msk) « Setup(11), sky « KeyGen(mpk, msk, Y),
Pr = negl(A)
ct «— Enc(mpk, X, u) : Dec(mpk, ct, X, Sky,Y) # U
where the probability is taken over the coins of Setup, KeyGen, and Enc.
Definition 3.2 (Ada-IND security for ABE). For an ABE scheme ABE = {Setup, Enc,
KeyGen, Dec} for a relation family R = {R, : Ay X By — {0,1}}, and a message
space {9, }1env and an adversary (A, let us define Ada-IND security game, Exptﬁg‘EQD as

follows.

1. Setup phase: On input 1%, the challenger samples (mpk, msk) « Setup(14) and
gives mpk to A.

2. Query phase: During the game, A adaptively makes the following queries, in
an arbitrary order. A can make unbounded many key queries, but can make only

single challenge query.

a) Key Queries: A chooses an input Y € B,. For each such query, the
challenger replies with sky « KeyGen(mpk, msk,Y).

b) Challenge Query: At some point, A submits a pair of equal length
messages (uo, 1) € (g)? and the target X* € A, to the challenger. The

41

challenger samples a random bit » « {0,1} and replies to A with
ct « Enc(mpk, X*, up).
We require that R(X*,Y) = 0 holds for any ¥ such that A makes a key query for ¥
in order to avoid trivial attacks.

3. Output phase: A outputs a guess bit b” as the output of the experiment.

We define the advantage AdvﬁgaE"y[D(li) of A in the above game as

AdvARE'RP (11) = [Pr[Exptpae P (11) = 1]b = 0] — Pr[Exptags 50 (1Y) = 1|b = 1]|.

The ABE scheme ABE is said to satisfy Ada-IND security (or simply adaptive security)
if for any stateful PPT adversary A, there exists a negligible function negl(-) such that
Advﬁg%"y') (1Y) = negl(A).

We can consider the following stronger version of the security where we require the
ciphertext to be pseudorandom.

Definition 3.3 (Ada-INDr security for ABE). We define Ada-INDr security game,
Exptﬁg‘g’y{m similarly to Ada-IND security game, ExptﬁgaE"gz\‘lD except that the adversary
A chooses single message u instead of (g, u;1) at the challenge phase and the
challenger returns ct « Enc(mpk, X*, u) if b = 0 and a random ciphertext ct « C7~
from a ciphertext space C7 if b = 1. We define the advantage Advﬁgany{Dr(lﬂ) of the
adversary A accordingly and say that the scheme satisfies Ada-INDr security if the
quantity is negligible.

We also consider (weaker) selective versions of the above notions, where A specifies its
target X* at the beginning of the game.

Definition 3.4 (Sel-IND security for ABE). We define Sel-IND security game, Exptiglg';l'j
as Ada-IND security game with the exception that the adversary A has to choose the
challenge ciphertext attribute X* before the setup phase but key queries Y}, Y3, ... and
choice of (uo, 1) can still be adaptive. We define the advantage Advig';NﬂD(lﬂ) of the
adversary A accordingly and say that the scheme satisfies Sel-IND security (or simply

selective security) if the quantity is negligible.

Definition 3.5 (Sel-INDr security for ABE). We define Sel-INDr security game,

42

EXptiglé";[Dr as Ada-INDr security game with the exception that the adversary (A has to

choose the challenge ciphertext attribute X* before the setup phase but key queries
Y1, Y2, ... and choice of u can still be adaptive. We define the advantage Advig'é',';?r(11)
of the adversary A accordingly and say that the scheme satisfies Sel-INDr security if the
quantity is negligible.

In the following, we recall definitions of various ABEs by specifying the relation. We

start with the standard notions of ciphertext-policy attribute-based encryption (CPABE)

and key-policy attribute-based encryption (KpABE).

CPABE for circuits. We define CPABE for circuit class {C; }, by specifying the relation.
Here, C; is a set of circuits with input length £(1) and binary output. We define ASP =C,

and BEP = {0, 1}¢. Furthermore, we define the relation RSP as R/?P(C ,X) = C(x).)

kpABE for circuits. To define kpABE for circuits, we simply swap key and ciphertext
attributes in CPABE for circuits. More formally, to define kpABE for circuits, we
define AKP = {0,1}¢ and BXP = C;. We also define RK" : AKP x BXP — {0, 1} as
RP(x,C) = ~C(x).

Remark 1. We observe that the symmetric key variants of the above definitions can
be easily obtained by letting the encryptor have access to the master secret key and

permitting the adversary to make ciphertext requests in the security game.

3.4.2 Lockable Obfuscation

We define lockable obfuscation [GKW17; WZ17] below. Let n, m, d be polynomials,
and C,, n.4(A) be the class of depth d(A) circuits with n(A) bit input and m (1) bit output.
A lockable obfuscator for G, ,, 4 consists of algorithms Obf and Eval with the following

syntax. Let M be the message space.

Obf(14, P, g, @) — P : The obfuscation algorithm is a randomized algorithm that takes

SHere, we follow the standard convention in lattice-based cryptography where the decryption succeeds
when C(x) = 0 rather than C(x) = 1.

43

as input the security parameter A, a program P € C, , 4, message g € M and ‘lock

string” @ € {0, 1} _ It outputs a program P.

Eval(P,x) —» y € MU {L} : The evaluator is a deterministic algorithm that takes as

input a program Panda string x € {0, 1} It outputs y € M U {L}.

Correctness: For correctness, it is required that if P(x) = «, then the obfuscated
program P — Obf(14, P, g, @), evaluated on input x, outputs g, and if P(x) # «, then P
outputs L on input x.

Definition 3.6 (Perfect Correctness). Let n, m, d be polynomials. A lockable obfuscation
scheme for C, ,, 4 and message space M is said to be perfectly correct if it satisfies the

following properties:

1. For all security parameters A, inputs x € {0, 1}"™ | programs P € C, .4 and
messages g € M, if P(x) = a, then

Eval(Obf(14, P, g, @), x) = g.

2. For all security parameters A, inputs x € {0, 1}"Y, programs P € C, .4 and
messages g € M, if P(x) # a, then

Eval(Obf(14, P, g, @), x) =L .

Definition 3.7 (Security). Let n, m, d be polynomials. A lockable obfuscation scheme
(Obf, Eval) for C, .4 and message space M is said to be secure if there exists a PPT
simulator Sim such that for all PPT adversaries A = (Ap, A}), there exists a negligible

function negl(-) such that:

(P’ g’St) — ﬂO(l/l) -

_ b —{0,1},@ « {0, 1} |
Pr | A;(Pp,st) =b _ -5 < negl(A).
Py — Obf(14, P, g, @)

Py « Sim(14, 1171, 119l

Analogously, we can define the security for multiple queries case.

44

Definition 3.8 (LO security with multiple queries). Let n,m,d be polynomials. A
lockable obfuscation scheme (Obf, Eval) for C, ;.4 and message space M is said to be
secure (for multiple adaptive queries) if there exists a PPT simulator Sim such that for all

PPT adversaries A, the probability of winning in the following game is 1/2 + negl(4).

The security game between challenger C and adversary A is defined as follows:
1. C Samples a bit b « {0, 1}.
2. Aissues p = p(A) adaptive queries of the form (P, g’) to C.
3. For each query, C returns ﬁl;, where

Pl — Obt(14, P!, g/, o), a; — {0,1}" and P} — Sim(1%, 171, 119')

4. In the end, the adversary outputs a bit b’.
The adversary wins if " = b.
Reduction from multi-queries definition to single query can be shown using hybrids. We
sketch the reduction here. We consider p + 1 hybrids Hybrid, to Hybrid,,. In Hybrid;,
first i programs are simulated programs and remaining p — i are obfuscated programs.

Indisntinguishability of Hybrid; and Hybrid,,; follows from the security in case of single

query.

3.4.3 Batch Inner Product Functional Encryption

We define batch inner product functional encryption (BIPFE) in the secret key setting.
This is a straightforward extension of the standard notion of the IPFE in the secret key
setting [BJK15; DDM16; LV16] and is introduced for the purpose of describing our
scheme with notational ease. In BIPFE, a ciphertext and a secret key are associated with
matrices of the same size consisting of group components [V]; = [(VI, VD] € Gfxn

and [W], = [(WI, WD € GEX”, respectively. Here, we refer to B as the batch size

45

and n as the dimension. Upon decryption, the following is recovered

[VaW]r:= ZV,‘@Wi

i€[n] T
Namely, we recover inner product of each row of V and W in parallel as a decryption

result. More formal definition follows.

Let GroupGen be a group generator that outputs bilinear group
G = (p,G1,G2,Gr,e, [1]1,[1]2). A BIPFE scheme based on G consists of 4 efficient

algorithms:

Setup(14, 18,1") — msk: The setup algorithm takes as input the security parameter,

the batch size B, the dimension # all in unary and outputs master secret key msk.

KeyGen(msk, [W],) — skw: The key generation algorithm takes as input the master
secret key and a matrix of group elements [W], € G,, and outputs a secret key

Skw.

Enc(msk, [V],) — cty: The encryption algorithm takes as input the master secret key

and a matrix of group elements [V]; and outputs a ciphertext cty.

Dec(skw, cty) — [Z]7 v L: The decryption algorithm takes as input a secret key sky
and a ciphertext cty, and outputs an element [Z]7 € Gr or L.
Definition 3.9 (Correctness). We say the BIPFE scheme satisfies decryption correctness

if for all A € N, all batch size B, all dimension 7, and all matrices V, W € ngn,

msk « Setup(14, 18, 17)
Pr | Dec(skw,cty) = [W B V]r | sky « KeyGen(msk, [W],)| =1

cty « Enc(msk, [V];)

46

Next, we define the function hiding property.
Definition 3.10 (Function Hiding Security). Let (Setup, KeyGen, Enc, Dec) be a BIPFE
scheme as defined above. The scheme is function hiding if Expt(,iH is indistinguishable

from Expt,I:H for all PPT adversary A where EXpt,’iH for b € {0, 1} is defined as follows:

1. Setup: Run the adversary A on input 1? to obtain the batch size 12 and the
dimension 1” from A. Let msk « Setup(1%, 12, 1*) and return msk to A.

2. Challenge: Repeat the following for arbitrarily many rounds determined by A: In
each round, A has 2 options:

* A submits [W(()i)]z, [ng)]z € GZBX” as a secret key query. Upon receiving
this, compute sk® — KeyGen(msk, [W,(f)]2) and return this to (A.

* A submits [V(()i)]l, [Vgi)]l € Gfx” as an encryption query. Upon receiving
this, compute ct) « Enc(msk, [V[(j)] 1) and return this to A.
3. Guess: A outputs its guess b’.

The adversary is called admissible if V(()i) o] W(()j) = Vgi) o ng) for all combinations
of i and j. We say that the BIPFE scheme is function hiding if | Pr[b = b’] — 1/2] is
negligible for all admissible PPT adversaries.
Note that function hiding IPFE is captured as a special case of our notion of BIPFE
with the batch size B = 1. It can be seen that function hiding IPFE can be converted to
BIPFE by running the former in parallel for B times. Function hiding IPFE schemes are
constructed from various assumptions including SXDH and DLIN [DDM16; LV16] and

thus BIPFE can be constructed from the same assumptions.

3.4.4 Lattice Preliminaries

We use LWE, ;. »,, assumption defined in Chapter 2, where n,m,q are such that
n = poly(1), m > n[log g]. We define y = SampZ(y), where SampZ(y) is a sampling
algorithm for the truncated discrete Gaussian distribution over Z with parameter y > 0

whose support is restricted to z € Z such that |z| < \/ny.

We also consider subexponential hardness of LWE where the advantage of the adversary

47

is bounded by 27" - negl() for some constant 0 < € < 1 for all PPT A°. As shown by
previous works [Reg09; BLP*13], for y = SampZ(y), the LWE, ,, ,»,, problem is as hard
as solving worst case lattice problems such as gapSVP and SIVP with approximation factor
poly(n) - (¢/y) for some poly(n). Since the best known algorithms for 2*-approximation
of gapSVP and SIVP run in time 2°(/%)_ it follows that the above LWE, ,m,, With

noise-to-modulus ratio 27 is likely to be (subexponentially) hard for some constant €.

Lattice Trapdoors. Let us consider a matrix A € ngm. Forall V € Z’;X’"', we let
A} (V) be an output distribution of SampZ(y)"™"" conditioned on A - A;' (V)=V. A
y-trapdoor for A is a trapdoor that enables one to sample from the distribution A;l (V)
in time poly(n, m,m’,log q) for any V. We slightly overload notation and denote a
y-trapdoor for A by A} . We also define the special gadget matrix G € ngm as
the matrix obtained by padding I,, ® (1,2,4,8, ..., 2flog ﬂ) with zero-columns. The
following properties had been established in a long sequence of works [GPV08; CHKP10;
ABB10a; ABB10b; MP12; BLP*13].

Lemma 3.1 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.
1. Given A7!, one can obtain A;,l forany v > 1.
2. Given A7!, one can obtain [A||B];! and [B||A];! for any B.

3. There exists an efficient procedure TrapGen(1", 1™, q) that outputs (A, A;OI
where A € ZZX’” for some m = O(nlogq) and is 27"-close to uniform, where

70 = w(y/nlog g logm).

Lattice Evaluation. The following is an abstraction of the evaluation procedure in
previous LWE based FHE and ABE schemes. We follow the presentation by Tsabary
[Tsal9], but with different parameters.

Lemma 3.2 (Fully Homomorphic Computation [GV15]). There exists a pair of

This notion is weaker than the definition of subexponential LWE defined in Chapter 2, where A is
allowed to run in time 2°Y and win with probability 272,

48

deterministic algorithms (EvalF, EvalFX) with the following properties.

» EvalF(B, F) — Hp. Here, B € ngmg and F : {0,1}¢ — {0, 1} is a circuit.

* EvalFX(F,x,B) — I’-\IF,X. Here, x € {0, 1} and F : {0, 1}¢ — {0, 1} is a circuit
with depth d. We have

[B-x® G]Hpx = BH; — F(x)G mod ¢,
where we denote [x1G]|| - - - ||xxG] by X ® G. Furthermore, we have

IHpllo < m-2°@ |Hpylloo < m - 209,

o The running time of (EvalF, EvalFX) is bounded by poly(n,m, log g, 2¢).
The above algorithms are taken from [GV15], which is a variant of similar algorithms
proposed by Boneh et al. [BGG*14]. The algorithms in [BGG*14] work for any
polynomial-sized circuit F, but |Hr ||« and ||Hf x||cc become super-polynomial even if
the depth of the circuit is shallow (i.e., logarithmic depth). On the other hand, the above
algorithms run in polynomial time only when F is of logarithmic depth, but |Hf||s and

|IHF x|| can be polynomially bounded. The latter property is crucial for our purpose.

Modified Noise Distribution. For a distribution y over Z and an integer m, we define
Y™ as follows. To sample from Y™, we first sample X « y™ and S « {-1, 1}™"
and output Sx. By triangular inequality, it can be seen that if the absolute value of a
sample from y is always bounded by B, the infinity norm of a sample from y™ is always
bounded mB. This modified noise distribution is used in the KPABE scheme by Boneh
et al. [BGG™*14] described in Sec. 3.4.5 for the case of y being the discrete Gaussian
distribution. The modification of the noise is introduced in order to make the security

proof work. We refer to their paper for the details.

3.4.5 kpABE Scheme by Boneh et al. [BGG*14]
We will use a variant of the kKpABE scheme proposed by Boneh et al. [BGG"14]. We
call the scheme BGG + 18 and provide the description of the scheme in the following.

We focus on the case where the policies associated with secret keys are limited to circuits

49

with logarithmic depth rather than arbitrary polynomially bounded depth, so that we can
use the evaluation algorithm due to Gorbunov and Vinayagamurthy [GV15] (see Lemma
3.2). This allows us to bound the noise growth during the decryption by a polynomial

factor, which is crucial for us as in [AY?20].

The scheme supports the circuit class Cy().q(1), Which is a set of all circuits with input

length €(A) and depth at most d(1) with arbitrary £(1) = poly(1) and d(1) = O(log).

Setup(11): On input 14, the setup algorithm defines the parameters n = n(1), m = m(2),
noise distributions y over Z, 79 = 79(1), 7 = 7(1), and B = B(A) as specified later.

It then proceeds as follows.
1. Sample (A, A;ol) « TrapGen(1", 1™, q) such that A € Zp*™.

2. Sample random matrix B = (By,...,B;) « (ngm)g and a random vector
u«— Zg.

3. Output the master public key mpk = (A, B, u) and the master secret key
msk = A7

KeyGen(mpk, msk, F): The key generation algorithm takes as input the master public

key mpk, the master secret key msk, and a circuit ' € Cr 4 and proceeds as follows.
1. Compute Hr = EvalF(B, F) and By = BHp.
2. Compute [A|Br];! from A7 and sample r € Z*" asr" — [A|IBf]7' (uT).

T

3. Output the secret key skp :=r.

Enc(mpk, x, i): The encryption algorithm takes as input the master public key mpk,

an attribute x € {0, 1}¢, and a message y € {0, 1} and proceeds as follows.

1. Samples « Z", eq < y,e < x™, and e;;, < y™ fori € [¢] and b € {0, 1},
where y™ is defined as in Sec. 3.4.4 from y.

50

2. Compute

Foralli € [£], b € {0,1}, ¢ :=s(B; — bG) + e, € Z}

Yarel :=SA+e €Z), Yopp i=su' +eg+pulq/2] € Z,,

3. Output the ciphertext cty := ({¥iy, }ie[e]> Y2041, ¥2e42), Where x; is the i-th
bit of x.

Dec(mpk, sk, ctr): The decryption algorithm takes as input the master public key
mpk, a secret key skg for a circuit F, and a ciphertext cty for an attribute x and

proceeds as follows.

1. Parse cty — ({l/’i,xi € Z’qn}ie[g], Yoes1 € Z;", Yorsn € Zq), and skp € Z2m If
any of the component is not in the corresponding domain or F'(x) = 1, output
1.

2. Compute ﬁF,X = EvalF(F,x,B).

3. Concatenate {Y;x, }ic[¢] to form yx = (Wi xys- - Wi,

4. Compute
W' = onn — [Waeet W HE]rT

5. Output Oify" € [-B,B] and 1 if [-B+ [q/2], B+ [q/2]].
Remark 2. We note that the encryption algorithm above computes redundant components
{W¥i-x; }ie[e) in the second step, which are discarded in the third step. However, due to
this redundancy, the scheme has the following special structure that will be useful for
us. Namely, the first and the second steps of the encryption algorithm can be executed
without knowing x. Only the third step of the encryption algorithm needs the information
of x, where it chooses {i; y, }ie[¢] from {¥ 5 }ic[e],pe0,1} depending on each bit of x and

then output the former terms along with ¢7,.1 and ¥ozs0.

Parameters and Security. We choose the parameters for the scheme as follows:

m=n""logq, q =20, x = SampZ(3vn),

51

70 = nlogqlogm, r=m>e. 20 B = tn*m’t - 20D,

The parameter n will be chosen depending on whether we need Sel-INDr security or
Ada-INDr security for the scheme. If it suffices to have Sel-INDr security, we set n = A¢
for some constant ¢ > 1. If we need Ada-INDr security, we have to enlarge the parameter
to be n = (£4)¢ in order to compensate for the security loss caused by the complexity

leveraging.

We remark that if we were to use the above ABE scheme stand-alone, we would have been
able to set g polynomially bounded as in [GV15]. The reason why we set g exponentially
large is that we combine the scheme with bilinear maps of order ¢ to lift the ciphertext
components to the exponent so that they are “hidden" in some sense. In order to use the

security of the bilinear map, we set the group order g to be exponentially large.

The following theorem summarizes the security and efficiency properties of the
construction. There are two parameter settings depending on whether we assume
subexponential hardness of LWE or not.

Theorem 3.3 (Adapted from [GV15; BGG* 14]). Assuming hardness of LWE(n,m, q, x)
with y = SampZ(3+/n) and q = O(Z”I/E)for some constant € > 1, the above scheme
satisfies Sel-INDr security (Definition 3.5). Assuming subexponential hardness of

LWE (n, m, q, x) with the same parameters, the above scheme satisfies Ada-INDr security

m({+1)+1

(Definition 3.3) with respect to the ciphertext space CT :=Z,

3.4.6 Bilinear Map Preliminaries

Here, we introduce our notation for bilinear maps and the bilinear generic group model
following Agrawal and Yamada [AY20], which in turn is based on [BCFG17; BFF*14]
for defining generic k-linear groups to the bilinear group settings. The definition closely
follows that of Maurer [Mau05], which is equivalent to the alternative formulation by

Shoup [Sho97].

52

Notation on Bilinear Maps. A bilinear group generator GroupGen takes as input 14 and
outputs a group description G = (g, G, G, Gr, e, g1, g2), Where g is a prime of ©(A)
bits, G, Gy, and Gy are cyclic groups of order ¢, e : G; X G, — Gr is a non-degenerate
bilinear map, and g; and g; are generators of G; and G, respectively. We require that
the group operations in G, G,, and Gt as well as the bilinear map e can be efficiently
computed. We employ the implicit representation of group elements: for a matrix A over
Zg, we define [A]; := g‘?, [A], := g‘;, [A]7 = g}“‘, where exponentiation is carried out

component-wise.

We also use the following less standard notations. For vectors w = (wy,...,wy) € Zg
andv = (vq,...,vp) € Zg of the same length, w © v denotes the vector that is obtained by
component-wise multiplications. Namely, vO w = (viwy,...,vew¢). When w € (Z;)‘),
v @ w denotes the vector vo w = (vi/wy,...,ve/we). It is easy to verify that for
vectors ¢,d € Zg and w € (Z;)‘;, we have (c©Ow) © (d @ w) = ¢cod. For group
elements [v]; € Grf and [w]; € G¢, [v]; © [w], denotes ([viwi]7, ..., [vew¢]r), which

is efficiently computable from [v]; and [w];, using the bilinear map e.

Generic Bilinear Group Model. Let G = (¢, G, G, Gy, e, g1, g2) be a bilinear group
setting, L1, L,, and L7 be lists of group elements in G, G7, and G respectively, and let
D be a distribution over L1, Ly, and Ly. The generic group model for a bilinear group
setting G and a distribution D is described in Fig. 3.1. In this model, the challenger
first initializes the lists L, Ly, and L7 by sampling the group elements according to D,
and the adversary receives handles for the elements in the lists. For s € {1,2,T}, Ls[h]
denotes the /-th element in the list L;. The handle to this element is simply the pair (s, &).
An adversary running in the generic bilinear group model can apply group operations
and bilinear maps to the elements in the lists. To do this, the adversary has to call the
appropriate oracle specifying handles for the input elements. The challenger computes
the result of a query, stores it in the corresponding list, and returns to the adversary its

(newly created) handle. Handles are not unique (i.e., the same group element may appear

53

more than once in a list under different handles). As in [AY20], we replace the equality
test oracle from Baltico et. al [BCFG17] with the zero-test oracle, which is given a handle

(s, h) and returns 1 if Lg[h] = 0 and O otherwise only for the case of s = T'.

State: Lists Ly, L, L7 over G|, G, G respectively.
Initializations: Lists L, Ly, L7 sampled according to distribution D.

Oracles: The oracles provide black-box access to the group operations, the bilinear
map, and equalities.

For all s € {1,2,T}: add,(hy, hy) appends Lg[h] + Lg[h;] to Ly and returns its
handle (s, |Lg]|).

For all s € {1,2,T}: neg,(hy, hy) appends —Lg[h] to Ly and returns its handle
(s, [Ls]).

map, (h1, hy) appends e(Li[h], L[h2]) to Ly and returns its handle (7', |L7|).

zty(h) returns 1 if Ly[h] = 0 and O otherwise. All oracles return L when given

invalid indices.
Figure 3.1: Generic group model for bilinear group setting G =

(9,G1,G2,Gr, e, g1, g2) and distribution D.

Symbolic Group Model. The symbolic group model for a bilinear group setting G and
a distribution Dp gives to the adversary the same interface as the corresponding generic
group model, except that internally the challenger stores lists of element in the field
Zp(X1, ..., X,) instead of lists of group elements, where X1, ..., X, are indeterminates.
The oracles add,, neg,, map, and zt computes addition, negation, multiplication, and
equality in the field. In our work, we will use the subring

ZplX1,..., Xn, 1/X1,...,1/X,] of the entire field Z,(Xy,...,X,). Note that any

element f inZ,[Xy,...,X,,1/X1,...,1/X,] can be represented as
J(Xn, ... Xp) = Z R CLEEED ¢
(c1y...,Cn)EZM

using {acl,...,c

n

€ Zp)(c,...cpyezn» Where we have ac . ., = 0 for all but finite

(¢1,...,cn) € Z". Note that this expression is unique.

54

3.5 MULTI-INPUT ATTRIBUTE BASED AND PREDICATE ENCRYPTION
We define multi-input Attribute Based Encryption (ABE) and Predicate Encryption (PE)
below. Since the only difference between the two notions is in the security game, we

unify the syntax for the algorithms in what follows.

A k-input ABE/PE scheme is parametrized over an attribute space {(A;)*} en and
function space {3} 1exv, where each function maps {(A1)¥}1ex to {0, 1}. Such a scheme
is described by procedures (Setup, KeyGen, Ency, ..., Encg, Dec) with the following

syntax:

Setup(11) — (pp, msk): The Setup algorithm takes as input a security parameter and

outputs some public parameters pp and a master secret key msk.

KeyGen(pp, msk,) — sky: The KeyGen algorithm takes as input the public
parameters pp, a master secret key msk and a function f € ¥, and outputs a key

Skf.

Enc; (pp, msk, @, b) — ct, .12 The encryption algorithm for slot 1 takes as input the
public parameters pp, a master secret key msk, an attribute @ € A,, and message
b € {0, 1}, and outputs a ciphertext ct, ;. For the case of ABE, the attribute

string « is included as part of the ciphertext.

Enc;(pp, msk, @) — ct,,; fori > 2: The encryption algorithm for the i slot where
i € [2, k], takes as input the public parameters pp, a master secret key msk, and an
attribute @ € A, and outputs a ciphertext ct, ;. For the case of ABE, the attribute

string « is included as part of the ciphertext.

Dec(pp, sk, Cty, 5,1, Cta, 2, - - ., Cly, k) — b’: The decryption algorithm takes as input

the public parameters pp, a key for the function f and a sequence of ciphertext of

55

(a1,b),ay, ..., ar and outputs a string b’.
Next, we define correctness and security. For ease of notation, we drop the subscript A in

what follows.

Correctness: For every 1 € N, b € {0,1}, ay,...,ax € A, f € F, it holds that if
f(ay,...,ar) =1, then

, KeyGen(pp, msk, 1),
Pr |Dec PP. e (pp f) =b| =1-negl(1)

Enci(pp, msk, a1, b), ..., Enci(pp, msk, ax)
where the probability is over the choice of (pp, msk) < Setup(1%) and over the internal

randomness of KeyGen and Ency, ..., Ency.

Definition 3.11 (Ada-IND security for Kk-ABE). For a k-ABE scheme
k-ABE = {Setup, KeyGen, Ency, ..., Ency, Dec} for an attribute space {(A)*} 1em,

function space {#,}, e and an adversary A, we define the Ada-IND security game,

Exptpdast'D as follows.

1. Setup phase: On input 14, the challenger samples (pp, msk) < Setup(1%) and
gives pp to A.

2. Query phase: The challenger samples a bit 8 « {0, 1}. During the game, A
adaptively makes the following queries, in an arbitrary order.

a) Key Queries: A makes polynomial number of key queries, say p = p(1).
As an i-th key query, A chooses a function f; € #,. The challenger replies
with sk « KeyGen(pp, msk, f;).

b) Ciphertext Queries: ‘A issues polynomial number of ciphertext queries for
each slot, say p = p(1). As an i-th query for a slot j € [k], A declares

(o, (bl b}) ifj =1
o ifj#1
J

to the challenger, where a/; € Ay is an attribute and (b}, b%) € {0,1} x {0, 1}
is the pair of messages. Then, the challenger computes

y Enc; (pp, msk, a;,bz) ifj=1
Cl: = f
78| Enc;(pp, msk, ah) if j#1

56

and returns it to A.

3. Output phase: A outputs a guess bit 5’ as the output of the experiment.
For the adversary to be admissible, we require that for every fi,..., f, € ¥, it holds that

fl-(a’f, .. ,aﬁc") =0 for every i,i,...,i; € [p].

We define the advantage Advﬁf’:élggq(ll) of A in the above game as

Adv el (11) = [Pr[ExptiSRat o (1Y) = 118 = 0] — Pr[Exptedest> (1Y) = 118 = 1]] .

The k-ABE scheme k-ABE is said to satisfy Ada-IND security (or simply adaptive
security) if for any stateful PPT adversary A, there exists a negligible function negl(-)
such that Adv@fj,fé'g?q (11) = negl(1).

Definition 3.12 (Ada-IND security for k-PE.). For an k-PE scheme
k-PE = {Setup, KeyGen, Ency, ..., Enci,Dec} for an attribute space {(A/l)k}/leN,
function space {7, }1en and an adversary A, we define the Ada-IND security game as

follows.

1. Setup phase: On input 14, the challenger samples (pp, msk) « Setup(11) and
gives pp to A.

2. Query phase: The challenger samples a bit 8 « {0, 1}. During the game, A
adaptively makes the following queries, in an arbitrary order.

a) Key Queries: ‘A makes polynomial number of key queries, say p = p(Q).
For each key query i € [p], A chooses a function f; € 7. The challenger
replies with sk, « KeyGen(pp, msk, f;).

b) Ciphertext Queries: A issues polynomial number of ciphertext queries for
each slot, say p = p(4). As an i-th query for a slot j € [k], A declares

((a/j.’o, az.’l), (b",bil)) ifj=1
(a/;'.’o,az.’l) ifj#1

to the challenger, where (a;'. o cy;) is a pair of attributes and (b, b") is the

57

pair of messages. Then, the challenger computes

l. {Encj(pp, msk, o 5, bi) if j =1

ct. .= .
IR Enc; (pp, msk, @ ;) ifj#1

and returns it to A.

3. Output phase: A outputs a guess bit B’ as the output of the experiment.

For the adversary to be admissible, we require that for every fi,..., f, € ¥, it holds that

fi(ai‘ﬁ,) ..,ai{"ﬁ) =0 foreveryi,iy,...,ir € [p] and B € {0, 1}.

We define the advantage Adv@f’é,;"'}?(li) of A in the above game as

Advp "0 (1) o= [Prlexpy-pe. 4 (11) = 118 = 0] — Prlexpype.#(1") = 118 = 1]].

The k-PE scheme k-PE is said to satisfy Ada-IND security (or simply adaptive security)
if for any stateful PPT adversary A, there exists a negligible function negl(-) such that

Advﬁ‘f’,?é'f}?(l/l) = negl(A).

3.5.1 Strong Security for k-ABE and k-PE

We also consider a stronger security notion for both k-ABE as well as k-PE where the
adversary is allowed to make decrypting key requests for ciphertexts so long as they do
not distinguish the challenge bit.

Definition 3.13 (Strong Ada-IND security for k-ABE). The definition for strong Ada-IND
security for k-ABE is the same as standard Ada-IND security (Definition 3.11) except
for the following modification. For the k-ABE adversary to be admissible in the strong

Ada-IND game, we require that

. Iff,-(a/’f, .. ,cx;{") = 1 holds for some i,iy,...,i; € [p], then bg = b’f.
Let (/, (b, b")) be the i'" ciphertext query in slot 1. Then, if b) # b, we call the
ciphertext returned by the challenger as a challenge ciphertext as it encodes the challenge
bit 5. Otherwise, we refer to it as decrypting ciphertext, as the adversary may potentially

request a key to decrypt it.

58

Definition 3.14 (Strong Ada-IND security for k-PE.). The definition for strong Ada-IND
security for k-PE is the same as standard Ada-IND security (Definition 3.12) except
for the following modification. For the k-PE adversary to be admissible in the strong
Ada-IND game, we require that

o If fi(ai"ﬁ, - ,a/;(’iﬁ) = 1 holds for some i,ij,...,i; € [p] and B € {0, 1}, then

(@] @)) = (a},...,a}f) and by = b

Let ((of, @}), (b}, b})) be the i'" ciphertext query in slot 1. Then, if ay #) or b)) # b\,
we call the ciphertext returned by the challenger as a challenge ciphertext as it encodes
the challenge bit 8. Otherwise, we refer to it as decrypting ciphertext, as the adversary
may potentially request a key to decrypt it.
Definition 3.15 (Strong VerSel-IND security for k-ABE and k-PE). The definitions for
strong VerSel-IND security for k-ABE and k-PE are the same as strong Ada-IND security
above except that the adversary (A is required to submit the challenge queries and secret

key queries to the challenger before it samples the public key.

3.5.2 Generalization to Multi-Slot Message Scheme

In the above, we focus our attention on k-ABE and k-PE schemes that only contain
a message in a single slot, the remaining slots being free of messages. We can also
consider a generalized version of the notions where each slot carries a message and all
the messages are recovered in successful decryption. For k polynomial, it is easy to
extend a construction with single slot message to the generalized version where each slot
contains a message, simply by running & instances of the scheme in parallel and rotating
the slot which contains the message in each instance to cover all k slots. Moreover we
claim that since the kK message scheme is a concatenation of k one message schemes,
security of the latter implies security of the former. In more detail, suppose there exists
an adversary against the kK message scheme with non-negligible advantage €. This can be
used to construct an adversary against one of the underlying one message schemes with

non-negligible advantage €/k.

59

3.6 TWO-INPUT ABE FOR NC; FROM PAIRINGS AND LWE

In this section, we construct two input ABE for NC; circuits. More formally, our
construction can support attribute space A, = {0, 1}YY), and any circuit class ¥ = {F3}a
that is subclass of {Cae(1),4(1)}1 With arbitrary £(1) < poly(1) and d(1) = O(logA),
where Cr(q),4(1) 18 a set of circuits with input length 2£(4) and depth at most d(A).
We can prove that the scheme satisfies strong security as per Definition 3.13 assuming
LWE in bilinear generic group model. Since the intuition was described in Section 3.1,
we proceed directly with the construction. We refer to Sec. 3.4.4 and Sec. 3.4.6 for
backgrounds on lattices and pairings respectively and Sec. 3.4.5 for description of the

kKpABE scheme by Boneh et al. [BGG*14] on which our construction is based.

3.6.1 Construction

We proceed to describe our construction.

Setup(11): Oninput 14, the setup algorithm defines the parameters n = n(1), m = m(A),
noise distribution y over Z, 19 = 179(1), T = (1), and B = B(1) as specified in
Sec. 3.4.5. It samples a group description G = (g, Gy, Gy, Gr, e, [1]1, [1]2). Sets

L := (3¢ + 1)m + 2 and proceeds as follows.
1. Sample BGG + 18 scheme:
a) Sample (A, A;OI) « TrapGen(1”, 1™, q) such that A € Z*".

b) Sample random matrix B = (By,...,By,) « (ZZX’”)% and a random
vector u «— Zy.

2. Sample w — (Z;)".
3. Output pp = (A,B,u), msk = (A", w, [1]1, [1]2).

KeyGen(pp, msk, F): Given input the public parameters pp, master secret key msk

and a circuit F, compute BGG + 18 function key for circuit F as follows:

1. Compute Hr = EvalF(B, F)) and B = BHp.

60

2. Compute [A||Bx];! from A;()l and sample r € Z*" asr" « [A||BF];' (ul).

3. Output the secret key skg :=r.

Enc (pp, msk, x;, b): Given input the public parameters pp, master secret key msk,

attribute vector x|, message bit b, encryption for slot 1 is defined as follows:

1. Sample LWE secret s «— ZZ and noise terms e «— x, € «— x", €, €pip —
Y™ fori e [£],b € {0,1}, where y™ is defined as in Sec. 3.4.4.

2. Fori € [£], compute ¢; :=s(B; — x1;G) +e;.

3. Fori e [¢+1,2(],b € {0, 1}, compute ¥; ;, :=s(B; — bG) +e; .
4. Compute Yop41 :=SA + e and Yopin = su' + e.

5. Setu=|%]b.

6. Set ¢ = (1, {¥i}ic(e]> {Wipieler1 20)be(0,1}> Y2er1, Yorsa +).

g

. Sample t| « Zj] and output ct; = [f1c © W];.

Enc,(pp, msk, x,): Given input the public parameters pp, master secret key msk,

attribute vector Xy, encryption for slot 2 is defined as follows:

1. Letl, :=(1,...,1) eZZandOa =(0,...,0) EZZ. Set

Yip = fori e [¢+1,2¢] and b € {0, 1}.

- laezr ifb=xy
0, €Z) ifh#xy

2. Setd = (1, Lgm, {ip tieger1.201.0(0.13> L 1).

3. Sample t, « ZZ and output cty = [1,d @ W]5.

Dec(pp, sk, cty, cty): The decryption algorithm takes as input the public parameters
pp, the secret key sk for circuit F' and ciphertexts ct; and ct, corresponding to

the two attributes x; and X, and proceeds as follows:

1. Take the coordinate-wise pairing between ciphertexts:

Compute [v]7 = [t1t2¢ © d]7 as ¢t O cty.

61

2. De-vectorize obtained vector:
Expand [v]r fori € [£], j € [€+1,2¢],b € {0, 1}, to obtain:

[volr = [t1t2]7, [Vvilr = [tit2¢i] 7,
(S(Bj — xz,jG) + ej,b) , if b = X2,j

- = [t1t20". . |7, where ¢/, , = ’
[Viplr = [02y] 17 Vi {0’ ifb=1-x;

[Vaeri]r = [t1t22es1] 7, [Voes2lr = [t102(Warsa +)] 7

3. Compute Evaluation function for BGG + 18 ciphertexts in exponent:

Let x = (X1, x3). Compute ITIF,X = EvalFX(F,x,B).

4. Perform BGG + 18 decryption in the exponent:
Form [vx|r = [V1,..., V¢, Vertx s - - - Voo |7 and parse skp = rasr =
(ry € Zg,ry € Zy'). Then compute

V17 = [(vagsa — (Vagsir] + vxHp D)7

5. Recover exponent via brute force if F(x) = 0:
Find n € [-B,B] U [-B + [q/2],B + [q/2]] such that [vo]; [v']r by
brute-force search. If there is no such n, output L. To speed up the operation,
one can employ the baby-step giant-step algorithm.

6. OutputOifp € [-B,B] and 1 if [-B + [q/2],B + [q/2]].

Correctness: To see correctness, we first make following observations:

L. cod= (L {yi}ier, {¥] , tieler1 201,be(0,1} Yoes1, Yoesn + 1) where,

lﬁ, _ (S(Bi —)CZJ'G) +e,~) ifb = X2 i
00 ifhb=1-xy;

Recall that [v]7 = [tit2c ©d]7. Now, letting vx = (V1,..., Ve, Verl s+ - V20xn)
and x = (X1, Xp), on de-vectorizing it the decryptor obtains

[volr = [t1t2]7, [Vilr = [t1t2(s(B; — x;G) + ¢;)]1 fori € [{],
[Vixlr = [t1t2(s(B; — x;G) + ;)]7 fori € [+1,2(],

[Varsilr = [f1t2(sA + @)1, [varsalr = [f1ta(su’ +eg +)]

62

2. Next, observe that:

tita(s(B1 —x1G) +eq,...,s(Bay — x2¢G) +)

tltzs((Bl, . ,Bzg) - (le, e ,ngG)) + tltz(el, . ,ezg)
1s(B-x® G) + 1117y,

where e; = e, fori € [(+1,2(] and ex = (e, ez, ..., €)

Vx

3. Performing BGG + 18 evaluation and decryption in the exponent yields:

V7 = [(vaes2 = (Vagsrr] + vxHp D)) 17
= [l‘]l‘z(SllT +u+ 60) — l‘]lz(SA + e)rI - l‘]lz(S(B -XQ® G) + ex)ﬁp,xl‘-zr]T
= [tita(su” + p — s(Ar] + (BHF — F(X)G)r))) + t112(eq — er] — exHpxr1)]7

(- (B—x® G)Hpx = BHy — F(X)G (Lemma 3.2)).
For F(x) = 0, and replacing BHy by B, (r;,) by r, we get,

V7 = [tita(su” + p — s(AIBp)r" +¢')]r (replacing (eo — er] — eXﬁF,Xrg) by ¢’)

T+¢)]r, because (A|Bp)r’ =u.

= [tita(u + €)]r = [vo] ¥

= [tll‘z(SllT +u—su

4. Error bound in v':
Recall that we set y = SampZ(3+/n). By the definition of SampZ, we have
lleolle < 3n and ||e|| < 3n. Furthermore, we have ||e/||c, ||€¢+i5]|c0 < 3mn for
i € [€] and b € {0, 1} by the definition of y, ||r|le < Va7, and ||Hpxlle <
m - 2904 where the last inequality follows from Lemma 3.2. Thus, we have

e =ep— erI - exﬁﬁxrg < O0(tm’n' - 20(‘1)) <B
by our choice of B.

5. Finally, since B = poly(n,) - 2°(4 = poly(1), we can recover 1 = u + ¢’ by brute
force search in polynomial time as defined in step 5 and then the message as defined
in step 6 of decryption algorithm.

3.6.2 Security

We prove the security via the following theorem.

Theorem 3.4. Our 2ABE scheme for function class NC| satisfies strong Ada-IND
security in the generic group model assuming that the KpABE scheme BGG + 18 for

function class NC satisfies Ada-INDr security.

63

Overview. The proof is designed via a sequence of games. To begin, we prove that it is
pointless for the adversary to take pairing products between non-matching positions of the
ciphertexts of the two parties and then take linear combinations among them. This may
be argued because of the randomness w in the ciphertexts which is only cancelled when
matching positions are paired. This enables us to argue that the only possible strategy for
the adversary is to take linear combinations among partial decryption results yielded
by computing the pairing between matching positions of the ciphertexts. Next we show
that taking partial decryption results between matching positions of different pairs of
ciphertexts is useless, because the randomness 1, will change across multiple ciphertexts.
This step excludes mix and match attacks between different pairs of ciphertexts and
reduces the adversary strategy to gaining information about the message(s) via results
obtained by legitimate pairing of two entire ciphertexts. At this point, we invoke the

security of BGG + 18 to argue that the message is hidden.

Proof. Consider a PPT adversary A that makes at most Q¢ (A4) ciphertext queries (in
both slots) and Q,(1) zero-test queries during the game. We denote the event that A

outputs correct guess for the challenge bit 8 at the end of Gamey as Ey.

Gamey: This is the real game in the generic group model. Without loss of generality,
we assume that the challenger simulates the generic group oracle for A. At the

beginning of the game, the challenger samples the public parameters pp = (A, B, u)

-1

and master secret key msk = (A7,

w, [1]1, [1]2) as described in the scheme. It
also samples a random bit 5 and keeps it with itself. Then, it returns the public

parameters pp to A. It handles A’s queries as follows:

1. Slot 1 ciphertext queries: To answer the i-th slot 1 ciphertext query (X"1 , bf), b"l),
it samples.t’l — ZZ, computes ¢ = .(c’l, e c) as specified by Enc; for
message b;; and returns handles to ct} = [£{¢' © w];.

2. Slot 2 ciphertext queries: To answer the i-th slot 2 ciphertext query Xé, the
challenger samples té « Z,, computes d’ as specified by Enc; and returns
handles to cté = [tédi @ w|».

64

3. Secret Key queries: To respond to the j-th key query F/ made by A, the
challenger computes r/ as specified in the KeyGen algorithm and returns it
to A.

By definition, the advantage of A against the scheme is |Pr[E0] - % .

Game,: In this game, we switch partially to the symbolic group model and change
the variables (w1,...,wz), (1],... ,t]Q"‘), (¢}, ..., 19" and (c¢},...,c) toformal
variables (Wi, ..., W), (T}, ..., TQC‘), (!, ..., TZQC‘), (Ci,..., Ci). As aresult,

all handles given to A refer to elements in the ring

_— Wiy W Wi, W, T T T L TR,
e q .
1 1 Qc Oc
Cl,....Cl,....cP, ... ,c%

where {1/W;}; are needed to represent the components in the secret keys. However,
when the challenger answers the zero-test queries, it substitutes the formal variables
with corresponding elements in Z,. In doing so, if the variable is not assigned
a value in Z,, we sample corresponding value from the same distribution as in
the real world. Once a value is assigned to a variable, we use the same value

throughout the rest of the game. As we argue in Lemma 3.5, we have:
PI‘[E()] = PI‘[El].

Here, we list all the components in T for which corresponding handles are given to A in

Game; as handles to the group elements in ciphertexts of both slots:

St = {{T] Ck Wikkelrrielour }> S2:= { DIV e1yieton st di = 1 }

Note that S| and S, correspond to handles for elements in G| and G, respectively. We

then define Sy as Sy :={X - Y : X € §1,Y € 85, X - Y # 0}. If we explicitly write down

65

Sr, we have St = 87,1 U Sr 2, where

Sr1 = { T sz Ci Wi/Wyr, fork,k’ € [L], i,j € [Qcl }

and Srp:={ 7! 7] C! fork € [L],i,j € [Qul,st. d] =1 }.

Note that any handle submitted to the zero-test oracle by A during the game refers to an
element f in T that can be represented as
FWi, oo Wi, T T T, T, CLL L e = Z azZ (3.1
ZeSr
where the coefficients {az € Z,}zes, can be efficiently computed. Furthermore,

{az € Zy}zes, satisfying the above equation is unique since all monomials in Sy are

distinct.

Game;: In this game, we use the formal variables (Wy,...,Wy), (Tl,...,TQC‘),
(T),..., TZQC‘) even while answering zero test queries. However, C 11, e Cgc‘ are
still replaced by c}, e ,c%‘. Namely, given a zero test query f € T, the

challenger returns 1 if:

FWi, oo Wi, T T2 T T el 9 =0, (32)

We show in Lemma 3.6 that

| Pr[E{] — Pr[Ez]| < Qz(L +3)/q.

Games: In this game, we further change the way zero-test queries are answered. In
particular, when A makes a zero-test query for a handle corresponding to f € T
that can be represented as Eq. (3.1), the challenger returns O if there exists Z € St ;
such that az # 0. Otherwise, the challenger answers the query as in the previous

game. As we prove in Lemma 3.7, we have Pr[E,] = Pr[E3].

66

Game,: In this game, we partition the set S by (i, j) pairs as:
Sr2 = Vi je[oa)Sr2ij Where Sroij={T! sz C, fork e [L]s.t di =1}

We note the that every term Z in Sr»; ; can be represented by the variables 77,
sz ,and Ci,...,C} by the definition of S ;. For a zero test query f that is

represented as

FWi, Wl T T Tl ety = Y Y agz,
i,j€[Qct] ZEST 2,5
(3.3)
we change the game so that the challenger returns 0 if there exists a pair (i, j) such

that

Z azZ(Ti, T, ¢ty .. .,c) #0 overT. (3.4)

ZeSr 2,5

As we prove in Lemma 3.8, we have Pr[E3] = Pr[E4].

Games: Recall that in the previous game, for a zero test query that is represented as
Eq. (3.3), the challenger returns O unless Eq. (3.4) holds for all 7, j. In this game,
for (7, j) such that the i-th ciphertext for slot 1 is a challenge ciphertext (please see
Section 3.5.1 to recall the definition of challenge ciphertext), we replace the check
with the new one that checks whether

Z azZ(T!,Tj,Cl,...,Ci) =0
ZEST,Q,,',J'

holds over T. Namely, for such (i, j), we stop replacing the variables {C,i(}k
with the corresponding values {c’}(} k inZ,. As we prove in Lemma 3.9, we have
| Pr[E4] — Pr[Es]| < negl(1) assuming Ada-INDr security of BGG + 18, which
follows from LWE.

Next, we observe that the adversary cannot obtain any information about the encrypted
messages in Games since the challenge ciphertexts are replaced by formal variables that

do not contain any information of the challenge bit, and the answers to the zero test

67

queries do not depend on the challenge bit either.

Indistinguishability of Hybrids. We next argue that consecutive hybrids are
indistinguishable.

Lemma 3.5 (Gamey = Game;). We have Pr[Ey] = Pr[E;].

Proof. Since zero-test queries in Game; are answered by using variables that are sampled
from exactly the same distribution as that in Game, the view of A in Game, is not

altered from that in Game,. The lemma therefore follows. [|

Lemma 3.6 (Game; ~; Game;). We have | Pr[E] — Pr[Ez]| < QA(L +3)/q.

Proof. The two games are different only when A submits a zero test query corresponding

to a polynomial f € T such that
Fwiseo w200, 19 el 8 =0 (3.5)

but

FWi, oo W, Tl T T T el %) 2 0 (3.6)

We will use the Schwartz-Zippel lemma to bound the probability that this occurs. We

define a new polynomial g € T to clear the denominators as:
gWi, ..., W, T}, ... TC, T}, ..., T2
=\ [[We]-rwe,owe s T2y TR e 9
i€[L]

Observe that the polynomial has degree L + 3 where L comes from the leading product

of W; and 3 comes from the degree of the terms in S7. We can bound the probability by

ta(L+3) .

|
q

Lemma 3.7 (Game, = Games). We have Pr[E,] = Pr[Es].

68

Proof. We observe that Game; and Gamej3 differ only when A makes a zero-test query
for a handle f € T represented as Eq. (3.1) such that az # 0 for some Z € Sy and
corresponding f equals to O in T. We claim that such f does not exist and two games
are actually equivalent. This is because monomials in Sr; and S7 5 are distinct even if
we replace the formal variables {C;.},-, ; with values {c; }i,j in Z4. Hence, if there exists
Z € St such that az # 0, there would be no way to cancel this term using the remaining

monomials. []

Lemma 3.8 (Game; ~; Gamey). We have | Pr[E3] — Pr[E4]| < 202/q.

Proof. We observe that the two games differ only when the adversary submits a query
f € T represented as Eq. (3.1) such that Eq. (3.2) holds, but there is (7, j) such that
Eq. (3.4) holds. Note that for such f, i, and j, we have
Z azZ(T!, TS, ¢ ..c"L):— Z Z aZZ(T{, T
ZeSt 0, J)E(A,]) Z€St 01

However, the above is impossible unless the left hand side equals to 0 since any monomial
in St ; never appears in S+ j» for (i, j) # (7', j’) (since the product T{sz * T{’sz ’)
even if we replace the formal variables {C ;{} x and {C ,’C }r with values {c’}(} x and {c’; b in

Zg. Therefore, the change made in this game is only conceptual and Pr[E3] = Pr[E4]. =

Lemma 3.9 (Game, ~. Games). There exists a PPT adversary B against Ada-INDr

security of BGG + 18 such that | Pr[E4] — Pr[Es]| < Q%0x - (Adv’gggﬂng(ﬂ) + l/q).

Proof. We call a zero test query f € T as bad if f is represented as Eq. (3.3) and there
exists (i, j) such that i-th ciphertext for slot 1 is a challenge ciphertext (i.e., b6 # b"l) and
the following equations hold:

D azZ(T T e,) =0 and > azZ(T{,T),C},....C}) #0.

ZEST,Z,i,j ZGST,ZJ,]'
(3.7)

69

It is easily seen that Game, and Games are equivalent unless the adversary makes a
bad query. To bound the probability of a bad query being issued, consider the following
sequence of games. Below, we define Fy as the event that the challenger does not abort

in Gamey .

Game, o: This game is the same as Gamey4. However, the challenger checks whether A
has made a bad query and aborts if not at the end of the game. By definition, the

probability that A makes a bad query in Gamey is Pr[Fo].

Game, ;: In this game, we change the previous game so that the challenger picks a
random guess k* for the first bad query as k* « [Q] at the beginning of the
game. Furthermore, we change the game so that the challenger aborts if the k*-th
zero-test query is not the first bad query. Since k* is chosen uniformly at random
and independent from the view of A, the guess is correct with probability 1/Q

conditioned on Fy. Therefore, we have Pr[F] = Pr[Fo]/Oz.

Game, >: This game is the same as the previous game except that the challenger aborts
the game immediately after A makes the k*-th zero-test query. Since the occurrence
of Fy is irrelevant to how the game proceeds after the k*-th zero-test query, we

clearly have Pr[F;] = Pr[F].

Game, 3: In this game, we change the game so that the the challenger stop aborting even
if a bad query occurs before the k*-th zero test query. Furthermore, any query
before the k*-th one, regardless of whether bad or not, is answered as in Games.
Since Game, and Games proceed exactly the same until the first bad query and
removing the abort condition simply increases the chance of making a bad query,

we have Pr[F3] > Pr[F;,].

70

Game, 4: In this game, we change the previous game so that the challenger picks
(i*, %) « [Qgt] uniformly at random at the beginning of the game. Furthermore,
we change the abort condition so that the challenger aborts if Eq. (3.7) does not
hold with respect to (i, j) = (i*, j*) when the k*-th zero-test query f is represented
as Eq. (3.3). We note that the challenger does not check the equations with respect
to other indices. Since there exists at least one pair of (i, j) € [Q(Z:t] that satisfies
Eq. (3.7) as long as F4 occurs and (i*, j*) is chosen uniformly at random and

independent from the view of A, we have Pr[F4] > Pr[F3]/ Qgt.

Game, 5: In this game, we have the challenger abort if the (i*, j*)-th ciphertext queries
were not made at the point when the k*-th zero-test query was made. We claim that
conditioned on Fs happens, the challenger never aborts. To see this, we observe
that if the (i*, j*)-th ciphertext queries have not been made, then terms that contain
Tl’ sz " have not been given to A and there is no way to make a zero-test query
for f such that), Spop e 4zZ F 0, since all terms in Sz ;+ are multiples of

TI’TZJ We therefore have Pr[Fs]| = Pr[F4].

Game, ¢: Recall in the previous game, Eq. (3.7) is checked with respect to (i, j) = (i*, j*)
and ¢ = (c’f, ceeh c’Z) is used there. In this hybrid, we only compute ¢ © d/°
instead of ¢/ for the k*-th challenge query. Equivalently, we only compute c‘;
for k such that d{ = 1. We claim that the game is still well-defined. To see this,
we first observe that the only place in the game where we need actual ciphertexts
(not formal variables) is for the k*-th zero-test query. Furthermore, for the k*-th

zero-test query, we observe that only the terms
{ 2T, T L Y | Z € Spage } - { i ‘ kelL]st dl =1 }

are required, where the equality follows from the definition of Sz ;+. We

therefore can see that the game is well-defined and the change is only conceptual.

71

Hence we have Pr[Fg] = Pr[Fs].

Game, 7: Recall that ¢ © d/" constitutes a vector that is obtained by padding the
ciphertext of BGG + 18 for the attribute (x"l*, xg) with 1 and 0. In this game, we
pick the ciphertext elements in ¢ © d/" uniformly at random from Z4 except for
the positions that are fixed to be 0 or 1. As we prove in Lemma 3.10, there exists a

PPT adversary B such that Advgie iag(11) > | Pr[F7] — Pr[F]].
We also show in Lemma 3.11 that Pr[F7] = 1/g. This allows us to bound Pr[Fy] as:

Pr[Fo] < 050z - (AdVASE NG (1Y) + 1/49),

where B is a PPT adversary.]

Lemma 3.10. There exists a PPT adversary B such that Advg%%ﬂg’rB(lﬁ) > | Pr[F¢] —

Pr[F7]].

Proof. We show that if A can distinguish Game, ¢ from Game, 7, we can build another
adversary B against Ada-INDr security of BGG + 18. The adversary B acts as the

challenger and simulates the game for A.

Setup phase. At the beginning of the game, B is given 11 and the master public key of
BGG + 18 (A, B, u) which it returns to A. B also samples (i*, j*) « [Q2], k* < [Oxl,

and 8 « {0, 1} and keeps them secret.

Key Queries. Given the j-th secret key query for F/ made by A, B makes a secret key

query for F/ to its challenger and is given r sampled as r < [A|Br];!(u).

Ciphertext Queries. When A makes ciphertext queries, B prepares handles for the

ciphertexts components and returns them to A. In more detail, B returns {Tf Cf{ Witkelr)

72

for i-th ciphertext query in slot 1 and {Tzi/ Wi} for i-th ciphertext query

ke[L].s.t. d} =1

in slot 2.

Generic Group Queries. B honestly handles the queries for the generic group oracle
corresponding to addition, negation, and multiplication (bilinear map) made by A by

keeping track of the underlying encodings in T associated with the handles.

When A makes a k-th zero test query that refers to an element f € T, B returns O if f
cannot be represented as Eq.(3.3) (i.e., there is az # 0 such that Z € Sr ;). Otherwise, B

proceeds as follows:

1. If f is the k-th zero-test query with &k < k¥, it runs the following test for all
i’j € [QCt]'

a) If the i-th ciphertext query is the challenge query (i.e., b6 # b"l), it checks
whether), Spai; 422 = 0 or not (without replacing the formal variables
(Ci,...,Ch) in Z with values (c/,...,c})).

b) If the i-th ciphertext query is not a challenge query, it checks whether the
variables {C ;{ }« are already assigned values. If the values are already assigned,
it will use the values. Otherwise, it samples ¢ = {c’}{}k as in Gamey. We

then check ZZGS”’I,J azZ(T!, sz, c"l, e, ciL) =0 or not.
If all the equations hold, B returns 1 to A. Otherwise, it returns 0.

2. If f is the k*-th zero-test query, B first checks whether the (i*, j*)-th ciphertext
queries have already been made and the i*-th query for slot 1 is the challenge query
and aborts otherwise. It then requests the BGG + 18 challenger for ciphertexts for
attributes (x! ||X§) and message bit b; . It constructs ¢/ © d/" using the received
BGG + 18 ciphertexts. Then it checks whether Eq. (3.7) holds with respect to
(i,7) = (i*, j*). As we observed, the above check can be done only given ¢’ © d/".
It outputs 1 if they hold and O otherwise.

Analysis. Observe that B simulates Game, ¢ if the challenge ciphertext for B is the
real one and Game, 7 if it is chosen uniformly at random from the ciphertext space.
Therefore, it can be seen that B outputs 1 with probability Pr[F¢] if the BGG + 18
challenger returned real ciphertexts and Pr[F7] if it returned random. Therefore, B’s
advantage against BGG + 18 is | Pr[Fg] — Pr[F7]|. This completes the proof of the

lemma. []

73

Lemma 3.11. We have Pr[F;] = 1/q.

Proof. We recall that F7 occurs only when A makes a zero-test query that refers to a handle
f that is represented as Eq. (3.3) and satisfies Eq.(3.7) with respect to (7, j) = (i*, j*) for
random {c"l*, . c’Z}. However, this can happen only with probability at most 1/g by the

ik

Schwartz-Zippel lemma because f is linear in the variables C' , ..., C:

L |

3.7 TWO-INPUT ABE FOR NC; IN STANDARD MODEL

In this section, we propose two input ABE construction for NC! in the standard model.
The construction is shown to be strong very selective secure under the LWE assumption
and a variant of bilinear KOALA assumption introduced in [AWY20], which is proven to
hold under the bilinear generic group model, assuming function hiding BIPFE is available.
Note that function hiding BIPFE can be instantiated from various standard assumptions
on bilinear maps including SXDH and DLIN (See Sec. 3.4.3). The construction is similar

to both our construction in Sec. 3.6 and the construction in [AW Y20] in high level.

3.7.1 Assumption

Here, we introduce a variant of the bilinear KOALA assumption introduced in [AWY?20],
which in turn is a pairing group variant of the KOALA assumption introduced in [BW19].
The security of our two input ABE scheme in the standard model will be based on the
assumption.

Definition 3.16 (Bilinear KOALA Assumption). Let Samp, = {Samp, ,}1 be an
efficient sampling algorithm that takes as input an integer g and outputs a string aux and
Samp,; = {Samp, ,}, be an efficient sampling algorithm that takes as input an integer ¢

l1x6

and a string aux and outputs a matrix V € Z, " with {; < £,. For an efficient adversary

A = {A,}, let us define

AAVE sarse () = | Pr[AL(G, aux, [sV]2) — 1] = Pr[A (G, aux, [r]2) — 1]].

74

where the probabilities are taken over the choice of G = (¢, Gy, Gy, Gr, e, [1]1, [1]2) «
GroupGen(14), aux < Samp,(gq), V « Samp,(q,aux), s « Zgl, r «— fo, and the

coin of A,.

Furthermore, for an efficient adversary 8 = {8, },, we also define

AdVZKS’EZﬁn’ﬂ”"(ﬂ) = Pr[8,(G,aux) = x AVx' =0 Ax # 0]

where the probability is taken over the choice of G = (¢, Gy, Gy, Gr, e, [1]1, [1]2) <

GroupGen(14), aux « Samp,(q), V < Samp, (g, aux), and the coin of B,.

We say that the bilinear KOALA assumption holds with respect to GroupGen and efficient
samplers Samp,, Samp; if for any efficient adversary A, there exists another efficient

adversary B and a polynomial function Q (1) such that

AdVg G gamp - () = AdVEESEC () /Q(A) - negl ().

Remark 3. The above assumption is defined with respect to the non-uniform sampling
algorithms Samp,, Samp; and a non-uniform adversary A. All the security assumptions
and proofs in this chapter except for the ones that use the above assumption can work in
the uniform setting.

Remark 4 (Comparison with [AWY?20]). Compared to the original version of the
bilinear KOALA assumption [AW Y20], our assumption allows Samp,, to be an efficient
sampler that possibly samples aux from some structured distribution, whereas Samp,, is
restricted to output a random string in their assumption. The reason why they restrict the
distribution is to avoid a kind of attacks that embeds obfuscation into aux. In particular,
as observed by the authors, if we relax the above setting so that aux is chosen along
with V, there is a concrete attack assuming sufficiently secure obfuscation. In more
detail, let us consider a sampler that outputs random V along with auxiliary information
aux = O(Cy), which is an obfuscation of circuit Cy that takes as input group description

G and elements [v], and returns whether v is in the space spanned by the rows of V

75

or not. Using O(Cy), one can easily distinguish [sV], from [r], with high probability.
However, an efficient adversary may not be able to find a vector x # 0 that satisfies
Vx' = 0 even given O(Cy), if we use sufficiently strong obfuscator to obfuscate the
circuit Cy.” This specific attack does not work against our assumption above, since V is
chosen after aux, rather than chosen at the same time. However, as a safeguard against
the future attacks, we assume the assumption to hold for some specific samplers Samp,,
and Samp, rather than for general Samp,, and Samp,. We note that [AWY20] assumes
that the assumption holds for all the efficient samplers Samp, rather than a specific one,
while restricting Samp, to the specific sampler that outputs a random string.

To justify the assumption, [AWY20] proves that the assumption holds in the generic
group model. Though they prove the theorem for the case where aux is chosen uniformly
at random, the proof does not depend on this fact and the same proof works for the case
where aux is chosen from general distributions. Namely, we have the following theorem.
Theorem 3.12 (Adapted from [AWY?20]). The bilinear KOALA assumption holds under
the bilinear generic group model with respect to all efficient samplers Samp, and Samp;,
where A has access to the generic group oracles but Samp,, and Samp, do not.

The following lemma is from [AWY20] with slightly different formulation. The lemma
essentially says that for a sampler that outputs a set of vectors such that the vectors
are individually pseudorandom but mutually correlated, it holds that the vectors appear
mutually pseudorandom when they are lifted to the exponent and randomized by vector-
wise randomness assuming the bilinear KOALA assumption for the related samplers.
Lemma 3.13 (Adapted from Theorem 4.7 in [AWY20]). Let Samp, = {Sampy ,}, be
an efficient sampling algorithm that takes as input an integer q and outputs a string
aux and Samp, = {Samp ,}. be an efficient sampling algorithm that takes as input an
integer q and a string aux and outputs a set of vectors {u'/) e Zg'} jeln)- For an efficient

adversary A = { A} and i :=i(Ad) € N, let us assume that

| Pr[AL (G, aux, u?) = 1] = Pr[A (G, aux, v) — 1]| (3.8)

"The explanation on the attack is taken verbatim from [AWY20, Remark 4.3].

76

is negligible, where the probabilities are taken over the choice of

G = (g, G1,Ga, Gr, e, [1]1, [1]2) « GroupGen(1%), aux « Sampy(q), {u} e(<
Samp,(g,aux), v < Z", and the coin of A,. In the above, we set u) := v if
i > t. Furthermore, assume that the bilinear KOALA assumption holds with respect to

GroupGen, Samp,, and Samp] that runs Samp; to obtain {u(f)}jem and then outputs

[u®
1 u®
V= ‘ e Zb (. (3.9)
1 u®
Then, for any efficient adversary B = {B,},
G, aux, G, aux,
Pr B/l) ‘ . — 1| - Pr B/] . . — 1 s
{[7(1)]2, [V(J)u(])]z}je[t] {[7(./)]2, [V('I)]Z}je[t]

(3.10)

is negligible, where the probabilities are taken over the choice of G, aux « Samp,(q),
{u(j)}jem « Samp, (g, aux), y\/) « Zyg, v — Zy for j € [t], and the coin of B,.
The lemma is shown for the case where aux is chosen uniformly at random in [AWY20],

but the same proof works for our more general setting.

3.7.2 Construction

Here, we show our construction of two input ABE for NC! in the standard model. The
function class that the scheme supports is exactly the same as that of Sec. 3.6. In the
construction, we use a BIPFE scheme
BIPFE = (BIPFE.Setup, BIPFEKeyGen, BIPFE.Enc,BIPFE.Dec). We refer to

Sec. 3.4.3 for the definition and instantiations of BIPFE.

Setup(14): Oninput 14, the setup algorithm defines the parameters n = n(1), m = m(Q),

71

noise distributions y over Z, 7o = 179(1), T = 7(1), and B = B(A) as specified in
Sec. 3.4.5. It samples a group description G = (g, Gy, Gy, Gr, e, [1]1, [1]2). It

then proceeds as follows.
1. Sample BGG + 18 scheme:
a) Sample (A, A;()l) « TrapGen(1”, 1™, q) such that A € Z*".

b) Sample random matrix B = (By,...,By,) « (szm)zg and a random
vector u «— Zy.

2. Sample BIPFE instances BIPFE.msk; « BIPFE.Setup(14, 1"((+1)+2 12)
and BIPFE.msk, « BIPFE.Setup(14, 1", 13).

3. Output

pp = (A,B,u), msk = ([1]1,[1]2, A7, {BIPFE.msk;}ic(12})-

KeyGen(pp, msk, F): Given input the public parameters pp, master secret key msk

and a circuit F, compute BGG + 18 function key for circuit F as follows:
1. Compute Hr = EvalF(B, F) and B = BHp.
2. Compute [A||Bx];! from A;OI and sample r € Z*" asr' « [A||Br];!(u").

3. Output the secret key skr :=r.

Enc (pp, msk, x;, »): Given input the public parameters pp, master secret key msk,

attribute vector x|, message bit b, encryption for slot 1 is defined as follows:

1. Sample LWE secret s « Z’; and noises ep «— y, e «— x", e, ep «— ()?"7)5,
where)™ is defined as in Sec. 3.4.4.

2. Compute

cp = (1, SA + e, suT+e0+[%w-b, s(BL—x1®G)+eL),

c12 := 04 041)425
C = sBr + eg, Cp = -1, ® sG, €3 = 0,.,

where we define By := [By,...,B/] and By := [By1, ..., By/].

3. SetC; = (cL, cI,z) and C; = (012:1, cg,z’ C§,3)-

78

4. Fori = 1,2, compute BIPFE.ct; := BIPFE.Enc(BIPFE.msk;, [C;]1).

5. Output ct; = (BIPFE.ct;, BIPFE.ct).

Enc,(pp, msk, x,): Given input the public parameters pp, master secret key msk,
attribute vector Xy, encryption for slot 2 is defined as follows:
1. Sample t « Z,.
2. Compute
dii =114, d12:=0pee1)42

dyg =11, dop =1 (x2®1,,), da3 :=0,.

3. SetDy = (d],,d],) and Dy = (d] ;. d]

T
11’ 2,1°72,2° d2,3)'

4. Fori = 1,2, compute BIPFE.sk; := BIPFE.KeyGen(BIPFE.msk;, [D],).

5. Output ct, = (BIPFE.sk;, BIPFE.sk,).

Dec(pp, sk, cty, cty): The decryption algorithm takes as input the public parameters
pp. the secret key sk for circuit F and ciphertexts ct; and ct, corresponding to

the two attributes x; and x; and proceeds as follows:

1. Parse the ciphertext:
Parse the ciphertexts as c¢t; — (BIPFE.ct;,BIPFE.ct;) and

ct, — (BIPFE.sk,, BIPFE.sk).

2. Decrypt the BIPFE ciphertexts:
Compute [w;]7 = BIPFE.Dec(BIPFE.sk;, BIPFE.ct;) fori =1, 2.

3. Reorganize the obtained vector:
Let x = (X1, Xp). Reorganize [w;]|7 fori = 1,2 to obtain:

[Vo, Vare1, Vaes2 Vx I == [Wilr, [Vxolr = [Wolr, [Vx]7 = [Vx)s Vxol 7o
where vo € Zy, Vags1 € Z', varsa € Zg, and Vy,, Vy, € Z'C.

4. Evaluate function on BGG + 18 ciphertexts in exponent:

Compute fIRx = EvalFX(F,x,B).

79

5. Perform BGG + 18 decryption in the exponent:
Formr = (r; € Z},r; € Z). Then compute

V17 = [(vagsa — (Vagsir] + VxHpxr)))] 7.

6. Recover exponent via brute force if F(x) = 0:
Find n € [-B,B]| U [-B + [q/2],B + [q/2]] such that [vo]; = [V']r by
brute-force search. If there is no such n, output L. To speed up the operation,
one can employ the baby-step giant-step algorithm.

7. Output Oifnp € [-B,B] and 1 if [-B + [q/2],B + [q/2]].

Correctness: Correctness is argued by observing that vectors {W; };c(12) form the

randomized version of the BGG+ ciphertext w.r.t s on the exponent. Namely, we have

Wi = ¢,10d+¢20d

t(l, SA + e, suT+e0+[%w-b, s(BL—X1®G)+eL)

and

W2 €21 0dy+¢20d2+€¢30dy3

t(sBrp+ep) -t (1, 9sG) 0 (xo®1,,)

t(S(BR—X2®G)+eR),

where we used (1; ® sG) © (x; ® 1,,) = s (X2 ® G) in the third equation above. Having
established above, the rest of the argument for proving the correctness is exactly the same

as Sec. 3.6 and thus omitted.

3.7.3 Security
We prove the security of the construction via following theorem:
Theorem 3.14. Our 2ABE scheme for function class NC satisfies strong very selective

security assuming that BIPFE satisfies function hiding security and the bilinear KOALA

80

assumption for certain samplers® and the LWE assumption hold.

Proof. Consider a PPT adversary A that makes at most Qct(A4) ciphertext queries (in
both slots) and Qq(4) key queries during the game. We denote the event that A outputs

1 at the end of Gamey as Ey.

Game: This is the real game with 8 = 0. At the beginning of the game, the adversary
declares its challenge queries {(xii), bg), bii))},-e[Qct] for the first slot, {x;i)}ie[Qct]
for the second slot, and the key queries {F ()} jelow]- Then, the challenger
samples the public parameters pp = (A,B,u) and master secret key
msk = ([1]1, [1]2, A7!, {BIPFE.msk;};c(1.2}) as described in the scheme. Then,
it computes the ciphertexts ctgi) — Enc(pp, msk, xgi), b(()i)),
ctg) «— Enc(pp, msk, xg)), for i € [Q«] and secret keys

sk KeyGen(pp, msk, F)) for j € [Okq] and returns
pp, {ct'”, ct};, {sk} to A.

Game;: This game is defined for j < Q. In this game, Ctii) is computed as

o Enc(pp, msk,xii),bii)) ifi<j
et «
Enc(pp, msk, XE’),bé’)) ifi > j

Except for the above, the game is the same as Gamey.
We have that Game, equals to the real game with 5 = 1. Therefore, we have to show that

| Pr[Eo] — Pr[Eg,]| is negligible. To do so, it suffices to show that | Pr[E;_1] — Pr[E/]|
is negligible for all j € [Q¢]. We introduce the following sequence of games to prove
this. In the following, we can assume that the j-th ciphertext for slot 1 is the challenge

ciphertext (i.e., b(()j) # bgj)), since otherwise Game;_; and Game; are equivalent.

Game;_; o: This game is the same as Game;_;. To fix the notation, we describe how

the challenger answers the challenge queries below.

8We refer to the proof of Lemma 3.16 for the description of the sampler.

81

1. Slot 1 ciphertext queries: To answer a slot 1 ciphertext request for
(xi’),bé’),bil)), the challenger samples s, e, e(L’), eg), and e(()’) as
specified and computes the vectors as below:

cgi)l = (1, sDA + e(i), sOul + e(()i) + [%l . b(i), st (BL - Xgi) ® G) + e(Li)) ,
Cil)z =0, 0041)42
where) = 1ifi < j—1and b = 0 otherwise,

(@)

(@)
N

:=sBg + e},

Y =-1,859G, ¢} =0,

)

Then, the challenger sets C) and computes Ct(li) as specified using the vectors.

2. Slot 2 ciphertext queries: To answer a slot 2 ciphertext request for xg) , the
challenger samples ¢\¥) as specified and computes the vectors as below:

dil)l = 1D1,p41)42, dgl)z = O (e41)+2
a0 =101, dy =10 (x @ 1), 4 =0,

Then, the challenger sets D) and computes Ctg) as specified using the vectors.

By definition, we have

Pr[E;_1] = Pr[E;-1,0].

Game;_; ;: In this game, we change how the challenger computes the j-th ciphertext
for slot 1 and all the ciphertexts for slot 2. In particular, the challenger sets C'/) by

setting the vectors as

cijl) = 0 (e41)42, Ci@ = Lyes1)425

== =t

Furthermore, we change the vectors d% and dgé for all i € [Qct] as follows:

dgl)z = O (l,s(f)A +e) syl + e(()j) + [%W . béj),s(-/) (BL - X(lj) ® G) + e(Lj)) ,

déi)B = 0 (s(j) (BR - xg) ® G) + eg)))

We note that other terms in Dgi) and Dg) are unchanged. We show in Lemma 3.15

82

that

| Pr[E;j_10] = Pr[E;_11]| < negl(4).

Game;_;>: In this game, we further change dgi)z and dgé for alli € [Qct] as follows:

dﬁ’)z =) (l,c(i),céi),cg)) : dg’é =10 . ¢

(@)

where ¢! «— ZZ’, c(()i) — Zy, c(Li) ,Cp Zg’f are freshly chosen for each i. We

show in Lemma 3.16 that

|Pr[E;—1.1] — Pr[E;-12]] < negl().

Game;_; 3: This game is the same as Game;. We show in Lemma 3.17 that

| Pr[E;_12] — Pr[E;_;3]| < negl(A).

Indistinguishability of Hybrids. We next argue that consecutive hybrids are
indistinguishable.

Lemma 3.15 (Game;_; o = Game;_; ;). We have |Pr[E;_; o] —Pr[E;_1]| < negl().

Proof. We observe that CY) o] DY,) and Céi) o] Dg,) in Game;_ o are the same as those
in Game;_;; for all the combinations of i,i" € [Qy]. We can change CY) and Dii')
in Game;_; o to those of Game;_;; in a computationally indistinguishable way by
a straightforward reduction to the function privacy of BIPFE. In the reduction, the
reduction algorithm samples msk except for BIPFE.msk(and simulates BIPFE secret
keys and ciphertexts by the oracle queries. We can also change C;i) and Dg,) using the

security of BIPFE again.]

Lemma 3.16 (Game;_; | ~. Game,;_;). We have |Pr[E;_; 1] —=Pr[E;_12]| < negl(A).

83

Proof. We construct an adversary B against the bilinear KOALA assumption with respect
to certain samplers that are specified later assuming an adversary A that distinguishes

(i) ()
1 ’bO

the two games. We first fix the challenge queries {(x , bgi))},-e[Qct] and {Xéi)}ie[Qct]

and secret key queries {F (i)}ie[qu] that maximizes the distinguishing advantage of A.
This is possible because the queries are only dependent on the security parameter and

the randomness of A, both of which can be hardwired into A in the non-uniform setting.’

We first consider the sampling algorithm Samp,, that works as follows. In the following, let
BGG +18 = (BGG + 18.Setup, BGG + 18.KeyGen, BGG + 18.Enc, BGG + 18.Dec)
be the kpABE scheme by [BGG™*14] that is introduced in Sec. 3.4.5.

Samp, (14, q) : Given the security parameter 1 and the modulus g, it works as follows.

1. Run (BGG + 18.mpk, BGG + 18.msk) « BGG + 18.Setup(1+) for the
circuit class Cyr(4),4(1) and modulus g.

2. Run BGG + 18.sk® —
BGG + 18.KeyGen(BGG + 18.mpk, BGG + 18.msk, F) for i € [Qkql.

3. Output aux := (BGG + 18.mpk, {BGG + 18.5k" };c[g,1)-

We then define Samp, as follows:

Samp; (aux, g) : Given the auxiliary information
aux = (BGG + 18.mpk, {BGG + 18.5k " };c[o,,)) and the modulus g, it works as

follows.
1. Sample z «— Z7, eg < x, e «— x™, and e; «— y™ for k € [£].
2. Compute

Yorsl = ZA +e € Z';, Yopsn i= ' + ey + b(()j) [q/2] € Zg,
Forall k € [2¢], b € {0, 1}, ¢k p == 2(B — bG) + e € Zj/

3. Setu? := |Yopi1, Yar, {l//kxm} ,{%ﬁkx(i)} :
TR) kel T2R) kele)

This is the only proof in the chapter where we need the non-uniform reduction algorithm.

84

4. Output {u® }ie[0ul
We can observe that each u®® is distributed as a BGG + 18 ciphertext for message b(()j)
()
1 b

and attribute (x xg)), even though when we consider the joint distribution of {u”};,

the set of vectors is mutually correlated. This along with the fact that the j-th ciphertext
is the challenge ciphertext (i.e., there is no i and i’ such that F(") (xgj), xé) = 0) imply
that each u'”) is pseudorandom given aux by Sel-INDr security of BGG + 18 (as per
Definition 3.5). Therefore, assuming the bilinear KOALA assumption with respect to

GroupGen, Samp,, and Samp’, where Samp) is defined as in Lemma 3.13 from Samp;,

above'’, we have that the following distributions are computationally indistinguishable:

G, aux, G, aux,
{ [7(’)]2’ [)’(’)u(l)] z}iE[Qct] { [7(1)]2’ [V(l)]z}iE[Qct]

where G is chosen by GroupGen(14), aux « Samp,(q), {u(i)}l-e[,] «— Samp, (g, aux),

¥V —Z,, and v — 21" fori € [Qul.

To complete the proof, we construct B that distinguishes the above distributions given
the adversary A. At the beginning, given the input, B first parses
aux — (BGG+18.mpk,{BGG+18.sk(i)}ie[qu]). B then honestly samples
{BIPFE.msk; }c(1,2; by itself.

Secret Key Queries: It can answer the secret key queries by A by {BGG + 18.sk"} ¢ [Qkq]-

Ciphertext Queries for Slot 1: For answering the ciphertext queries, the simulation

for slot 1 is straightforward. Namely, B samples s, eg), e, e(L[), and eg) fori # j

and generates the ciphertext Ctgi) for all i € [Qq] as specified in Game;_; using
BGG + 18.mpk. Note that s(), e(()j), el e(Lj), and eg) are not necessary for computing

Ctij) and are undefined at this point.

Ciphertext Queries for Slot 2: B also has to answer ciphertext queries for slot 2. To

10Thus, matrix V is defined as Eq.(3.9), where vectors {u(;)}; in the matrix are the vectors output by the
Samp; algorithm above.

85

answer the i-th ciphertext query for slot 2, B first sets terms dg’)z and dg)3 as

d("),d(”] ::[i), (i)] ,
[1,2 23, = [V 2V,

where v() is either random or v = yDu) The computation of [D®], for the terms
other than the above terms is straightforward using [y"], by implicitly setting ¢ := v,

It then computes the ciphertext Ct;i) as in the honest encryption algorithm.

It can be seen that B simulates Game;_ 4 if v(?) is random and Game; _; 3 if v\ = yDu(®,

where B implicitly sets
sU) .= zZ, eéj) = e, el) .= e, (e(Lj),e(Lj)) = (er,...ey).
Therefore, B distinguishes the distributions if A distinguishes the games.]

Lemma 3.17 (Game;_; » ~. Game;_;3). We have | Pr[E;_;>] —Pr[E;_;3]| < negl(1).

Proof. This follows by considering the same sequence of games that is used for showing
the indistinguishability of Game;_; o and Game;_; >, but in the reverse order and with
the difference that b(()j) is replaced by bi".). The indistinguishability between the games
follows from the security of BIPFE, LWE, and the bilinear KOALA assumption for the

same sampler. |
]

3.8 COMPILING £k-ABE TO k-PE VIA LOCKABLE OBFUSCATION

In this section we describe our compiler to lift k-input ABE to k-input PE. Namely, we
construct k-input predicate encryption using k-input ABE and lockable obfuscation. The
conversion preserves Ada-IND security. The extension of the conversion that preserves

strong security is provided in Section 3.9.

3.8.1 Construction

Our construction uses the following building blocks:

86

1. A secret key encryption scheme SKE = (SKE.Setup, SKE.Enc, SKE.Dec).

2. A Lockable Obfuscator LO = (LO.Obf, LO.Eval) with lock space £ = {0, 1}'" and
input space X = {0, 1}".

3. A k-input ABE scheme kABE = (kABE.Setup, kABE.KeyGen, KABE.Ency, ...,
kKABE.Ency, KABE.Dec) in which the message bit is associated with the last slot,
kABE.Ency. We require k = O(1).

In the construction below, we require the message space of the SKE scheme to

be the same as the lock space £ of the lockable obfuscator scheme LO and the
message space of KABE to be the same as the key space of SKE.

We now describe the construction of k-input predicate encryption scheme. Our k-input
PE construction has the same attribute space and the function class as the underlying
k-input ABE, when we consider the function class of NC; circuits or polynomial-size

circuits.

Setup(14) : On input the security parameter 1, the Setup algorithm does the following:
1. Run (kABE.msk, KABE.pp) < kABE.Setup(1+).
2. Run SKE.Setup(14) k times and obtain secret keys K, K>, . . ., Kx.

3. Output msk = (KABE.msk, K, ..., Ki) and pp = KABE.pp.

KeyGen(pp, msk, F) : On input the public parameters pp, the master secret key
msk = (KABE.msk, K1, ..., Ki) and a circuit F, the KeyGen algorithm does the

following:
1. Run kABE.skr «— kABE.KeyGen(pp, KABE.msk, F).

2. Output skr = KABE.skp.

Enc;(pp, msk, x;,m): On input the public parameters pp, master secret key msk =
(kABE.msk, K1, .. ., K}), attribute x; for position 1 and message m, the encryption

algorithm does the following:

1. Sample y; « £ and let ct] = SKE.Enc(K1, 1)

87

2. Compute ct; = kABE.Enc, (pp, KABE.msk, x1).
3. Define a function fi[cty, ctj] as in Figure 3.2.

4. Output Ct’l = LO.Obf(14, f; [Ctl,ct*l‘],m,yl).

Enc;(pp, msk, x;) for 2 < i < k: On input the public parameters pp, master secret

key msk = (kABE.msk, K1, ..., K}), attribute x; for position i, the encryption

algorithm does the following:

1. Sample a random value y; «— £ and let ct; = SKE.Enc(Kj, v;).

kABE.Enc;(pp, kKABE.msk, x;) for2 <i<k

2. Compute ct; =
kABE.Enc (pp, KABE.msk, x;, Ky) fori=k

3. Define a function f;[ct;, ct’] as in Figure 3.2.

4. Output Ct; = LOObf(l/l, ﬁ [Cti, Ct;-k], K1, 71')-

Circuit f;[ct;,ct’] for 1 <i <k

. Parse input as (cty,...,cti_1,Gitqs - - - G, skr) where ct; is regarded as a slot
J ciphertext of KABE, G is regarded as an obfuscated circuit of LO and skr is
regarded as a KABE secret key.

LO.EVEI|(G,‘+1, (cty,...,ct;, Gl‘+2, R Gk, skp)) forl <i<k

. Compute K/ =)
! kABE.Dec(pp, skr, cty, ..., Cty) fori =k

. Outputs y; « SKE.Dec(K/, ct}).

Dec(skr,ct),...,ct

Figure 3.2: Circuit Obfuscated by Slot i Encryption for 1 <i < k

/

) - On input the secret key sk for function F', and kPE ciphertexts

Ct’l U Ct;(, do the following:
1. Parse Ct’1 as an LO obfuscation.

2. Compute and output LO.Eval(ct], (ct), ..., ct,, skr)).

88

Correctness. To establish correctness, we first prove the following statement:
Claim 3.18. For xi,...,x; such that F(xy,...,x;) =0, and ct;,ct}, ct’, for 1 <i < k,

computed as per the scheme,

For2 <i < k, LO.Eval(ct], (cty,...,cti_y,ct,,,...,ct},skp)) = Ki_1.
Proof. We can prove this by induction.

Base case: Fori = k, we show that
LO.Eval(ct), (cti, ..., ctk—1,5kr)) = K1

Proof: Since, ct} = LO.Obf(14, fi[ctk, ct], Kk-1,yk), from the functionality of LO,

frlct, th] is evaluated on input (cty, ..., cty_;, Skr) in the following steps:
1. KABE.Dec(pp, skr, cty, ..., cty) = Ki, from the correctness of KABE.Dec

2. Output SKE.Dec (K, CtZ) = vy, from the correctness of SKE.Dec
Since, the output of function fi[cty,ct;] matches the lock value in ct],

LO.Eval(ct/, (cty,...,cty_1,8kr)) = Ki_1, from the correctness of LO.

Inductive Step: We show that for2 <i < k — 1, if

LO.Eval(ct, , (cty,. .., ct;,ct]

i+2° "

. Ct;(, Skp)) = K;,

then

LO.Eval(ct}, (cty, ..., cti_y,ct;

il ,Ct;,SkF)) =K; .
Proof: Recall that ct] = LO.Obf(14, fileti,ct?], Ki—1,¥:). By LO’s functionality,

LO.Eval(ct], (cty, ..., ct;_y, ct]

‘o -sCl,8Kp)) first evaluates f[ct;, ct/] on input

(cty,...,cti_p,ct]

e ct;c, skr) in the following two steps:

1. LO.EvaI(ctl’.H, (cty,...,ct;, Ct;+2, . ,C’[;(, skr)) = K;, by the induction hypothesis.

2. Output SKE.Dec(K;, ctf) = y;, from the correctness of SKE.

Since, the function output matches with the lock value,

&9

LO.Eval(ct}, (cty, ..., ctiq, et .-, Cl, skr)) = K;_1 from the correctness of LO.Eval.

Finally, we observe that the kPE decryption outputs LO.Eval(ct’, (ct), ... ,Ct}(, skr)),
where ct| = LO.Obf(1%, fi[cty, ct;], m,y1). Hence from the functionality of LO, firstly

the function fi[cty, ct]] is evaluated on input (ctl, .. ., Ct;c’ skr) in the following steps:
1. Compute LO.Eval(ct’, (ctl,ctg, . ,ct;{, skr)) = K.

2. Output SKE.Dec(Kj, ct}) = y; from the correctness of SKE.
Since, fi[cty, ct]] evaluates to y;, which is the lock value in ct}, from the correctness of

LO.Eval, we get LO.Eval(ct), (ct), ..., ct}(, skr)) = m as desired.

3.8.2 Security

We prove that the above construction satisfies Ada-IND security of Definition 3.12 via
the following theorem.

Theorem 3.19. Assume LO is a secure lockable obfuscation scheme as per Definition
3.8, that KABE is a secure k input ABE scheme as per Definition 3.11 and SKE is a
secure secret key encryption scheme. Then, the KPE construction presented above is

secure as per Definition 3.12.

Proof. The proof proceeds via a sequence of following games between the challenger

and a PPT adversary A.

Gamey: This is the real world.

Game;: In this world, the SKE key K} encrypted in the KABE ciphertext cty is replaced
with 0.

For a =2 to k + 1 define:

90

Game, (: In this world,
1. Forje[l,k—(a-1)], C'[;. is computed as in the real world.
2. Forj=k - (a-2),

) ot KABE.Enc; (pp, KABE.msk, xi.b) if j <k (ie. a>?2)
a) ct; = >
/ KABE.Enc; (pp, KABE.msk, x’jb,O) if j=k (ie. a=2)

b) ct’ = SKE.Enc(K;, 0)

o LO.Obf(14, f;[ctj, cti], Kjm1, ;) if j > 1 (ie.a<k+1)
C .=]
7 |LO.Ob(1, fyletj, cti].mi,y;) ifj=1(ie.a=k+1)

3. Forj € [k—(a-3),k], Ct;. is generated using LO simulator. In more detail,

, ot kABE.Enc; (pp, KABE.msk, x}b) ifj <k
a) ct; = />
! KABE.Enc; (pp, KABE.msk, x’/.b,O) ifj=k

b) ctj. = SKE.Enc(K},0)

¢) et = LO.Sim(14, 1Mi1etetll 11Kl

Game, |: This is same as Game,, (, except the following change: In this world, Ct;c— (a-2)

is generated using LO simulator.

Indistinguishability of Hybrids. We now show that the consecutive games are
indistinguishable. We let E denote the event that the adversary A outputs correct guess
for the challenge bit b at the end of Game.

Claim 3.20. Assume that KABE satisfies Ada-IND security (Definition 3.11). Then,

Game(and Game; are computationally indistinguishable. That is,

| Pr[Eo] — Pr[E;]| < negl(Q).

Proof. We show that if A can distinguish between Gamey and Game; with non-

91

negligible probability then there exists an adversary 8 who can break Ada-IND security

of KABE using A. The reduction is as follows:

1. The KABE challenger samples (KABE.msk, kABE.pp) < kABE.Setup(1%), a bit
b’ « {0, 1} and sends KABE.pp to 8.

2. Upon receiving the public parameters KABE.pp from the KABE challenger, 8 sets
pp = KABE.pp, samples k SKE keys K1, .. ., K; using SKE.KeyGen and invokes
A with pp as public parameters and chooses a bit b « {0, 1}. B implicitly sets
msk = (KABE.msk, K1, ..., Ky).

3. B then responds to key queries and ciphertext queries from A as follows:

Key Queries: B forwards each key query for a function F' to KABE challenger
and obtains a secret key KABE.skr. B returns skp = KABE.skr to A.

Ciphertext Queries: Each ciphertext query from A is of the form

(X’:]’O,Xli’l), (m{,m") (for slot 1), or
(le O,X'j) (forslot 1 < j < k)

On receiving a ciphertext query, 8 does the following:
a) Ifthe queryisforslot1 < j <k —1,

 Samples a random value y; « L and computes Ctj. = SKE.Enc(Kj,y;).

Sends X', ,,
J.b

as a ciphertext query to the KABE challenger.

The KABE challenger returns a ciphertext ct; = kABE.Enc; (KABE.pp,
kKABE.msk, Xj. ») forslot j.

B defines the function f;[ct;, Ctj.] and returns
v - LO.Obf(14, fi[ct;, ctil, my, ;) if j=1
7 |LO.Obi(14, fi[etj,cti], K -1,7;) otherwise
b) If the query is for slot &
* Samples y; « £ and computes ct; = SKE.Enc(Ky, y«).

* Sends (x;b,(ug = Kk,,ui1 = 0)) as ciphertext query to the KABE
challenger.

» The KABE challenger computes and returns a ciphertext ct; for slot k,

92

computed as ct; = KABE.Ency (KkABE.pp, KABE.msk, Xl,.(b ,Uib,)~

* B defines function fi[cty, ct; | and computes and returns
C’[;(= L0.0bf(l/l, frlct, C’[Z], Ki—1,7x).

4. In the end, A outputs its guess bit b. If b = b, then B returns b” = 1, else b” =0
to the KABE challenger.

We can observe that if the bit »” chosen by kKABE challenger is 0, then B simulated
Game, else Game; with A. This gives us the advantage of B, against KABE challenger,
as |Pr(b” = 1|0’ = 0) = Pr(b” = 1|b" = 1)| = | Pr[Ep] — Pr[E;]|. Hence, assuming
Ada-IND security of KABE, we get

| Pr[Eg] — Pr[E;]| < negl(A).

Admissibility of 8: Observe that the key queries made by 8 to the KABE challenger
are the same key queries as made by A to B. Also the attribute in each ciphertext query
by B to KABE challenger is taken from the corresponding ciphertext query by A. Hence,

the admissibility of A implies admissibility of 8.]

Claim 3.21. Assume that SKE is a CPA secure encryption scheme. Then Game; and

Game, o are computationally indistinguishable. That is,

| Pr(E{] — Pr[Ez]| < negl(2).

Proof. We show that if A can distinguish between Game; and Game, with non-
negligible probability, then there exists an adversary 8 who can break CPA security of

SKE using A. The reduction is as follows:

1. The SKE challenger samples K < SKE.Setup(11) and a bit »" « {0,1} and
invokes 5.

2. Upon being challenged by SKE challenger, 8 does the following:
a) Samples (KABE.pp,kABE.msk) <« kABE.Setup(1?) and SKE keys
Ki,...,Ki-1. Sets pp = KABE.pp, msk = (KABE.msk, Ky, ..., Ki_1, Ky),

93

where 8B implicitly sets Kj to be the secret key K sampled by the SKE
challenger.

b) Samples a bit » and invokes A with pp.

c) For each key query for any function F from A, $B returns
skr «— KABE.KeyGen(pp, KABE.msk, F).

d) To answer each ciphertext query which is of the form

(Xil,ov Xil,l)a (mlo, mll) (for slot 1), or
(XQ,O»X;J) (forslot 1 < j < k),

8B does the following:

i. If the queryisforslot j < k, B samples y; and computes ct; and Ct’; on its
own as ct; = KABE.Enc; (pp, kABE.msk,xj.,b), ctj. = SKE.Enc(Kj,y;).
Defines f;[ct j,ctj.] and returns

, |LO.Obf(14, ficty, cti], mi, ¥1) if j=1
77 |LO.Obf(14, fi[etj, cti], K1, 7,), otherwise

ii. If the query is for slot &

A. B computes ct; = kABE.Ency (pp, KABE.msk, x| , . 0)

B. Samples y; « £ and sends uf) = y; and | = 0 as challenge
messages to the SKE challenger.

C. SKE challenger returns ctz = SKE.EnC(Kk,,uZ,).
D. B defines function f [cty, ct;] and returns
ct), = LO.Obf(14, fi[ct, cti], K1, ¥k)
to A.

e) In the end, A outputs a bit b. If b = b, then B returns b” = 1, else b” =0 to
the SKE challenger.

We can observe that if b* = 0 then B simulated Game;, else Game; (. Hence, if A

distinguishes between Game; and Game, o, with non negligible probability then B also

94

wins against the SKE challenger. Assuming CPA security of SKE, we get

| Pr[E{] — Pr[Ez]| < negl(2).

Claim 3.22. Assume that LO is a secure lockable obfuscation scheme (Definition 3.8).
Then for 2 < a < k + 1, Game, o and Game, | are computationally indistinguishable.
That is,

| Pr[Eqo] — Pr[Eq.]] < negl(4).

Proof. Recall that in both the hybrids,
e Forje[l,k—(a-1)], Ct;. is computed as in the real world.
e Forj € [k - (a-23),k], ct;. is generated using LO simulator.
* For j =k —(a—-2),ct; and Ctj. are computed as:

o KABE.Enc; (pp, KABE.msk, x?b), if j <k, (ie. a>?2)
7 |KABE.Enc; (pp, KABE.msk,x) ,,0), if j =k, (i.e. a = 2),

ctj. = SKE.Enc(K;,0)

The only difference between the two hybrids is in the generation of Ct;(_(_ as following.
a-2)

Letj=k—(a-2).

In Game,),
Lo.Obf(lﬂ,]f,-[ct,-,ctj.],mg,yj), ifj=1(Gea=k+1)
ct’. =
J
L0.0bf(l/l,fj[ctj,ct’;],Kj_l,yj), otherwise
In Game, 1,
LO.Sim(14, 1Ml glmily - i j =1, (le. a =k + 1)
ct’. =
J

LO.Sim(14, 11 [th’Ctj']', 11Kj-1 |), otherwise

95

We show that if A can distinguish between Game, (and Game, ; then there exists
an adversary 8 who can distinguish between LO obfuscated programs and simulated

programs, thus breaking the security of LO. The reduction is as follows:

1. The LO challenger samples b’ < {0, 1} and starts the game with 8. Upon being
challenged by the LO challenger, 8 does the following:

a) Samples public parameters and master secret key for kPE as (pp, msk =
(KABE.msk, K1, ..., Kx)) « Setup(1%) and invokes A with pp. B also

samples a bit b.

b) A issues polynomially many key queries and ciphertext queries, to which 8
responds as following.

i. For each key query for a function F from A, $B returns
skr «— KeyGen(pp, msk, F) to A.

ii. To answer each ciphertext query which is of the form

(X, 0. X), (mfy,m) (forslot 1), or
(Xj,o’ X;-’l) (for slot j > 1),

B does the following:
A. If the query is for slot j € [1,k — (a — 1)],
e Samples y; «— L.
* Computes ct; and ctj. using msk and XS’,b as attribute.

* Defines function f;[ct;, Ct;".] and returns

o _ [LO.06f(, fileti etilmf v, ifj =1
7 |LO.Obf(14, fi[ct;,ct3], Kj-1,;), otherwise

B. If the query is for slot j € [k — (a — 3), k]

* Computes
, kABE.Enc; (pp, KABE.msk, x} 5) if j <k
Cl; = 7 Iy
/ KABE.Enc; (pp, KABE.msk, x’j,b,()) ifj=k
ctj. = SKE.Enc(K}, 0) and defines f;[ct;, ctj.].

e Returns Ct} = LO.Sim(14, 1|ff[0tf’0tj']|, 1K=y,

96

C. If the query is for slot j = k — (a — 2)

* Computes
, kABE.Enc; (pp, KABE.msk, x} 5) if j <k
Cl; = 7 Py
/ KABE.Enc; (pp, KABE.msk, x’j,b,()) ifj=k
ct;‘. = SKE.Enc(K}, 0) and defines f;[ct;, Ct;‘.].

e If j =1 (ie. a = k+1), sends fj[ctj,ct;*.],m‘[;, else sends

filet;, Ctj.] , K;_1 to the LO challenger and receives either an LO
obfuscated or a simulated program Ct;. from the LO challenger.

¢ Returns C'[;. to A.

¢) In the end, A outputs a bit b. If b = b, then B returns b” = 1, else b” = 0,
to LO challenger.

We can observe that if the LO challenger returned obfuscated programs, then 8 simulated
Game,, o, else if LO challenger returned simulated programs, then 8 simulated Game, ;
with A. Hence, if A distinguishes between the two games, then so does B between

obfuscated and simulated programs. Assuming LO is secure, we get

| Pr[Eq0] — Pr[Eq1]| < negl(4).

Claim 3.23. Assume that SKE is a CPA secure encryption scheme. Then for 2 < a < k,

Game, | and Game,,| o are computationally indistinguishable . That is,

| Pr[Eq.1] = Pr[Egs1.0]] < negl(R).

*

Proof. The only difference between the two hybrids is in the computation of ct; (1)’

%

In Game, 1, ct; _ b(ae1) =

(an = SKE.ENc(Ky—(a-1)s Yk—(a-1))> While in Game,,1 o, Ct
SKE.Enc(Ky-(4-1), 0). Hence the indistinguishability of the two hybrids follows from the
CPA security of SKE. The reduction is similar to that in the proof of indistinguishability

between Game; and Game, . [|

Claim 3.24. Pr[Ef14] -5 =0

97

Proof. In Gamey, , all the LO, circuits returned as KPE ciphertexts, are simulated
using LO simulator as ct| = LO.Sim(14, 1Miletietill, 1|m§:|) and
ct) = LO.Sim(14, 1/t 11Kj-1l) for 2 < j < k. Hence, they depend only on the
lengths of functions f;[ct;, Ctj.] , length of message and length of SKE keys. Length of
filet;, Ct’;.] further depends only on the length of attributes and messages. Since, these
lengths are fixed for the scheme, {ct}} jelk) completely hide the bit 5. Hence, A can do

nothing better than a pure guess for bit b in Gamey,| ;. []
|

Applications. The conversion above can be applied to all the multi-input ABE schemes
in this work. Here, we focus on the applications to the candidate two input ABE scheme
from lattices in Sec. 3.11 and the candidate three input ABE scheme in Sec. 3.10. The
other schemes will be discussed in Sec. 3.9 because they satisfy strong (very selective)
security and thus we can apply the conversion in Sec. 3.9. A nice property of the PE
scheme obtained from the two input ABE scheme in Sec. 3.11 is that it can handle any
polynomial-size circuits. Besides, we can expect that it is post-quantum secure, because
it does not use pairings and only uses lattice tools. By applying the conversion to the
three input ABE scheme in Sec. 3.10, we can obtain a three-input PE scheme that can

handle NC; circuits.

3.9 TWO-INPUT PE WITH STRONGER SECURITY

In this section we describe our compiler to lift 2-input ABE to 2-input PE that preserves
strong security. The conversion uses lockable obfuscation similarly to Sec. 3.8. Unlike
the conversion in Sec. 3.8, we do not know how to extend it to general arity k and it is set

to be k = 2 here. The construction uses the following building blocks:

1. Two instances of 2-input ABE scheme. In one instance the message is associated
with encryption for position 2, while in the other instance, the message is
associated with the encryption for position 1. We represent the two instances as
2ABE = (2ABE.Setup,2ABE.KeyGen, 2ABE.Enc;, 2ABE.Enc,, 2ABE.Dec)

98

and 2ABE’ =
(2ABE’.Setup, 2ABE’ .KeyGen, 2ABE’.Ency, 2ABE’.Enc,, 2ABE’.Dec).

2. A Lockable Obfuscator Obf = (LO.Obf, LO.Eval).

3.9.1 Construction
Our two-input PE construction has the same attribute space and the function class as
the underlying two-input ABE, when we consider the function class of NC; circuits or

polynomial-size circuits.

Setup(14) : On input 14, the Setup algorithm does the following:

1. Run (2ABE.msk, 2ABE.pp) — 2ABE.Setup(14) and
(2ABE’.msk, 2ABE’.pp) « 2ABE’.Setup(14).

2. Output msk = (2ABE.msk, 2ABE’.msk) and pp = (2ABE.pp, 2ABE’.pp).

KeyGen(pp, msk, F) : On input the public parameters pp, the master secret key msk

and a circuit F, the keygen algorithm does the following:
1. Parse msk as (2ABE.msk, 2ABE’.msk) and pp = (2ABE.pp, 2ABE’.pp).

2. Run 2ABE.sky <« 2ABE.KeyGen(2ABE.pp, 2ABE.msk, F) and
2ABE’.skr <« 2ABE’.KeyGen(2ABE’.pp, 2ABE’.msk, F).

3. Output skr = (2ABE.sky, 2ABE’.skr).

Enci (pp, msk, x;,m): On input the public parameters, pp, master secret key msk,
attribute x; for position 1 and message m, the encryption algorithm does the

following:
1. Parses msk as (2ABE.msk, 2ABE’.msk) and pp as (2ABE.pp, 2ABE’.pp).
2. Computes ct; = 2ABE.Enc(2ABE.pp, 2ABE.msk, x1).

3. Sample a — M and compute
ct] = 2ABE".Enc; (2ABE’.pp, 2ABE".msk, x1, @).

4. Define a function fi[cty, C’[’1], with cty, Ct’l being hardwired (Figure 3.3).

99

5. Output ct] = LO.Obf(14, fi[cty, cti], m, @).

. Circuit f;[cty,ct’]
1. Parse input as (G, sk, sk”) where G is regarde& as an obfuscated circuit of LO, and
sk and sk’ are regarded as secret keys of 2ABE and 2ABE’ respectively.
2. Compute r «— LO.Eval(G, (cty, sk)).

3. Output o’ = 2ABE’".Dec(2ABE’.pp, sk’, ct], r).

Figure 3.3: Circuit Obfuscated by Slot 1 Encryption

Enc, (pp, msk, x;):

1. Parse msk as (2ABE.msk, 2ABE’.msk) and pp as (2ABE.pp, 2ABE’.pp).

[\

. Sample g «— M.

98]

. Compute ct; = 2ABE.Enc;,(2ABE.pp, 2ABE.msk, x;, 3).
4. Compute ct), = 2ABE.Enc),(2ABE’.pp, 2ABE’.msk, x).
5. Define a function f>[ct;], with ct; being hardwired, as in Figure 3.4.

6. Output ct] = LO.Obf(14, fs[cty], cty, B).

) Circuit fz[ct%i] _
1. Parse input as (ct;, sk) where ct; is regarded as a ciphertext of 2ABE for the first

slot and sk is regarded a secret key of 2ABE.

2. Output 8’ <+ 2ABE.Dec(2ABE.pp, sk, cty, cty).

Figure 3.4: Circuit Obfuscated by Slot 2 Encryption

Dec(skr, ct}, ct]) : On input the secret key sk for function F, and 2PE ciphertexts

ct{ and ct, do the following:
1. Parse skr as (2ABE.skr, 2ABE’.skr) .

2. Output LO.Eval(ct], (ct], 2ABE.skr, 2ABE’ .skr).

100

Correctness. Recall that ct] = LO.Obf(14, fi [ct;, ct|],m, @)). We claim that
filety, ct}](ct], 2ABE sk, 2ABE' .skr) = a.

This may be argued via the following steps:

1. Recall that Ct’z’ = L0.0bf(l/l,fz [Ctz],C’[’z,ﬁ) and f>[cty](ct;,2ABE.skr) =
2ABE.Dec(2ABE.pp, 2ABE.skp, ctj, ct;) = 8. The second equality follows by
correctness of 2ABE and the fact that ct; and ct; encrypt 8 under attributes xp, X;.

Since ct] has lock value 8 and message value ct),, we have by correctness of LO
that LO.Eval(ct7, (ct;, 2ABE.skr)) = ct’,.

2. Next, following the description of fi[ct;,ct]] (Figure 3.3), we evaluate
2ABE’.Dec(2ABE’.skr, ct], ct}) and recover a by correctness of 2ABE’
decryption and the construction of ct| and ct;, as encryptions of a under attributes
X1, X2.

Thus, we get that fi[cty, ct}](ct], 2ABE.skr, 2ABE’.skr) = . Now, by correctness
of LO, we have that LO.Eval(ct”, (cty, 2ABE.skr, 2ABE’.skr)) = m as desired. This

concludes the proof.

3.9.2 Security

We prove security via the following theorem.

Theorem 3.25. Assume LO is a secure lockable obfuscation scheme as per Definition 3.8
and that 2ABE and 2ABE’ are secure two input ABE schemes satisfying strong security
as in Definition 3.13 (resp., strong very selective security as in Definition 3.15). Then,
the 2PE construction presented above satisfies strong security as per Definition 3.14

(resp., strong very selective security as in Definition 3.15).

Proof. This proof is more complex than that of Theorem 3.19, because the adversary
can make queries for decrypting keys, in which case contents of obfuscated circuits can
be revealed. However, as we argue, this leakage does not compromise the security of
messages that must remain hidden, because for their corresponding 2ABE ciphertexts,
the protecting obfuscators will remain “locked”. Moreover, the “unlocked” LO output

2ABE ciphertexts ct, which cannot be used to decrypt slot 1 ciphertexts by admissibility

101

of the adversary, and hence do not compromise security of the hidden instances. This is
in contrast to the previous scheme, where a global secret SKE key K was being output

after successful inner 2ABE decryption.

We focus on the case of strong security below. The case of strong very selective security is
similar and simpler. The proof proceeds via a sequence of games between the challenger

and a PPT adversary A.

Game: This is the real world.

Game,: This world differs from the previous in the way slot 2 ciphertext queries are

answered. Let us recall that each ciphertext query is of the form

(Xil,O’ Xil,l), (mg, m"l) (for slot 1), or

() 0. %5) (for slot 2).

Let S be the set of all those slot 2 ciphertext queries in which x} , # x5 . Then in

this world, for queries in S, we replace the value g encrypted in 2ABE ciphertext,

cty with 0.

Game;: This world differs from the previous in the following ways. In this world, in

response to queries in set S, ct] is simulated using the LO simulator.

Games: This world differs from the previous in the following ways. Let S’ be the
set of slot 1 ciphertext queries satisfying one of the following two conditions: (1)
X"L0 # x"l,1 (ii) (Xil,O = x"l’l) and (mf) # m"l). In this world, ct] encrypts 0 instead

of a for all queries in S’.

Game,: This world differs from the previous in the following ways. In this world, in

response to queries in set §’, ct{ is simulated using the LO simulator.

102

Indistinguishability of Hybrids. We now show that the consecutive hybrids are

indistinguishable. We let E4 denote the event that the adversary A outputs correct guess

for the challenge bit b at the end of Game.

Claim 3.26. Assume that 2ABE satisfies strong Ada-IND security (Definition 3.13).

Then, Gamey and Game; are computationally indistinguishable. That is,

| Pr[Eo] — Pr[E;]| < negl(Q).

Proof. We show that if A distinguishes between Game, and Game; with non-negligible

probability then there exists an adversary 8 who can break strong Ada-IND security of

2ABE using A. The reduction is as follows:

1.

The 2ABE challenger samples (2ABE.msk, 2ABE.pp) « 2ABE.Setup(1%) and
b’ « {0, 1} and sends 2ABE.pp to 8.

Upon receiving the public parameters 2ABE.pp from 2ABE challenger, 8 does
the following.

a) Samples (2ABE’.msk,2ABE’.pp) « 2ABE’.Setup(1!) and sets

pp = (2ABE.pp,2ABE’.pp). It implicitly sets the master secret key as
(msk = (2ABE.msk, 2ABE.msk).

b) Invokes A with pp as public parameters and chooses a bit b « {0, 1}.

. B then responds to key queries and challenge queries from (A as follows:

Key Queries:

a) For each key query for a function F, from A, B makes a key query for F to
2ABE challenger and receives 2ABE.skr from the challenger.

b) Computes 2ABE’.skyr «— 2ABE’.KeyGen(2ABE’.pp, 2ABE’.msk, F).

c) Sets skr = (2ABE.skr, 2ABE’.skr) and returns it to A.
Ciphertext Queries: Each ciphertext query from (A is of the form

(Xil,o’xil,l)a (mg, mil) (for slot 1), or
(x),0:X5) (for slot 2),

Upon receiving such a query, 8 does the following:

103

a) For slot 1 queries:
i. Samples @ «— M.

ii. Sends Xi1 , 10 2ABE challenger as slot 1 ciphertext query, to which the

2ABE challenger replies with ct;.

iii. Computes ct; = 2ABE’.Enc;(2ABE’.pp, 2ABE’.msk, x|, @)

iv. Defines fi[ct;, ct]] and computes

ct/ = LO.Obf(14, fi[cty, ct|], m},).

v. Returns C’['l' to A.

b) For slot 2 queries:

i. Computes ct), = 2ABE’.Enc,(2ABE’.pp, 2ABE".msk, x} ,)

ii. Samples 8 «— M.
ii. If Xé’o * x"m, then sets ,uf) =g, ,ui1 = 0, else sets ,ué) =B, ,ui1 =B.
iv. Sends Xé’ po (,uf), ,u’i) as ciphertext query for slot 2 to the 2ABE challenger.
v. The 2ABE challenger computes and returns slot 2 ciphertext as

cty = 2ABE.Enc, (2ABE.pp, 2ABE.msk, x5 ., 1),

where b’ is the coin chosen by the challenger, which is fixed throughout
the game.

vi. B defines f>[ct;] and computes

cty = LO.Obf(14, fr[ct], cts, B).

vii. Returns Ct’2’ to A.

4. In the end, A outputs a bit b. If b = b, then B returns b” = 1, else b” = 0, to the
2ABE challenger.

We can observe that if ’ = 0, then 8B simulated Game,, else Game;. Hence, if A can

distinguish between the two hybrids, then B can win against 2ABE challenger.

104

Assuming strong Ada-IND security of 2ABE, we get

| Pr[Eg] — Pr[E;]| < negl(A).

Admissibility of B: We show that if A is admissible for strong 2PE security then 8

is also admissible for strong 2ABE security. Observe that the key queries issued by 8
to the 2ABE challenger are the same key queries as issued by A to 8. Consider the
challenge queries issued by 8. If for some function F for which key query has been

/U x2) = 1 then we need to ensure that u/> = ,u'{z (since 2ABE encrypts

made, F(xl’b, 2 0

message in slot 2, the message equality condition is required for query index j», i.e.

corresponding to slot 2). Since, the ciphertext queries with the same attributes are issued
2 _ G2 72 _ G2

by A to B, admissibility of ‘A demands that Xy =%5- But, when X50 =%, B takes

,uéz = ,u{z = 3, as desired. |

Claim 3.27. Assume that LO is a secure lockable obfuscation scheme (Definition 3.8).

Then Game; and Game, are computationally indistinguishable. That is,

| Pr[E;] — Pr[E2]| < negl(Q).

Proof. We show that if A can distinguish between Game; and Game; with non-
negligible probability then there exists an adversary 8 who can distinguish between LO
obfuscated programs and simulated programs using A, thus breaking the security of LO.

The reduction is as follows:
1. Upon being challenged by LO challenger, 8 does the following:
a) Samples public parameters and master secret for 2PE as
(pp, msk = (2ABE.msk, 2ABE’.msk)) « Setup(1%) and invokes A with
pp. B also samples a bit b.

b) A issues polynomially many key queries and ciphertext queries to which 8
responds as follows:

Key Queries:
For each key query for a function F from A, B returns

105

skr <« KeyGen(pp, msk, F) to A.
Ciphertext Queries: To answer each ciphertext query, which is of the form

(Xi1 0’ Xil s (mf), m’i) (for slot 1), or
(Xé 0 Xlz) (for slot 2),

B does the following:
1. For slot 1 queries:
A. Samples @ «— M.
B. Computes

ct; = 2ABE.Enc, (2ABE.pp, 2ABE.msk, x| ,)

and

ct, = 2ABE’ .Enc, (2ABE’.pp, 2ABE’.msk, x| ,, @)

C. Defines fi [Ctl,C’['l] and computes

ct/ = LO.Obf(1%, fi[cty, ct}], m), @).

D. Sends ct{ to A.

ii. For slot 2 queries:
A. Computes ct), = 2ABE".Enc,(2ABE’.pp, 2ABE’.msk, Xiz,b).
B. If X;,O = Xé,p

* Samples 8 «— M

» Computes cty = 2ABE.Enc,(2ABE.pp, 2ABE.msk, X, .).

* Defines f>[ct;] and computes
cty = LO.Obf(14, fa[cty], cts, B).

C. Else if xiz’o # X;’],

* Computes ct; = 2ABE.Enc,(2ABE.pp,2ABE.msk,x) ,.0),

defines f>[cty] and sends it along with ct], to the LO challenger.

106

* The LO challenger returns either an obfuscated circuit or a
simulated circuit which 8 sets as ct}.

D. Sends Ct’2’ to A.

¢) In the end, A outputs a bit b. If b = b, then B returns b” = 1, else b” = 0,
to LO challenger.

We can observe that if the LO challenger returned obfuscated programs, then 8 simulated
Game,, else if LO challenger returned simulated programs, then 8 simulated Game;.
Hence, if A distinguishes between the two games, then so does B between obfuscated

and simulated programs. Assuming LO is secure, we get
| Pr[E|] — Pr[E;]| < negl(A).
|

Claim 3.28. Assume that 2ABE’ satisfies strong Ada-IND security (Definition 3.13).

Then, Game; and Games are computationally indistinguishable. That is,

| Pr[Ez] — Pr[E3]| < negl(Q).

Proof. We show that if A can distinguish between Game, and Gamez with non-
negligible probability then there exists an adversary 8 who can break strong Ada-IND

security of 2ABE’ using A. The reduction is as follows:

1. The 2ABE’ challenger samples (2ABE’.msk, 2ABE’.pp) « 2ABE’.Setup(1%)
and b’ < {0, 1} and sends 2ABE’.pp to B.

2. Upon receiving the public parameters 2ABE’.pp from 2ABE’ challenger, 8 does
the following.

a) Samples (2ABE.msk,2ABE.pp) <« 2ABE.Setup(1!) and sets
pp = (2ABE.pp, 2ABE’.pp). B implicitly sets
msk = (2ABE.msk, 2ABE’.msk).

b) Invokes A with pp as public parameters and chooses a bit b « {0, 1}.

3. B then responds to key queries and ciphertext queries from (A as follows:

107

Key Queries:

a) Upon receiving a key query for function F from A, B makes a key query for
F to 2ABE’ challenger and receives 2ABE’.sky from 2ABE’ challenger.

b) Computes 2ABE.sky « 2ABE.KeyGen(2ABE.pp, 2ABE.msk, F).

c) Sets skr = (2ABE.skr, 2ABE’.skr) and returns it to A.
Ciphertext Queries: Each ciphertext query i from (A is of the form

(x| g X), (m,m}) (for slot 1), or
(x)0:X5) (for slot 2),

Upon receiving such a query, 8 does the following:

a) For slot 1 queries:

i. Computes ct; = 2ABE.Enc; (2ABE.pp, 2ABE.msk, x| ,)

ii. Samples @ «— M.

iii. If the query; € &', i.e.
(X’L0 # XZU) OR (X’L0 = Xll,l) and (mg, # m\))

* Sets uf = e and g = 0 and sends ciphertext query (x' ,, (ub, 1))
to the 2ABE’ challenger.

e The 2ABE’ challenger computes and returns slot 1 ciphertext as
ct; = 2ABE’.Enc; (2ABE’.pp, 2ABE’.msk, x| ,, u},).

iv. Else, if the query; ¢ &', i.e.
(X’L0 = x’l,l) and (mg, = m)

 Sets ,uf) =« and ,u"l = « and sends ciphertext query (X’1 b (/16, ,Uil))
to the 2ABE’ challenger.

¢ The 2ABE’ challenger computes and returns slot 1 ciphertext as
ct| = 2ABE’.Enc, (2ABE’.pp, 2ABE’.msk, x| ., u},).

where b’ is the coin chosen by the challenger, which is fixed
throughout the game.

108

v. B defines fi[cty, ct’l] and computes

ct] = LO.Obf(1%, fi[cty, ct|], m}, @).

vi. Sends ct to A.
b) For slot 2 queries:

1. Sends ciphertext query x’2 , for slot 2 to the 2ABE’ challenger. The
2ABE’ challenger computes and returns slot 2 ciphertext as

ct) = 2ABE’.Enc, (2ABE’.pp, 2ABE’.msk, x} ,).

ii. If the query; € S, ie. (x5, #x,)
« Computes cty) = 2ABE.Enc,(2ABE.pp, 2ABE.msk, xg,b,()).
» Defines f>[ct,] and simulates ctj = LO.Sim(14, 112[ct1l] 11otly.

iii. If the query; ¢ S, ie. (x,,=x})

» Samples B — M and computes
cta = 2ABE.Enc (2ABE.pp, 2ABE.msk, X, ,,).

* Defines f>[cty] and computes ct] = LO.Obf(14, f[cta], ct), B).

iv. Sends C’['Z' to A.

4. In the end, A outputs a bit b. If b = b, then B returns b” = 1, else b” = 0, to the
2ABE’ challenger.

We can observe that if b* = 0, then 8 simulated Game,, else Games. Hence, if A

distinguishes between the two hybrids, then 8 wins against 2ABE’ challenger.
Assuming strong Ada-IND security of 2ABE’, we get
| Pr[Ez] — Pr[E3]| < negl(Q).

Admissibility of 8: We show that if A is admissible for strong 2PE security then B is

also admissible for strong 2ABE’ security. Observe that the key queries issued by B are

the same key queries as issued by A. Now consider the challenge queries issued by 8.

109

If there is a function F for which key has been queried, such that ' (x{' b Xézb) =1 then
we need to ensure that ,uél = ,u{‘ (since, 2ABE’ encrypts message in slot 1, the message
equality condition is required for query index j). Since, the challenge queries for the

same attributes are issued by A to B, admissibility of A demands that x{lo = x{ ', and

J1

= m i i Ju_ g1 _ .
0 =my- But, in this case, B takes Hy =M, =a,as desired. [}

m

Claim 3.29. Assume that LO is a secure lockable obfuscation scheme (Definition 3.8).

Then Games and Game, are computationally indistinguishable. That is,

| Pr[Es] — Pr[E4]| < negl(A).

Proof. We show that if A can distinguish between Game; and Games with non-
negligible probability then there exists an adversary 8 who can distinguish between LO
obfuscated programs and simulated programs using A, thus breaking the security of LO.

The reduction is as follows:
1. Upon being challenged by LO challenger, 8 does the following:
a) Samples public parameters and master secret for 2PE as
(pp, msk=(2ABE.msk, 2ABE’.msk)) « Setup (1) and invokes A with pp.

$B also samples a bit b.

b) A issues polynomially many key queries and ciphertext queries to which 8
responds as follows:

Key Queries:
For each key query for a function F from A, B returns
skr «— KeyGen(pp, msk, F) to A.

Ciphertext Queries: To answer each ciphertext query, which is of the form

(Xil,o’xil,l)’ (mf), m"l) (for slot 1), or
(X} 0:X5) (for slot 2),

B does the following:
1. For slot 1 queries:

A. Computes ct; = 2ABE.Enc; (2ABE.pp, 2ABE.msk, x”l’b).

110

B. If (X"L0 = X’i’l) and (mf) = m"l),

e Samples @ «— M.

* Computes ct; = 2ABE’.Enc;(2ABE’.pp, 2ABE’.mskK, x’i b @).

* Computes
ct/ = LO.Obf(1%, fi[cty, ct}], m}, @).

C. Else,

« Computes ct] = 2ABE’.Enc;(2ABE’.pp, 2ABE’.msk,x ,,0)
and defines fi[ct;, ct}].

* Sends fi[cty, ct}], m} to LO challenger.

* The LO challenger returns either an obfuscated or a simulated
program, which 8 sets as ct/.

D. B sends Ct'l' to A.

ii. For slot 2 queries:

A. Computes ct), = 2ABE’.Enc,(2ABE’.pp, 2ABE’.msk, X,).

i i
B. If X50=%5

» Samples 8 «— M
» Computes cty = 2ABE.Enc;,(2ABE.pp, 2ABE.msk, xé o B)-
* Defines f>[ct;] and computes

cty = LO.Obf(14, fa[cty], cth, B).

C. Else if X"Z’0 # Xé’l,

« Computes ct; = 2ABE.Enc; (2ABE.pp, 2ABE.msk, x} . 0).
* Defines f>[cty] and simulates

et/ = LO.Sim(14, 112[et]l jletly

D. Sends Ct’z’ to A.

111

¢) In the end, A outputs a bit b. If b = b, then B returns b” = 1, else b” = 0,
to LO challenger.

If the LO challenger returned obfuscated programs, then B simulated Games, else if
LO challenger returned simulated programs, then $ simulated Game,. Hence, if A
distinguishes between the two games, then so does B between obfuscated and simulated

programs. Assuming LO is secure, we get

| Pr[E3] — Pr[E4]| < negl(Q).

Claim 3.30. Pr[Es] -3 =0

Proof. We argue that the adversary cannot obtain any information of » in Game,;. We
first observe that the only possible way for the adversary to learn information of b is
to make challenge ciphertext queries, since decrypting ciphertexts do not convey any
information of . However, responses to challenge ciphertext queries does not convey
any information of b either as we see below. In Gamey, a challenge ciphertext for slot 1
is computed as ct/ = LO.Sim(14, 11/1lctretll] 11m51). The distribution of ct” depends only
on the lengths of function fi[cty, ct]] and message mz. We observe that | fi[cty, ct|]|
further depends only on the lengths of ct; and ct|, which in turn depends only on the
lengths of the underlying message and attribute. Similarly, challenge ciphertext for slot 2

is computed as ct’z’ = LO.Sim(14, 1121t 1|°t/2|). We can see that Ct’z’ does not convey

any information of b because of the same reason as above. |
]

Applications. By applying the above conversion to two input ABE scheme with strong
security in Sec. 3.6, we obtain a candidate construction of two input PE scheme with
strong security. A caveat here is that the resulting scheme cannot necessarily be proven
secure under LWE in the bilinear generic group model as one might expect. The problem

here is that our conversion uses the decryption algorithm of the underlying two input ABE

112

scheme in a non-black box way, which especially uses the code of the group operations.
To claim the security of the resulting scheme, we heuristically assume that the two-input
ABE scheme in Sec. 3.6 is strongly secure even in the standard model if we implement
the bilinear generic group model with concrete well-chosen bilinear group and then apply
the above conversion. We note that this kind of heuristic instantiation is widely used in
the context of cryptographic hash functions and bilinear maps. We also mention that
we can apply the above conversion to the two input ABE scheme in Sec. 3.7. Since the
scheme is proven secure in the standard model, the construction does not suffer from the

above problem.

3.10 THREE-INPUT ABE FROM PAIRINGS AND LATTICES

In this section, we provide a candidate construction for 3ABE using the structure of
[BV22] and [AY?20] as discussed in Section 3.1. Leveraging ideas from the Brakerski-
Vaikuntanathan construction [BV22], we also obtain a candidate for 2ABE for P — we
provide this construction in Section 3.11. Our 3ABE scheme supports NC; circuits. More
formally, it supports attribute space A; = {0, 1}‘) and any circuit class 7 = {F,}, that
is subclass of {Cs(4),4(1) }a With arbitrary £(1) < poly(4) and d(1) = O(log A), where

Cse(a),4(1) 18 a set of circuits with input length 3£(1) and depth at most d(A4).

3.10.1 Construction

The construction is defined as follows:

Setup(11): Oninput 14, the setup algorithm defines the parameters n = n(1), m = m(A),
k = k(A), noise distribution y, ¥ over Z, 19 = 10(4), 7 = 7(1), 7§ = 7)(4),
7 = 174(1) and B = B(1) as specified in Sec. 3.10.1. It samples a group description
G =(q,G,Gy,Gr,e,[1]1,[1]2). Itthen sets L := (5 + 1)m + 1 and proceeds as

follows.

1. Samples BGG + 18 scheme:

113

a) Samples (A, A;()l) « TrapGen(1", 1™, q) such that A € Zp".

b) Samples random matrix B = (By,...,B3,) « (ZZX’")% and a random
vector u «— Zy.

2. Samples wo — Z;, W « (Z;)**L.
3. Samples BV scheme:

a) Samples C along with its trapdoor C;/l as
0
(C,C.") « TrapGen(12(*Dn 1% g), where
0
CT = (Carr101Coes1.11l - - - 1C320l1Ca2.1 1 Cae411|Cagsa) € (Zm)H Y.

4. Outputs

0 °

op = (A, B, C,u), msk = (A-1 C;wo, W)

KeyGen(pp, msk, F): On input the public parameters pp, master secret key msk and a

circuit F, compute BGG + 18 function key for circuit F as follows:
1. Compute Hr = EvalF(B, F) and By = BHp.
T

2. Compute [A||Br];! from A;OI and sample r € Z*" asr' « [A||Br];!(u").

3. Output the secret key skp :=r.

Enci (pp, msk, X, u): On input the public parameters pp, master secret key msk,
attribute vector x|, message bit u, encryption for slot 1 is defined as follows:
1. Setm = | £]u(1,...,1) € ZE. We define K = 27;v/nk. .
2. Samples LWEsecret S « Z’;X” and error terms ey «— x*, E «
Eiy, « ™, fori € [€], and E;, «— %™, fori € [¢+ 1,3(] and
b € {0,1}.
3. Fori € [£], computes

lr//l',xl’i = S(Bl - xl,iG) + El'sxl,i € Zlqcxm

4. Fori e [€+1,3(], b € {0, 1}, computes

Uip =SB - bG) + E;p € Z".

114

5. Computes ¥3¢41 := SA+E € Z'q‘x’" and 1/@“2 =Su' + eg € Z’;Xl.

6. Sample S3zy; Z7™M, Sy — Zy, {Satsip Yiclapeton) — (Zpm)*, E «
xm €y — x*, Eppip — pFm fori € [€],b € {0, 1}.

7. Compute all possible “BV encodings" for slot 3 attribute x3 and construct 61
as follows:

Ci = (Wi iere)s Wib tierer1200 {CipSip + Eip + Wi bicae4130).
be{0.1} be{0,1}
] = AT T T\ o kL
C+1S3041 + E+ Y3041, CaranS3p,) +€) + 3, +m) € Z)

Here, we assume that the entries of C; are vectorized in some fixed order.

8. Sample 7y, < Z, and

9. Output ct; = ([tx,wol1, [x,C1 © W1

Enc,(pp, msk, x»): On input the public parameters pp, master secret key msk, attribute

vector X;, encryption for slot 2 is defined as follows:

1. Set Ca = (Litms {exi . Hiele)s Lixaems Lisms Lix1), where

~ 1, €Z" ifb=uxy; .
b= 9 * forie€[f]and b € {0, 1}.
Yesip {Om T ith i €[{] {0, 1}

2. Sample ty, « Z’; and output cty = ([tx,/wol2, [thez @ W],.

Encs;(pp, msk, x3): Given input the public parameters pp, master secret key msk,

attribute vector X3, encryption for slot 3 is defined as follows:

1. Compute [(Careixs, |l - - 1C30x, IC3¢411IC3e42) 17! from C_! and sample
short vector ty, such that '
tX3C2€+i,X3,i =0foralli e [£], ty, Cspq1 = tX3C3g+2 =0, as
t1, — [(Coteixs, Il - - - IC3exs 1C3e4111C3e42) T15 (OT).

2. Output ct3 = ty,.

Dec(pp, sk, cty, cty, ct3): On input the public parameters pp, the secret key sk for

circuit F' and ciphertexts cty, ct; and ct3 corresponding to the three attributes xi,

115

x; and x3, the decryption algorithm proceeds as follows:

1. Takes the coordinate-wise pairing between ciphertexts for slot 1 and slot 2:

Computes [vol7r = [tx,tx,]7 and [V]7 = [txltX261 © EZ]T as e(cty, cty).

2. Expands obtained matrix:
Let x = (X1, X2, X3). Expands [V]7 to obtain:

[Vilr = [tx,tx,¥ix;]7 fori € [£], [Viplr = [IXIIX2¢;-J,]T, where

Vi, ifb=x .
I= . ,forie [€+1,2¢],b € {0,1}.
Vi {0 I [1,b €{0,1}

[Vislr = [txtxo Wi + CipSip + Eip)]r fori € [20+1,3¢],b € {0,1},
[Vaza1 7 = [txytx, (C3e4183041 + B + W3041) 7,

T = T T T
[VagsalT = [tx, 1%, (C34283045 + € + Y3pyp +m) 7.

3. Recovers BGG + 18 ciphertext components for third slot:

Letus denote V; ,, as V; fori € [2¢ + 1, 3(].

Computes [te, V7 = [fx,fxytxs (Wi, + Eix,)]7 fori € [2¢€+1,3¢€],

[ty, Vaerlr = [ttty s + E)l7 and [tV)7 = [fhoty (01,,, +
mT +Eg)]T

(because ty,C;, =0 fori € [20+ 1,3(], tx,Caps1 = t5,C30420 = 0)

4. Computes function to be applied on BGG + 18 ciphertexts:

Computes ﬁp,x = EvalFX(F,x,B).

5. Performs BGG + 18 decryption in the exponent:

a) Letusdenote V;,, asV; fori € [+ 1,2(].
b) Computes [tx,V;]7 fori € [2£].
¢) Forms [ty, Vx]7r = [te, Vil ... [[t, Vaclr, ¥ = (11 € Z, 12 € Z)).

d) Then computes

6. Recover exponent via brute force if F(x) = 0:

After simplification, for F(x) = 0, we get v’ = tx,tx, (tx3mT +¢’), where ¢’ is

116

the combined error. Findn € [-B,B] U [-B - [q/2],B - [¢q/K]] U [-B+
[q/K], B+ [q/2]] such that [vo]; = [v']r by brute-force search. If there
is no such 7, output L. In the correctness, we show that i can be found in
polynomial steps. To speed up the operation, one can employ the baby-step
giant-step algorithm.

7. Output 0if n € [-B, B] and 1, otherwise.

Parameters We choose the parameters for the 3-ABE scheme as follows:

m=n""loggq, k =6(ntlogq), g =290

70 = nlogglogm, r=m>le. 20 T = w(y2n(f +1)log g logk),

x = SampZ(3Vn), ¢ = SampZ(6vnm?), B ={(m’n*krr, - 20,

We can set 7; to be arbitrary polynomial such that 7, > 7). The parameter n may be

chosen as n = A€ for some constant ¢ > 1.

Correctness To see correctness, we first make following observations:

1. Letx = (X1, X2, X3), then

C1 0 Co = ({Yix, iere (W] p ieter1.201.0e(0.135 {CipSip + Eip +Wibic[2es1 3000
be{0,1}

S = T T, T T
Car1183041 + E +Y3ph1, Cap083,,, + €0 + Y5, + M),

where

, iy, b=x; .
o= . ,forie[€+1,2¢],b € {0, 1}.

Hence, on expanding V, the decryptor obtains
V[]T = [txltxzwi,xi]T fori € [25]5
Violr = [txtx (CisSisy + Eipp +0ip)]r, fori € [20+1,3],b € {0, 1},

Vierilr = [txllxz(c3€+1§3{’+l +E+yse)]r,

T T =TT T
Vipalr = [, 1%, (C3p4283p40 +€) + Y3, +m)]

[
[
[
[
Here, recall that we represent V; . by V;, fori € [£+1,2¢(].

117

2. Recovering {Yo¢4ixs, Yie[e]» Y3e+1 and Yr3zgn:

Fori € [{],
tX3 V2€+i,X3,,~ = z‘Xl th (tX3 (w2€+i,X3,; + E2€+i,x_3,[) + th C2€+i,X3JSZ€+i,X3’i)

= tX] thtX3 ('7[’2f+l',X3,[+ E2€+i,X3,,‘) (because tX3 C2f+l',X3,[= 0)

t, Vacrl = tx tx, (b (W3er1 + E) + 5, C304183¢41)
= Ix Ixtx, (Y3041 + E) (because tx,C3rp1 = 0)
= Iy lxntg(SA+E+E).

T T T, 4T T
Vi = Ixix (tx, (w3f+2 +m + eO) + ty, C3€+253€+2)

= Iy, Ix,tx; (lﬁz et m' + eo) (because ty,Czpy2 = 0)

= tX,tXZtX3(Su +m' + (e0 + eO))
Representing ty,V; , by t,V; fori € [2¢ + 1,3(] gives us, fori € [2€ + 1,3(],

tX3 Vi = tX'; Vi,xl-

txltxzt)g (‘/’i,xi + Ei,X{)
txltxzt)g (S(Bl - xiG) + Ei,xi + Ei,xi)-

3. Next, observe that:

tX:;‘]X = tX3(V1a~",V2€5V2€+1a~-~’v3€)
= Iy Ixtx (S(B; —x1G) + El,xla .o, S(Bor — x2¢G) + Egg,xzf,

S(Bors1 — X2041G) + Eopit s, + Eovitingnys - - - S(B3g — x3¢G) + B30y, + Eapy,)
= txltXZtX3S((B1, ...,B3) — (x1G, ..., x3,G))

i, by by (B x5 Esexs,) + (0x2ems Eoert xopnrs - - > Edexs,))
= Ix ot S(B =X ® G) + I, Iy, tx, (Ex + Ey;),
(where EX = (El,xl, cee E3€,X3() and EX3 = (OkX2€m9 E2f+l,ng+1’ cee E3€,X3())'

4. Performing BGG + 18 evaluation and decryption in the exponent yields:

V17 = [(t Vigys — (tX3V3£+1l’I +tx, Vx ﬁF,xl'D)]T
= [t I, tx, (SuT +m' +e) +€)) — tx, fx,tx, (SA + E + E)r{
— Iy, Ity (S(B = X ® G) + Ex + Ey) Hr 510 |7
= [ty x,tx; (Su” +m' — S(Ar] + (BHp — F(X)G)r3)
+ 1y, It (€0 + €0 — (E+E)r] — (Ex + Ey)Hpxr]) |7
(- (B—x® G)Hpx = BHy — F(X)G (Lemma 3.2))

118

Replacing BHf by Bp, (ri,12) by r, ty, (eg +Eg - (E+ E)r{ — (Ex+ EXS)I:IRXr;)
by ¢’ and for F(x) = 0, we get:

V17 = [tx,1x, (tx; (Su” +m' = S(A|Bp)r") +¢')]r
= [ty x (tx, (Su” +m" —=Su") +)7 (- (A|Bp)r’ =u')

T,
= I:Z‘XIZ‘XZ (tX3mT + e/)]T = [VO];tXSm +e)

Thus, by brute force search we get 7 = ty,m' + ¢’

. Bounding error e’:

Recall that we set y = SampZ(3+/n), ¥ = SanZ(6\/ﬁm2). By the definition of
SampZ, we have ||€o||w, [[€0]leo < 37, [[Ellco, | Ellco < 3n. and [|E;p lleo, | Eiplleo <
6nm? for i € [3¢] and b € {0, 1}, |It]leo < VT, ||ty lloo < ViTy, and |[Hpxlleo <
m - 2904 where the last inequality follows from Lemma 3.2. Thus, we have

¢’ ty, (e] +€ — (E+E)r] — (Ex + Ex,)Hp 1))
knt,(6n + 6n' mr +24tm’n' 1 - ZO(d))
O(tm’n’ktr, - 2°D) < B

IA

by our choice of B.

. Bounding ty,m":

When message bit b = 0, then tx3mT=O. Forb =1, |g/K] < |tx3mT| < 1\nk -
lg/K] (where K = 27,4/n - k), unless tx3mT =0. Thus, forb =0,n € [-B, B] and
for(b=1,and B < | 5% |),n € [-B—[q/21,-[q/K1+B]U[[q/K1-B, B+[q/21],
unless ty,m" = 0. Observe that [tg,m"| € {0, [£],2-[£],...,7;Vnk-[£]}. Thus,
n can take only 2B + 4Bt;+/nk different values. Since, B, k, 7, are polynomially
bounded, 1 can be found by brute force search in polynomial steps.

The probability that ty,;m" = 0 is non-negligible but bounded away from 1 and
hence this may be amplified as discussed below.

Amplifying Correctness. Above, we set m = u - (¢/K)(1,...,1). Note that for

correctness, we require that ty, m' # 0. However, since we are constrained to sample ty,

polynomially bounded (since the message must be recovered from the exponent), the

probability that ty, m' = 0 is non-negligible, leading to error in correctness. A simple

method to amplify correctness is to simply run the scheme in parallel A times, and output

0 only if all instances output 0. This (standard) trick allows to make the correctness error

119

exponentially small, although with the disadvantage of reducing efficiency. We note that
we can do better by replacing the vector u with A vectors uy,...,u, and providing A
secret keys ry, . . ., r, corresponding to each one. Similarly, we can provide A encodings
of the message bit, decrypt each one of them and output O only if all instances output O.
However, we choose not to clutter the (already complex) formal description with this

added complication for ease of exposition.

3.10.2 Discussion of Security

Compared to [BV22], we require slightly different security requirements for the encodings
(even though neither works formalize this). First, we need the encoding to retain security
even if some of the masks are stripped off, as long as only one encoding for the same
position is revealed. We expect this to be secure since these stripped off encodings are
fresh BGG + 18 encodings and should be secure by BGG + 18 security. Second, in their
case, only a single BGG + 18 secret key is generated per each instance of BGG + 18,
which is sampled afresh for each ciphertext, while in our case, we use the same BGG + 18
instance throughout the system and generate multiple secret keys for it. On the other
hand, in our case, the encodings all live in the exponent, unlike their case, where they live
“downstairs”. Hence, the attacker gets restricted to only linear attacks by GGM whereas

the attacker has more freedom in their construction.

3.11 TWO-INPUT ABE FOR POLYNOMIAL CIRCUITS USING BV22

In this section, we construct candidate two input ABE scheme using the structure of
[BV22] scheme. Unlike other schemes in this chapter, the construction below does
not employ pairings and thus is expected to be post-quantum secure. Besides, it can
support polynomial-size circuits with any depth. Formally, it supports attribute space
Ay = {0,1}YW and any circuit class F = {F,}, that is subclass of {Cae(a),acn) 2 With
arbitrary £(1) < poly(4) and d(4) < poly(4), where Cyz(a),q(a) s a set of circuits with
input length 2£(1) and depth at most d(A).

120

3.11.1 Construction

The construction is defined as follows:

Setup(11) : On input 1%, the setup algorithm defines the parameters n = n(Q),
m = m(Ad), k = k(2), noise distribution y, ¥ over Z, 79 = 19(1), T = 7(1),
7, = 13(A4), 7t = 7:(4) and B = B(A) as specified in Sec. 3.10.1. Let ¢ be the length
of the attributes and d be the maximum depth of circuits. Then the setup algorithm

does the following.
1. Samples BGG + 18 master secret and public keys:
a) Samples (A,A;l) « TrapGen(1”, 1™, q) such that A € Z*".

b) Samples random matrices B = (By,...,Byr) « (ngm)% and a random
vector u «— Zp.

2. Samples (C, C;/l) — TrapGen(lZ"(“l), 1%, g), where
0

C" = (Crer0llCesttll - - - 1C200l1C221 [Caren [Carsa) € (ZH™)* 2.

3. Outputs

pp = (A, B, C,u), msk = (A7}, C).
(
Enc; (pp, msk, X1, 1) : On input the public parameters pp, master secret msk, attribute

vector x| and message bit u, encryption for slot 1 does the following:
1. Setsm = | £]u(1,...,1) € Z. We define K = 27,v/nk.

2. Samples a random secret matrix S « Z’;X” and error vectors/matrices as
e — X E « Y Ky, — ¢ fori € [£], and E;j, — 5" for
ie[C+1,2¢0]and b € {0, 1}.

3. Computes
lﬂi’xl,i = S(Bl - qu) + Ei,xl,i fori € [f],
ir =S(B; —bG) +E;p fori € [€+1,2¢],b € {0, 1},

Wors1 = SA+E, W;az =Su' + eg.

121

4. Fori e [€+1,2€],b € {0, 1}, samples

—~

nxm Q nxm g n
Siv — Z7™, Soer1 «— Zy", Saea — Zy,

—~

Eip — 2P, E }Pm € — x*.

5. Computes ;. = C; »Sip +Eip + iy fori € [£+1,26],b € {0,1},

- S = T T T, T T
Yoer1 = Corr1Soct + E+Yoer1, Yopn = CoraSypn +€) +p, +m.

6. Outputs cti = ({Wix,, Yiele)s (Wb bieler1 201 be(0.1)> Yaes1s Y2es2)-

Enc,(pp, msk, x3): On input the public parameters pp, master secret key msk and an

attribute vector Xy, encryption for slot 2 is defined as follows:

1. Computes [(Cars1l|Cors2l|Critny I - - - ||C2£>,)62,{))T];t1 from C;(/)l and samples

a short vector ty, such that
txz(C2€+1||C2€+2||C€+l,x2,] ” cee ||C2€,X2’[) =0 mod q as

t — [(Corr1lCotsall Costn, Il - - - 1Catn,) 117 (0).

2. Returns ctp = ty,.

KeyGen(pp, msk, F) : On input the public parameters pp, master secret key msk and a

function F, the keygen algorithm does the following.
1. Generates BGG + 18 function key:
a) Computes Hr = EvalF (B, F) and Br = BHp.

b) Computes [A||Br];! from A;! and samples r € Z*"

-
as T — [AlBF]; (u).

2. Returns skp =r.

Dec(pp, sk, cty, cty) : On input the public parameters pp, key skr = r, and slot 1 and

slot 2 ciphertexts cty, cty, the decryption algorithm does the following.

122

1. Parses the public parameters pp as
(A,B,C,u)
and the ciphertexts for slot 1 and slot 2 as

cti = ({Wix,, Helel (Wip Hiele+1.20] be(0.1)s W2es1, Yaes2), Cla = ty,.

2. Computes

- - - T
tX2V = th ("/’l,xl,l ” s ||l/’€,x1,[||'//€+1,x2,1 ” cee ||$2€,x2,(»||¢’2€+1||¢’25+2)-

3. Expands ty, V to obtain

tXZVl',xl’,' = thWi,X],i fOI‘i € [f]a tX2V€+l.,X2’,' = tX2$€+i,xz,i fori € [5]5

= T . 7T
tX2V25+1 - tX2w2f+l’ tX2V2(+2 - tX2¢2f+2'

4. Formsr = (r; € Z’q”,rz € Z’;) and x = (X1, X3).

Let,
(Vl,x1 ” v ||V2€,x2() = VX

5. Computes ﬁp,x = EvalFX(F,x, B).

6. Computes R
V= (tXZV-ng+2 - (tx2V2£’+1r-1r + tXQVXHF,Xr;—))'

7. Outputs 0 if v € [-B, B] and 1, otherwise.

Correctness: To see correctness, we first make following observations:

1. Letx = (x1,X2).

On expanding ty, V, the decryptor obtains, for i € [{],

tXQVl',xl,i = thl/’i,Xl,i
tsz(Bi - xl,iG) + tX2Eisx1,i'

txz V[+i,xz,i = th wfﬂ',xg’i

123

= th(Cf+i,X2,iSf+i,xz,i + Ef+i,x2,i + w€+i,X2,i)
= tXZS(Bf+i - xz,iG) + th (Ef+i,xz,i + Ef+i,xz!i)'

ty, Vors1r = ty, Yors1
= t5,(Cor+1S2041 + E + ¢or41)
= t,SA+t, (E+ E).
T ~T
bV = ol

<T T, T T
= tx, (Cors2Sypn +€) +Uppp, +m)
= ty,(Su' +m") +ty, () +€).

2. Next, observe that:

tXZVX = tXQ(V15"-9stV€+19'~'aV2f)
= t,SB-x®G) +ty, (Ex + Ey,),

where Ex = (Ej x, ..., Eorx,,) and Ex, = (0xscem, Eev1xp15 - - -5 E20xy,)-

3. Finally, we get,

V= txzvgg.'.z - (tx2V2€+1r-1r + tXZVxﬁF,xr-zr)
= ty,(Su’ +m' — S(Ar] + (BHr - F(x)G)r}))
+ty, (6] + € — (E+E)r] — (Ex + Ey,)Hrxr))
=ty,(Su' +m' —S(A|Bp)r") + ¢

= ty, (Su"+m' —Su') +¢’

T

=ty,m +e¢’

4. As discussed in section 3.10.1, the error e’ is bounded by O (¢m’>n*kt7,20(4)), and

tym’ = 0 when b = 0 and tym' < 7k - [%J for b = 1. Thus, for b = 0,

v € [-B,B] and for (b = 1, and B < 4k357), v & [—B, B] unless tym' = 0. The

probability that tym" = 0 is non-negligible but bounded away from 1 and hence
this may be amplified as discussed in section 3.10.1.

124

CHAPTER 4

CONSTANT INPUT ATTRIBUTE BASED
ENCRYPTION FROM EVASIVE AND TENSOR LWE

4.1 INTRODUCTION

In this chapter, we extend the results of Chapter 3 from arity 2 (and heuristic construction
for arity 3) to any constant arity. Our constructions in this chapter are based on
recently introduced lattice based assumptions of evasive LWE [Wee22; Tsa22] and tensor

LWE [Wee22] and have the potential of being quantum secure.

Related Work.
As discussed in Chapter 3, there are very few studies on MIABE and MIPE. Here, we

compare the results in this chapter to those in Chapter 3 and the related work by Francati

et al. [FFMV23].

Comparison with the results in Chapter 3 and in [FFMV23]: The constructions in
Chapter 3 support only arity 2 for NC; and uses LWE and pairings and are not secure
against quantum attacks. The security is proven in generic group model (GGM) or is
based on non-falsifiable KOALA assumption. The constructions in this chapter are based
only on lattice based assumptions and the security is proven in the standard model and
hence has the possibility of being secure against quantum attacks. The assumptions
are new and need more study to understand them better and build confidence in their
plausibility. Francati et al. [FFMV23] provided multi-input PE (hence also ABE)
schemes for the restricted functionality of conjunctions of (bounded) polynomial depth
from LWE. Notably, one of their constructions can support polynomial arity unlike our
results in Chapter 3 and this chapter, which is a plus. On the other hand, their security

model does not support collusions, which is typically the main technical challenge

in constructing ABE and PE even in the single input setting. As another plus, when
restricted to constant (though not polynomial) arity, their constructions can support user
corruption, which our constructions, in Chapter 3 and this chapter, cannot. However we

support a much more expressive function class which is not restricted to conjunctions.

We briefly mention the stronger notion of multi-input functional encryption (miFE)
[GGG™'14], which, as discussed in the previous chapter, generalizes multi-input ABE
and PE. In contrast to MIABE and MIPE, miFE has been studied extensively, and admits
constructions for various functionalities from a variety of assumptions [GGG*14; AJ15;
AGRW17; DOT18; ACF*18; CDG*18a; Tom19; ABKW19; ABG19; LT19; AGT21b;
AGT21a; AGT22]. However, since multi-input FE for NC4 implies indistinguishability
obfuscation (i0) [BGI*01; GGH*13], it remains an important area of study to instantiate
weaker notions such as MIABE and MIPE from assumptions not known to imply
iO. This is particularly important in the post quantum regime, where constructions
of iO are still based on strong, ill-understood assumptions which are often broken
[Agr19; APM20; WW21; GP21; DQV*21; AJS23]. Several prior works therefore focus
on instantiating iO based constructions from weaker assumptions [AY20; AWY20;

Wee22; Tsa22; VWW23; AKYY23], a direction also followed by this work.

4.2 OUR RESULTS

As discussed, current known results for MIABE schemes are quite restricted. In this
chapter, we significantly extend the reach of multi-input ABE schemes by providing the
first construction of MIABE for the function class NC4 for any constant arity from the
recently introduced evasive LWE assumption [Wee22; Tsa22]. Our construction can be
extended to support the function class P by using evasive and a suitable strengthening of
tensor LWE. For the special case of arity 2, we need only the assumptions introduced by

Wee, i.e. evasive LWE for NC; and evasive plus tensor LWE for P (i.e. we do not need

126

Paper Arity Functionality |Corruption|Collusion Assumption
[FEFMV23] | Poly |Conjunctions in P No No LWE
[FFMV23] |Constant|Conjunctions in P Yes No LWE
Chapter 3 2 NC No Yes Koala and LWE
Chapter 3 2 P No Yes Heuristic

This Chapter 2 P No Yes |Evasive and Tensor LWE
This Chapter|Constant NC No Yes Evasive LWE
This Constant P No Yes Evasive and
strong Tensor LWE

Table 4.1: Comparison with Related Work in MIPE. Note that KOALA is a non-standard
knowledge type assumption and “heuristic” means that there is no proof of
security.

to strengthen tensor LWE).!

In more detail, our construction supports k encryptors, for any constant k, where each
encryptor uses the master secret key msk to encode its input (x;, m;), the key generator
computes a key sk for a function f € NC; (or P at the cost of a stronger assumption)
and the decryptor can recover (my,...,my) if and only if f(xi,...,X;) = 1. We
prove security in the standard indistinguishability game defined in Chapter 3 from the
aforementioned assumptions. Using the compiler from Chapter 3, the MIABE schemes
can be upgraded to multi-input predicate encryption schemes for the same arity and
function class. Along the way, we show that the tensor LWE assumption can be reduced
to standard LWE in a special case which was not known before. This adds confidence to

the plausibility of the assumption and may be of wider interest.

We defer details about our strengthening of tensor LWE for P as well as the new
implication discussed above to the technical overview (Section 4.3) since stating them
formally will require heavy notation which we do not want to introduce here. We provide

a comparison with known results in Table 4.1.

! Actually, our definition of evasive LWE is slightly different from that defined in [Wee22]. Please refer to
Assumption 4.6 and the related discussion.

127

Perspective: Connection to Witness Encryption. Witness encryption (WE) is defined
for some NP language L with a corresponding witness relation R. In WE, an encryptor
encrypts a message m to a particular problem instance x. The decryptor can recover
m if x € L and it knows a witness w such that R(x,w) = 1. Security posits that a
ciphertext hides the message m so long as x ¢ L. Brakerski et al. [BJK"18] showed
that MIABE for polynomial arity implies witness encryption — this may explain in part
why constructions of MIABE have been so elusive. Even for smaller arity, there are
nontrivial implications — for instance, the arity 2 MIABE for NC; in Chapter 3 implies a
compression factor of 1/3 for witness encryption, which may be considered surprising.
In the other direction, it is well known that in the single input setting, witness encryption
implies attribute based encryption [GGH"13]. It is completely unclear however, how to
generalize this implication to the multi-input setting — in the setting of single input, the
ABE ciphertext contains a WE ciphertext for an NP statement that embeds the attribute.
If the attributes are distributed amongst multiple parties, the above approach fails and
appears challenging to extend. Thus, MIABE implies new results in WE but not the
other way around — indeed, in MIABE, all encryptors must choose their randomness
independently to construct a ciphertext for their respective slot, whereas in WE, there
is only one encryptor who constructs the ciphertexts for all slots, making it possible to
choose correlated randomness across slots. As we will see, this creates a major technical
hurdle in designing MIABE, which is not present in WE. Also note that MIABE can

subsequently be strengthened to MIPE using lockable obfuscation, as discussed above.

We also note that single input ABE is the strongest application of the stated definition of
WE in [GGH*13]. Since the definition of WE given in [GGH™"13] only hides the message
in the ciphertext when the statement is not in the language, the notion is insufficient to
give any meaningful security guarantee when the statement is actually believed to be true
but the witness is not known, such as solutions to some of the Clay Institute Millennium
Prize Problems, as discussed in [GGH*13]. Hence, we believe that the primitives of

MIABE and MIPE deserve to be studied even from assumptions that are already known

128

to imply WE, such as evasive LWE [Tsa22; VWW23].

4.3 TECHNICAL OVERVIEW
We first briefly recap the techniques used in Chapter 3 and discuss the difficulty in

extending the techniques in Chapter 3 to the construction of any constant arity.

Recap of Chapter 3. As we discussed before, the main difficulty in building an MIABE
scheme is simultaneously fulfilling two opposing requirements: (1) each encryptor
should be able to generate its own ciphertexts independently, (2) these independently
generated ciphertexts should permit some kind of “joining” that lets them be viewed as
multiple components of a single ABE ciphertext, such that decryption can proceed as in
the single input setting. To achieve joining of ciphertext components, existing single
input schemes generate multiple ciphertext components using common randomness.
However, evidently, two independent sources, each generating an unbounded number of
ciphertexts (say Q1 and Q> respectively) cannot even store, much less embed, Q1 - Q2

random strings in the ciphertexts they compute (even if they share a common PRF key).

In the two-input setting, we solve this conundrum by using the beautiful synergy between
the algebraic structure offered by lattice based single input ABE schemes and pairing
based constructions. This synergy was first discovered and harnessed by Agrawal and
Yamada [AY20] in the context of broadcast encryption (a.k.a succinct single input
ciphertext policy ABE for NC;). We notice that the same synergy can be beneficial for

the two-input key policy ABE setting, albeit for different reasons.

In more detail, in Chapter 3, we achieve the joining of ciphertexts via common randomness
by letting each party embed fresh randomness in the exponent of a pairing based group
for each ciphertext it computes. Now, party 1 (respectively 2) has O (respectively Q»)

random elements embedded in its Q (respectively Q») ciphertexts. Using the pairing

129

operation, the dercryptor can compute Q1 - Q> elements by pairwise multiplication in
the exponent. In more detail, for each input, party 1 samples randomness ¢; and encodes
it in G1, party 2 samples randomness #, and encodes it in G;, where G : G| X G, — Gr
is a pairing group with prime order g. Now these ciphertexts may be combined to form
a new ciphertext with respect to the randomness #1f, on G7. This allows to uniquely

separate every pair of ciphertexts, since each pair (i, j) where i € [Q1] and j € [Q>],

will have unique randomness t’i té. We have by security of pairings that these Q1 - Q>

correlated terms are indistinguishable from random in the exponent. This allows for

generating the requisite randomness and solving the difficulty described above.

Fruitful interplay of pairings and lattices. However, generating joint randomness is
not the final goal — the ciphertexts generated using the above joining procedure must
behave like an ABE! Note that, having relied on a pairing, whatever we have obtained
must live in the exponent of a group. Also note that, pairing based ABE schemes have
been rendered unhelpful by this point, since the single multiplication afforded by the
pairing has been used up and can no longer participate in the design of the ABE. Here,
similarly to [AY20; AWY20], we are rescued by the serendipitously well-fitting structure
of a lattice based ABE scheme constructed by Boneh et al [BGG*14]. In [BGG*14]
(henceforth BGG + 18), decryption works as follows: (i) homomorphically compute the
circuit f on ciphertext encodings — this step is /inear even for f € P, (ii) perform a
product of the ciphertext matrix and secret key vector, (iii) round the recovered value
to recover the message. Hence, the first two steps can be performed “upstairs” in the
exponent and the last step may be performed “downstairs” by recovering the exponent

brute force.

Structure of BGG + 18. Let us recall the structure of the BGG + 18 scheme, since
this forms the starting point of our construction. As observed in multiple works,

in BGG + 18, the ciphertext for an attribute x € [£] in BGG + 18 is computed by

130

first generating LWE encodings for all possible values of the attribute x, namely,
{¥ib}iere),pefo,1y and then choosing {y; v, }ic[¢] Where x; is the i-th bit of attribute x. Here,
Vip = S(A; — x;p - G) + noise where A; € ngm are public matrices, s € Zy is freshly
chosen randomness, and G € Z’;X’" is the special “gadget” matrix which admits a public
trapdoor (details not important here). Here, and in the remainder of this overview, we use
noise to denote freshly and independently sampled noise terms of appropriate dimension,
for each sample. Choosing components based on x and concatenating the samples yields

s(A — x® G) + noise, where A € ng‘)’" denotes the concatenation of {A;}c[¢]-

To evaluate a circuit f € P, BGG + 18 observe that there exists an efficiently computable
low norm matrix, denoted by ﬁA, £.x» 50 that the right multiplication of (A —x ® G) by
I’-iA, f.x yields a quantity of the form Ay — f(x)G — since the matrix is low norm, this
can be right multiplied to s(A — x ® G) + noise to obtain approximately s(A — f(x)G)
without blowing up the noise. The decryption key for a function f is a low norm vector
which, loosely speaking, is used in a matrix vector product that allows canceling the

masking term sA r when f(x) = 0, and this in turn allows to recover the message.

Circling back to the construction in Chapter 3, the first encryptor can (roughly speaking)
compute [f1 - ¥x]1, [t1]1, the second encryptor can compute [t - ¥y]z, [f2]2 and
the decryptor can compute [ty yl7, [f1?2]7. Note that randomization by 1, is
absolutely essential for security, else the adversary can potentially recover terms like
s(A —x® G) + noise and s(A — X ® G) + noise in the exponent, which allows canceling
SA by subtraction and leads to a complete break of security. Next, the circuit f can be
evaluated in the exponent as described above by right multiplication with a low norm
matrix and the secret key can be applied by the matrix vector product to obtain the
(scaled) message plus some noise in the exponent. The noise growth can be suitably
bounded for the circuit class NC;, and given [71%;]7, one can recover the message using

brute force discrete log computation.

131

While the construction in Chapter 3 is an important first step towards constructing MIABE
schemes, it is evident that going beyond degree two is difficult while relying on pairings.
While we do consider arity 3, in Chapter 3, by additionally relying on ideas from a clever
lattice based scheme by Brakerski and Vaikuntanathan [BV?22], this scheme is heuristic,
i.e. does not have a proof based on any clean assumption. Thus, it is completely unclear
how to go beyond arity 2 using the techniques developed in Chapter 3, even for NC;. A

natural idea to overcome the barrier of 2 is to rely on lattices in lieu of pairings.

Towards Lattice Based Constructions. Taking a step back, a promising direction
would be to consider the lattice adaptation of the Agrawal-Yamada broadcast encryption
scheme [AY20] recently proposed by Wee [Wee22]. This construction makes important
progress in identifying a clean assumption in the lattice regime that captures the
functionality provided by the pairing without relying on bilinear groups, and can be
used to construct advanced primitives like broadcast encryption and witness encryption
without relying on iO (or the messy assumptions needed to build iO in the post quantum
regime). In more detail, Wee [Wee22] suggested two new assumptions — the evasive
LWE and tensor LWE and used these to construct ciphertext polict ABE schemes with

optimal parameters. We describe his approach next.

Overview of Wee’s approach. The main idea of Wee is to cleverly replace the

randomization in the exponent by tensoring on the ground. In more detail, Wee observes

that the transformation of (A —x® G) to (A s — f(x)G) via right multiplication by ﬁA, Fx

is preserved under tensoring with random low norm vectors r. To see this, note that
s(A®r') + noise = s(Ior’) A + noise

——
Randomized secret

where the latter quantity can be seen as BGG + 18 ciphertext with a tensored LWE

secret. This easily implies that homomorphism is preserved even with tensoring as

132

desired. Hence, one can homomorphically evaluate f on (A —x® G) ® r' to obtain

(Af — f(x)G) ® r' via right multiplication by ﬁA, fx

Importantly, Wee shows that a very natural adaptation of [AY20], obtained by replacing
randomization in the exponent by tensoring can be shown secure under a new and elegant
assumption, which he calls evasive LWE. To support NC, he shows that evasive LWE
suffices, while to support P, one additionally needs another new assumption, which he
calls rensor LWE. The formulation of a relatively simple and general assumption in
the lattice regime that allows to give a proof for a very natural construction of succint
ciphertext policy ABE is a very important contribution which is likely to influence many

future lattice constructions, including ours. We describe these assumptions next.

Evasive LWE. The evasive LWE assumption, introduced by Wee [Wee22] (and
independently Tsabary [Tsa22]), is a strengthening of the LWE assumption which says
that certain extra information, namely Gaussian preimages to LWE public matrices, can

only be used in a “semi-honest” way. Recall that the LWE assumption says that
(B,sB+e) ~. (B,c)

where B « ZZX’”, S «— Z’q’, e «— x" for some low norm “noise” distribution y and
¢ « Zy'. Intuitively, the evasive LWE assumption says that if the adversary is additionally
given some low norm matrix K such that BK = P, which we denote as B~ (P) (as in the
literature, see for instance [Wee22]), for some efficiently sampleable matrix P, then the
adversary can exploit this extra information only via the limited means of computing
the product (sB + e) - B~!(P) ~ sP and trying to distinguish this from uniform. The
assumption says that this is the only additional capability that the adversary obtains,

besides its existing strategies for breaking LWE.

Evidently, the distribution of P here is of crucial importance — for instance, if P = 0, then

B~!(P) is a trapdoor for B and can be used to easily break LWE. On the other extreme,

133

if P is chosen uniformly, then this assumption reduces to standard LWE. The “playing

ground” of evasive LWE is in the middle — namely, when it holds that
(B,P,sB+e,sP+¢€) ~. (B,P,c,¢)

then

(B,sB +¢,B~'(P)) ~. (B,c,B!(P)).

Here, the former condition is referred to as the PRE condition and the latter as POST. The
actual assumption used by the scheme is more complex and includes more LWE samples
that use the same secret s as well as some (carefully chosen) auxiliary information aux.
To formalize the PRE condition, the assumption must specify an efficient sampler Samp
which outputs the correlated LWE matrices. We defer the formalization to Section 4.5;
here we only remark that the assumption captures in the lattice setting, the guarantees
provided by the generic group model for pairings, namely the intuition that an adversary
can only use legitimate operations to learn anything. It is therefore very natural (in
hidsight) that this assumption should be able to replace the reliance on the generic group

model in the constructions of [AY20; AWY20].

Tensor LWE. The tensor LWE assumption states that correlated BGG + 18 samples
tensored with different random vectors remain pseudorandom. In more detail, for all

X1, - ,Xp € {0, 1}, it posits that

A {s(T,®r/)(A-x;® G) +e;, r,-T}l.e[Q] ~ A, {c;, rl.T}ie[Q]

x¢ ¢ ¢
where A « ZZ m§ ZZm,ei — Z)Zf’)l(,ri — @£7,Ci — Zq’".

Note that there are no Gaussian preimages in the above assumption. In our work, we
show that for the special case where x; = 0 Vi € [Q], tensor LWE reduces to standard

LWE (Lemma 4.10). In more detail, let Adv be an attacker for Tensor LWE with x; = 0

134

. . . . T T T
foralli € [Q]. Adv is given either A, {S(In ®r;)A+e,r; }iE[Q] or A, {ci, r; }iE[Q]. We
prove that under the LWE assumption, Adv has a negligible probability of distinguishing
the left hand side from the right hand side. This implication was not known before, and
increases our confidence in the assumption, which is new and not so well studied. Please

see Lemma 4.10 for details.

Generalizing Tensor LWE. While tensor LWE as stated by Wee suffices for our
construction of 2-ABE for P, for extending the arity to any constant k, we require a

.....

indexed by ji, ..., jx € [Q], it holds that:

.....

ie[k],ji,....jk€[Q]

~

~ A {cijiorig} i€[k].j1...jx€l0]

k
where A — Z¥" s — 71" e, — Z)g')’(, rj, — D

. ‘m
Z.y» Cirii < Ly’ -

It is easy to see that the generalized tensor LWE yields Wee’s version of tensor LWE for

k=1.

Two Input ABE from evasive and tensor LWE. As a warmup, we first describe our
construction of MIABE for arity 2. For NC;, our construction can be proven secure
by relying solely on evasive LWE while for P, we additionally need tensor LWE. We
will show subsequently how to generalize this to any constant arity. In this chapter, we
consider a modified syntax of MIABE where there is only a single encryption slot which
is public key, and multiple key generation slots, which require the master secret key. This
syntax better fits our construction and easily implies the standard definition of MIABE
which has multiple encryptors that have as input the master secret key, and a single key

generator who also requires the master secret key — please see Section 4.4.1 for details.

Given the above discussion, a natural approach to construct MIABE schemes from lattices

135

is to try adapting the ideas in Chapter 3 by replacing the use of pairings with tensoring,
analogously to Wee’s approach of adapting the Agrawal-Yamada broadcast encryption
scheme to lattices in Wee. We show that in the end, this approach indeed can be made to
work, but via several failed attempts which require new techniques to overcome, and a
complex security proof, which requires proving several new lemmas. Below, we outline
the pathway to our final construction, detailing the hurdles we encounter and the ideas

towards their resolution.

Attempt 1. We attempt to design a scheme using tensor based randomization from
Wee to instantiate the template of Chapter 3. We sketch the construction at a high level

below. We suppress dimensions for ease of readability in this overview.

1. The master public key is (Ag, A1, Az, B,u) where A, A,, B are sampled uniformly
and u is sampled from the discrete Gaussian distribution. The master key is a
trapdoor for A and a trapdoor for B.

2. The encryptor, given input (X, u) where x is the attribute and u is the message,
samples randomness s along with requisite noise terms and computes

sAg + noise, s((A;—x®G)®I)+noise, s(Gu' ®I) +noise, sB + noise
———— ———
co c (o)]

if u = 0 and else samples random elements of appropriate dimensions if y = 1.
Note that the encryption procedure is public key.

3. The first key generator (to be interpreted as the second encryptor), given input msk
and attribute y samples Gaussian random vector r and computes

-1 T\ T
sky =B ((A2-y®G)®r'),r
It outputs this as the secret key for y. Note that the randomizer r is used to prevent
collusion attacks — in its absence, an attacker can obtain samples corresponding to

y and y (i.e. complement of y) and launch attack as discussed earlier.

4. The second key generator, given msk and function f as input computes sk =
(AollA f)_l (Gu") and outputs this as the secret key for f.

5. The decryptor does the following:

136

a) Computing ciphertext component for second attribute: It combines the
ciphertext ¢3 with the first secret key sky to obtain s((A2 -y ®G) ®rT) +noise.

b) Randomizing ciphertext component for first attribute: From ¢ and sky, it
computes (s((A; —x®G)®I)+noise) I®r') = s((A;| -x®G) ®r') +noise

¢) Producing a complete BGG + 18 ciphertext: Concatenating the results of the
previous two steps, we get

s((A1]|A2) - (x]ly) ® G) ® r) + noise

Note that this looks exactly like a BGG + 18 sample except for the tensoring
with r’. As discussed above, Wee shows that homomorphic computation is
preserved under right tensoring with r'.

d) BGG +18 Homomorphic evaluation: ~ Computing the circuit f
homomorphically on this BGG + 18 sample, we obtain

s((Af - f(x,y)G) ®r") + noise

If £(x,y) = 0, then we get s(A; ® r') + noise. Concatenating with the
ciphertext component ¢, we get

s(Aol|A;) ®r') + noise

e) Applying BGG + 18 secret key. By right multiplying the second slot secret
key (Aol|Af)™'(Gu™) ® I to this, we get

s(Gu” ®r') + noise

f) BGG + 18 decryption with tensoring. Multiplying ¢, with I® r', we get
s(Gu™ ® rT) + noise. Subtracting from the output of the previous step, we
get a small value when u = 0. Thus, we recover u when f(x,y) = 0.

The above scheme provides functionality and does not appear to have any immediate
attacks. However, we are unable to prove security of this scheme based on the
evasive/tensor LWE assumption. This is because the evasive LWE assumption
accommodates Gaussian preimages for fixed matrices, namely terms of the form B~ (P),
where B is a random matrix and P is structured, but does not know how to handle terms
such as (Ap||A f)_l (Gu'). Since A £ is highly structured, this is incompatible with the

assumption.

137

Attempt 2. 'To handle this barrier, in our next attempt, we use an idea by Wee to
remove the problematic term (A0||Af)" (Gu'). Note that the purpose of this term
is to create an LWE sample with secret s and matrix A;. In more detail, as shown
in step 5e, the term s(A||Af) ® r') + noise obtained by homomorphic evaluation is
combined together with the secret key in the second slot (Agl|Af)™! (Gu') to obtain
s(Gu” ® r") + noise. As shown in step 5f, this term is then used to unmask the

ramdomized ¢z, i.e. s(Gu” ® r') + noise by subtraction to recover .

So as to do away with the requirement of revealing (Ag||Af)~! (Gu'), we provide an
alternate route to recover u. We change the second slot secret key sk ¢ to B (A ru®l),
and use this together with the term sB + noise provided in the ciphertext to obtain
S(Asu ® I) + noise. This allows us to cancel the mask sA y obtained via homomorphic

evaluation and brings us closer to relying only on evasive and tensor LWE.

Below, we detail only the modifications we make to our previous attempt:

1. The encryptor, given input (x, 4) where X is the attribute and u is the message,
samples randomness s along with requisite noise terms and computes

sAg+noise, s((A; —x®G)®I) +noise, stGu—wH=+noise, sB + noise
—_——— ———
€o c () c3

if u = 0 else samples random elements of appropriate dimensions if u = 1.

2. The second key generator, given msk and function f computes sk ; = B'(A e
I). At this junction, we let u be chosen independently by each user instead
of fixing it in the public parameters to prevent the adversary from requesting
keys for correlated functions and obtaining correlated LWE samples of the form
SA fuT + noise with the same u and same s.

3. During decryption,

a) BGG + 18 homomorphic evaluation is simplified. We only compute the
circuit f homomorphically on this BGG + 18 sample, to obtain

s((Af - f(x,y)G) ®r") + noise

If £(x,y) = 0, then we gets(A y®r") +noise. There is no need to concatenate
with ¢y (this is no longer even provided) but we must right multiply by (u' ®T)

138

to obtain S(A fuT ® rT) + noise. Recall that u is low norm, hence does not
blow up the noise.

b) The second slot key B~'(A s’ ®I) is right multiplied to ¢3 to get
s(Asu” ®I) + noise. By right multiplying with (I ® r'), we now recover
the masking term s(A ju ® r") + noise which can be subtracted from the
output of the previous step. If this is small, learn that u = 0.

Importantly, at this point, we can hope to use evasive LWE to “get rid” of the preimages
Bl ((A2-y®G)® rT) and B-!(A ru’” ®T) from the distribution seen by the adversary.
This essentially reduces the task of proving the security of the scheme to that of proving

the pseudorandomness of the terms
s((A; —x® G) ®) +noise, s((A, —y®G)®r') + noise, s(AfuT ®I) + noise

Unfortunately, we are still not done, even by relying additionally on tensor LWE. This
is because tensor LWE only posits pseudorandomness of LWE samples with respect to
secret s(I ® r). In particular, the presence of the terms s((A; — x ® G) ® I) + noise and
s(A fuT ® I) + noise cannot be handled by invoking tensor LWE since they do not have
the right form (in particular no r term appears in these). Therefore, we must handle these

next.

Attempt 3. Let us first explain how to deal with the first term s((A; —x® G) ®
I) + noise. As in Wee, the idea is to “mask" the problematic term, in this case,
s((A; —x® G) ®I) + noise, with a pseudorandom term so(Ag ® I) + noise such that
there is a way to provide an “unmasking” term using which, we can recover a simulatable

term s((A; —x ® G) @ r") + noise but nothing else is revealed 2.

In more detail, we make the following changes:
1. Wereplaces((A;—x®G)®I)+noise by ¢ = s((A; —x®G) Q@) +so(Ag®I)+noise.

2. Next, we put some terms so that the ciphertext along with the first slot of the secret

The informed reader may notice the similarity with randomized encodings [AIK04] and pair/predicate
encodings [Att14; Weel4].

139

key jointly generates d := so(Ag ® r") + noise, which is an “unmasking" term.

3. To obtain the desired term, we compute ¢(I®rT) —d = s((A| —x® G) ®r) +noise.
Furthermore, it is easy to show that so(Ao ® I) + noise is pseudorandom by LWE (since
So is a fresh randomness introduced only for this specific purpose), which implies that ¢
is also pseudorandom. This allows us to conclude that d does not reveal anything more

than the desired term, since ¢ and the desired term determine d.

At this stage, the scheme looks like the following, where for brevity we again omit to
mention components that are unchanged.
(A1 —-x®G)®1

Ag®1
noise for u = 0 (and random elements for u = 1).

1. The encryptor computes ¢; = (8, So) +noise and ¢, = (s, So)B+

A -y®G)®r'
2. Theﬁrstslotkeyissky<—B_1 (A2-y®G)or

Ay ® I‘T)

3. The second slot key is sk; « B!

A’ ®1
a) and u. This key is essentially

unchanged except padding the inner matrix with zeroes to account for the longer
secret.

4. Now, from the ciphertext component ¢, and the first slot key, we get terms
s(A, —y®G) ®r'") +noise andd = so(Ag ® r') + noise. The second term d is
the new term that we will make use of as described above.

5. Now, we compute ¢c(I®r’) —d = s((A; —x® G) ® r) + noise. Using
pseudorandomness of ¢, we can argue that d did not reveal anything except
s((A; —x® G) ®r) + noise.

At this stage, we obtained a term that tensor LWE can handle, namely s((A; —x® G) ®

r) + noise.

Attempt 4. Next, we must deal with the second problematic term s(A fuT ®I) + noise.
It is tempting to try the same strategy as above but unfortunately, this does not work. To

see why, let us try to replace s(AfuT ®I) + noise with S(AfllT ®1I) +s;(D®I) +noise,

140

where D is some fixed matrix. We can then modify the scheme so that the ciphertext
along with the first slot secret key generate the unmasking term s;(D ® r') + noise.
Similarly to the above, this allows us to derive the desired term s(A fuT ®r') + noise

which can be handled by tensor LWE. One may hope that this suffices to prove security.

However, we run into another problem, namely, that of collusion resistance. In particular,
an adversary may make multiple key queries for the second slot and use the same ciphertext
and first slot key for decryption. These allow her to recover s(A fuT ®I)+s;(Der")+noise
and s(A f/u’T ®1) +s;(D®r") + noise for different f and f’. Even though we want
to hide two terms s(A su' ® I) and s(A fru’T ® I), there is only a single masking term
si(D®r') +noise, since s; would be chosen by the encryptor and r by the first slot key —

this is clearly problematic.

To fix this, we ensure that the masking term is randomized by a user specific randomness
corresponding to the second slot key. Namely, we replace s(A fuT Q1) +s;(D®I)+noise
with s(AfuT ®I)+s;(D®t") +noise, where t is user specific randomness. We then use
the ideas discussed previously to ensure that the ciphertext and second slot key generate
s1(D ® tT) + noise. This mask is removed similarly to the previous case and we may

obtain s(A su’ ® I) + noise.

Attempt 5. Unfortunately, this still does not suffice. Recall that we wanted to generate
the term s(A fuT ®r') + noise in order to invoke tensor LWE, which the above term
does not let us do. To achieve this, we replace s(AfuT Q1) +s;(D ®t) + noise with
s(A fuT D +s;(D®t®]I) +noise, i.e., we added some space to further randomize the
masking term with r’. We then let the ciphertext and secret keys for both slots jointly

generate s; (D ® t" @ r") + noise.

To do so, we do the following:

1. Include s;B + noise in the ciphertext and B~!(C ® r') in the first slot key.

141

Multiplying them yields s;(C ® r") + noise.

2. Include C~!(D @ t") in the second slot key.

Putting these together enables us to recover the masking term as:

(si(C®r')+noise) - C' D@t =s;Ior")C-C ' (D®t") +noise
=s;I®r")(D®t") +noise

=s;(D®t" ®r") + noise

The above term contains randomness s; chosen by the encryptor, r chosen by the first
slot key and t chosen by the second slot key. Intuitively, this randomness triple separates
the triple of ciphertext, first key and second key, from any other triple even if some
components of the triple are reused. This allows to separate the “thread” of computation
corresponding to a given triple, from all other threads, and hopefully allows us to prove

security. This brings us to our final scheme.

We provide the complete construction below. The vector u above is now changed to a

matrix U for syntactic reasons.
1. Set mpk = (Ao, A1, Az, B, C,D), and msk as trapdoors for B and C.

2. To encrypt a message u against attribute x, do the following. If 4 = 0, do:

(A1 —-x®G)®1
Apl

a) Compute ¢; = (s, Sp) + noise

b) Compute ¢, = (s, So, $1)B + noise

c¢) Output cty = (¢1,¢2)
If 4 = 1, output random elements in the appropriate space.

3. To compute the first slot key for attribute y, sample

(Ay-y®G)®r'
sky < B! Ag®r!
Cor'

142

4. To compute the second slot key for function f, sample U, t and compute

AfU®I
s, —B'| 0 | Cc'(Det’), U, t
Det' oI

To decrypt, first compute d; = ¢; (I ® r’), (dy, d3, dy) = ¢ - sky, ds = ¢ -8k 1, dg =
ds (I®I‘T) andd; = d4-sky . Then computedg = d;—d3,dg = (dg||d2)ﬁ(A1||A2),f,(x||y)U,
dip = d¢ — d7. Finally, if djp — d9 = 0, then output 0, else 1. To see the correctness,

observe:

d =s((A; -x®G)®r") +s9(Ag ®r'") + noise,

d, =s((A, —y® G) ®r') + noise,

d; =sp(Ag®r') +noise, dy=s;(C®r')+noise,
ds=s(A;U®ID) +s; (Dot ®I)+noise, ds=s(A;Usr")+s(Det’ ®r')+noise,

d=ds-C'DetH=s5,(Dot" ®r") +noise, dg=s((A; —x®G)®r'") + noise

dy =s((A; - f(x,y)G) ®r")U +noise, dip=s(A;U®r") +noise

If f(x,y) =0, then djg — d9 = noise when u = 0, else it is large. Above, the underlined
terms d, dg mimic the ciphertext components of single input BGG + 18, computed as
if with shared randomness by a single party holding both x and y. Note that all the
machinery developed above was to be able to simulate the single party setting in the two

party setting, where the ciphertexts are produced using independent randomness.

Proof Sketch. For ease of exposition, we sketch the proof for the case where only
a single key is generated for both the slots. First, we observe that we need to invoke
evasive LWE twice, once to handle terms B~ (-) and once for C~!(-). Of these, the first
application is standard, following Wee while the second one requires more care as it uses

a structured LWE, as in [VWW23].

Having removed Gaussian preimages with respect to B and C, we are required to show

pseudorandomness of the following terms:

c;=s((A1-x®G)®I) +sp(Ap®I) + noise, ¢, = (s,s9,51)B + noise,

143

3=5((A2-y®G)®r') +noise ¢4 =50(Ag®r') + noise,
¢s=s;(Co®r') +noise, c¢= s(AfUeI) +si(D® t" ® I) + noise

;=5 (D&t ®r') + noise

Above, note that c¢3, ¢4, €5 are generated using the secret key for the first slot and the
ciphertext, ¢¢ is generated using the ciphertext and secret key of the second slot, and ¢7 is
generated using evasive LWE with structured secret, namely by combining C~!'(D ® t")
and ¢5s = s;(I® r')C + noise. This yields s;(I® r')(D ® t") + noise which is equal to

C7.

We now proceed to sketch the hybrid structure of the proof.
Game 0: This is the real game.

Game 1: Express ¢4 in terms of ¢; and a term that tensor LWE can handle:

cs=ci(Ior’) - (s((A; -x®G) ®r') + noise)

c4’

The only difference between Game 0 and Game 1 is the distribution of the noise term
which can be handled by noting that ¢; (I®r"T) ~ s((A; —x®G) ®r") +50(Ao®1")
and using the standard smudging lemma (Lemma 4.5).

Game 2: We now change ¢; and ¢, to random by using the power of LWE with
secret Sg.

Game 3: Now, we express ¢7 in terms of ¢ and a term which is friendly with
tensor LWE:
c;=cs(Ior’) —s(A;U®r") + noise

’
<

Again, the change follows using the smudging lemma.
Game 4: Change ¢s and ¢ to random. Note that cs(I®r") ~ s(A,U® ") +
siD®t' ®r") + noise and ¢5 = s;(C @ r') + noise. Hence, it suffices to show
pseudorandomness of

si(C®r") +noise, s;(D®t' ®I)+noise)

We argue this via a new lemma by using only (standard) LWE.

Game S: At this point it remains to argue that c3, ¢ and ¢/, are pseudorandom.

144

These constitute:
s(Ior)((A1]|A2) - (x]ly) ® G) + noise, s(I®r')(A,U) +noise
and we can directly plug in the tensor LWE assumption to argue this.

Please see Section 4.6 for the detailed proof.

Extension to Constant Arity. Next, we outline how to extend the above idea to the

setting of constant arity. The basic idea is to let the secret key for slot i € [k] generate

s((A—x,-®G)®I®r,.T®I)+s,-(D®I®rl-T®I)+noise

masking term

where r; is the user specific randomness associated with the secret key for the i-th slot.

In addition, we also prepare other terms so that the ciphertext and secret keys can

collaboratively generate the unmasking terms as:
s;(D® r{ ® - ® rZ) + noise Vi € [k]
Given the unmasking term, the decryptor can obtain
s(Ai-x,®G)®r| ®---®r]) +noise

A similar strategy also works for masking s(A U ® I) and we can show that the adversary

can only obtain
S(A-x®G)®r{ ®---®r;) +noise, s(A;U®r{ ®---®r;) +noise

which are LWE samples w.r.t randomness s(I® r{ ® - -- ® r[). We refer the reader to

Section 4.7 for the complete construction.

On Circuit Depth. As discussed above, for our MIABE for NC;, we rely only on

evasive LWE, even for constant arity. For our MIABE for P, we require evasive and tensor

145

LWE for arity 2, but for general k, we need to generalize tensor LWE as discussed above.

To remove the need for (any) tensor LWE in the restricted case of NC; circuits, we
use low norm A; and switch out G for I, as suggested by Wee. We also leverage the
observation by Wee, that a weaker version of homomorphic computation is still possible
in this setting. In addition, we show that when A; and G are changed as above, LWE
samples w.r.t X obtained by combining ciphertexts and secret keys are indistinguishable
from those that are computed using fresh randomness for all combinations of ciphertexts

and secret keys.

In more detail, leti = (iy, ..., i;) denote the ciphertext queries in the k slots which are
being combined for decryption. Then, we show that

; T o T . i :
{s((A—x‘@I)@r’l‘ ®...9r't)+n0|se} e {Sil i (A—x‘®I)+n0|se}
i1,..,ik€[Q] i1,..,ik€[0]
where s;, . ;, is a unique, freshly sampled secret for the combination i = (iy, ...,).

Intuitively, the shortness of A and I is used to argue that:
i i]T ikT . i]T ikT . i :
s((A—x'@D)®r] ®...®r})+noise ~. (s(I®r] ®...®r/)+noise)(A—x'®I)+noise

. i T Al . . .
which in turn allows to express s(I ® rll' ®...® r’k") + noise as s;,_;, by iteratively
;T
separating out rlj’ , and adding noise to obtain a fresh secret®. Please see Section 4.7 for

details.

Organisation of the chapter. The rest of the chapter is organised as follows. In
Section 4.4, we provide the preliminaries used in this chapter. In Section 4.5, we discuss
evasive and tensor LWE assumptions and define new implications of tensor LWE. We
construct 2ABE for P from evasive and tensor LWE in Section 4.6. In Section 4.7, we
provide the constructions for constant arity, where we construct MIABE for NC; and for

P in Sections 4.7.1 and 4.7.3, respectively.

3The informed reader may be reminded of the Naor-Reingold argument [NR97] used to construct a PRF
from DDH or its lattice analogue [BPR12].

146

4.4 PRELIMINARIES

Notation used in this chapter. We begin by defining the notation used in this chapter.
We use the same notation as in Chapter 3, unless otherwise stated. By default, a vectoris a
row vector in this chapter. In addition, we use the following notation. For any two vectors
x and y (resp. matrices X, Y), x||y (resp. X||Y) represents horizontal concatenation of
vectors X and y (resp. matrices X and Y). For any n > 0, I, represents an identity matrix

of size n. When n = m, we denote I,,, by only I and I® denotes I,; = I ® - - - ® I for any
———

] i times
integer i.
For two distributions D1, D, the notation D =, D, (resp. Dy =; D») are defined in

the same way as in Chapter 3. In addition, we write D = 9, when D; and D, are

perfectly indistinguishable.

4.4.1 Multi-Input Attribute Based Encryption

Following Chapter 3, we define multi-input Attribute Based Encryption (ABE) below. As
described in the introduction, we use a modified syntax in this chapter to better align with
the syntax in [Wee22]. A k-input ABE scheme is parametrized over an attribute space
{(A)*} 1en and function space {7, } 1en, Where each function maps {(A)%} 1en to {0, 1}.
Such a scheme is described by procedures (Setup, Enc, KeyGen,,..., KeyGen,_,,

KeyGen,, Dec) with the following syntax:

Setup(11) — (mpk, msk): The Setup algorithm takes as input a security parameter and

outputs a master public key mpk and a master secret key msk.
Enc(mpk, Xo, 1) — Cty, ,: The encryption algorithm takes as input the master public
key mpk, an attribute xg € A,, and message u € {0, 1}, and outputs a ciphertext

Cty,,,.- The attribute string X is also included as part of the ciphertext.

KeyGen,(msk, x;) — sk;y, for 1 <i < k — 1: The KeyGen algorithm for the i slot

147

where i € [k — 1], takes as input the master secret key msk, and an attribute
X; € A, and outputs a key for slot i, sk;x,. Again, we assume that the attribute

string x; is included as part of the secret key.

KeyGen, (msk, f) — ski r: The KeyGen algorithm for slot k takes as input the master

secret key msk and a function f € #; and outputs a key sky ;.

Dec(mpk, Ctx, .1, SK1x;, - - - » SKk—1x;,_,» SKk,) — 't The decryption algorithm takes as
input a ciphertext cty, ,, k keys sk x,,...,SKi-1x,_,, and sk s and outputs a
string u’.

Next, we define correctness and security. For ease of notation, we drop the subscript A in

what follows.

Correctness: Forevery A € N, u € {0, 1}, Xg,...,Xx-1 € A, f € F, it holds that if
f(X(), Cee, Xk—l) = 0,4 then

mpk, Enc(mpk, Xo, 1),
Pr |Dec =u

KeyGen(msk, x;), ..., KeyGen,_, (msk, xx_1), KeyGen, (msk, f)

=1 —negl(Q)

where the probability is over the choice of (mpk, msk) « Setup(1%) and over the

internal randomness of Enc and KeyGen,, ..., KeyGen,.

Definition 4.1 (Ada-IND security for k-ABE). For a k-ABE scheme
k-ABE = {Setup, Enc, KeyGen,, ..., KeyGen,_,, KeyGen,, Dec}, for an attribute
space {(A2)*}1en, function space {F;} e and an adversary A, we define the Ada-IND

security game as follows.

1. Setup phase: On input 14, the challenger samples (mpk, msk) « Setup(14) and
gives mpk to A.

“We follow the convention in lattice based cryptography where the decryption condition is reversed with
respect to the output of the function.

148

2. Query phase: During the game, A adaptively makes the following queries, in an
arbitrary order.

a) Key Queries: A makes polynomial number of key queries for each slot, say
p = p(A). As a j-th query for slot i, A chooses

Xi,j leE[k—l]
fi ifi =k,
where x; ; € A, and f; € F,. The challenger computes
sKix;,; = KeyGen,;(msk,x; ;) ifie [k—1]
sk, = KeyGen, (msk, f;) ifi =k

and returns it to A.

b) Challenge Query: A issues a challenge query for encryption. A declares
(x0, ((o, i1)) to the challenger, where xg € A, is an attribute and (ug, u1) €
{0,1} x {0, 1} is the pair of messages. Then, the challenger samples
B « {0, 1}, computes ctg = Enc(mpk, Xo, 15) and returns it to A.

3. Output phase: A outputs a guess bit 3’ as the output of the experiment.

For the adversary to be admissible, we require that for every fi, ..., f, € ¥, it holds that

fie(X0, X1, - - s Xk—1,j,_,) = 1 forevery ji,..., jk € [p].

We define the advantage Adv@f’:é'lgg (1%) of A in the above game as

Advlljfj:élE’\l,R(lﬂ) = [Prexpy-age (1Y) = 118 = 0] = Prlexp_agea(1Y) = 118 =1]].

The k-ABE scheme k-ABE is said to satisfy Ada-IND security (or simply adaptive
security) if for any stateful PPT adversary A, there exists a negligible function negl(-)
such that Adv@fj,fé'gg(l’l) = negl(A).

Definition 4.2 (VerSel-IND security for k-ABE). The definitions for VerSel-IND security
for k-ABE is the same as Ada-IND security above except that the adversary A is required
to submit the challenge query and key queries to the challenger before it samples the

public key.

149

Comparing with the MIABE Definition in Chapter 3: We note that the definition of
KABE in this chapter is equivalent to the one in Chapter 3, except that the encryption
algorithm that encrypts the message with an attribute is a public algorithm in this
chapter, while it is a secret algorithm in Chapter 3. In both definitions, the message
is associated with only a single attribute, which as shown in Chapter 3 is sufficient.
In more detail, Enc(mpk, x, 1) above is same as Enc;(msk, x, i) in Chapter 3, except
that Enc; is a secret algorithm while Enc is a public algorithm. KeyGen;(msk, x;) is
same as Enc;;; (msk, x;) in Chapter 3, KeyGen, (msk, f) is same as KeyGen(msk, f)
in Chapter 3. Further, note that since the encryption algorithm in this chapter is a public
algorithm, it suffices to consider that the adversary issues only one challenge query of
the form (xo, (o, 1£1)), while it can issue polynomially many key queries for each slot
i € [k] similar to Chapter 3, where the adversary can issue polynomially many key
queries and encryption queries for each slot. Finally, note that since the challenge bit
B is encoded only in the ciphertext returned by the (public) encryption algorithm, the
distinction between the stronger and weaker security notions in Chapter 3 disappears in
this chapter. Thus, the security definition given above is same as the stronger security

defined in Chapter 3.

4.4.2 Lattice Preliminaries
We use the standard LWE assumption as defined in Chapter 2. We also use the low-norm

version of LWE defined as follows:

LWE with Low-Norm Samples. The following lemma states that the LWE problem is

hard even when the public matrix is chosen from a low norm Gaussian distribution.
Lemma 4.1 (BLMR13). Let k = k(1), m = m(A) and g = q(A) > 2 be integers. Then

if LWE(n, m, q,y) hardness assumption holds then for any PPT adversary A we have

| Pr[A(A,sA +x) — 1] = Pr[A(A,u) — 1]| < negl(1)

150

where A «— Z)gfrm, S «— Z';, X — Z)g’y, u«— Z’;, k > 6nlogq and o = Q(;/nlog q).

Trapdoors. We recall the trapdoor sampling algorithms defined in Chapter 3. In this
chapter, we use a slightly different notation to be consistent with the notation used in

[Wee22].

Let us consider a matrix A € Z’qlxm. Forall V € Z’qlxm/, we let A~1(V, y) be an output
distribution of D%‘,;(’"' conditioned on A-A~!(V,y) = V. A y-trapdoor for A is a trapdoor
that enables one to sample from the distribution A~'(V, y) in time poly(n, m, m’, log q)
for any V. We denote a y-trapdoor for A by A} . We also define the special gadget
matrix G € Z" as the matrix obtained by padding I, ® (1,2,4,8, ...,2M°¢41) with
zero-columns. The following properties had been established in a long sequence of
works [GPV08; CHKP10; ABB10a; ABB10b; MP12; BLP*13].

Lemma 4.2 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.
1. Given A, one can obtain A7 for any v’ > 7.
2. Given A, one can obtain [A||B];! and [B||A];! for any B.

3. There exists an efficient procedure TrapGen(1”,1™, q) that outputs (A, A;Ol
where A € ZZX’" for some m = O(nlogq) and is 27"-close to uniform, where

70 = w(y/nlog glogm).

Lattice Evaluation. In this chapter, we use the following abstraction of the evaluation
procedure in previous LWE based FHE and ABE schemes. We follow the presentation
by Tsabary [Tsal9].

Lemma 4.3 (Fully Homomorphic Computation [BGG*14). There exists a pair of

deterministic algorithms (EvalF, EvalFX) with the following properties.

* EvalF(B,F) — Hp. Here, B € Z" and F : {0, 1} — {0,1} is a circuit.

* EvalFX(B, F,x) — I/-iB’F,X. Here, x € {0, 1}¢ is a binary string whose first bit is
0 and the second bit is 1 and F : {0,1}¢ — {0, 1} is a circuit with depth d that

151

ignores the first and the second bit of the input. Then, we have
[B-x® G]Hp rx = BH; — F(x)G mod g,
where we denote [x1G]| - - - ||xrG] by X ® G. Furthermore, we have
Hllo <m 209, |[Hppylleo < m-20.
Finally, we have that the topmost m rows of I’-\IB, F.x constitutes an identity matrix.

* The running time of (EvalF, EvalFX) is bounded by poly(n, m, log g, 2¢).

The above algorithms are taken from [BGG*14], and are slightly different from those
described in Lemma 3.2, which are taken from [GV15]. Please refer to Chapter 3 for the
difference between them.

Remark 5. As pointed out in [KNYY20] (See also [BV15b]), we need some entry of
X to be 1 to support arbitrary F. We therefore assume that the second bit of x is 1.
Furthermore, we assume the first bit of x is 0. This assumption is introduced to make sure
that the topmost m rows of fIB, F.x constitutes an identity matrix, which is not guaranteed
for the evaluation algorithms in [BGG*14]. As we explain below, this can be ensured
easily by modifying the evaluation algorithms in [BGG*14]. Suppose that we have
EvalF’" and EvalFX’ without this property. Denoting x = (0,x’) and B = [By||B’], we
have

[B'-x' ® G|H, ., = B'H}, - F(x)G mod g,

X
where F’ is the same function as F except that it ignores only the first bit,

ﬁi;,,F,’X, = EvalFX(B’, F’,x’), and EvalF(B’, F’) — H; We then define the new

N I
evaluation algorithms EvalF and EvalFX as EvalFX(B, F,x) = Hp rx = and
H;‘"’ X/
I
EvalF(B, F) =Hf = . It is easy to see that the new evaluation algorithms satisfy
H/
FI

all the desired properties. In our work, we implicitly assume that x input to the circuit F
always has 0|1 as its prefix so that the above lemma holds and will not explicitly write

the leading bits for the sake of notational simplicity. In our context, this means that the

152

first two bits of an attribute x associated with a ciphertext should be O||1.

Low Norm Variant. We also consider the low norm variant of the lattice evaluation
algorithm defined in [Wee22], where B has low-norm and G is replaced with L.

Lemma 4.4. Fix parameters m, €. Given a matrix B € 7mmt and a circuit F -
{0,1}¢ — {0, 1} of depth d, we can efficiently compute a matrix Hg € Z™>™ such that
|HF||o = (||B||oom)0(2d) and for all x € {0, 1}, there exists a matrix ﬁB,F’X g Ztmxm

with |Hp.rxlle = (IBlleom)®) such that
(B -XQ® Im) ’ ﬁB,F,X =BHp - F(X)I,

Moreover, ﬁB, rx is efficiently computable given B,F,x. We use EvalF(B, F),
EvalFX(B, F,X) to denote the algorithms computing Hp, ﬁB, F.x respectively. Finally,
the topmost m rows of ﬁB, F.x constitutes an identity matrix.

Remark 6. The condition that the top most m rows of ﬁB, F.x constitutes an identity
matrix can be satisfied by adding suitable modifications to the evaluation algorithms

without this property. See Remark 5 for the detail.

Smudging Lemma. We will also require the standard smudging lemma.
Lemma 4.5 (Smudging Lemma [WWW22). Let A be a security parameter. Take any
a € Z where |a| < B. Suppose y > BA®Y). Then the statistical distance between the

distributions {z : z < Dz, } and {z+a : z «— Dz} is negl(A).

4.4.3 Tensors
In this work, similarly to [Wee22], we use the tensor product techniques. Let A = (a; ;) €

Z;>" and B € Z3. The tensor product is defined as:

al,lB s al,nB

A®B:=| : L ezt

amle am,nB

153

Throughout the chapter, we will heavily use the mixed-product equality, stated as follows.

LetA € Z>", B € 27, C € Z;" and D € Z%,
(A®B) - (C®D) = (AC) ® (BD) € Z"**"".
The mixed-product can be naturally generalized following
A'®---9AY - Ble - 9B =(AB")® - - ® (A'BY).

Note that we adopt the same convention as in [Wee22] where matrix multiplication takes

precedence over tensor products, i.e. A ® BC = A ® (BC).

4.5 ASSUMPTIONS AND NEW IMPLICATIONS
In this section, we discuss the evasive and tensor LWE assumptions. Our variants of these

assumptions differ slightly from the original formulation by [Wee22] as discussed below.

4.5.1 Evasive LWE

Below, we state a variant of the Evasive-LWE assumption which will be useful for our
constructions.

Assumption 4.6 (Evasive LWE). Letn,m,t,m’, g € N be parameters and A be a security
parameter. Let y and y’ be parameters for Gaussian distributions. Let Samp be a PPT

algorithm that outputs
Sez)™ Pez, aux € {0,1}
on input 1*. For a PPT adversary Adv, we define the following advantage functions:
ARRE(Q) = Pr[Advo(B,SB + E,SP + E/, aux) = 1] — Pr[Adv((B, Co, C’,aux) = 1]

AT (2) = Pr[Advi (B, SB + E, K, aux) = 1] - Pr[Adv; (B, Cy, K, aux) = 1]

154

where

(S, P, aux) « Samp(14),
B — ZZX’",
CO — Zi;’Xm’ C/ — Zl;’xt’

m’'xm ! m’ Xt
E—D; "E « D7/

K «— B~!(P) with standard deviation O (y/m log(q)).

We say that the evasive LWE (EVLWE) assumption holds if for every PPT Samp and

Advj, there exists another PPT Advg and a polynomial Q(-) such that
ARRE (1) > ARST(1)/Q(1) ~ negl().

Remark 7. In the above definition, all the entries of E’ are chosen from the same
distribution Dz, ,-. However, in our security proof, we often consider the case where
some entries of E" are chosen from Dz, ,- and others from Dz ,~ with different " > x”.
The evasive LWE assumption with such a mixed noise distribution for E’ is implied by
the evasive LWE assumption with all entries in E” being chosen from Dz ,. as above
definition, since if the precondition is satisfied for the latter case, that for the former case
is also satisfied. To see this, it suffices to observe that we can convert the distribution
from Dz ,~ into that from Dz ,- by adding extra Gaussian noise.

Remark 8. In the above, we chose y’ to be smaller than y following [VWW23]. This
makes the precondition stronger, which in turn makes evasive LWE weaker.

Our assumption is closely related to the evasive LWE assumption that appeared in Wee
[Wee22] with minor differences. In Wee, the secret S is chosen uniformly whereas in
our assumption, the secret can be structured and output by the sampler, subject to the
pre-condition being true. On the other hand, in [VWW23], S is the public matrix and
can be structured, while B is secret and is random. An additional difference is related

to the auxiliary input. In Wee, aux contains all the coin tosses used by the sampler

155

— this suffices to rule out obfuscation based counter-examples where aux may contain
information of the trapdoor for P in a hidden way. On the other hand, in [VWW23], the
coins of the sampler are private, and aux contains information including certain Gaussian
preimages. They argue that their assumption nevertheless avoids the obfuscation based
counter-examples, since their auxiliary input does not contain trapdoor for the matrix P.
In both their and our cases, aux is derived from the trapdoor for P or related information
that should be kept hidden, but it does not contain the trapdoor itself. We may therefore
expect that there is no space for embedding an obfuscation into our auxiliary input,
similarly to [VWW23]. We also note that as observed in [VWW23], Tsabary’s variant
of evasive LWE is less conservative than ours and theirs, since her definition allows aux

to depend on B.

In the security proof of our constructions, we sometimes want to include information
dependent on S into the auxiliary information. However, this makes the corresponding
evasive LWE assumption stronger and not desirable. The following lemma allows us to
do this without strengthening the assumption under certain conditions. In the lemma, we
separate the auxiliary information into two parts aux; and aux,, where aux; is typically
the part dependent on S. The lemma roughly says that if aux; is pseudorandom, then we
can apply the evasive LWE with respect to a modified sampler whose aux; is replaced
with a random string to derive the conclusion on postcondition distribution.

Lemma 4.7. Let n,m,t,m’,q € N be parameters and A be a security parameter. Let x

and ' be Gaussian parameters. Let Samp be a PPT algorithm that outputs
Se Z’(’]’l'xn’ aux = (aUXl’ aUXZ) €S x {O, 1}* and P € ZZXt

for some set S. Furthermore, we assume that there exists a public deterministic poly-time

algorithm Reconstruct that allows to derive P from aux,, i.e. P = Reconstruct(aux,).

156

We introduce the following advantage functions:
ALRE (2) := Pr[Adv(B, SB+E, SP+E’, aux;, aux,) = 1]-Pr[Adv(B, Co, C’, ¢, aux,) = 1]

ALOST' (1) := Pr[Adv(B, SB +E, K, aux;, aux,) = 1] - Pr[Adv(B, Co, K, ¢, aux,) = 1]

where

(S, aux = (aux;, aux,), P) « Samp(1%),
B Z"
Cy « ZZI”/X”’, C «— Z’;/X’,c — S
£ D e o

K «— B~!'(P) with standard deviation O(ymlog(q)).

Then, under the Evasive-LWE (cited above in Assumption 4.6) with respect to Samp’ that

PRE’

outputs (S, (¢, auxz), P) for random ¢, if A, g,

() is negligible for any PPT adversary
Adv, so is ﬂf\g\]f’ (A) for any PPT adversary Adv.

Proof. By the assumption, we have
(B,SB + E,SP + E’, auxj,aux;) =, (B,Cy,C’,c,auxy). This in particular implies
(B,SB + E,SP + E’, auxy) =, (B, Cy, C’, aux,) since discarding the term making the

task of distinguishing the distributions harder. This further implies
(B,SB+E,SP+E’, ¢, auxy) ~. (B, Coy, C', c,aux;)

since adding random term ¢ chosen independently from the other terms does not make
the task of distinguishing the the distributions easier. Applying the evasive LWE with

respect to Samp’ defined in the statement, we have

(B,SB+E,K, c,auxy) =, (B, Cy, K, ¢, auxy).

157

To complete the proof, it suffices to show
(B, Co, K, auxy, auxy) ~. (B, Cp, K, ¢, auxy).

To show this, we first observe that the precondition implies (aux;, aux;) =, (¢, auxy),
since discarding the terms making the task of distinguishing the distributions harder.
We then observe that (B, Cy, K) can be sampled publicly given aux;. This suffices to
complete the proof, since having extra terms that can be computed efficiently from the
given terms does not make the task of distinguishing the distributions easier. To sample
(B, Co, K), we first sample B with the trapdoor as (B,B;OI) «— TrapGen(1*, 1™, q)
where 79 = w(m) < O(mloggq), compute P by P = Reconstruct(aux,),
and finally sample K < B~ (P, O(\/nTg(q))).]

4.5.2 Tensor LWE

In this section, we define the tensor LWE assumption introduced by Wee [Wee22. Then,
we provide new arguments supporting the assumption.

Assumption 4.8 (Tensor LWE). Let n,m, q,¢,Q € N be parameters and vy, y > 0 be

Gaussian parameters. For all xq,--- ,xp € {0, 1}¢, we have
T T T
A {s(IL;®r/)(A-x;®G) +e,r, }iE[Q] ~ A, {c;r; }ie[Q]

where A «— ZZX[’", S — ZI", e Z)é’”}(, r] — DY ¢ Zf;’".

To gain confidence in the tensor LWE assumption, we study conditions under which it
can be reduced to standard LWE. To begin, we recall the following lemma which is
implicit in [Wee22]. The lemma says that a variant of the tensor LWE assumption holds
under the standard LWE assumption if A matrices are chosen from Gaussian distribution
and G is replaced with I in certain parameter settings.

Lemma 4.9 (Implicitly proved in [Wee22). Letn,m,q,{,Q, 5 € N be parameters and y,

x. and y be a Gaussian parameter satisfying m = Q(nlog q), y = A°W, y = yoy1*W,

158

Forall x,- -+ ,xg € {0, 1}, LWE(n, Q + m, q, x0) hardness assumption implies

A s, or)(A-x;®L,) +e, rl.T}l.e[o] A, {es, r,-T}l.e[ol

nxfm mn a. tm LT m . tm
where A «— DZ,y , S — Zq , € — Z)ZVX,rl. — Z)Z’y,c, — Zq .

4.5.3 New Implications for Tensor LWE

We now introduce a new lemma that also proves the same implication between LWE and
Tensor LWE in another particular case. Notably, the lemma shows the hardness for the
case where A is chosen uniformly at random rather than from a Gaussian distribution,
albeit with the downside of assuming x; = 0 for all 7.

Lemma 4.10 (Tensor LWE with {x; = 0};). Letn,m,q,{,Q, B € N be parameters and

X0, X, and 'y be a Gaussian parameter satisfying m = Q(nlogq), v = Q(+/nlog q), and

¥ = yxod“WD. Then, LWE(n, m, q, xo) hardness assumption implies
A fs @ rDA+er]} o = A {enrl}

nxtm mn . tm LT m . tm
where A «— Zq ;S — Zq , 8 — Z)Z’X,rl. — Z)Z”,c, — Zq .

Proof. Let Adv be an attacker for Tensor-LWE with x; = 0 for alli € [Q]. Adv is given

cither A, {s(I, ® r/)A +e;,x]}_ or A, {c;r[} .. We provide a proof to show that

€[0] i€[Q]
under the LWE assumption, Adv has a negligible advantage of distinguishing the left

hand side from the right hand side.
Go : Advis given A, {s(I, ®r))A +e;, rl.T}l.e[Q].

G : Werewrite s(I,, ® rl.T)A + €; using the tensor decomposition of s € ZZ’”. In other

words,
m
S = Z Sj ® €,
J=1

where €; are the canonical vectors of Z/ and s; € Zj. Letusfixanindex 1 <i < Q

159

G22

and rewrite the i-th sample. We get

s(L, ®rH)A+e; =37 (s;@€) - (L, @r))A+e
= Z;."zl(sj ® ejriT)A +¢;
——
:=r;[j] scalar

:Z;'nzl ri[/] * S ‘A +e,

where r;[j] is the j-th entry of the vector r;. Hence, in this game, Adv is given

A,{ZI’,‘[j]'Sj'A+el‘,l';~r} .
i€[Q]

j=1
This is a conceptual change : G| = Gp.

We now add some extra noise to the distribution to introduce an LWE instance.
Define e;. — Z)é”;(, forall j e [1,m]. In this game, the attacker is given

m
A, {Zri[j] (sj-A+e)) +e,~,r,T} .
ie[0]

J=1

Note that this game is different from the previous game only in the noise term. In
the previous game, the noise is ¢; for the i-th sample, while it is e; + > ; ;[/] - e;.
in this game. Since we have ||2; r;[] - e;.||OO < poly(A)yxo and y = 1M .y y,
we can apply Lemma 4.5 to conclude that this only introduces a statistical change:

G2 g Gl.

: In this game, we replace each (s; - A + e}) by a uniform vector c;. — Zg’“. The

attacker Adv thus gets
n
A,{Zri[j] ~C}+ei,rl-T} :
i=l i€[Q]

This game is computationally indistinguishable from G, under the standard LWE
assumption: G3 ~, Gs.

160

G4 : Letus define C’' :=| : [|and obtain
/
cm
m .
Zj:l ri[Jj] 'C;'+e1 r,l €]
: = - C o+
m . / / —
Zj:l ro []] : Cj +€p rQ secret €0
public error

In this game, we replace r;C’ + ¢; by a uniform random vector ¢; « ng. Hence
the adversary is given
-
A, {ci 1] }ie[Q] .

This game is computationally indistinguishable from Gs: we use LWE with short
public matrix and large secret [BLMR13], which is implied by the standard LWE
(See Lemma 4.1). Hence, G4 ~. G3.

In the last game, the distribution corresponds to the random case, which allows to

conclude the proof.]

We can introduce a corollary that follows from Lemma 4.10 where A is replaced by
A-x®G.

Corollary 4.10.1 (Tensor LWE with the same x;). Let n,m,q,{,Q €N, xo, x, and y be
parameters defined as Lemma 4.10. Let x € {0, 1}¢. Then, LWE(n, m, q, xo) hardness

assumption implies

A s, ®r)(A-x®G +e, riT}l.E[Q] ~ A, {c;, rl.T}l.e[Q]

mxtm mn . tm T m) tm
where A «— Zq , S — Zq , € — Z)Z’X,rl. — Z)Z,y,c, — Zq .

What prevents Lemma 4.10 to be proved in the general case? The proof of
Lemma 4.10 cannot be easily adapted for arbitrary x;. Following the same proof strategy,

we have to prove the pseudorandomness of the following terms:

s(Lier)(A-x,8G)+e =2;ri[j]-(s;- (A-x®G)+¢e)) - X;ri[jle] +e.

161

However, it is not possible to replace s; - (A —x; ® G) + e;. with random vectors as is
done in Section 4.5.2, if we are given the term for multiple i with different x; and for the

same s;. Thus, the approach cannot be directly transferred.

4.5.4 New Implications from LWE

In this section, we provide new lemmata under the LWE assumption which will be useful
for our constructions. We believe these may be of broader applicability.

Lemma 4.11. Let n = n(1), m = m(1), N = N(1), g = qg(1), v = v(1), xo =
xo() € 20 ¥ = ¥(2), and k = O(1) be parameters satisfying m = Q(nlogq),
x(A) = (myxo)k. If LWE(n,Q,q, xo) holds, then the following distributions are

computationally indistinguishable:
= T
{le,...,jk =s(Iy®r;; ® - ®r

k
where s ng’” , Tij, «— O

j]a---ajk € [Q]

Proof. We prove this by induction. The case of £k = 1 follows from LWE with short
public matrices [BLMR13] (Lemma 4.1). Here, we prove the statement for k = 7 + 1
assuming it is is true for k = 7. To show the indistinguishability, we start from the
distribution on the left hand side and gradually change it to that on the right hand side.

We first change the distribution of {¢;, ;.. }j.....j.,, so that they are sampled as

.....

J2seesd T4l

/’ Nm
where e o Z)Z, (rvxo) ™ for ja,..., jr+1 € [Q]. We claim that this is statistically

indistinguishable from the original distribution. To see this, we observe that

T T ’ T
(S(IN ®Ly®ry;, ® - ® rT+1»j‘r+l) te), jm) (IN ® rl,]'l) R

.....

162

T

= T T . .. / T . .
= s(Iy® r;,®r;® - rTH,jm) +e, i (IN ® rl,jl) +e€ i

~ e T S
ejl,--~,]‘1'+1 ~s ej2 Jr+1 (IN ® rl,j]) + e]l,--~,]‘r+1

,,,,,

by the smudging lemma, since we have y > (myyo)™! and ||e;.2 o (IN ® rlle)Hoo <
In the next step, we replace each s}z ,, Wwith random vectors. ~ Namely,

—d T .
Cllvdrst = Sjy (IN ® rl,jl) T € e

.....

where s}z L ZqN . We can see that this change is computationally indistinguishable,
by applying the induction hypothesis for each combination of indices (j», . .., jr+1). We

then use the induction hypothesis for the case of k = 1 to replace {c;, . ;.. }; with

.....

random vectors for each combination of j, ..., jr+1 one by one. This brings us to the

distribution where all ¢;, are random vectors. This completes the proof of the

----- jT+1

lemma. []

Lemma 4.12. Letn =n(1), m =m(A), N=N(A), g =q(1), x = x(1), and k = O(1)
be parameters. If LNE(n, (m + 1)XN, q, x) holds, then, the following distributions are

computationally indistinguishable:

({Bi},.e[o,k], s(Bo ® I&) +e,....s(B; @ 1) ve, ... sBy+ ek)

~¢ ({Bi}ie[0.4]> 05 €1, - - - 5 Ck)

i i k k . k
where B; «— ZI" N ¢; — DgXN, andco, ¢y, ..., ¢, «— Zp N fori € [0, k], s — Z2™.

Proof. We prove the lemma by induction. First, the statement is trivially true when

k = 0. We then prove that the statement is true for k = 7 + 1 assuming it is true for k = 7.

163

To show this, we first observe that any x € ngm can be written as X =) jc[,n] X;j ® €;

. T
using X; € Z;" where €; is the j-th canonical unit vector of dimension m. We then have

sBieL ™ e =) (0Bl) el)+) «ee

J€lm] jelm]

Z (Sj (Bl‘ ® I;?Z(T_i)) + e,"_/) ® €;
J€[m]

fori € [0, 7] where we decompose s and €; as$ = 3’ ;c(,,) S; ® €; and €; = X ;¢ (] €;,j €.
We also have
SBT+1 + eT+1 = Z SJ(Ian ® GJ)BT‘I'] + eT+].

Jelm]

Therefore, omitting {B; };c[0,r+1], the input to the adversary is

i€[0,7]

({S(Bi oI ™) + ei} ,SBriq + er+1)

= Z (Sj (Bl ® I,?;(T_i)) + ei,j) ® €;) Z Sj (Ian ® fj)B‘r+1 t+e€ri1
J€lm] i€[0,7] J€lm]

. Ci|1 Q€+ Z (Sj(B,' ® I;?;(T_i)) + e,-,j) ® €; s
Jj€[2,m]

i€[0,7]

Cry1 t+ Z Sj(Ian ® 6j)BT+1

J€l2,m]
= C1 Q€+ Z (Sj(B,' ® I,?;(T_i)) + el-,j) ® € ,Cril
jel2.ml ie[0,7]
Re C,1®e€+ Z Ci.j ®E; > Crl
jel2.ml ie[0,7]
= ({ci}ie[o,‘r] ,Cr+1)

where ¢; «— ZZ’HIN and ¢; ; < Z?TN . In the third line, we used the induction hypothesis

164

for secret 8’ := s; and matrices

B; € Z>N! ifi € [0,7 — 1]
B =

(B || (Lym~ ® ej)BT+1) € ZZXN(MH)mT ifi=1

and the parameter N’ = (m + 1)N. Note that the number of columns in each B is at
most N’m' and thus the indistinguishability follows from the induction hypothesis and
the assumption LWE(n, (m + 1)™!N, g, x). The indistinguishability of the fifth line
also holds from the induction hypothesis similarly to the third line. Here, we apply

the induction hypothesis for each j € [2, m] one by one, by setting secret s” := s; and

matrices B} = B; for all i € [0, 7]. This completes the proof of the lemma.

4.6 TWO-INPUT ABE FROM EVASIVE AND TENSOR LWE

4.6.1 Construction

In this section, we define our construction of 2ABE for P using evasive LWE
(Assumption 4.6) and tensor LWE (Assumption 4.8). As discussed in Section 4.1, when
restricted to NCy, our construction can be modified to rely only on evasive LWE. We
defer the details of this modification to Section 4.7 and focus on circuit class P for this

section.

Let £ be the length of the attribute in each slot. The construction supports general circuits
with bounded depth d and the decryption is possible when f(xp||x;) = 0, where X is the
attribute associated with a ciphertext, x; is the attribute associated with the first slot key,

and f is the function associated with the second slot key. Below I refers to I,,.

Setup(11): The setup algorithm takes as input the security parameter A and does the
following:
o Sample Ag, A, Ay «— ZZX’"‘); (B, B;BI) — TrapGen(14, 2nm + nm?, (2nm +

nm*)w); (C, C;Cl) « TrapGen(1%, nm, nmw), where w € O(logq); D «
anm'
q

165

* Output mpk = (Ap, A, B, C,D), where A = (A]|A;), msk = (B;;, C;CI .

Enc(mpk, x¢, u): The encryption algorithm takes as input the master public key mpk,

an attribute xo and message bit u € {0, 1} and does the following:

e If u =1, sample ¢; « Zgﬂzf, ¢y — Z;anﬂ?mz)w.

¢ Else,

2
— Sample s, sg < ng and S| «— ZZ’” .
2p (2nm+nm?)w
- «— Dn — .
Sample error vectors e Z)Z,xl , € Z)Z’ -

(A —-x0®G) 1

— Compute ¢; = (s, Sp) Aol
0

+e;.

— Compute ¢ = (s, 80,51)B + €.

* Output cty, = (¢, €2).

KeyGen,(msk, x;): The keygen algorithm for slot 1 takes as input the master secret key

msk and the slot attribute x; € {0, 1} and does the following:

e Sample r « Dgy.

(A-x;9G) 1"
e Sample Ly, < B! Agr' ,TB |
Cor'

* Output sk; x, = (r, Ly,).

KeyGen,(msk, f) The keygen algorithm for slot 2 takes as input the master secret
key msk and slot function f, which is a function represented as a binary circuit

f:{0,1}?¢ = {0, 1} and does the following:
e Sample t « Z)m,y, U« Z)%;m.

* Compute H; = EvalF (A, f) and Ay = AH;.

166

AfU®I
 Sample My <« B7'[| 0,2 |,78|andN; « C1 (D& t), 7).
Dot oI

* Output sky, s = (t, U,M/,Ny).

Dec(mpk, cty,, sk x,, Sk, r) The decryption algorithm takes as input the ciphertext Cty,

key sk x, for slot 1, and key sk for slot 2 and does the following:
* Parse cty, as (¢, ¢2), SKyx, as (r,Ly,) and sky ¢ as (t, U, My, Ny).
» Compute fIA,f,(Xo”Xl) = EvalFX(A, f, (xo[|x1)).

* Compute the following:

di=c;, (d, d3, dy) = oLy, ds = oMy,
ds =Ny, dj=di(I,,®r")—d;, d=dsIr") - dsds,
d; = (d/|ld2)Ha, ,(x,x)) U, ds = dy — d.

Note that dg is a matrix of size nmw X m and d; for all i # 6 are vectors.

o If ||dg]lec < Bo (Where By is as defined in the Sec. 4.6.1) then output u’ = 0,
else output 1.

Correctness. Here, we show correctness of the scheme.

When u = 1: We first show the correctness for the case of u = 1. For an honest run of
the protocol, d; is distributed uniformly at random over its domain. Then, since r # 0
with overwhelming probability and thus I, ® r' is a full-rank matrix, d] is distributed
uniformly at random over its domain. Then, since the topmost m rows of I/:IA, Fo(xollx1)
constitutes an identity matrix by Lemma 3.2, (d ||d2)ﬁA,f,(x0||x1) is distributed uniformly
at random over its domain. Finally, since each column of U is chosen from Z)?Z’fy, with
overwhelming probability, there exists i € [m] such that the i-th column of U is not a
zero vector. This in turn implies that that the i-th entry of d7 is distributed uniformly
at random over Z,. Since we set By/q = A7“W) | the probability that the decryption

algorithm falsely outputs O is negligible as desired.

167

When u = 0: Next, we show the correctness for the case of 4 = 0. For an honest run of

the protocol, we have

di=c;=s((A1—-x®G)I) +s0(Ag®I) +e.

Let (e’z, e’3, e;) =e - Ly,

db=s(A,-x,9G)Qr") + €,

d; =sp(Ag®r) + €,

dy=s(Cor’) +ée,

ds =s(A;UD) +s;(D@t' 1) + e, where €} = e; - My

d/

| 1s computed as

d, = diI,or)-d;
= 3((A1 =% ®G)®T) +s9(Ag®T) +e1)(Lr ®1') —5o(Ag ®1") — €}
= s((A;1 =% ®G)®r") +50(Ag®1") —59(Ag®T") + ¢/
= s((A;-x%®G)®r") +¢/

Here €] = e; (L ® r’) - e’3

d/

5 1s computed as

ds(I®r') —dyds

(sA;UD +s (Dot o) +ef)(I@r") — (51 (C®TT) +€,)Ns
s(AfU®rT) +siDot'@r)—s;(DRt' @r') + el

= s(AU®r") +e!

d;

where we use (C®rT)Nf = CNf®rT = D®t'@r'" and define e =€ (I®rT)—e;er
on the third line.

d; is computed as

d; = (d)lld2) - (Ha, /(s U)
= ((5(A1-%®G)®r") +€))|[(5((A2 - X1 ® G) ® 1) +¢)) - (Ha £,(x,x))U)
= (s((A1llA2 = (Xollx1) ® G) ® ") + (€]]1€})) - (Ha £, (xoix)U)
= s((As - f(xollx)G) ®r")U +¢
= s((Ay - f(xollx)G)UT") +¢
= s(A;Uer")+e, if f(xolx1) =0

168

where we define €/, := (e’1’||e’2)I’:IA, f.(xollx;) U on the fourth line.

cdg=dy—-d;=s(AU®r") +e, —s(A;URr") — e/ =&, — e/ which is small
(< o).

Therefore, the decryption algorithm outputs 0 as desired.

Error Bound: The error term is bounded as follows. Let Sy denote the error bound.

O T
l1€71leo + ll€5 Il (€7 lle5)Ha £, xolix)) Ulleo + l€5(X @ 1") — €;Nyleo

= |l(e1(Lue®r") — € lle))Ha £ (xox) Ullo + ll€5(T @ 1) — €Nl

< ((x1y + x218)BY + x2TBY + X27B7C) poly (m)
since (&), €}, €;) = e;Ly, and e5 = e;M
< po.

Parameters. We set the parameters as follows.

n =poly(a,d), m = 0(nlogq), 75 = O(+/(2nm + nm?) log q),
7c = O(y/nmlogq), B = (2m)?, y=x1 =",
x3=xs=xe=yx14°M, x7=x3xaBya”V, xs =Wy,
x2 = xsA“W, Bo = By teTexix2A°W, q = Boa“t.

In the above, x3, x4, x5, X6, and y7 are the parameters that only appear in the security

proof.

4.6.2 Security

Here, we prove the following theorem, which asserts the security of our scheme.
Theorem 4.13. Assuming evasive LWE (Assumption 4.6), tensor L\WE (Assumption
4.8), and L\WE, our construction for 2-input ABE for P satisfies very selective security
(Definition 4.2). Moreover, for the restricted class NCy, our construction for 2-input

ABE relies only on evasive LWE.

Proof. To prove the security, we need to prove the indistinguishability of the following

169

two distributions. Let Q. and Qg be the number of slot 1 and slot 2 key queries,
respectively. In the following, for simplicity, we let Q. = Q5 = Q, which can be assumed

without loss of generality.

Distribution Dy:

(A —-x09G) 1
mpk, c1 = (s, s0) +e;, ¢ =(s,80,81)B+e

Ag®1

fskin,, = (L M- {skas = (10 ’Mff’fo)},-e[Q]

Distribution Dy:

2 2
mpk, ¢ — ZZ[l” ¢ — Z((Jan+nm w

{okums, = (Lo gy foes = (60U NG)]

where X is the attribute for the encryption, Xy 1, ..., Xj ¢ are the key queries for slot 1,
f1, ..., fo are key queries for slot 2, and Skl,xl,i (resp., Skz,fj) 1s secret key for x; ; (resp.,

f;) for slot 1 (resp., slot 2). In particular, we have

(Ap — X, ®G)® l‘;r

-1
LXl,i <B Ap® l‘;r »TB

and
Af].Uj o |

My, B'[| o T |, Ny« c’! ((D®th-),Tc)~

nmxm?
Det; @I

We note that we have f;(xol|x1;) = 1 forall i, j € [Q] by the definition of the security

game. We can see that Do and D are the views of the adversary when y =0and u =1

are encrypted, respectively. We then apply our variant of evasive LWE (Lemma 4.7)

170

assumption for matrix B with the sampler Samp that outputs (S, P, aux = (aux;, aux;))

defined as follows:>

S = (s,50,81)

(A -x0®G)R1
¢ = (s,80) + ey,

Ag®l

auxi

aux, = (X(),Xl,l, - ,Xl,Q,fl, - ,fQ,coinsﬂ,rl, R o TN P ,tQ,Ul, - ,UQ,

Nfl’ .. .,NfQ,AO,Aa C’D)

Py = ((Az—X1,1®G)®1‘I||"'||(A2—X1,Q®G)®l'£)
Pl = (Ag®r{|---l|Ag® 1))
P, = (Cer]|-Cory)

AU ©1 A,LUpel
Py = U U

Dot/ ol Det, el

P
P = P, P;

P,

where coinsg is adversary’s coin. By Lemma 4.7, to prove that Dy and D; are
computationally indistinguishable, it suffices to show the computational

indistinguishability of the following distributions:

Distribution DE):

5By Lemma 4.7, it suffices to invoke the evasive LWE for a modified sampler that outputs random aux,
instead of aux; that is dependent on (s, sp). The same comments apply to other invocations of the
assumption.

171

(A1 —-x09G) 1
¢ = (s,s0) +e;, ¢ =(s,80,81)B+e, B

Ag®l1

{03,1', C4.i> CS,i}ie[Q]) {cﬁvf}je[Q] ’ aux

Distribution D’l:

Wi, w2, B

/

{W3,i’ W4 i, WS,i}iE[Q]) {W6,j}j€[Q] , aux
In the above distributions,
(c3,ia c4,i’ c5,ia c6,j) =
(Az—Xl’i®G)®l’;.r Aijj®I

(s .80, 1) Ag®r] 0

nmxm2

1

Cor'/||D® tJT. =Y |
+ (€3, €4, €5, €5 ;)

where aux” above is defined as aux; in distribution Dy, e3; < Z)%f(3, ey «— D£i4,
es; — Z)gf’;’:, and eq ; — D%”j(ﬁ and all the w vectors are of the same dimension as the
corresponding ¢ vector and chosen randomly from their respective domains. Note that
we set x2 > X3, X4, X5, X6 SO that we can rely on quantitatively weaker evasive LWE
assumption (See Remark 8). We also note that here, we have ys # y3 = x4 = xs, Where

Gaussian distributions with different standard deviations are mixed. We refer to Remark

7 for details. We have

172

3 =s((A2—x1,®G) ®r]) +e3;

csi =So(Ag®r]) +ey;

cs; =s51(C® rl.T) + es; which can be rewritten as s; (I, ® rl.T)C +es;
¢ =S(AU; @D +si(D@t] ®I) +e.

We then apply the evasive LWE assumption once again, now for matrix C with sampler

Samp’ that outputs (S’, P’, aux’ = (aux/, auxj)) defined as follows:

S1 (Inm ® r-lr)

S =
Sl(Inm®r;)
aux; = (c1,¢2,{c3;, ¢4;}ic[o]s {C6,j}je[0])
aux’2 = (X(),Xl,l,...,Xl,Q,fl,...,fQ,COinSy{,l‘l,...,I‘Q,tl,...,tQ,Ul,...,UQ,
Ay, A,B,D)
P = Dot - Dat])

where ¢y, €2, €3, €4, and ¢ ; are chosen as in distribution Dj;. By Lemma 4.7, it suffices

to prove the computational indistinguishability of the following distributions:

Distribution DE)’ :

i, (VR C,

{esicanesibicors {6t erors {€ibijerors X

Distribution D’l’:

Wi, w2, C,

4

{W3J’W4,i’w5,i}ie[g]’ {W6J}je[Q]’ {W7,i,j}i,je[Q]’ aux

173

where aux” is defined as aux’2 in distribution D{),

¢ =s1(D® t} ® rl.T) +€7,;, where e7; ; «— D%m

and wy; ; is a random vector with the same dimension as ¢7; ;. Note that we set x5 > y7
so that we can rely on quantitatively weaker evasive LWE assumption (See Remark
8). The rest of the vectors are defined as in distribution Dj, and D’. From the above

discussion, it suffices to prove Lemma 4.14 in the following to complete the proof of

Theorem 4.13. |

Lemma 4.14. Distributions D and DY are computationally indistinguishable under

the hardness assumption of LWE and tensor LWE.

Proof. We prove the lemma via the following hybrids.

Gy : This is same as Dg.

G : In this hybrid, the challenger computes ¢4 ; as

cri=ci(Inc®r]) - (S((Al ~x0®G)®r]) + e4,i)-

P
=i

G, : In this hybrid, the challenger samples ¢; and ¢; randomly as ¢; « Z’;zf,

2 2
C) — ZEI nm+nm)w.

Gs: In this hybrid, ¢7; ; is computed as ¢7; ; = ¢¢; (I ® rl.T) — (s(Aijj ® rl.T) + e7’,-,j).

. . 2
Gy : In this hybrid, ¢s; and ¢ ; are chosen randomly as ¢5; < ZZ’”W and ¢g ; — ZZI .

174

Gs: In this hybrid, ¢/, ; is computed differently as

7 T
¢, = L€ llesiTHa fxolixi) U +8(GU; ®1;) + €7, .

/7

€70,

. . : . ml ml ” m
Ge : In this hybrid, ¢3; « Zy", ¢, Zy" and T Zy .

Gy : In this hybrid, cs; — Z', ¢7;; « Z1.
It is easy to see that the distribution in G7 is the same as that of D7.

Indistinguishability of hybrids:
We prove the indistinguishability between the hybrid distributions via the following
claims.

Claim 4.15. Gy ~; G;.

Proof. The two hybrids differ only in the error term in ¢4, and are indistinguishable due
to the smudging lemma.

In Go:
s =S0(Ag®T]) + ey,
In G;:

cri=ci(Lue®r) - (S((Al ~X®G)®r]) + e4,,~)
= (s((A1 =% ®G)®I) +s9(Ag @) +) (L ®1)) —s((A] =X ® G) &1}) — ey
=s((A1 -x0®G)®r1)) +50(Ag®1)) —s(A; =% ®G) 1]) +e; (L, 1)) — ey,

=s0(Ag®1]) +e; (L ®r]) —ey;

Clearly, the two hybrids differ only in the error terms in ¢4 ;. Thus, the indistinguishability

175

follows due to the following:
es; ~ —eq;+e (L ®r))

which is true since the distribution of —ey; is the same as that of e4; by the symmetry of

the discrete Gaussian distribution and y4 > 7y y14“(. |

Claim 4.16. G; ~. G, due to LWE.

Proof. Let us write B as (B{] BL BI)T. Then we can see that the indistinguishability

follows from LWE by applying Lemma 4.12 for k = 1, which implies (Ag, Bz, s0(Ag ®

2 2 2
D) +e1,80Bu +€2) = (Ao, By, W), W)), where w| « Z ¢ W, ZS, nmAnmo)w

In particular, let B = (B}, B}, B])T. Then

In Gl,

(Cl,CZ) = (S((Al -X0® G) ® I) + S()(Ao ® I) +e1,SBy +soBy +s1B; + e2)
~. (s((A1-x0®G)®I) +w|,sBy +sB, +w)) (from LWE)

2 2nm+nm?
~g (WiL,wy) where wy — ZI" wy Zg pmAnm)W

Claim 4.17. G, ~; G3

Proof. The two hybrids differ only in the error terms in ¢7,; ; and are indistinguishable
due to the smudging lemma.

In Gz:
_ T T
Crij = Sl(Inm ® r;)(D ® tj) +€7,;
In G3:

C7ij = Co,j (I ® I';r) - S(Aijj ® I‘;r) —€7;;

176

= (A U;eD+si(Dat; @) +e)(I®r]) —s(A U ®r]) —e7
_ T T T T T

= S(Aijj T,) +Sl(D®tj T,) +e6,j(1®rl.) - S(Aijj T,) — €7
=si(Lm @1})(D®t]) +e5;(I®T]) —e7;;

Clearly, the two hybrids differ only in the error terms in ¢7; ;. Thus, the indistinguishability

follows due to the following:
~ T
€7 ~s —e€7i;+ 66,]-(1 T,)

which is true since y7 > yxsd“) and by the symmetry of the discrete Gaussian

distribution. m

Claim 4.18. G; ~ G4

Proof. The indistinguishability follows from Lemma 4.22. |

Claim 4.19. G4 X G|5.

Proof. The two hybrids differ only in the error terms in ¢7; ;. The indistinguishability
follows from the smudging lemma.

In Gg4,
¢, =s(AnU;® r}) +en;.
In Gs,
c’”’j _ (C:Ll-||c3,i)HA,fj,(X0||Xl,i)Uj +s(GU; ® r,T) +e7,;
- (S((A1 ~X ®G)®r]) +eqls((Ar-x1,®G) ®r]) + e“) Ha gy a0 U
+s(GU; ®1]) +e7,;
= s((A1llAz = (%ollx1) © G) & r))HA ;. (xo e,) U + (eailles) Ha . o,) U

+ S(GUJ' ® I‘;r) +e7;;

=s((Ay - fi(x0llx1,)G)U; @ 1)) + (eslles) Ha £, (xofx,) Uj +S(GU; @17) + €7,

177

=s(A/U; ®1]) + (94,i||e3,i)ITIA,f,-,(xo||x1,,»)Uj +e7;; (since fj(xollx1:) =1)

Clearly, the two hybrids differ only in the error termsin ¢/, . Iz Thus, the indistinguishability

follows due to the following:

€7 Xs €7+ (94,i||e3,i)HA,f,~,(XO|le,i)Uj
which is true when y7 > x3xaB8yA°""), where ||ﬁA,_;3,(x0||x1,i)||oo <pB |

Claim 4.20. G5 ~. Gg under the tensor-LWE assumption.

Proof. The indistinguishability between the two hybrids follows from tensor-LWE which

implies

AL AL {Uj 1] s(1, @1) (Al =X ® G) + e, 8(1, ® 1]) (Ar — X1, ® G) + €3,

1°

s(I, ® l';-r)GUj +e7; 1 e A A, {Uj, I‘;r, random, random},-,j.

|
Claim 4.21. G¢ = Gy
Proof. This follows since in Gg, ¢4, and ¢7;; are masked by random vectors ¢} ; and
c’7’l.,j, respectively.]

To complete the proof of Lemma 4.14, it remains to prove the following.

Lemma 4.22. Given {t;} [0}, {ri}ic[o], C.D,
({zci =1L @1)C+es}i, {zpj =s1(D@t; @) +e6,},) ~e ({W5 i {W)}6,),

2 :
where W, — Z;™" and wy, IAn Zg assuming LWE.

178

Proof. We prove the lemma by considering a sequence of games where we start from the

LHS and gradually change it to that of RHS in a way that is not noticed by the adversary.

Go : This is the same distribution as in LHS.

G : In this hybrid, we change the distribution to be

Zc; = (SI(C ® I) + eC) (Inmw ® r;l') + €5 >

A

=Sc i

lap, = (sl(D®I®2) +eD)(I®t]T®1)+e6,j :

=Sp _].

2 3

nm-w m

«— «— .

where ec DZ,)a ,ep DZ,)(l

This hybrid differs from the previous one only in the error terms in z¢; and zp ;.
The indistinguishability follows from the smudging lemma.

To see this, observe that we have

(SI(C ® I) + eC) (Inmw ® r;l') t+es5; = SI(C ® r;l') + eC(Inmw ® r;l') +e€s5;

=€rror

and

(sl(D®I®2) +eD) IetleD+es; =siDetl aD +ep(It! 81 +eg; .

=€Iror

Thus, the indistinguishability follows due to the following:
€s5; Xy eC(Inmw ® r;l') +e€s5,, €, =5;€p (I ® t}- ® I) + €65,

which is true when ys, yg > yA1“M yy.

G, : In this hybrid, we replace s¢ and sp with random vectors sampled as s¢ «— Zg’"zw,

179

Sp «— Z’f. This hybrid is indistinguishable from the previous one by Lemma 4.12

with £ = 2 assuming LWE.

G3 : In this game, {zc;}; and {zp ;}; are replaced with random vectors sampled as
Ze; — Z’;’”W and zp ; Z’;z for all i, j € [Q]. We can see that this hybrid is
indistinguishable from the previous one by LWE with low norm samples (Lemma

4.1) once with respect to secret s¢, and then with respect to sp.
It is clear that the distribution in Gs is the same as that of RHS in the statement of the

lemma. u

This completes the proof of Lemma 4.14.]

4.7 MULTI-INPUT ABE FOR ANY CONSTANT ARITY

In this section, we extend the construction in Sec. 4.6 to construct k-ABE for any constant
k using evasive LWE. Our main construction supports functions in NC; and proven
secure assuming evasive LWE. We also discuss a variant that supports any polynomial
size circuit of bounded depth, which can be proven secure assuming a strengthening of

tensor LWE in addition.

4.7.1 Construction for NC; Circuits

Here, we show our construction. Let ¢ be the length of each of the k attributes. Decryption
is possible when f(xg, X1, . ..,X;-1) = 0, where x¢ € {0, 1}5 is the attribute associated
with the public encryption, x; € {0, 1}5 is the attribute associated with the slot i, and f is
a binary circuit associated with the slot k key. Below I refers to I,,,. We require an upper

bound on the depth of the circuit and denote it by d. We require d = O(log 1).

In the construction, we will use the low-norm variant of the lattice evaluation algorithms

(EvalF, EvalFX) from Lemma 4.4.

180

Jsew wopuer rrim 1 1 [N 1 7 1T o
i
.\DE__QQ.:«@TS__3“& h
M Josud) (1 ® D') T - (1@ o rem 0 1l 95
.\:,_»\wQH“
(" + (1o nn)s)
.\DE_E..__\J@TS__Sw&
SuiSpnuws (ja ® D% 0 1 1 1 0 1l s
Jsew wopuex om 1) 1 1 IR
re . .)
am1 T+ aenYv)s rem 1 1 1 (IE)
\.{,\MQH”
A.\,.ﬂho + A._”h ® \DQvav
SurSpnuws (ja ® D’ % T T T T T Tl o
JSew Wopuel T)) T) [2° m|
m M
a1 7 7 T 7 T1+a('s ‘0 's) [® (D®Xx-1V))s|*1D
e ("r+(1® (D ®X
Sudpnus T 1 1=1v))s) - (@D 1 1 1 o
. M2+ (19) <o "+ ({18 (D | T+ (1@ 0V) s+ (1
M+ (j1e po@'s|eq) s+ae/nv)s|+ d(j1 @ “)is "o+ (1@ 0y)0s|® K — Ty))s|+g(1s0s's) |® (D@ X - 1y))s| 09
Sreway reyy 9y Sy) gy 2 Iy

LrLy <l9y <1'sy <I'vy 1€ T 19 Jo ssouwopuriopnasd aa01d 01 (‘g V OV {1 /1< } ¥suio0 H{ 1)L} x) = , xne ‘Y uaal) : ' q ~ q aroid of,

‘Afopuel po[dwes e S10J09A M pUB M) [[V "UONINNSU0d Jgy¢ J0J AJmdas Jo Jooid oy ur spLIqAy Jo Arewwung :7'4 9[qeL

181

Setup(14): The setup algorithm takes as input the security parameter and does the

following:
* Sample Ao, ..., Ay < D%;mf; Dy, ..., Dy « szm‘), Dy « Zp",
«— mxm.
U< D77

* Sample (B,B;!) « TrapGen(14, m**!+(k+1)nm*, (m**'+(k+1)nm*)w),
where w € O(log g);
{(C;, Ci_,Tlc) «— TrapGen(14, (k + D)nm~!, (k + 1)nmi_1w)},-€[2,k]

Do
D,
e SetCy =
Dy

e [etA = (A(), e ,Ak_l).

Output mpk = (A, B,Cl,...,Ck,Do,...,Dk,U),

— -1 -1 -1
msk = (B’BTB’Cz,TC’ .. .,Ck’TC).

Enc(mpk, x¢, #): The Enc algorithm is a public encryption algorithm. It takes as input
the master public key mpk, attribute xo and message bit u € {0, 1} and does the

following:

k+1 k
. Samples<—ZZ‘ , 80, .. .,Sk <—Z$’” .

« If = 1, sample ¢ = Z0"", ¢y o Z" T HUTDIO,

Else, compute

- ¢ =s((Ag—x0 ®I) ®I®X) +50(Dg ® I®X) + e/, where | « Z)é”};”.

(m** 1 4 (k+1)nm*)w

- ¢ =(s, 80, -+, si)B+ey, whereey — D7

* Output cty, = (¢, €2).

KeyGen,(msk, x;) for 1 <i < k — 1: The keygen algorithm for slot 1 < i < k — 1, takes

as input the master secret key msk and attribute x; and does the following:

e Samples r; « Z)?Z?ly

182

A -x D) @I°0 D gr @ [

Oinmkxfmk

D; @ I*(-) @r! @ [#¢)

O(k—i)nmkxé’mk

e Samples X; « B! ,Tp | and

Y« C L ((Cier]),)

* Returns sk; x, = (r;, X;, Y;)

KeyGen, (msk, f): The keygen algorithm for slot k takes as input the master secret key,

msk, and k-arity function f and does the following:
e Samples r; « Z)Z’y
* Computes Hy = EvalF(A, f) and Ay = AH,

AUIP¢D@r!
Computes My « B! 0k scmk ,7p | and
DI Der]

0m"+lx(k+l)nmk’]w
T > TB
Cr® r,

Nf(—B_l(

¢ Returns Skk’f = (I‘k,Mf, Nf)

Dec(mpk, cty,, SK1x,5 - - -, SKk—1,x,_,» SKk,#) The decryption algorithm takes a ciphertext

Cty,, k keys sk x,,...,SKi_1x,_, and sky r and does the following:

* Parse cty, as (¢, ¢2), skix, as (r;, X;,Y;) for I <i < k —1 and sk s as
(rk’Mf’ Nf)'

Letx = (Xg,...,Xk_1).
« Compute Hy ;x = EvalFX(A, £, X).
* Compute the following
*dy=c;(Iy®r] ®---®r;)
*d=Xi(Iy®r] - ®r ®r, ® --®r]),forl <i<k-1,

*dy =ML, ®r] - ®r]_,)

183

*dg, oL dy L dY) =N YooY

*d;=d;-d’,fori=0to k- 1.
“dp=d, - d]
*d= (d0|"'|dk—l)ﬁA,f,xU_df

e If ||d||o < Bo, Where By is as defined in section 4.7.1 then return u = 0, else
return u = 1.

Correctnes. Here, we show the correctness of the scheme.

When y = 1: We first show the correctness for the case of u = 1. For an honest run
of the protocol, ¢; is distributed uniformly at random over its domain. Then, since
r; # 0 for all i € [k] with overwhelming probability and thus I,,,, ® rI ®: - ® r{ isa
full-rank matrix, d, and thus dy are distributed uniformly at random over their domains.
Then, since the topmost m rows of ﬁA’ f.x constitutes an identity matrix by Lemma 4.4,
(dol| - - - ||dg= l)ﬁA, r.x 1s distributed uniformly at random over its domain. Finally, since
each column of U is chosen from Z)%fy, with overwhelming probability, there exists
i € [m] such that the i-th column of U is not a zero vector. This in turn implies that that
the i-th entry of d is distributed uniformly at random over Z,. Since we set Bo/q = A~

the probability that the decryption algorithm falsely outputs O is negligible as desired.

When p = 0: We then show the correctness for the case of u = 0.
* Let us first compute dj.

dz) :Cl(Img®l’-lr®"'®l’-]|;)
= (s- ((AO—X0®IM)®I®]‘)+SO-(D0®I®k))-(Img®rI®---®rD+ed6
=5 (Ag-%®L,) ®r[®---®r]) +s0- (Do ®r| ®---®1}) +eq

where eq; = e; - (Lue ® rI ® - ® rZ).

184

*Letl<i<k-1,

d = cz-X,--(Img®rI---®rl.T_1®rl.T+1®---®rZ)
((s, 0, -+, Sx) B+e)
A -x; 0L, 9 I*-D @1l @ [#¢)

0' k k
Rr-1 inm*xtm
B D, @ I?0-D @ r] @ 8¢ 7B

l
O(k—i)nmkxfmk

(Ine®r1]---®1] | @191, ,®--®r))
(S((A,- —x;®L) @IV @r! @ I°¢)) +5,- (D; @ I*0 D @r] ® I®<k—’)))
Iy ®r]---®r] ®11r], 8 - 8r])+eq.
= s (Ai-x08L,)®r ® --®r)+s;- (D;®r/®---0r]) +eg

where eg := €, - X;(Ly¢ ®r]---®r, @1/, ®---®1)).
* Now we compute d’f.

d} = Csz(Im ® I‘I e ® l’-};_l)
AUIPFD@r]
=((s, sp, -+, Sx)B+e))B! (| ,TB
D@ IP*Der]

(In®r]---®r,_ ®1)
- (s~ AURIPE-D@r]) +5;- (D@D g r{))
(In®r] @1 ®1)+eq,
:s-(AfU®rI®---®rZ)+sk-(Dk®rI®--~®rD+ed}_

where eq, = eM/(I® I‘I e ® I’Z_l)-

185

* Next, we compute:

(d”, T d;(,_l’ d;)

= CszYk_l s Y1

=((s, 80, -, sx)B+e)B! (“Yio1-0 Y

Omk+1x(k+l)nmk‘1w) .

Cr® I'-IIC— B

= (50, »8t) - (Ck®r)) - Yoy - Yo + (eqr, -+ ,eay)

= (80, »80) - (Cr®1)) - (C ((Chror @7), 70) ®1) - Yin -+ Y
+ (eay, - . eqar)

= (50, »8k) - (Cx - CH ((Crr ®1]_), 7c) ®1)) - Yimp -+ - Y
+(eqy, -+, eqy)

= (S0, »8%) - (Cror @1 @rp) - Yip-- Y1+ (eay, -+, ear)

= (S0, ,8%) - (Cr@r] ®---®r1}) + (ear, -, ear)
=(so-(Do®@r| ®---®r)) +eqr, -8 (Dr®r[®---@1]) +eqy)

with (edg, T, ed;) =eNYp -+ Y.
*Let0<i<k-—-1,

d = d-d
s(Ai-x;®L,)®r|®---®r)) +s;(D;®r] ® ---®r))
+eq —sl-(Dl-®rI®---®rD—ed;»
s(Ai-x;®L,) ®r] ®---®1]) +eq,

with €4, ‘= €q, — €q/.

* Next, d; = d/, —d’)

f - So,

= T®... T Te... T ,
df = s(AfU®r, ®---®r,)+s;(Dy®r; ®---®r,) +eq)
—Sk(Dk®l'-1r®"'®l'-I|;)—ed";

= s(A;Uer[®---or]) +eq,

with eq, := eq, — ed; where eq; = eqy.

186

* And finally, d = (do| - - - [|ds—1) - Ha .U — d. First,

(doll - -~ [ldk-1)

=(s((Ag-x0@D@r[®@---@r)| - lIs((Aps) — X1 @D ®r[® -~ ®1)))
+ (eq,ll - - - ll€q,)

= (s(((AollA1ll - - lAk-1) = (XolIx1]l -+ X)) @D @x] ® - - ® 1))
+ (eqyll - - llea,)

= (s((A = (Xollx1l -+ [IXp-1) @D @ °] @ - - @ 1})) + (eqy|l - - - llea,._,)-

=X

From Lemma 4.4, we deduce
(A-x® I)i:IA,f,X =A; - f(x)I mod g.
Hence,

(doll -+~ lldx—1)Ha s xU —dy

=s(A-x®D@r @ - @r)(Has U1l ---01)
+eq—S(AU®r| ®---®r)) —eq,

:s((A—x®I)ﬁA,f,xU®rI®---®r{)—s(AfU®rI®---®r£)+ed—edf

:s((AfU—f(x)U)®rI®---®r£)—s(AfU®rI®---®rZ)+ed—edf

=-s(f(X)URr| ®---®r]) +eq — eq,

=€d —€q, if f(X) =0.

where eq = (eq,|| - - ||edk_1)ﬁA,f,XU. Thus, when u = 0, ||d||e is small (< Byp),
and hence, the decryption correctly outputs 0.

Error Bound: The error term is bounded as follows. Let Sy denote the error bound.

lleallco + [l€a; |loo

= || eqy |l - - - llea,) Ha, s xUlloo + llea;, — earlles

= I (Ceaq -+ llea; ,) = Ceagll -+~ llea)} Fa 1.xUllo + lea;, = eaylls

< ((Xl (my)°?®) +wx,75(my) 0" +X2TB(WTC)O(k)m0(k2)) -mpy
+wx27p(my) 00 + XZTB(WTC)O(k)mO(kZ)) poly(m)

< (my1xawytprc))

< Bos

187

where we used [legllo < x1(my)?™, llegllc llea,lle < wx2tp(my)®™), and

2
leay lloo, llearlleo < x278(wr)® MmOt

Parameters. We set the parameters as follows.
n = poly(a,29), m=0(nlogq), 15=0(2kmF"logq), 7c=0(+2kmkloggq),
B = (my)°?", y =W, xi1 = (my)*, X3 = xa = (my)*,

k—

Xe = (my)%k, x7=mpBlxed®V, ys;=yk7 . yqfori e [0,k], X2 =YXs

2
Bo = (my1yowytsrc)?), g =peaed

where we define ys := ys50. We note that in the above, 3, x4, X5., X6, and y7 are the

parameters that only appear in the security proof.

4.7.2 Security
Here, we prove the following theorem, which asserts the security of our scheme.
Theorem 4.23. Assuming evasive LWE (Assumption 4.6) and L\WE, our construction for

k-input ABE for NC; satisfies very selective security (Definition 4.2).

Proof. To prove the security, we need to prove the indistinguishability of the two
distributions given below. Let Q; be the number of key queries to KeyGen,(msk, -)
oracle for i € [k]. In the following, for simplicity, we let Q| = --- = Q = Q. Note that

this can be assumed without loss of generality.

Note that compared to Section 4.6.2 where i and j are the indexes for the keys, in this
proof, i € [k] is the index of the key generator, and we denote jj,---, jx € [Q] the
indexes of the keys. In the sequel, for the ease of the reading, we often suppress the

subscript and simply write j when differentiating the indexes is not necessary.

188

Distribution Dg:

(Ag—x9®1,) ® I®

mpk, ¢; = (s, Sp) +e, ¢ =(s, Sp, -

Dy ® |

, Sk)B + ey,

{skix,; = (vij, Xij, Yij) bietk-11.jelol, {SKk.f; = (Paj» My, Nr) }elo)

Distribution D1:

k+1 k+1

04 (m
mpk, C| «— Zq’" , C) — Zy

+(k+1)nm*)w

2

{skix,; = (rij, Xij, Yij) bietk-11jelol, {SKk.f; = (trjs My, Ng) }ielol

where X is the attribute for public encryption, x; ; fori € [k — 1] is the j-th key query

for slot i, and f; is the j-th key query to KeyGen, (msk, -), sk;y, ; is the j-th key for slot

i and sk y; is the key for function f;. In particular, we have

(Ai—x;;®L,) ®I°0"V @ rZ]. ® 184D

Oinmkxt’mk

Xi,j — B!
D oI*iVer] o2t
iJ

o(k—i)nmkxt’mk
L] i+1 1 i,j s> 0C

k-1 T
ApUje1P*Ver] .

-1
ij —B Oknmkxmk »TB
®(k—1) o T
D, ®1 ® T
1 0mk+1><(k+l)nmk‘1w
Ny, < B »TB
T
Cr® rk,j
Kl (k+1)nm*yw

g k+1 (m
e — D L e—D,

189

> TB

We can see that Dy and D are the views of the adversary when yu = 0 and u = 1 are
encrypted, respectively. We then apply Evasive LWE (EVLWE) with respect to matrix B

with sampler Samp! that outputs aux' = (aux}, auxj), P!, S! as follows:®

Sl

(8,80, - - - »Sk)

aux] = s((Ag—xo®L,) ®I%) +50(Dy ® I?F) + ¢

auxy = (X0, {Xij.Tijbiepe-11jero)s {Yij Yelk-11,7e10]> 1fj> Tk, }jelo]> A, Ct, - - ., Ck, U)
Ai-x,; 0D Ver] @t
Oinmkxfmk . .
Pi,j = ,fOI‘lE[k—l],]E[Q]
D, I?(-D @yl @ I®(*-0)
ij
O(k—i)nmkxfmk
k-1 T
ApUeIP*Ver
Pk,j = Oknmkxmk > fOI'j € [Q]
D, @ 12D @ rz’j
Omk+1><(k+l)nmk’1w .
Pivy = , for j € [Q]
Cr® l'-ll(—’j
P! = Pl 1Pl Pkl - IPk=10lPeall - - Pkl Prst il - - IPrs10)

Then from Lemma 4.7, to prove that Dy and D are computationally indistinguishable, it
suffices to prove the computational indistinguishability between the following
distributions:

Distribution D(l):

1
aux,, B, C1, 2,

{cijtick-11.je01, {Ck.j>dj}jefo]

5By Lemma 4.7, it suffices to invoke the evasive LWE for a modified sampler that outputs random aux;.
The same comments apply to other invocations of the assumption.

190

Distribution Di:

1
aux,, B, Vi, V2,

{Vij}ietk-11.je101s {Vh.js Witjelo]

where v (resp., w) vectors above are sampled uniformly at random from the same

domain as the corresponding ¢ (resp., d) vectors and

c; = S'Pij+e
= s((Ai-x,; 9D @I Vg rIj @ I°¢) 4 g;(D; 9 I20D ® rIj & 19()
+e;
Ck,j = SlPk,j + ey)
= s(A;U; ® k-1 rz’j) +5:(Dp @B D g rz’j) rey,
d; = S'Pj+¢)

= (50,...,8)(CL ®1] ;) +€

= (S0 - - +» Sk) (L ks 1)mk—1 ® rzyj)C/< + e;-

s z)(k+1)nmk‘1w

o £m*k . m*
where e; ; < D", e «— D7 . € Z.xs

Note that we set y2 > x3, x4, x5 so that we can rely on quantitatively weaker evasive
LWE assumption (See Remark 8). We also note that here, we have y3 = y4 # x5, where
Gaussian distributions with different standard deviations are mixed in the precondition

distribution. We refer to Remark 7 for the detail.

To show the indistinguishability between the two distributions D (1) and D }, we again apply

Evasive LWE, this time with respect to matrix Cy and a sampler Samp? as described

191

below:

(805 -« s Sk)(I(k+l)nmk—l ® r-llc-,l)

$? =
(805« -« » Sk)(l(k+l)nmk‘1 ® I‘Z,Q)
aux; = ¢1,¢, {Ci) ic[k-1].7¢[0]> (€. } jclo]
auxs = (X0, {Xij» Ti) Yie[k-1].jelo]s {Yij Vielk-2].jc[0]» L 7> Thoj} jcl0]»
A B,Cy,...,C-1,U)
P> = (Cr-1® r-][_],] |- ICk1 ® r-/[—l,Q)’

where ¢1, €2, ¢; j, ¢ jfori € [k—1], j € [Q] are as defined in distribution D(l). Then again
using Lemma 4.7, to prove that the two distributions are computationally indistinguishable,
it suffices to prove the computational indistinguishability between the following two
distributions:

Distribution D(z):

2
aux,, Cx, ci, C2,

{cijtietk-117e101, {dj15djy o} jnerols {€k.j}jelo]

Distribution D%:

2
auxs, Cy, Vi, Vo,

{vijtiek-11.jet01s AW Wi tijetols {Vejtielol

where

o _2p2 ’ ’ (k+1)nm*=2w
(dfl’JZ)J'l’J'Ze[Q] =8P+ (ejl,jz)flsJ'ZG[Q]’ € < DZ,)(S,z ’

all the ¢ vectors and {d;, };, are defined same as previously, and v (resp., W) vectors
are sampled uniformly at random from the same domain as their corresponding ¢

(resp., d) vectors. In the above, (a;, j,);, j,e[o] denotes a matrix obtained by vertically

192

concatenating vectors {a;, j,};,.j, of the same dimensions for all possible combinations

of ji, j» € [Q]. In particular, we have

_ T T ’
d; ;= (S0,S15 - -+ Sk)(I(k+l)nm’<—1 ® rk,jl)(l(k+1)nmk_2 ® rk—l,jz)Ck—l te€ 5

To show that the two distributions - D% and D% - are computationally indistinguishable,
we again apply Evasive LWE, now with respect to matrix Ci_;. In general, we apply
evasive LWE k times, where the sampler Samp’ for [€ [k] for the [-th application of
the evasive LWE assumption is defined as follows: Samp! is as defined before.

For [€ [2, k], evasive LWE is applied with respect to the matrix Cy_(;—2) and Samp/

outputs the following:

s =

T T T
(S0 -+ s Sk)(I(k+1)nmk*1 ® rk’jl)(l(kﬂ)nmk*2 ® rk—l,jz) Tt (I(k+1)nmk*l+l ® rk—l+2,jl—1)

J1s-Ji-1€[0]
I
aux; = c1,¢, {¢;j}icfk-11,je[o]> {Ck.j}jerol {djin)i jos o djijin b jrngiaelo]
I
aux, = (Xo,{X;;,¥ij}ie(k-1],je[0]> 1 Yi,) Yie[k-1],je[0]» {[>Tk.j}jel0]>
A, B, {Ci}ic[i)\ (k-1+2}, U)
/ T T
P = (G ® rk_[+171|| o [[Cror1 ® rk—l+l,Q)’
where
djl,jz ,,,,, Jt
T T
= (80,815 -+ s SK) Qe ryumi1 ® Ty ;) Lsryumr—r Oy _py ;) Crmrt + €5
T T T
= (SO, St1y0.., Sk)(I(k+l)nmk” ® I'k_H_l’jt ® rk_t+2,jt_l X - ® rk’j])Ck_t.'.l
4
+e) . fort e [k]
k—t
where ¢, . « DFD"T Ghent < k—1. Whent = k, €, . is chosen
Jlseees]t Z»XSJ JlseesJk

193

4

4 4
as . .= . e .
ejl,-wjk (eO,Jl,.--,Jk’ > ek,]l,---,

. - . ml] -
jk), where € DZ,X@ fori € [0,k — 1]

and € i € Z)%’)m. Similarly to the first application of evasive LWE, we set

X5 > X52 > > Xs5k-1 > X6, X7 SO that we can rely on quantitatively weaker evasive
LWE assumption (See Remark 8). We also note that here, we have y¢ # x7 for the final
usage of evasive LWE, which means that Gaussian distributions with different standard
deviations are mixed in the precondition distribution. We refer to Remark 7 for the
detail. Thus, after applying EVLWE [times and using Lemma 4.7, it suffices to prove the
indistinguishability between the following two distributions.

Distribution Dé:

auxb, Cr_pe2, ¢, 2,

{Ci,j}ie[k—l],je[Q], {d]'l ’ djl»j2’ djl,jz,jw R djl’jz,...,jl }jl ----- Ji€[0]> {ck,j}jE[Q]

Distribution Dllz

!
auxy, Cr-i+2, Vi, V2,

{Vi’j}i€[k—1],j€[Q]’ {le s Witjos Witja,jzs -+ o s Wit o, i }jl,---,J'IG[Q]’ {Vkﬁj}jG[Q]

where all the ¢ and the d vectors are same as defined previously and v (resp., w) vectors
are sampled uniformly at random from the same domain as their corresponding ¢ (resp.,

d) vectors.

In particular, we get that after applying EVLWE k times, it suffices to prove the

indistinguishability between the following two distributions:

Distribution D6 = Dg:

aux C,, C1, C2,

’
2°

{Ci,j}ie[k—l],je[Q], {djl , djl,jz’ dj17j2,j3’ SRR d].l7f2,~~-7jk }jlv~-~ajke[Q]’ {ck,j }J'G[Q]

Distribution D’1 = D’l‘:

194

aux;, G,

Vi, V2,

{Vi,j}ie[k—l],jE[Q]’ {le s Wit Witjaujas « o oo Wilja,ei }jl,...,jle[Q]’ {Vk,j}je[Q]

where aux;, = (Xo, {Xi,;. ¥i,j }ie(k-1].7e[0]> {f7: Tr.j}je[0]> As B {Ci}iefr)\ (23, U). All the

¢, d, v, and w vectors are same as defined before.

From the discussion above, to complete the proof of Theorem 4.23, it suffices to prove

Lemma 4.24 in the following.

Lemma 4.24. Distributions D\, and D are computationally indistinguishable under the

hardness assumption of LWE.

Proof. We prove the computational indistinguishability between the two hybrids - Dy,

and D/ via the following hybrids:

Go : This is same as the distribution Dj,. For ease of reading and setting up notations,

let us list what the adversary can see here. The adversary can see

aux :
C]

¢

Ck,j

djt,jt+1 ----- jk

(x0. {Xi,j, X7 j Viepk—1],je[01> {f7 Th.j }jero]» Ay B, {Ci}iey, U)
S((A() —-X)® I) ® I®k) + SQ(D() ® I®k) + €

(s, 0, -+, sp)B+e

s((Aj-x; ;9D ® 1°6-1) g rzj ® I®(k_i))

+Si(Di ® I®(i_l) ® I‘Ij ® I®(k_i)) +e;

forie [k—1],] € [Q]

s(A UeIP* Ver])+s(Dr@IP* D ar) +er,

for j € [Q]

T

T T ’
(80,81, -« > 8K) T yme-1 ®X,j, ®Xyy 5 @ --- @71)G, +¢€)

fort € [k], ji,...Jk € [O]

195

......

where we have relabeled the subscripts ji, j2, . . ., for making the notation simpler.

Note that this can be done without loss of generality. We then observe that

dh,jz ,,,,, Jk
= (sp, S Sk) Lkt ®I‘T-®"'®I’T~)C1+e/~ :
e S (k+1)n Lj1 k.jk J1seeesJk
T
I, ® I‘J1 i Dy
4
- (509 Sl’ B Sk) +ej1,---sjk
L,or . D
n® Jlseees Jk k
= [so,®r! . Do+e,. sc(Lyor!)Dp+e, . .
n J1seosJk 0,j15eeenfi? """ n J1sesJk Y P)
FPO i FPhjk
T I . T ’ — ’ ’
where i = r1,j1 ® ® rk,jk and T (eO,jls-n,]'k’ T ek,j1,.--,jk)'

Gy : In this hybrid, d;, j, .. i, = {Piji....jx Yie[0.k].)1.....ixe[0] 1S computed differently.

Namely, for ji, ..., jx € [Q], they are computed as

..........

_ T T
Po,ji,...;x = €1 (Imt’ ® rjl jk) - (S((AO —Xo ® Im) ® I'jl jk) + ef),jhn-’jk)

.....

_ T T ’
Piji,je = CjilIme®r; 0 0 5)- (S((Ai —Xij; ®Ly) ®r;) +e; jk)

fori € [k — 1],

. . _ . T _ T ’
Pl jisjic = ckvlk(lm ® rjl7-~~»jk—l) (S(Afjk ® rfl,n-,jk) +ek,j1 ,,,,, jk)

’

=C; . .
kojpsseees Jk

Gy : In this hybrid, the challenger samples d;, ; ., . i for¢ > 2 differently. Namely, for

t€[2,k]and j;, ..., jr € [Q], they are computed as

d

jz,jz+1,-~-,./k

196

= ((so, St .., 80) (Cp @ I8K—+Dy 4 e;,)(l(k+1)nmt—lw ® rIjr ® - ® rz’jk) + e

’

=S,

k
- D(k+1)nm w

where e} for ¢ € [2, k] are sampled as e} Zn

Gs : In this hybrid, ¢y, ¢z, and s for ¢ € [2, k] are replaced with random vectors sampled

k+1

k+1 k k

Gy : In this hybrid, the challenger samples d;, ;,,, .. ;i for t > 2 randomly as

----- -

o) (k+D)nm'~'w
d./ta.]H-l ,,,,, jx < Zq .

Gs : In this hybrid, the challenger samples ¢; ; fori € [k], j € [Q] randomly. Namely,
they are sampled as ¢; ; < ngk fori € [k —1],j € [Q] and ¢;; « Z’q"k for
J € [Q]. Note that in this hybrid, all the vectors except for {d;, j, ... }ji....jxcl0] =

{Piji....ji bie[0.k]j1.....jue[] are random.

Gg : In this hybrid, c;’j]’ . fori € [0,k], ji,...,Jx € [Q] are sampled differently.

]

Namely, they are sampled as

’ _ T ” _ /
€01 = (S(I) i) T jk) (Ao-Xo®D +ep;
=St
’ _ T 7 . . ’
Gt = (S(I B i) F € jk) (Ai-xij, @D +e; 5
=s’.)
J1oeees Jk
’ _ T ” ’
ck,jl ,,,,, Jk (S(I ® LT jk) + €y Jk) Aka + €k J1s-esJk
=s’.)
J1o-erdk
. . . ” m
- .. I
fori € [k —1], j1,...,Jk € [Q], where € DZ’X1

G7 : In this hybrid, S}l,. . for ji,...,jr € [Q] are replaced with random vectors

.y

197

.....

sampled as s;.l, —Zy.

.y

Gg : In this hybrid, ¢} i

,,,,, Jk
cl. . :C, . -ﬁA x. . U+ S,~ VU+e'. I
ko J1se-sjk [0,k=1],/1,...Jk ’fjk’ley».-]kq JlseeosJk k,j1se-sjk
where d o = A N P and
Clok=11,1,j (CO,JI,.-.jkl |ck—1,]1»--~]k)
X = (XolX1 gy - [Xe-1,y)

Go : In this hybrid, c;,jl , fori e [0, k], j1,--.,Jk € [Q] are sampled randomly.

..... J

Namely, for ji,..., jr € [Q], we have cl’.’jl’ — Z’;[fori € [0,k — 1] and

sk

/7 m
Chjroin < Ly

It is easy to see that the distribution in Gg is the same as that of D7.

Indistinguishability of hybrids:
We prove the indistinguishability between the hybrid distributions via the following

claims.

Claim 4.25. G() X Gl]

Proof. The two hybrids differ only in the error terms in {p;;, . j, }ic[ox] and are
indistinguishable due to the smudging lemma 4.5. We show this for the case of i € [k —1]

here. The case of i = 0 and i = k can be shown similarly.

In Gy:
T
Piji,...jx = si(Il’l ® rjl,...,jk)Di +e;,jl,-~~,jk

In Gy:

= g i(gert o Y (s((Ai=xi; ®L,) ®F.) +e

pz,]1 Jk 1,]i mt JlseeosJi=1sJit1s--5 Jk 1 1,]i m Jlseees Jk LyJ1seees Jk

T T T
= S((Ai_xi,ji®lm)®rj1 Jk)+5i(Di®rj1 jk)+ei’f‘(lm€®rj1 ,,,,,, Ji-1sJislseems, lk)

.
- (s((A,- ~xi L) ®rl)+ jk)

198

/

) - €t

..... seeosJimsJitlseeesJk

:=€Iror
Clearly, the two hybrids differ only in the error terms. Thus, the indistinguishability

follows due to the following:

4 4

~ — .. T
ei,j],...,jk ~s ei,j],...,jk + € (Imf ® rj]

The above is true since the distribution of —e; ;, . ;, is the same as that of ¢; ;, _;, by
the symmetry of the discrete Gaussian distribution and by the sumdging lemma, which

rl <

is applicable since yg > (my)*1“(M y3 and we have lle;, i (Lne ® F A A jk)”oo <

(my poly(2))* y3. The case of i = k is handled similarly, by using y7 > (my)*A°(M) y4.

Claim 4.26. G; ~; G,
Proof. The two hybrids differ only in the error term in {d;, ;,,,....j }:>2......jxe[0] and
are indistinguishable due to the smudging lemma. In Gy:
T T
d]'z’J'z+1’-~~’]'k = (SO’ Sty Sk)(I(I<+1)rzm’“1 ® rt,j, Q- & rk,jk)Cl + e;',,...,jk

In Gz:

djt’jt+1 ----- jk

—t+1 T T
((So, St .,81)(C, @ By 4 e;’) s tyume-1y ®F,;, @ @1y ;) +€;

T T
(50,815 - -5 81) Ty 1)1 ® T, j, @ - @1y)Gy

’ 7 T T
+e;, . te (I(k+1)nmt_1w ®r,; ® - ® rk,].k)

=€Iror

Clearly, the two hybrids differ only in the error terms. Thus, the indistinguishability

follows due to the following:

e o~ €

7 T T
Jireeorfk Jesnie T (I(k+1)nm”lw er,; ® ® rk,jk)'

199

The above is true by the smudging lemma, since we have ys; > (my)*y; - AW for

t > 2 and [|€] (X 1)mme-1 rtT’jt Q- ® rl’jklloo < (my poly(2)* y1. m

Claim 4.27. G, ~. G3 due to LWE.

Proof. Let us write B as (B{,lBLlBI)T so that
¢ =(s,80, - ,Sk)B+exy=sBy+(si,...,s0)Br + (soBy +e2).
We also write C; as C; = (CtTulCtTL)T so that

(80,81, - . ., 8¢) (C; @ I®* 1) 4 e/

S

Ct U ® I®k—l+1
(80,81, .,Sk) +e
Ct L ® I®k—t+1

(Sts -, s)(Crp @ IBFTH) 4 (SO(Ct,U ® I®F*) + e;’)

By Lemma 4.12, we have that so(D ® I®¢) + e}, soBjs + €5, and {so(C;py ® I®F~"+1) +
€/ }e[2,k] are indistinguishable from random vectors. The claim follows since these terms

mask ¢, ¢, and {s; };¢[2,k], respectively. [}

Claim 4.28. G3; ~. G4 due to LWE.

Proof. In Gj3,dj, j,,,.....j, is chosen as s{(L i1ypmi-1, ® rIjl ® - ® r;jk) + e;.r ., Where
s, is chosen uniformly at random for all . The indistinguishability follows by applying

Lemma 4.11 for each # € 2, k], which is possible since we set ys; > (my - Ak g

Claim 4.29. G4 ~. G5 due to LWE.
Proof. We observe that ¢; ; is masked by v; ; := s;(D; ® I®("1) @ rl.Tj @I®k) + e

fori € [k], j € [Q]. We show that {v; ;}c[o] is pseudorandom for the case of i = k.

Other cases can be shown similarly. To show the indistinguishability, we first change the

200

distribution of {vi ;}; so that they are sampled as

Vi, j = (Sk (D ® I®k) + e}(’) (I®k ® l'k,j) +e ;.

—
‘_Sk

’

where €]/ — Z)Z’ﬁ;}. We claim that this is statistically indistinguishable from the original

distribution. To see this, we observe that

/7

_ ®k
Vi, —Sk(Dk ®rk,j)+ek (I ®rk,j)+ek,j

=€I1ror

and these distributions only differ in the error terms. We have
€ Rs e;(’ (I®k ® l‘k’j) +eg;

by the smudging lemma, since we have y3 > (my)*1“() y; and e} (I @ i j)lleo <
(my poly(2))* y1. The case of i # k is shown similarly, using y4 > (my)*1°W y,. We
then observe that we can replace s; with a random vector by applying LWE with secret s.
We then apply LWE once again, now the variant with short public matrix and with the

secret 8}, we can conclude that {vy ;},; are indistinguishable from random vectors. m

Claim 4.30. G5 Xy Gﬁ

Proof. The two hybrids differ only in the error terms in {cl’.’jlek }ie[0.k],j1.....jre[o] and
are indistinguishable due to the smudging lemma. We first show this for the case of

i €k-1]. InGs:

T
i =S(A =X ;@) ®1;) +e;
In G6Z
/ _ T ”) ’
Cisjl ,,,,,, Jk (S(Im ® rjl,---,jk) + e]l ,,,,,]k) (A‘ Xiji ® I) + ei,jlu Jk
T
= s((Aj-x;; D) ® r; ..,jk) + e;’l ’’’’’ i (Aj—x;;, ®I) + el’.’jl,”_’jk

201

Clearly, the two hybrids differ only in the error terms. Thus, the indistinguishability

follows due to the following:

V4 ~ ’/ 144 L .
€ N nte L (A-x; 0l

The above is true by the smudging lemma, since we have yg > myy14°"") and
lle” . (Ai=X;j ®I)|| < mypoly(d). The case of i = 0 is shown in the same manner.

The case of i = k is shown similarly, noting that

’ o ’”
eksjlw-ajk s ek’jl ----- Jk + e]‘lv-wjkAfJ'k

holds since we have y7 > mBy1 - 1“1 and €7 Aglle <mxillAg, lle - poly(2) <

.....

mpBx1 - poly(4). u

Claim 4.31. G6 e G7

Proof. The indistinguishability follows from LWE by Lemma 4.11, which is applicable

since y1 > (my)ka@), |

Claim 4.32. G; =; Gg

Proof. The two hybrids differ only in the error terms in ¢/ ki . The indistinguishability

.....

follows from the smudging lemma. In G7,

’ 7
ck,jl ,,,,, Jk =S jkAfk

In Gg,

’ 7 3 ’ ’
ottt = €101 1, i AL Xy iy U F (Sjl WUt jk)
:(1 (A =X Jk1®1)+e[0k 1],)HAkaXn U

7 /
+ (S i U F ek,.il,...,_/k)

- s;l Jk (Afjk ka (le jk—l) 'I)U+

.....

202

’ ’ ’ —
Sits ij + ek,jl,.--,jk + e[O,k—l],j1,~--,ijA’ffk Xjp k-1 U

—~

o ’ ’
=S jkAfij e T e[o,k—l],jl,.,.,ijA,f_fk Xjpooiey U

=€ITor

where we define €/

— / ’ . .
0k—1] 1k = (eO,jl,.‘.,jk’ ey ek_l’j]wjk) in the second line and we

use fj, (Xj,....j,;) = 1 in the last line. Clearly, the two hybrids differ only in the error

terms. Thus, the indistinguishability follows due to the following:

—~

V4 ’ ’
€ T e[o,k—l],jl,...,ijAvffk,X_fl,..._fk,l ~s €k i

. . . w(l) o ’ -
which is true when y7 > mpB€ys-A“"", since we have ||e[0,,(_1],].1’_‘',ijA,fjk,ij.k_1 loo <

mpBLxs poly(2), where [[Ha 7, x, . llo < B m

Claim 4.33. Gg 7 Gg

Proof. The indistinguishability between the two hybrids follows from the fact that the

following distribution is indistinguishable from random:

’
wJk’ SJ'1,~.-,

I4 4 4
AU, {l'i,j,-, Si i A=Xj e ©D e HUte

,]1,...,Jk}ie[k],jl,...,jkG[Q]

This can be shown by LWE with short public matrix as follows. Here, we change the
LWE sample with respect to matrix (A —x;, _;, ® I|U) into random vectors for each
combination of (ji, ..., jx) one by one. To do so, we first use the smudging lemma
to see that the distribution of A and A —x;, ;, ® I are statistically indistinguishable,
since each entry of X, ; ® Lis either O or 1, while that of A is chosen from Dz, with
y = 2°() We then apply the LWE with short public matrix to see that the LWE samples

with respect to the secrets;, _;, are indistinguishable from the random vectors. []

This completes the proof of Lemma 4.24.]

203

4.7.3 A Construction for P
Here, we discuss the variant of our scheme that can deal with circuits with arbitrary
(bounded) polynomial depth. Because the construction is very similar to our construction

for NC; circuits, we only highlight the difference here.

* We sample the matrices Ay, . . ., Ax_; uniformly at random from ngm‘) rather than
a Gaussian distribution over Z">"¢.

* We replace Ag — xop ® I in the encryption algorithm with Ag —xp ® G. Similarly, we
also replace A; — x; ® I'in X; with A; — x; ® G. Accordingly, s is chosen randomly
from ngkfl rather than Z’;k.

* The low-norm variant of the lattice evaluation algorithms (EvalF, EvalFX) from
Lemma 4.4 used in KeyGen, and Dec are replaced with those of Lemma 3.2 (i.e.,
the regular one).

« We use the same parameters as Sec. 4.7.1 except that 8 is set to be (2m)°(@
reflecting the fact that we replace the homomorphic lattice evaluation algorithm.

The correctness of the scheme can be shown similarly to Sec. 4.7.1. The scheme can be
proven secure assuming the strengthening of the tensor LWE assumption defined below.
Assumption 4.34 (Extended Tensor LWE). Letn,m, q,{, Q € N be parameters, y and

.....

J1s-- s Jk € [Q], we have

.....

.....

k], j1, - Jk € [Q].

Theorem 4.35. Assuming evasive LWE (Assumption 4.6) and extended tensor LWE
(Assumption 4.34) our k input MIABE for P satisfies very selective security (Definition
4.2).

Since the proof is very similar to that of Theorem 4.23 in Sec. 4.7.2, we only provide an

overview while highlighting the difference. The first step of the proof is the same as that

204

of Theorem 4.23, where we invoke the evasive LWE assumption k times to conclude that
in order to prove the security of the scheme, it suffices to show the indistinguishability
of the two distributions D, and D. These distributions are defined similarly, except
that Ag — xo ® I and A; — x; j, ® I are replaced with Ag — xo ® G and A; - x; ;, ® G.
Then, the indistinguishability is shown by similar sequence of hybrids with the following

difference.

* We skip Gg and G7 and directly argue that Gs ~. Gs, where ¢, P is replaced
with

’ 7)) ’
it = L0111 i AL X1y U (S(In or)..j) GU+e€ ;| jk) :
in Gg.

* Gg =, Gg is shown directly from the extension of the evasive LWE assumption
above.

205

CHAPTER 5

ATTRIBUTE-BASED MULTI-INPUT FE (AND MORE)
FOR ATTRIBUTE-WEIGHTED SUMS

5.1 INTRODUCTION

We continue with the theme of constructing advanced encryption schemes for distributed
data where we now focus on constructing functional encryption schemes in multi-party
settings. Functional encryption (FE) [SWO05; BSW11] is a generalization of public key
encryption which enables learning specific functions of encrypted data via “functional”
keys and nothing else. In FE, a secret key sk is associated with a function f, a ciphertext
cty is associated with a message x and decryption allows to compute f(x) and nothing

else.

In this chapter, we build attribute based multi-input functional encryption (AB-MIFE),
multi-client functional encryption (MCFE) and dynamic decentralized functional
encryption (DDFE) for attribute weighted sums (AWS). We describe these primitives

below.

The Attribute-Weighted Sums (AWS) Functionality: 'The AWS functionality, introduced
by Abdalla, Gong, and Wee [AGW20], supports the computation of aggregate statistics
on encrypted databases. Concretely, consider a database with N attribute-value pairs
(X}, Z;)ie[n] Where X; is a public attribute associated with user i, and z; is private. Given

a function f, the AWS functionality on input (X;, Z;);c[n] is defined as

Z[E[N]f(xi)TZi-

Multi-Input FE (MIFE): In MIFE [GGG™"14] the input to a function is distributed
among multiple (say n) parties. Thus, the i party encrypts its input z; to obtain ct;
and a key authority holding a master secret generates a functional key sk and these
enable the decryptor to compute f(z, ..., Z,) and nothing else. In attribute based MIFE
(AB-MIFE) [ACGU20], for some functionality f, an attribute y; is associated with a
ciphertext for slot 7, in addition to an input z;. The secret key is associated with an
access control policy g in addition to the function input ¢. Decryption first checks if

g(y1,...,yn) =1, and if so, it computes the MIFE functionality f({z;},c).

Multi-Client FE (MCFE): MCFE [GGG*14; CDG"18a; CDG*18Db] is a generalization
of MIFE, where the inputs z; are additionally associated with public “labels” L; and any

input can be combined with other inputs only if they share the same label.

Dynamic Decentralized FE (DDFE): DDFE [CDSG"20], as the name suggests, is a
decentralized variant of FE, where not only can ciphertexts be generated locally and
independently but so can the keys. Thus, DDFE works in a setting where both the data
and the authority are decentralized. In DDFE for some functionality f, the setup step is
localized and run independently by users, letting them generate their private and public
keys individually. During encryption, the set of users with whom a given input or key
object should be combined can be chosen dynamically. In more detail, each party can
specify the set of parties with which its input may be combined, a label that controls
which values should be considered together and the input z; itself. Similarly, every user
can also generate a key object which specifies the set of parties with which the key may
be combined, and a key vector ¢;. For decryption, the ciphertexts and keys from the

parties who mutually agree to combine their inputs and keys are put together to compute

fzi}i {c;})).

208

Prior Work. We summarize the state of the art below.

The AWS Functionality. For the AWS functionality, even the weakest multi-input notion,
namely MIFE is not known to the best of our knowledge. We note Abdalla et al.[AGW20]
did propose a multi-party extension to their FE for AWS. However, this scheme is a much
weaker primitive than the standard notion of MCFE (or even MIFE), since this scheme
natively only supports a single ciphertext query per slot. To extend it to the setting of
multiple queries, the authors make use of non-interactive MPC to enable the parties to

obtain a random secret sharing of 0.

In more detail, while their scheme supports labels, the difference from standard MCFE
schemes is that in their scheme each party uses a one-time secret key for each encryption
instead of long-term encryption key, and the one-time keys are generated via non-
interactive MPC run between the parties. Specifically, their scheme consists of five
algorithms (Setup, OTSKGen, Enc, KeyGen, Dec), and Setup, KeyGen, Dec are the
same as those in standard MCFE. OTSKGen(1%) is a non-interactive protocol where
party i obtains one-time secret key otsk; as the output of the protocol. Enc(otsk;, x;)
takes otsk; and a message x; and outputs a ciphertext ct; for party i. Correctness holds,
i.e., decrypting a set {Ct; };c[, of ciphertexts with a secret key for f reveals f(xi,...,X;,),
only when the set of ciphertexts are generated under the one-time secret keys {otsk; }ic(n]
derived from a single running of OTSKGen(1%). The one-time secret-key can be used
only once for encryption, otherwise security does not hold any more. Thus, this notion is
even weaker than the variant of MCFE with one-time labeling restriction [CDG"18a]

and in particular, does not imply MIFE.

AB-MIFE, MCFE and DDFE. The best known attribute-based MIFE scheme is for the
inner product functionality is by Abdalla et al.[ACGU20]. Moreover, in the AB-MIFE

construction by Abdalla et al., the ABE attribute y;! associated with the i’ slot is fixed

'Tn their notation, the embedding of access control policy and attribute are swapped to the ciphertext-policy
setting — thus, for them y; is an access control policy.

209

in the setup phase and must remain the same for all ciphertexts, instead of being chosen
dynamically by the encryptor for each encryption. For MCFE [ABG19] as well as DDFE
[CDSG*20], the largest achievable function class is linear functions (or inner products),

albeit with function hiding [AGT21b].

Multi-Input Attribute Based Encryption. An attribute based MIFE scheme implies a
multi-input attribute based encryption scheme as a special case. We recall that in an
MIABE scheme, encryptor i encodes a secret message m; together with an attribute
y;. The function key encodes a circuit g so that decryption outputs (my,...,m,) if
g(y1,...,¥n) = 1. The generalization to multi-input predicate encryption additionally
allows hiding the attributes y;. In this setting, we gave constructions for circuits in
NC; and P under various lattice-based assumptions as described in Chapters 3 and 4.
Additionally, as described before, Francati ef al.[FFM V23] also provided a multi-input
predicate encryption scheme for a conjunction of predicates. Their construction supports
the class P and is based on the Learning With Errors problem. Moreover, if the arity of
the function is restricted to a constant, their security game also supports user corruption.
However, their construction does not support collusions, which is one of the most
important and technically challenging aspects of designing attribute based encryption

schemes.

5.2 OUR RESULTS

In this work, we significantly extend the reach of multi-input functional encryption
schemes by providing the first AB-MIFE, MCFE and DDFE schemes that support the
AWS functionality. Our constructions satisfy the standard (selective) indistinguishability
based security and rely on the matrix DDH assumption on bilinear groups. We discuss

each of these contributions below.

AB-MIFE for AWS: We provide the first attribute based MIFE for the AWS functionality.

In our AB-MIFE, each encryptor can choose an attribute y; specific to its AWS input

210

{xi,j» i} je[n;]> the key generator can choose an access control policy g; along with its

AWS function h; for i € [n] and decryption computes:

f((YI, {Xl,j’ Zl,j}jE[N|])’ cees (Yn, {Xn,j»zn,j}jG[Nn]))

2icin] 2jen] hi(Xij),zi) (g1(y1) =+ = gn(yn) =0)

1 (otherwise)

Here, y;, x; j are public while z; ; is private, and g;, h; belong to arithmetic branching
programs (ABP). We note that the number of slots N; for i € [n] can be unbounded, and

chosen by the encryptor dynamically.

Connection with Multi-Input Attribute-Based Encryption We observe that this
functionality also implies the notion of multi-input attribute-based encryption (MIABE)
defined in Chapter 3 for a conjunction of predicates represented as ABP. Thus, MIABE
implied from MIFE for AWS supports the functionality g(yi,...,y.) = A(g(y:) =0),

where each g; is an ABP.

In contrast, the constructions of MIABE in Chapters 3 and 4 support an arbitrary g € NC;
but only outputs a fixed message whereas construction in this chapter supports the AWS
functionality. Additionally, it also supports a stronger security model which allows user
corruption, while in our MIABE constructions this is not possible since each party shares
the same master secret key. Further, by applying our MIPE compiler to the results in this
chapter, we obtain a multi-input predicate encryption scheme for constant arity, albeit

without support for user corruptions, due to the design of the compiler.

Comparing with the work of Francati et al.[FFMV23]. As discussed before, their
MIABE construction supports no collusions and user corruptions only for constant

(not polynomial) arity. In contrast, our construction of AB-MIFE supports unbounded

211

Work Arity Corruption Collusion Function Class Assumption
[FEMV23] Poly No No Conjunctions in P LWE
[FEMV23] |Constant Yes No Conjunctions in P LWE

Koala
Chapter 3 2 No Yes NC
and LWE
Chapter 4 |Constant No Yes NC evasive LWE
evasive and
Chapter 4 |Constant No Yes P
tensor LWE
This Chapter . . .
Poly Yes Yes Conjunctions in NC; Matrix DDH
(MIABE)
This Chapt Matrix DDH
15 naptet Constant No Yes Conjunctions in NC amx
(MIPE) and LWE

Table 5.1: Comparison with related work in MIABE and MIPE.We consider CPA-1 sided
security for the comparison with [FFMV23].

collusions, as well as user corruptions for polynomial arity. However, our construction,
being based on pairings, only supports the function class NCy while they support P.
Additionally our construction supports computation of the expressive AWS functionality
while theirs just recovers a fixed message (i.e. our scheme is an FE not an ABE). In the
setting of MIPE, our construction does not support corruption but does support collusions,

while theirs achieves the opposite. Please see Table 5.1 for a detailed comparison.

Multi-Client FE for AWS We construct the first MCFE for Attribute-Weighted Sums,
which generalizes MIFE described above. In more detail, each encryptor can choose input
{xi .2} jen,] together with a label L;, the key generator can choose ABPs { f;}ic[n]
and decryption computes:
JUXLzu i} enis - {Xngs Znj} jerv,)) = Z Z (fi(Xij), i j)
i€[n] je[Ni]

as long as all the L; are equal. This is the first MCFE that supports a functionality beyond
inner products to the best of our knowledge. Moreover, the number of slots N; allowed to

each party 7 are unbounded, though the number of parties n is bounded — this feature was

212

not achieved by prior MCFE schemes for inner products as far as we are aware.

Dynamic Decentralized FE for AWS Next, we extend our MCFE to the much more
challenging setting of DDFE. For the setting of AWS, the i’ encryptor chooses a set of
users Uy ; with whom its input may be combined, some label L; to constrain which values
should be considered together, aside from its AWS inputs {z; ; } je[y,] Which are private
and {x; ; } jc[n,] Which are public. For key generation, the i'" user also chooses a set of
users Uk ; and a set of ABPs f; = {fi}jeuy,- If all the sets Uy ; and Uy ; match up (to
some U},) and if the labels in all n ciphertext slots are equal, then decryption computes the
AWS functionality. Formally, for k; = (f;, Uk;) and m; = ({xij» zij Y jerni Un i Li),

the functionality computes:

(i, kitiewr . (i, mitiews,) =
Zie‘L{;(2jeng {Ji(Xij), 2 ;) if the conditions below are satisfied
L otherwise

The conditions are:
1. (L[;(= 7/[;‘/1 andVi € 7/[;(, 7/{1{,,‘ = ﬂM’[= (L[I/(

2. Vigeuy, fi = frand L; = L.
We summarize prior work in Table 5.2. Please see Appendix 5.A for a more detailed
summary. We explain our functionalities in the framework of multi-party FE [AGT21b]

in Appendix 5.B.

5.2.1 New Applications

Our attribute-based MIFE enables several new and exciting applications that were not
possible before. Let us begin with the example for AWS suggested by [AGW20], of
computing the average age of smokers who have lung cancer. In this case, the access
control layer on top of the MIFE can capture the willingness of a user to even participate

in such a study involving their medical data. For example, perhaps a user is willing to

213

(Pub, Pri) -
Work Key Functionality
CT
MIFE [AGT22] (L,7) c (¢, 201)
AB-MIFE[ACGU20] (L,2) {vis Cities Nies fi(yi) - %(Zi, ¢i)
1€
AB-MIFE, Sec. 5.6 (i xij}) Azij};) A& hitie Ni(gi(yi) =0) - %] %]hi(xi,j)TZi,j
ie[n]je[N;
MCFE [CDG"18b; ABG19] (L7) p . 2)
MCEFE, Sec. 5.7 ({xij}j-{zij})) {fitielm XX fitxij) Tz
i€[n]j€[Ni]
DDFE, [CDSG*20; AGT21a] (Lz) P (. z)
DDFE, Sec. 5.8 (X} {zij})) {fi}ies > 2 fikxi) Tz
ie€Sje[N;]

Table 5.2: Prior state of the art and our results. We do not consider function
hiding or MCFE schemes with only one time labels. Above, we denote
y = (¥Yi,..-,¥n), Z = (Z1,...,2,) or Z = (Z;);es. S is some subset of
authorized users for a given key. A function f; is a monotone span programs
fixed in setup. Functions f;, g;, h; are arithmetic branching programs chosen
in key generation.

participate in this computation if certain criteria are satisfied, for instance if the study is
being performed by doctors with certain specializations. Moreover, these criteria can
be different for different users. This is exactly the kind of access control that an ABE
system is designed to enforce. The required criteria can be specified by each user using
its attribute y; while the key holder’s input g; must encode her privileges so that she

learns the AWS output only if g;(y;) is satisfied for all i € [n].

In the context of MIABE, we recall the example of the medical researcher from Chapter 3:
a doctor is treating Covid patients and desires to understand the relation between Covid
and other medical conditions such as asthma or cancer, each of which is treated at
different locations. The records of a given patient are encrypted independently and stored
in a central repository, and the doctor can be given a key that filters stored (encrypted)
records according to criteria such as condition = ‘Covid’ and condition = ‘asthma’ and
age group =‘60-80’ and enables decryption of these. Note that AB-MIFE can already
support the conjunction of predicates and suffices to enable the functionality of the above
example. Moreover, in addition to supporting decryption of messages as in MIABE,

AB-MIFE will even allow computing some aggregates on the private data, something

214

beyond the capability of MIABE.

For MCFE and DDFE, generalizing inner products to AWS is clearly meaningful — all
applications of AWS in the single input setting are meaningful in the setting with multiple
users, with the additional expressiveness offered by MCFE and DDFE. For instance, in
DDFE, the number of users who can participate in a computation is unbounded and
moreover, users can join dynamically — this is useful in real world applications such as
the examples involving patients in the lung cancer study or users in the minority group

discussed earlier.

5.3 TECHNICAL OVERVIEW

Recap of AGW Our starting point is the functional encryption scheme by Abdalla,
Gong, and Wee [AGW20], henceforth AGW, which provides the first construction
supporting the AWS functionality for ABP from standard assumptions on bilinear maps.
In more detail, the encryptor> computes a ciphertext encoding {x j»Zj}je[N] Where N is
unbounded, Xx; are public and z; are private, the key generator computes a secret key
encoding an ABP f and decryption recovers 2 jcn1{f(X;), ;). At ahigh level, their
construction proceeds in two steps: (i) construct a single slot scheme, i.e. N = 1, which
supports computation of { f(x), z), (ii) extend this to support unbounded N by running
N instances of the single slot scheme, and cleverly handling leakage and size blowup
that occurs along the way. As discussed by AGW, step (i) can be achieved by adapting
a framework by Wee [Weel7], and the main conceptual and technical novelty lies in

achieving step (i1), especially in supporting unbounded N.

We review step (ii) next, as the ideas herein form the basis of our multi-input constructions.
As discussed above, the first idea to handle N > 1 is to simply run N instances of the
single slot scheme but this evidently does not work, since it would allow the decryptor

to learn partial sums {f(x;),z;) which are not revealed by the ideal functionality. To

ZHere we discuss the single input construction of AGW, the multi-input construction is discussed later.

215

address this leakage, the single slot scheme is extended to handle “randomization offsets”,
namely to add masking values w ;r to the partial sums, where w; are sampled randomly
by the encryptor such that 3, w; = 0, and r is sampled randomly by the key generator.
These masking values hide intermediate partial sums {f(X;), z;), but when the partial

sums are added, we recover 2 ey (f (X;), ;) as desired.

To make the secret key size independent of N, AGW construct a hybrid argument over
the N slots, collecting “partial sums” along the way — the details of this technique are
not relevant for our purposes. They achieve selective simulation based security from the

standard k-linear assumption over bilinear groups.

They then extend this construction to a setting where the N slots can be owned by N
independent parties — to enforce the constraint that >’ ;c;y; w; = 0, they make use of a
non-interactive MPC protocol where the parties communicate to generate these shares
prior to each encryption. While this construction provides a first feasibility result for FE
supporting the AWS functionality in the multi-party setting, it falls short of achieving the

standard notion of MCFE in many important ways:

1. The MPC step introduces an additional round of interaction prior to each encryption®
— this violates the primary demand of non-interaction that is placed on FE.

2. The ciphertexts constructed in different “iterations”, i.e. generated via different runs
of the MPC cannot talk to each other, thus failing to satisfy the main functionality
requirement of even an MIFE scheme, which explicitly requires supporting such
combinations. In more detail, consider a two slot MIFE scheme, where the first
slot ciphertexts encode x/ for j € [Q;], the second slot ciphertexts encode y’
for i € [Q3] and the secret key encodes some function f. Then MIFE explicitly
requires that f(x/,y’) should be computable for any pair j,i. Indeed, the standard
notion of MCFE generalizes MIFE by additionally supporting labels in each
ciphertext that dictate how ciphertexts may be combined. The multi-party scheme
of AGW does not imply an MIFE.

3. The security game of the multi-client AGW construction does not handle the
multi-challenge setting, which is the main technical challenge in any MIFE or
MCFE construction. Indeed, handling the multi-challenge setting would disallow

3This can done in a offline phase, but then places a bound on the number of ciphertexts which can be
computed.

216

the usage of simulation security due to an impossibility result by Boneh, Sahai and
Waters [BSW11] — since the AGW constructions satisfy simulation security, any
generalization to the multi-input setting must necessarily take a different route.

Thus, the question of even constructing an MIFE for AWS, let alone generalizations to

AB-MIFE, MCFE and DDFE, is completely open. We provide an outline of the AGW

construction in Figure 5.1.

Multi-Party

(single CT)

FE for AWS
(Sec 8)

One Slot FE for One Slot FE for Unbounded Slot
AWS AWS-IP FE for AWS

(Sec 5) (Sec 6) (Sec 7)

Figure 5.1: Construction Outline of AGW Multi-Client Scheme. All constructions satisfy
simulation security. The multi-client scheme only supports a single ciphertext
in each slot (and uses MPC to support many).

Building MIFE for AWS In an MIFE for AWS, we have n parties, where the ciphertext
computed by the i party embeds inputs {x;, j»Zi,j}je[n;] Where N; is unbounded, the

secret key embeds a set of ABPs { f;},c[,], and decryption computes

FOXL 2 e s Znen) = Y Y (%)), 2ig)
€[n] je[Ni]
Recall that x; is public while z; is private, i.e., a ciphertext only hides z;.

A natural idea would be to begin with the multi-party* construction of AGW and try to
get rid of the MPC. In fact, removing the usage of MPC is not very difficult by using
PRFs to compute a secret sharing of 0 for any given label’, but this would still only

lead to a weak variant of MCFE which has the so called “one time label” restriction.

4Since the AGW construction does not satisfy the standard definition of MCFE in several important
ways as discussed above, we refer to their construction as a multi-party construction, in the sense of
[AGT21b].

SConsider the 3 party case. Let us say that parties have PRF keys (ki, k2), (ka, k3), and (k3, k;)
respectively. Then we can use the fact for every label L, F(ky,L) + F(ky,L),—F(ky, L) +
F(ks,L),—F(k3, L) — F(ky, L) are pseudorandom shares of 0 [KDK11; ABG19].

217

Intuitively, an MCFE with a one time label restriction, as the name suggests, allows
each label to be used only one time for each input; this primitive therefore no longer
implies MIFE. Handling combinations of multiple ciphertexts is the core functionality
of MIFE and forms the basis for most applications, so the one time label restriction is
quite a significant limitation. Indeed, in the inner product setting, early constructions of
MCFE suffered from the one time label restriction [CDG*18a] and were upgraded to

full-fledged MCFE by follow-up work using nontrivial ideas [CDG*18b; ABG19].

Another point to note is the handling of unbounded slots for each client. Concretely,
let us say there are n clients, and the i'" one chooses N; (unbounded) internal slots for
their data. Now, the AGW multi-party construction can easily handle unbounded N by
instantiating e[, N; nominal clients and having each client internally handle N; of
these. This trick does not work out of the box anymore in the MIFE setting due to the

requirement of supporting combinations of all ciphertexts across slots.

Our Approach Taking a step back, a natural approach is to ask whether existing
transformations of FE from the single to multi-input setting for the inner product
functionality can help us overcome the challenges faced in designing this generalization
for AWS. Towards this approach, we observe that all IP-MIFE (or IP-MCFE) schemes
in the literature are constructed by (explicitly or implicitly) running an IPFE scheme
in parallel for each input and handling leakage issues along the way. At a high
level, these works can be classified into two categories based on which property of
the underlying IPFE is required in the security proof: 1) ciphertext homomorphism,
e.g., [AGRW17; CDG*18b; ACF*18; ABG19] or 2) function-hiding security, e.g.,
[DOT18; Tom19; AGT21b].

While IPFE schemes have ciphertext homomorphism (a ciphertext is a group element,
and adding ciphertexts of x; and x; results in a ciphertext of x; + X»), this is not the case

in FE for AWS due to public inputs for ABPs. Since ABPs are not linear functions, it is

218

hopeless to equip an FE scheme for AWS with ciphertext homomorphism. It is worth
noting that the reason that the AB-MIFE scheme in [ACGU20] can handle only a limited
form of access control, i.e., only secret keys are associated with attributes, and access
control is done between the attributes and the public fixed policy, comes from the fact
that their scheme relies on the former approach and cannot associate ciphertexts with

attributes or a policy as the case of the single input AB-FE schemes.

Fortunately, the latter approach is not ruled out, and indeed, we show that it can be made
to work even for the AWS functionality. We observe that works in the latter category
use function-hiding security of the underlying scheme to obtain function-hiding in the
resultant IP-MIFE scheme. In this work, however, we will use function-hiding for a
completely different purpose — to transform a singe-input scheme into a multi-input
scheme without relying on ciphertext homomorphism of the underlying scheme. In
particular, we will not achieve function-hiding security in our final MIFE for AWS

scheme.

Recap: Construction of IP-MIFE from IPFE Our starting point is therefore the FE to

MIFE transformation for inner products by Datta, Okamoto and Tomida [DOT18]
(henceforth DOT), which we describe next. Recall that IP-MIFE supports functions
f: (Zg)” — Gr specified by (cq,...,¢,;) € (Zg)” and defined as f(xi,...,X,) =
[2ic[n)(Xi>€:)]7. While the DOT IP-MIFE scheme is a direct construction based on
pairings, it can be viewed as a generic construction from a function-hiding FE scheme for
inner product (IPFE) as described in the next paragraph. Recall that in an IPFE scheme,
the ciphertext and secret key are associated with x € Zl‘;’ and ¢ € Z;,l respectively, and
decryption reveals [(X, ¢)]7. The function-hiding property guarantees that the secret key

hides ¢ along with hiding x in the ciphertext.

Let iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme. Then the

IP-MIFE scheme is constructed as follows. Setup generates master secret keys

219

iMSK, ...,IMSK,, « iSetup(1%) and sets ek; = iMSK; msk = {IMSK; }ic[n]-
Encryption of x; for slot i computes iCT; « iEnc(iMSK;, (x;, 1)) and outputs ct; = iCT;.
Key generation, given input (cy, ..., ¢,), randomly chooses r1, ..., r, < Z, such that
2ien i = 0, computes iSK; « iKeyGen(iMSK;, (¢;, 7)) for i € [n], and outputs
sk = {iSK;}ic[n). Decryption outputs e[, iDec(iCT;,iSK;) = [2(x;, ¢;)]r, since

>.r; = 0. Here, the random element r; is used to hide partial decryption values (x;, ¢;).

Let us now turn our attention to the security proof. Since we need neither function
hiding nor adaptive security for the multi-input scheme in our purpose, we can make
the proof much simpler than that by DOT as follows. We will denote iEnc(iMSK;, v)
and iKeyGen(iMSK;, v) by iCT;[v] and iSK;[v], respectively. Now, in the original game,
the adversary is given iCT,-[(x{ B, 1)] for the j-th challenge message (X{’O,X{ ’1) and
{iSK; [(cf, rf)] }ie[n) for the £-th secret key of (c‘{, ...,¢%), where S is the challenge bit.
Thus, the goal of the proof is to delete the information of 8 from the ciphertexts in an
indistinguishable manner. In what follows, we omit index ¢ for conciseness since all

secret keys can be handled in the same manner.

The security proof uses two hybrids. In the first hybrid, the j-th ciphertext for slot 7 is
changed to iCT; [(x{ ’0, 1)] while all secret keys are changed to {iSK;[(¢;, r; + (xl.l’ﬁ , Gy —
(Xl.l’o, ¢;))1}ie[n) for all i, j. The indistinguishability of the original game and the first
hybrid follows from the security of the function-hiding IPFE scheme and the following

constraint:
I 1,0 1, , ..
ey - (x0 ey = (P ey — (x10, ¢y forall i, j (5.1)

which follows from the fact that the adversary can inherently learn (X{ # ,Ci) — <Xl.l B ,Ci)
from challenge queries (originally observed in [AGRW 17, page 4]). In the second hybrid,

all secret keys are changed to {iSK;[(¢;, 7;)]}ie[, for all i, which readily follows from

220

the fact that the two distributions are equivalent:

1, 1,0
{(ri,...om) iry, o < Zy s.t.Zr;:O, r,-:r;+(xl.ﬁ,c,->—(xl. ,Ci)}

{(ri,...,rm) tr, oo — Zy sit. Zri=0}

This is because we have that Y;c [, ((Xl.l"g ,C) — (xl.l’o, ¢;)) = 0 due to the admissibility
condition on the queries. At this point, the advantage of the adversary is 0 since its view

contains no information about £.

Generalizing the FE to MIFE to support AWS Next, we show how to generalize the

FE to MIFE compiler of DOT to handle the AWS functionality. In this step, we make use
of an insight developed by AGW to handle unbounded slots, namely, to leverage a (single
input) FE scheme that supports unbounded-slot AWS together with randomization offsets.
In more detail, a ciphertext is associated with (v, p) € X X Z", a secret key is associated
with (F,q) € F X Z", and decryption reveals [F(v) + (p, q)]r. Here, we assume that ¥
is a set of functions belong to unbounded-slot AWS and X is its input space, but observe
that the argument below can be applied to any function classes. For security, we require
that both p, q are hidden. In what follows, we call this functionality AWS with inner

product (AWSwW/IP).

We emphasize that while this is also the functionality achieved by AGW [AGW20[Sec 6]],
the security achieved by these is quite different: our construction must satisfy partially
function hiding indistinguishability based security, while theirs satisfies simulation
based security without function hiding. Additionally, our construction will support the
additional inner product functionality with respect to unbounded-slot AWS, while AGW

support it for only single-slot AWS.

Suppose we have a partially function-hiding FE scheme for the AWSw/IP functionality,

denoted as aFE = (aSetup, aEnc, aKeyGen, aDec). Then, we can construct MIFE

221

that supports functions F : (X)" — Gr specified by (Fj,...,F,) € ¥" and defined
as F(vi,...,Vn) = [2ie[n) Fi(vi)]r from aFE by following the template of DOT, as
described next. Looking ahead, F can be instantiated to capture either AWS or attribute
based AWS to obtain MIFE for AWS or AB-MIFE for AWS respectively. For instance,
for MIFE, we set v; = {X;;,%;}jen], F = (fi,...,fs) where f; are ABPs, and
F(vi,...,va) = X X (fi(xi)),).

i€[n]j€[Ni]

Construction 5.1 (MIFE for AWS). Setup(14) It outputs
ek; = aMSK; « aSetup(1%) for i € [n] and msk = {aMSK;};.

Enc(ek;, v;) It outputs ct; = aCT; « aEnc(aMSK;, (v;, 1)).

KeyGen(msk, (Fi, ..., F,)) It outputs sk = {aSK;}c[,) where ri,...,r, < Z, s.t.
> ri =0 and aSK; « aKeyGen(aMSK;, (F;,r;)).

Dec(cty, ..., cty, sk) It outputs 3;c,) aDec(aCT;, aSK;) = [X Fi(vi)]r.

The security proof is essentially the same as in the case of IP-MIFE, discussed above.
We use the following two hybrids: in the first hybrid, the j-th ciphertext for slot i
is changed from aCT;[(v/#, 1)] to aCT;[(v/?, 1)] while all secret keys are changed
from {aSK; [(Fi, 7)1 }ictn) to {aSKi[(Fi, ri + Fi(v}F) = Fi(v}°)1}ieqn)- In this step, we
leverage the important observation that a constraint similar to Eq.(5.1) holds in MIFE for
the function class we consider, where the final output is the summation of the output

of each slot. Specifically, we have Fi(vf’ﬁ) - Fi(vlf’o) = Fi(vl.l’ﬂ) - Fi(vl.l’o) for all i, j.
Hence we can use the function-hiding security of aFE to change the second element of
the function in secret keys from r; to r; + F; (vl.l’ﬁ)— F,'(V} ’O) in a indistinguishable manner.
In the second hybrid, we bring back all secret keys to the form {aSK;[(F;, ;)] }ie[n). This

transition is possible as the case of IP-MIFE, that is, we use the fact that the following

distributions are equivalent:

’ 4 ’ ’ 1, >
{(ris. s iry, o1y — Zp sit. Zri =0, ri:rl-+F,-(vl.ﬂ)—E(Vl.10)}

222

{(ri,.ccomn) tr, o o1 — Zy st Zri:O}

which follows from the query condition ¢, (Fi(vl.l’ﬁ) — Fl-(vl.l’o)) = (. At this point,

the advantage of the adversary is 0.

Partial Function Hiding FE for AWS with Inner Product It remains to construct the

single input, unbounded slot FE scheme for the AWSw/IP functionality which satisfies
partial function hiding. As discussed, the AGW scheme achieves simulation-based
security but not function hiding. Our idea of extending AGW to function-hiding to
the multi-challenge setting is to design AGW using a function-hiding IPFE scheme,
which is inspired by the constructions of ABE for ABP and FE for AWS from (slotted)

function-hiding IPFE in [LL20a; DP21].

Recall that AGW first constructs a one-slot scheme that can handle randomization
offsets, the construction of which basically follows the ABE scheme by [Weel7], and
then converts it to an unbounded-slot scheme in a modular manner. The spirit of our
construction follows their blueprint, that is, we first construct a function-hiding one-slot
scheme that can handle randomization offsets using a function-hiding IPFE scheme,
and then convert it to a unbounded-slot scheme. However, we present the unbounded
construction directly since later we will need to extend this to attribute based FE for
AWSW/IP, and the modular construction does not apply to that setting. To see this,
note that in an attribute-based FE for AWSw/IP, an attribute is associated with an
unbounded-slot message and how to deconstruct the attribute for a one-slot message is

unclear.

The key building block of [LLLL.20a; DP21] is the arithmetic key garbling scheme (AKGS),
which is specialized for constructing attribute-based encryption schemes. In our work,
however, we use the (extended) partially-garbling scheme (PGS) for ABP [IW14; AGW?20]

together with function-hiding IPFE since PGS is more suitable for FE that computes

223

ABPs and AWSs directly. Informally, it uses an algorithm pgb(f, x, z, §; t) that takes an
ABP f :Z,) — Z,', a public string X € Z)), private strings z € Z,' and 6 € Z,, and a

random tape t € Z' -1 and outputs
L = (Lit,x")y + 0, Lot Xy, ..., (Let,xX'), z[1] + (Lgait, XY, ..., z[n1] + (L;t, X))

where X’ = (x,1),and 5,1 € N,L; € ZIS"OH)XO_I) are deterministically computed from f.

The algorithm pgb satisfies:

Corrrectness we can efficiently compute a vector by € Zﬁ, from f,x such that

(L.bsx) = (f(x).2) +6;

Security we can efficiently simulate the distribution of L over t « Z;‘l from

(f> %, (f(x),2) +0).
Then, we can construct FE for AWSw/IP as follows. Let iFE be a function-hiding IPFE

scheme as above.
Construction 5.2 (FE for AWSw/IP). Setup(14) It outputs
(pp, msk) = (iPP,iMSK) « iSetup(14).

Enc(msk, ({x;,Z;}je[n]. P)) Itchoosesuy,...,un,wi,...,wy « Z,s.t. 2je[N]Wj =

0. It defines

(”jx},zj,wj,p, Op) (.] = 1)
X; =
(X, 2w}, 07,0°) (> 1)

and computes iCT; « iEnc(iMSK, X;) for j € [N]. It outputs ct = ({x;,iCT,};).

Note that the last p entries are used only for the security proof.

KeyGen(msk, (f,q)) It chooses r « Z,, t « Z;_l and computes Ly, ..., L, from f.

224

It defines

(Lt,0", r,q, 07) (j=1)

Y= (Lt 0, 0,0m,0°) (1<j<s)- (5-2)

(L;te;_,0,0",0°) (s<j<t)

where e; is one-hot vector with the i-th element being 1. Finally it computes

iSK; « iKeyGen(iMSK, Y) for j € [¢] and outputs sk = (f, {iSK}}).

Dec(ct, sk) It computes [d; ¢]r = iDec(iCT,,iSK,) for all j € [N],£ € [t] and by x
describe above. It outputs Y’ ;c(n) Zces [Prx[€] - djelT.
In decryption, it follows that

pgb(f.Xj, 2, rwj+(p,q;ut) (j=1)
(dj,17"'7dj,f) =

pab(f,X;. 2, rw ;s u;t) (j>1)
and thus X ey Zeepg Prxll] - dje = X ((F (X)), 2) +rwj + (j = 1)(p,q)) =
e (S (X)), zj) + (p, q). Roughly speaking, the partially function-hiding security of

this scheme follows from the following observations:

* Thanks to the function-hiding property of iFE, what the adversary can learn from
ctand skis {[(d}1,-...d;)]} je[n-

* The random tape {[u;t]7} e[y} used to compute {d; ¢} looks random under the
SXDH assumption, and (d, 1, ...,d;) for each j appear to be generated by a
fresh random tape.

* Thanks to the security of the PGS, the only information about ({z;}, p, q) contained
in (dj,l’ ey dj,t) 1S (f(Xj),Zj) + rw; + (] = 1)<p, q)

¢ Under the SXDH assumption, {[rw;]7}e[n] looks random with the constraint
that the summation of these is [0]7. Thus, the only information about ({z;}, p, q)

in {[(dj1,....dj)]r}jeny is 2(f (X)), Z;) + (P, q).
We remark that we can easily modify the scheme such that Enc and KeyGen take vectors

p and q as a vector of group elements. We will use this property later in the overview for

DDFE for AWS.

225

Attribute-Based MIFE for AWS Next, we explain how to make the above MIFE for
AWS construction attribute-based. At a high level, we do the following: (i) Make FE for
AWSW/IP Attribute-Based, (ii) Use the FE to MIFE compiler discussed above to “lift”

this to AB-MIFE for AWS. We expand on these below.

Step 1: Make FE for AWSW/IP Attribute-Based We extend FE for AWSw/IP such that

it incorporates an ABP predicate which controls decryption, similarly to attribute-based
encryption. Specifically, we add a public vector y to the message in the ciphertext and a

public ABP g to the function in the secret key, and allow decryption only when g(y) = 0.

A naive idea is to define x;. = (y,X;), Z/I. = (v,z;) and f'(x’) = (a - g(y), f(x)) where
a,v < Z, and use {X;., z;.} and f’ as inputs for encryption and key generation of FE
for AWSw/IP, respectively. Note that f” is an ABP if f, g in turn are ABPs. Then,

decryption outputs [e[y (av - g(y) + (f(x)).2;)) + (p.@r. Since [av - g(y)Ir

looks random if g(y) # O under the SXDH assumption, the decryptor can learn

[2jen{f (X)), 2;) + (P, @) |7 only when g(y) = 0.

However, this idea does not work since a needs to be provided in the clear in the secret
key for decryption, and this disallows the reliance on the SXDH assumption (recall that
we need f and x to compute b x in the decryption of the FE for AWSw/IP). To avoid this,
we directly embed a in Y41 so that we can perform decryption without the knowledge of
a. Concretely, we define f” as f'(x’) = (g(y), f(x)) instead of f'(x’) = (a - g(y), f(x))
and define Y 41 = (Lg41, @€, 0,0™,0°) in Eq.(5.2). Then, the decryption result is the
same as the naive construction, which follows from the correctness of the PGS, but f’

does not contain information about a in this construction.

The proof of function-hiding security of this scheme is inspired from the proof in
AGW [AGW?20, Section 7], but with the following key differences: 1) we need to prove

IND-based function-hiding security in the secret-key multi-challenge setting while AGW

226

proves SIM-based security in the public-key setting (thus not function-hiding); 2) Our
scheme is attribute-based while AGW is not. Hence we need to handle secret key queries
that cannot decrypt some challenge ciphertexts, and for such ciphertexts the function
values in 8 = 0 and 8 = 1 can be different (8 is the challenge bit). Please see Section 5.5.2

for details.

Step 2: AB-MIFE for AWS Suppose we have an FE scheme aFE where a ciphertext is

associated with (c, v, p) while a secret key is associated with (k, F, q), and decryption
reveals [F(v) + (p,q)]r if P(c, k) = 1 for some predicate P and L otherwise. We also
assume that aFE is partially function-hiding, so that the ciphertext hides (a part of) v

and p, and the secret key hides q.

At first glance, it seems that we can construct AB-MIFE for ¥’ from aFE by using
Construction 5.1, where ¥’ consists of functions F’ : (C X X)" — Gr specified by
((k1,F1),...,(k,, Fy)) € (K x F)" and defined as

[Zien Fi(v)lr P(ci ki) =1 forall i
F/((Cl,Vl), o (enavy) =

1 otherwise
Note that AB-MIFE for AWS corresponds to the case where ¢ =y, v = {X;,Z;} jc[n]
k = g where g is an ABP, P(c, k) = 1 iff g(y) = 0, and F is specified by an ABP f and
defined as F(v) = 2 (f(x;),z;). We can also observe that aFE for the above setting

corresponds to attribute-based FE for AWSw/IP.

However the above construction is insufficient due to the following reason. Let us consider

a two-input scheme where an adversary obtains ciphertexts of (c%, Vi) and (c%, V%) for
slot 1 (denoted by ct!, ct%), a ciphertext of (c;, v;) for slot 2 (denoted by Cté), and a secret
key for ((ki, F1), (k2, F2)) (denoted by sk) such that P(c{, ki) = 1forboth j € {1,2}
while P(cé, k») = 0. Note that Ctlj denotes the j-th ciphertext for slot i. In this case, the

adversary should not obtain any information about private inputs, since the predicate

227

of slot 2 is never satisfied. However, the adversary can learn [F) (V%) - F (Vi)]T in this
construction (recall that it can learn [Fy(v{) + ri]7 and [F;(v}) + ri]7 by decryption of

aFE in slot 1). This is leakage which we need to avoid.

An important fact is that this leakage is inherent if the adversary additionally obtains a
ciphertext of (c3, v3) for slot 2 (denoted by ct3) such that P(c3, k») = 1. This is because
it can learn [F) (V%) - F (v{)]r by Dec(ct?, Ct%, sk) — Dec(ct!, ct%, sk). By generalizing
this observation, it turns out that such leakage appears only when the adversary obtains
an illegitimate secret key, which cannot decrypt any combinations of ciphertexts that
the adversary has. More formally, we say a secret key for ((ky, Fy),..., (ky, Fy)) is
illegitimate if there exists slot i and the adversary does not have a ciphertext of (c;, *)
for slot i such that P(c;, k;) = 1. In other words, the above construction is secure in the
model where the adversary never asks for illegitimate secret keys — we refer to this notion

as security against legitimate keys.

Achieving Security against Any Keys We next show how to remove this restriction and

achieve security against any keys starting with a scheme secure against legitimate keys.
Our idea is to encrypt all secret keys and allow the adversary to decrypt only legitimate
secret keys. We achieve such a construction by leveraging an n-out-of-n secret sharing
scheme and an attribute-based encryption scheme ABE for the dual predicate of P,
denoted by P. Note that P : K x C — {0, 1} is defined as P(k,¢) = 1 & P(c, k) = 1.

We describe this conversion next.

Let wmFE = (wmSetup, wmEnc, wmKeyGen, wmDec) be an AB-MIFE scheme for 7’
secure against legitimate keys. The setup algorithm generates n master secret keys
abMSK{, . ..,abMSK, of ABE and sets (abMSK;, wmEK;) as an encryption key for
slot i. Encryption of (c;, v;) for slot i is the same as wmENC except that it appends
a secret key of ABE for ¢; to wmCT;. Key generation of {k;, F;} runs wmSK «

wmKeyGen(wmMSK, {k;, F;}), secret shares wmSK to o1, ..., 0y, encrypts o; with

228

attribute k; to abCT; by ABE, and outputs {abCT;}. In this construction, observe that
the adversary cannot obtain illegitimate secret keys. Recall that in AB-MIFE for AWS, an
ABE scheme for P corresponds to ciphertext-policy ABE (CP-ABE) for ABPs, which

was recently proposed by Lin and Luo [LL20b].

We observe that this security against legitimate vs. any keys in the context of AB-MIFE
can be seen as generalization of security against complete vs. incomplete (or zero vs.
multiple) queries in the context of MIFE [AGRW17]. Recall that incomplete queries
refers to the case where an adversary does not make a ciphertext query for some inputs.
Therefore, in the context of plain MIFE, all secret keys become illegitimate if the adversary
makes incomplete queries and legitimate otherwise. On the other hand, in the context of
AB-MIFE, whether each secret key become legitimate or illegitimate crucially depends
on which attributes are queried in both ciphertext and secret-key queries, and thus the
situation is much more complex. This is why we need an advanced primitive, namely,
ABE to upgrade the security of AB-MIFE while MIFE secure against complete queries
can be upgraded to that secure against incomplete queries using only symmetric key

encryption.

Security under Corruptions The above transformation works only in the secret-key

setting where the adversary cannot corrupt encryption keys. Intuitively, this comes from
the fact that there exist ABPs that never evaluates to O (we call such ABPs null ABPs). For
the transformation to work in the corruption model, we require the underlying CP-ABE
scheme to have the property that the adversary cannot decrypt ciphertexts for null ABPs
even if it obtains the master secret key. However, in the only known CP-ABE scheme
by [LL20b], the master secret key has the ability to decrypt ciphertexts for null ABPs.
Actually, such a CP-ABE scheme implies witness encryption for NP relations verifiable

in NC1, and it seems quite challenging to obtain one from standard assumptions.

To circumvent this problem, we introduce wildcards for access-controlling functionality

229

similarly to [FFMV23]. That is, for the wildcard input % and all ABPs (including null
ABPs) g, we always have g(x) = 0. In this functionality, the adversary that corrupts i-th
input can admissibly generate a ciphertext for slot i that satisfies the i-th predicate for
all secret keys, and the leakage of the master secret key of the CP-ABE scheme due to
corruption does not cause the problem. As observed in [FFMV23], multi-input ABE
with corruptions implies witness encryption, but their constructions does not imply it

due to the use of wildcards. Ours also does not imply it for the same reason.

To allow our AB-MIFE scheme to support wildcards, the underlying AB-FE scheme for
AWSW/IP also needs to have the wildcard functionality. This modification is quite simple:

just setting v = 0 (see step 1 above) in encryption with the wildcard attribute suffices.

Comparison with [NPP22] Very recently, Nguyen, Phan and Pointcheval proposed an
attribute-based MCFE scheme for inner product (see Table 5.3 for precise functionality).
Their scheme is in the weaker MCFE model where each label can be used only once per
input, and does not imply standard MIFE for the same function class. In [NPP22, Remark
16], they informally state that we can apply 1) the technique in [CDG*18b] to convert
their scheme into the MCFE in the stronger notion and 2) All-or-Nothing Encapsulation
[CDSG*20] to achieve security against incomplete queries. We believe that both claims

are false.

Regarding item 1, as we discussed previously, the technique in [CDG"18b] to remove
the one-time restriction requires ciphertext homomorphism of the underlying scheme.
However, their underlying single client scheme is not ciphertext homomorphic, and thus
how to use the technique in [CDG*18b] is unclear. Regarding item 2, as discussed above,
in the context of the attribute-based setting, All-or-Nothing Encapsulation would be
insufficient to achieve full-fledged security in the AB-MIFE setting, which can handle
only the issue of complete vs. incomplete queries in the non-attribute-based setting.

Hence, their result does not appear to imply AB-MIFE scheme as claimed.

230

Multi-Client FE for AWS To construct MCFE for AWS, we follow the blueprint by
[AGT21b] where they construct an MCFE scheme for inner products from a function-
hiding IPFE scheme. Roughly speaking, we replace the function-hiding IPFE scheme in
their scheme with our FE scheme for AWSw/IP. However, following this approach leads
to obstacles in the security proof, to handle which, we need to modify their blueprint. To
see this, first consider the MCFE construction for AWS that is obtained by applying their
blueprint straightforwardly to our setting. Let H : {0, 1}* — G be a hash function and
aFE be a FE scheme for AWSw/IP. The scheme is given as follows:

Construction 5.3 (Candidate MCFE for AWS). Setup(1%) It outputs ek; = aMSK; «

aSetup(14) for i € [n] and msk = {aMSK;},.

Enc(ek;, v;, L) It outputs ct; = aCT; « aEnc(aMSK;, (v;, [(vz,0)]1)) where [v.]| =

H(L).

KeyGen(msk, (Fi, ..., F,)) It outputs sk = {aSK;};c[,) where ry,...,r, < Z, s.t.
>, ri = 0and aSK; « aKeyGen(aMSK;, (F;, [(r;,0)]2)).

Dec(cty, ..., cty, sk) It outputs e[, @Dec(aCT;, aSK;) = [X Fi(vi)]r.

Let us try to prove the security of this MCFE candidate similarly to Construction 5.1. In
what follows, we denote aEnc(aMSK;, (v, [p]1)) and aKeyGen(aMSK;, (F, [q]2)) by
aCT;[v, p] and aSK;[F, q], respectively. To see why the security proof does not work in
this construction, considering the simple case suffices where an adversary queries only
one challenge ciphertext for each slot after which it makes secret-key queries adaptively.
In the original game, the adversary is given aCT; [vl.ﬂ , (v, 0)] for a challenge message
(V?, Vl.l, L) and {aSK;[F;, (ri,0)] }ie[n) for a secretkey of (F1,. .., Fy). In the first hybrid,
the ciphertext for slot i is changed to aCT;[v", (0, 1)] while all secret keys are changed
to {aSK;[F;, (ri,vpri + Fi(viﬁ) - Fi(v?))] }iern)- The indistinguishability of the original

game and the hybrid follows from the partially function-hiding security of aFE. The

231

next step will be to change [vrr;]» to [r;]» where 7; is a random element in Z,, such that
> 7; = 0. If we can show this indistinguishability, 7; absorbs the term Fi(vf)) — Fl-(v?)
and we can conclude the proof, but this is not the case. This is because the adversary can
compute [vz]; by the hash function, and thus we cannot use the SXDH assumption in

Ga.

We solve this by modifying Construction 5.3 as follows: Let PRF : {0,1}* — Z, be a

pseudorandom function with a key space K.

Construction 5.4 (MCFE for AWS). Setup(1%) It chooses Kij « Kfori,j e [n],i<
j.andsetsK; ; = K;; for j < i. Itoutputs ek; = (aMSK; « aSetup(14), {K; ; }iz/)
for i € [n] and msk = {aMSK;};.

Enc(ek;, x;, L) It outputs ct; = aCT; « aEnc(aMSK,, (x, [(v.,0)]1)) where vy ; =

Y jetniy (1) SPRFX (L),

KeyGen(msk, (f1, ..., f,)) It outputs sk = {aSK;};c[,) where r < Z, and aSK; «
aKeyGen(aMSK;, (fi, [(r,0)]2)).

Dec(cty, ..., cty, sk) It outputs 3 ;c,) @aDec(aCT;, aSK;) = [X fi(xi)] 7.

This construction is inspired by the MIFE scheme in [AGRW 17], in which the randomizing
term v; in ciphertexts are generated in the setup phase (not by a PRF). Note that this is
enough for MIFE, but in our case we extend the technique to generate the term vy, ; for
each label on the fly via PRF to handle an exponentially large number of labels. Observe
that 3;c,) vei = 0 for all L and correctness holds. Such a usage of PRF in MCFE was
first introduced by [ABG19], but again their MCFE construction requires ciphertext
homomorphism and is not applicable to AWS functionality. This is why we devise a new

construction based on DOT combining ideas from [AGRW17; ABG19].

In this construction, the above proof strategy works. At a high level, this is due to the

232

following reasons:

* {vp;} looks random with the constraint); v;; = O for each label if the PRF is
secure.

* In contrast to Construction 5.3, the adversary cannot compute v ; publicly.
In fact, Construction 5.4 is a secure MCFE scheme for AWS. For a detailed description,

we refer the reader to Section 5.7.

Dynamic Decentralized FE for AWS Given an MCFE scheme for AWS, we now
convert it to DDFE using the template provided by [AGT21b]. The high-level idea
of the blueprint is to allow parties in the system to generate an independent MCFE
instance in Construction 5.4 for each user set U by using a PRF on the fly. First, each
party joins the system dynamically by generating a key K; of a pseudorandom function
(PRF) as a master secret key. In encryption and key generation for party set U, party
i € U generates aMSK; ¢, = aSetup(14; PRF®/ (U/)), which is unique to (i, U). For key
generation of ({f;}, U), party i computes a common random element r; ¢y = H({ f;}, U)
by a hash function and outputs aSK; ¢; as KeyGen in Construction 5.4. In encryption of
(xi;, U, L), party i generates K; ; via non-interactive key exchange, and outputs aCT; ¢,
in the same manner as Enc in Construction 5.4. Observe that aCT; ¢;,/{aSK; ¢/}icqs is a
valid ciphertext/secret key of the MCFE scheme in Construction 5.4 with respect to U.

For more details, please see Section 5.8.
We provide an overview of our constructions in Figure 5.2.

Organisation of the chapter. The rest of the chapter is organised as follows. We provide
the necessary preliminaries in Section 5.4. In Section 5.5, we provide construction for
attribute based FE for AWS with IP, which is used as a building block in our other
constructions. In Section 5.6, we provide our construction for AB-MIFE for AWS. We
construct MCFE for AWS in Section 5.7. In Section 5.8, we provide our construction for

DDFE for AWS. In Appendix 5.B, we define different primitives studied in this chapter

233

|’/ Y g Y

Attribute Based MIFE | (

~

Dynamic Decentralized

| Multi-Client FE for |
for AWS AWS FE for AWS
(Sec. 5.6) (Sec. 5.7) (Sec. 5.8)

Attribute Based,
Unbdd Slot FE for AWS-IP
(Sec. 5.5)

Figure 5.2: Outline of our constructions. For the implication to MCFE and DDFE, the
underlying construction for AWSw/IP need not be attribute based.

in terms of multi-party FE.

5.4 PRELIMINARIES

Notation used in this chapter Any vector v is by default a column vector and v’
is a row vector. For vectors vy, ...,v,, (vi,...,V,) denotes the vector concatenation
as row vectors regardless of whether each v; is a row or column vector. For a matrix
A = (ajr)jcoverZy,, [A]; denotes a matrix over G; whose (j, £)-th entry is g?j’f, and we
use this notation for vectors and scalars similarly. We use addition for the group operation
in every group in bilinear groups. For vectors a € Z, and b € G" where G is a cyclic
group of order p, we abuse the notation of inner product and denote ;¢ ali][b[i]]
by (a, [b]). For a matrix M € ZZX” and vectors a € Z;,b € Z;’,, we denote a vector
m such that (a ® b,m) = a"Mb by t(M). By 0", for n € N, we represent the vector

0,...,0) e zZ".
5.4.1 Computation Models

Definition 5.1 (Arithmetic Branching Programs (ABPs)). An arithmetic branching
program f : Z,) — Z, is defined by a prime p, a directed acyclic graph (V, E), two

special vertices vo,v; € V, and a labeling function o : E — FAfine - where FAffine

234

consists of all affine functions g : Z;O — Zp. The size of f is the number of vertices |V].
Given an input x € Z;” to the ABP, we can assign a Z,, element to edge ¢ € E by o (e)(x).
Let P be the set of all paths from v to v{. Each element in P can be represented by a
subset of E. The output of the ABP on input x is defined as)\ grcp [[.cp 0(e)(X). We
can extend the definition of ABPs for functions f : Z)’ — Z' by evaluating each output
in a coordinate-wise manner and denote such a function class by 7—;’35?.

Note that we can convert any boolean formula, boolean branching program or arithmetic
formula to an arithmetic branching program with a constant blow-up in the representation

size. Thus, ABPs are a stronger computational model than all of the above.

5.4.2 Basic Cryptographic Notions

Definition 5.2 (Bilinear Groups). Let {G,}en be a family of bilinear groups. Bilinear
groups G,=(p, G, G2, Gr, g1, &2, €) are specified by a prime p, cyclic groups G1, G2, Gt
of order p, generators g; and g, of G; and G, respectively, and a bilinear map

e : G| X G, — Gr, which has two properties.
* (Bilinearity): Yhy € Gi,hy € Ga,a,b € Z,, e(hf, hlz’) =e(hy, hy)??.

* (Non-degeneracy): For g and g2, g7 = e(g1, g2) is a generator of Gr.

In what follows, we omit the index A from G, and abuse notation by denoting a family of
bilinear groups {G, } 1ex also by G if it is clear in the context.

Definition 5.3 (D, ;-MDDH Assumption [EHK*17]). Let {G} be a family of bilinear
groups. For j > k, let D; ; be a matrix distribution over matrices in Z;;Xk, which outputs
a full-rank matrix with overwhelming probability. We can assume that, wlog, the first k
rows of a matrix chosen from O, ; form an invertible matrix. We consider the following
distribution: A « D;;, m « Z;‘,, ko = Am, k; « Zj, Pig = (G, [A];, [kgl:). We
say that the ; ,-MDDH assumption holds with respect to {G} if, for any PPT adversary
A,

D; x-MDDH

Adv = max |Pr[1 « A(P;p)] — Pr[l « A(P;1)]| < negl.
i€{1,2}

In what follows, we denote Dy x by Di. Note that the well-known k-Lin assumption

235

can be captured as the D;-MDDH assumption.

Uniform Distribution. Let U, ; be a uniform distribution over Z;Xk. Then, the
following holds with tight reductions: D;-MDDH = U;-MDDH = U, ;,-MDDH. We

denote D-MDDH by MDDH.

Random Self-Reducibility. We can obtain arbitrarily many instances of the D; ;-
MDDH problem from a single instance. For any n € N, we define the following
distribution: A — D, M« ZH" Ko = AM, K; « Z;;X”, P;g = (G, [A];, [Kg])).
The n-fold D; ;-MDDH assumption is similarly defined to the O, ,-MDDH assumption.
Then, the n-fold D; ;-MDDH assumption is implied by the D; ;-MDDH assumption
with security loss of min{n, j — k}.

Definition 5.4 (Secret Sharing Scheme). A (n out of n) secret sharing scheme consists

of Share and Rec.
Share(s,n) It takes a secret s € {0, 1}' and a number of shares n and outputs shares

o1,...,0q, € {0, 1}".

Rec(oy,...,0,) Ittakes shares o, ..., 0, € {0,1}™ and outputs a bit string s’.
A secret sharing scheme has two properties.

Correctness Foralln,m € N, s € {0, 1},

Pr[Rec(oy,...,04) =s:01,...,0, < Share(s,n)] = 1.

Security Foralln,m e N, s € {0, 1}",S ¢ [n], the following distributions are identical:
{{oi}ies 1 01,...,00 < Share(s,n)} and {{0i}ies : 01,...,0, < {0,1}"}

Definition 5.5 (Non-interactive key exchange (NIKE)). A NIKE scheme for shared key

space K consists of the three algorithms.

236

Setup(11) — pp It takes a security parameter 1 and outputs a public parameter pp.

KeyGen(pp) — (pk, sk) It takes pp and outputs a public key pk and the corresponding

secret key sk.

SharedKey(pk, sk) — K It takes pk and sk and deterministically outputs a shared key

KeX.
Correctness. A NIKE scheme is correct if, for all 4 € N, we have

pp < Setup(14

Pr Ki,j = Kj,i .

Ki,; = SharedKey(pk;, sk)

K. = SharedKey (pk ;, sk;)

Security. We say a NIKE scheme is IND-secure if, for all stateful PPT adversaries A,

we have

B — {0,1}, pp « Setup(1%)
S « A(pp)

(pk;, sk;) < KeyGen(pp)
Pr|B=p5": < 1/2 + negl.
CS, (',)) « A({pk;}ics) where i’, j € S\CS and i’ # j’

K}, = SharedKey(pk;.. k). K} ;, — &

B — Al{skiiccs, Kl)

Definition 5.6 (Partial Garbling Scheme for ﬁﬁﬁf). We use the following partial garbling
scheme for ﬁﬁ‘i’? [IW14] (please see Definition 5.1) for the construction of our FE
schemes. A partial garbling scheme for T,@Eﬁ consists of the four algorithms. Note
that Igen and rec are deterministic algorithms while pgb and pgb* are probabilistic

algorithms.

237

lgen(f) Ittakes f € 7—;{33’? and outputs Ly, ..., L; € ZE,"OH)X(’_U where ¢ depends on

f.
pgb(f,x,z;t) Letx'T = (x,1). It takes f € ﬁ’gi‘?,x € Z,,z € Z,', and a random tape
t € Z!7. It then outputs
(XTLit, ... X TLet, 2[1] + XLyt ..., z[ng] + X TLit) € Z),

where s =t —n; and (Ly,...,L;) =Igen(f).

pgb”(f,x, u;t) It takes 4 € Z, and f, X, t as above and outputs
(XLt +u, X "Lot, ..., x""Lit) € Z;,

where (L, ...,L;) =Igen(f).

rec(f,x) Ittakes f,x € Z;’ and outputs dy x € Z,.
The concrete description of Igen, rec that satisfy the following properties is found in

[AGW20, Appendix A]. We slightly modify the format of the output of Igen from

[AGW?20] for convenience in our construction, but note that they are essentially the same.

Correctness. The garbling scheme is correct if for all f € F,A5°, x € Z),z € Z)',t €
va‘l, we have

(pgb(f.x,z:t),rec(f.x)) = (f(x),z).

Security. The garbling scheme is secure if for all f € F050.x € Z),z € Z))', the

following distributions are statistically close:

pgb(f,x,z;t) and pgb*(f,x, (f(x),z);t)

where the random tape is chosen over t «— Z;,_l .

238

Extension of Partial Garbling Scheme. We can construct an additional partial garbling

algorithm pgb™ with the following properties [AGW20, Appendix A.

pob*(f,X,z,6;t) Letx'™ = (x",1). Ittakes f € FooP X € Z), 2 € Z),6 € Z,, and a

random tape t € Z;,_l. It then outputs
(xX'TLit+ @, X Lot, ... X TLst,z[1] + X " Lguit, ..., z[n1] + X Lit) € z,

where s =t —nj and (Ly,...,L;) =Igen(f).

Correctness. Forall f € F05P. x € Z)’,2€Z) t e Z!!, we have

(pgb™ (f.x,2,6: 1), rec(f,x)) = (f(x),2) +4.

Security. Forall f € ;73" x € Z°,z € Z}}!, the following distributions are statistically

close:
pgb*(f,x,z,0;t) and pgb*(f,x, (f(x),z) +J;t)

where the random tape is chosen over t «— Z;‘l.

Linearlity. Observe that pgb* is affine in z[1], t, §, and pgb* is affine in u.

5.4.3 Variants of Functional Encryption

Definition 5.7 (Attribute-Based Encryption (ABE)). Let P : X x Y — {0,1} be a
predicate where X and Y denote ciphertext-attribute and key-attribute spaces. An
attribute-based encryption (ABE) scheme for a predicate family P consists of four

algorithms:

Setup(11) It takes a security parameter 14, and outputs a public key pk and a master

secret key msk. The other algorithms implicitly take pk.

Enc(x, M) It takes pk, an attribute x € X and a message M € M as inputs, and outputs

a ciphertext ct. (Note that we let M be specified in pk.)

239

KeyGen(msk, y) It takes pk, msk, and an attribute y € Y as inputs, and outputs a secret

key sk.

Dec(cty, sky) It takes pk, ct and sk as inputs, and outputs a message M’ or a symbol L.
Correctness. An ABE scheme is correct if it satisfies the following condition. For all

AeN,x e X,yeYsuchthat P(x,y) =1, and M € M, we have

(pk, msk) « Setup(14,)

ct «— Enc(x, M)
PriM=M: =1.

sk « KeyGen(msk, y)

M’ = Dec(ct, sk)

Security. An ABE scheme is selectively secure in the multi-challenge setting if it
satisfies the following condition. That is, the advantage of A defined as follows is

negligible in A for all stateful PPT adversary A:

B < {0,1}
(pk, msk) « Setup(14,)
AdVEEE() =Pr|B=8": (x/ Mk M/ 1
A : {xij ’Ml }je[qc] (_ﬂ(pk) 2

ct/ « Enc(xj,Mlé) for j € [g.]

B — ﬂKeyGen(mSk,‘)({Ctj}je[q(,])

where all {yf}ge[qk] on which A queries KeyGen must satisfy P(x/, y{) = 0.
Definition 5.8 (Secret-Key Functional Encryption). Let # be a function family such
that, forall f € ¥, f : X — Z. A secret-key functional encryption (SK-FE) scheme for

¥ consists of four algorithms.

Setup(11) It takes a security parameter 11 and outputs a public parameter pp, and a

master secret key msk. The other algorithms implicitly take pp.

240

Enc(msk, x) It takes msk and x € X and outputs a ciphertext ct.
KeyGen(msk, f) It takes msk and f € ¥, and outputs a secret key sk.

Dec(ct, sk) It takes ct and sk, and outputs a decryption value d € Z or a symbol L.
Correctness. An SK-FE scheme is correct if it satisfies the following condition. For all

AeN, xe X, feF,wehave

(pp, msk) « Setup(1%)

Pr | f(x) = Dec(ct,sk) : ¢t « Enc(msk, x) = L.

sk « KeyGen(msk, f)

Security. We consider the case where each x € X consists of a public part xp,p and
a private part Xpriy, 1.€., X = (Xpub, Xpriv), and each f € F consists of a public part foup
and a private part fpriy, i.€., f = (foub, fpriv). An SK-FE scheme is selectively partially
function-hiding if for every stateful PPT adversary (A, there exists a negligible function

negl such that for all A € N, the following holds

B —{0,1}

IA
| =

Pr|B=p8": (pp, msk) — Setup(1%) + negl

B — ﬂQEncﬁ(),QKeyGenﬁ()(pp)

where x/# = (x{)ub,xé’rf/), fP= (fpub,frﬁiv), QEnc? (x%, x1) returns Enc(msk, x#), and

QKeyGen® (9, f1) returns KeyGen(msk, f#). The admissible adversary’s queries must

satisfy the following condition:
1. A cannot query QEnc? after querying QKeyGen® even once.

2. If (x°, x") is included in the query to QEnc? and (f°, f!) is queried to QKeyGen”,
then fO(x%) = f1(x1).

241

5.5 ATTRIBUTE-BASED FE FOR ATTRIBUTE-WEIGHTED SUMS WITH
INNER PRODUCT
In this section, we present an attribute-based FE for attribute-weighted sums with inner
product (AB-FE for AWSwW/IP). In Appendix 5.B, we show how it can be captured using
the notation of MPFE. We will need the following definitions.
Definition 5.9 (Inner Product Functional Encryption). Inner product functional
encryption (IPFE) is a class of secret-key functional encryption (SK-FE) that supports
the following functionality. Let G be bilinear groups. Let X = G’ be a message space.
Let ¥ = G7 be a family of functions, where f = [¢], € F represents the function
f X — Grdefined as f([x]1) = [(x, ¢}]r where x, ¢ € Z}] are both private inputs.
A function-hiding IPFE scheme can be constructed from the MDDH assumption [Tom19,
Appendix A].
Definition 5.10 (FE for AWSw/IP). An FE scheme for attribute-weighted sums with
inner product (AWSW/IP) is a class of SK-FE that supports the following functionality.
Let G be bilinear groups of order p. Let X = U;en(Zy’ X Z})')' x GT' be a message
space. Let F = F,08P x G (see Definition 5.1 for F,A5") be a family of functions, where
' =(f,[q]2) € F represents the function f’ : X — Gr defined as
(%, Zi}iernys [P11) = [Z (f(x0),2:) +(p, Q11
i€[N]
where {x;}, f are public elements while {z;}, [p]1, [q]» are private elements.
Definition 5.11 (AB-FE for AWSw/IP). An attribute-based FE scheme for attribute-
weighted sums with inner product (AB-FE for AWSw/IP) is a class of SK-FE that supports
the following functionality. Let G be bilinear groups. Let X = (ZZE’ U {x}) x Uien(Z}, %
ZZ‘)i X G be a message space. Let ¥ = Tnﬁp X Tn'gi']: X G%' be a family of functions,

where f = (g, h, [q]2) € F represents the function f : X — G defined as

[Zjem (X)), 2) + . @)lr g(y) =0Vy=x
F((y. {xj.2;}jerny, [P11) =

1 g(y) #0

242

where y, {Xx;}, g, h are public elements while {z;}, [p]1, [q]» are private elements. For
notational convenience, we define g(x) = 0 for all ABPs g (even for ABPs g such that
g(y) #0forally € Z;l,;’).

Remark 9. As explained in the introduction, we need the wildcard functionality to
make our AB-MIFE scheme secure in the corruption model. This is why we define the
functionality of AB-FE for AWS such that it also supports wildcards, which we will use

to construct our our AB-MIFE scheme as a building block.

5.5.1 Construction

Let k be the parameter for the MDDH; assumption. Let iFE = (iSetup,iEnc,
iKeyGen, iDec) be a function-hiding IPFE scheme with the vector length being
k(ng +no +3) +ny +2m + 2. The last m + 2 elements are used for only the security
proof. Let (Igen, pgb, pgb*, pgb*,rec) be a partially garbling scheme for ABPs
(Definition 5.6). Then our AB-FE scheme for AWSw/IP is described below.

Setup(14) It runs iPP, iIMSK « iSetup(11) and outputs (pp, msk) = (iPP,iMSK).

Enc(msk, (¥, {x;,z;} ey, [P];)) Itsamplesuy,...,uy, wyi,...,Wy_| < Zf, and sets
Wy == Djev-1] Wy IfY = %, itsetsy = 0™ and v = 0%, otherwise it sets y = y’
and v «— Zf,. Then, it defines

X;=x;,1), X;=
(x; ®uj,z;,w;,05,0m,0™2) (j>1)

and computes iCT; « iEnc(iMSK, [X|];) for all j € [N]. It outputs ct =
(¥, %, ICT ; }jerny)-

nl+ng

KeyGen(msk, (g, i, [q],)) Itsamplesr,s « Zf, anddefinesan ABP¢ : Z,) ~ — Z}f”‘

’
)

as ¢((y.x)) = (g(y), h(x)) fory € Z,”,x € Z. It computes Li,..., L, «

243

lgen(¢) and T «— Z;,’_I)Xk and defines

(vec(L;T),0", r, 0%,q, 0™ (j=1)
(vec(L;T),0™, 0F,05,0m,0m2) (1<j<ys)
(vec(L;T),0™, 0k s, 0™,0m2) (j=s+1)

(vec(L;T), e;_s_1,0,05,0m,0m2) (s+1<j)

where s is the parameter of the partial garbling scheme defined in Definition 5.6.
It computes iSK; « iKeyGen(iMSK, [Y,]>) for all j € [¢] and outputs sk =
(¢, {iSK;;}jern))-

Dec(ct, sk) It parse ct, sk as (y, {x;,iCT;};c[n}) and (@, {iSK;} je[;]), respectively. It
outputs L if g(y’) # 0. Otherwise, it computes [d; ¢]r = iDec(iCT;,iSK) for

Jj € [N], € € [t] and outputs

[dlr = > {[d;]r, rec(¢, (¥, %))

JEIN]

whered; = (dj1,...,d;;).

Correctness. In decryption, due to the correctness of iFE, we have

pgb+(¢’ (y’ Xj)’ (<S’ V>’ zj)’ <r9 w]> + <P, (I>, Tu]) (] = 1)

7~
pgb+(¢’ (y’ Xj)’ (0’ Zj)’ <I', Wj> ;Tllj) (.] > 1)

where v = 0 if y’ = x. Thanks to the correctness of the partial garbling scheme, we have

(8, V)g(y) + (h(x)),z;) +(r,wj) +(p.q) (j=1)
<dja reC(¢, (ya X]))) =

(h(xj),z;) +(r,w;) (>1)

In the above, we use the fact that ¢((y,x;)) = (g(y), h(x;)) € Z;'"'. Hence d =

2jevi$h(x;),z;) + (p, q) if g(y’) = 0, since 2 ;e (r, W;) = 0.

244

Remark 10. A partially-hiding FE scheme for AWSw/IP can be obtained from a partially-
hiding AB-FE scheme for AWSW/IP by setting n;, = 0 and g as the constant function that

outputs 0.

5.5.2 Security

We argue security via the following theorem.

Theorem S5.5. If iFE is function-hiding, the partial garbling scheme is secure, and
the MDDH. assumption holds in G, then the proposed AB-FE scheme for AWSwW/IP is

partially function-hiding as per Definition 5.8.

Proof. We prove the theorem via a series of hybrid games Hf for € € [g.] where g, is
the number of ciphertext queries by the adversary. We show that Hf R Hf Re o R
ch R H[fg, where Hf for B € {0, 1} is the original security game. Intuitively, in Hf , We
program the vectors X; and Y in the ciphertexts and secret keys queried by the adversary
such that the challenge ciphertexts in the first £ queries decrypt to 3. (h(x;), z?} +(p°, q°)
while the rest of ciphertexts decrypts to >.(h(x;), zi.; Y+ (p®, ¢#). Then, in the last hybrid,

the adversary obtains no information about , and we can conclude the proof.

Recall that in Hf the challenger replies

EnC(mSk, (y/’ {Xjazf}je[Nb [pﬂ]l)) for QEnCﬂ(y/’ {Xj,Z?, Z}}jE[N]’ [p0]19 [pl]l)

KeyGen(msk, (g, i, [¢®]2)) for QKeyGen® (g, h, [q"]2, [q']2)

where Enc and KeyGen work as specified in Section 5.5.1. The hybrid Hf is the same as

H’f except the way of defining X; in Enc and Y in KeyGen in the replies for ciphertext

245

and secret-key queries. Specifically, X in the ¢’-th ciphertext query is defined as

g eup 2wy, 07 p0.0%) (j=1)
x(={ T - (€ <0
(x;@u;, 20 w;, 05,0m, 0™2) (j>1)
< i)
;g e wiy, pP0m?) (j=1)
X = (>0
(x; ®u;, 2}, w;,05,0m, 0m2) (j>1)

and Y for all queries are defined as
(vec(L,;T),0", r, 05¢°,¢°0%) (j=1)

(vec(L;T),0m, 0%,05,0m,0m2) (1<j<ys)

(vec(L,T),0m, 0% s, 0m,0m2) (j=s+1)

(vec(L;T), e;_s_1,0,05,0m,0m2) (s+1<j)

The hybrid H” is the same as H” ~except that Y for all queries are defined as
f qe p q

Y, = (vec(L;T),0",r,0% 0", q°, 0%

Note that the advantage of the adversary is 0 in H? since it does not obtain the information

of 8. Hence, the theorem holds from Lemmas 5.6 and 5.7. [}

Lemma 5.6. ch R H? if iIFE is function-hiding.

Proof. Observe that in ch, X is defined as

X (Xj®uj,z(])-,Wj’V, Om’p0902) (.] = 1)
j =
(x; ®uj,2),w;, 04,0", 0™) (j > 1)
for all queries to QEnc. Therefore, for all queries to QEnc and QKeyGen, we have

(X;, Y1) = x [LiTu; + (w;,r) + (p’, ¢°)

in both H'gc and H?. Hence, the indistinguishability of ch and pr readily follows from

246

the function-hiding security of iFE.]

Lemma 5.7. Let Hg = H’f. Forall € € [g.], we have H'?_l R Hf.

Proof. What this lemma asserts is that for the £-th ciphertext ct’ and any secret key sk,
the cases where decryption of these reveals y# = Y (h(x%),z0F) + (p?, ¢#) or L and
where it reveals 0 = 3 (h(x%),z0) + (p°, q°) or L are indistinguishable. Note that
¥# =% = y due to the query condition. As in [AGW20], our goal is the hybrid where
ct’ is simulatable without z°, pf’ﬁ , and sk is simulatable from y. At this point, we can
use the equality y# =y to switch the S-system to the O-system through the following

two equivalent hybrids.

Hﬁ , This hybrid is the same as H/;_l except that X in the £-th ciphertext query is defined

as

(O™, 0m,0% 0%5,0",0",1,0) (j=1)

¢ _
Xj—

(x; ®u;, 0", w;,05,07,0",0,0) (j>1)

and Y for all queries are defined as

(vec(L,;T),0™, 1, 05,¢%, q" d;,0) (j=1)

(vec(L;T),0™, 0%,0%0",0",d;,0) (1<j<5s)

(vec(L;T),0™m, 0k s, 0™,0™,d;,0) (j=s+1)

(vec(L;T), e;_s_1,0%, 0%, 0™, 0",d;,0) (s+1<))

where t « Z;,‘l, Ve 1Z, (ify? # %), V=0 (if y* = %) and

(d1,....d;) = pgb (¢, (', x0), Te(y) + D (h(x)),z.")
JEINO]

+ (@2, ¢’y + (wh,r)it). (5.3)

247

Hf,z This hybrid is the same as H€,1 except that (dy, ..., d;) in Eq.(5.3) is defined as

(i, ... dy) =pgb" (9, (v, X)), Te(y) + > (h(x}),2")
JEIN©]

+ (™, q") + (Wi, r);).

We prove that Hf_l R Hf | = H?) e Hf . We can see that Hf | = Hf , by considering the
two cases. If g(y'¥) = 0 (that is, g(y°) = 0 or v = 0), we have Zje[Nm](h(xf.), zf.’ﬁ) +
P gk =3 Je[NO] (h(xi.), z§’0> + (p“?, q°) due to the admissibility of the adversary.

Otherwise, the term vg(y?) is uniformly distributed in Z, and works as a one-time pad.

Proving H'?_] X, H? , and Hf 5 R H? are similar, and we prove only the former. To this

end, we introduce further intermediate hybrids ﬁf IETRR ﬁf 5 forv e [N (f)] and show

1,

that H?—l R 'ng cee R, 'ng ﬁ’g

~ ~ ~. -~ HP - H8 iti
L1 e v e Hpp me ~. H = Hf,l' Intuitively, what

N5

we are doing in these steps is to move the information of z,” from X% t0 {Y;}je[s) step

by step for v € [N?]. Each hybrid is defined as follows.

ﬁf vl This hybrid is the same as Hf_ , except that X; in the ¢-th ciphertext query is

defined as
(- 0mk om0, 05,0m,0m,1,0) (j=1)
(x;®u;, 0", w;,04,07,0",0,0) (1<j<v)

(0mk om0k, 0%,0m,07,0,1) (1<j=v)

(x; ®u;, 7, wj, 05,0",0",0,0) (v <)

and Y for all queries are defined as

(vec(L;T),0m, v, 0%,q%, q°, d;.d}) (j=1)

(vec(L;T),0m, 0%,040",0",d;,d}) (1<j<s)

(vec(L;T),0m, 0, s, 0",0",dj,d}) (j=s+1)

(vec(L;T), ej-1,0%,05,0",0",d;,d’) (s+1<)

248

where t — Z71, v — Z, (if y* # %), v =0 (if "’ = %) and

pgb* (¢, (¥',x5), ((s,v)),Z,7), (p“F, ¢P)

+(wi, r); Tuf) (v=1)
(dl,...,d,) =3
pgb*(¢7 (y{’, Xf)’ﬁ“}’g(yf) + Zje[y_]] <h(Xf), Zi"B>
+ (PP, qf) + (Wi, r); D) (v>1)
0 (v=1)

(d’,...,d;) =
pgb* (¢, (y0,x5), (0,257), (wl,r); Tul) (v > 1)

ﬁﬁ v2 This hybrid is the same as ﬁf ,.1 except that d;, d’ fori € [t] is defined as

pgb* (¢, (¥', x0), (7, 29), (p'P, ¢f) + (Wi, v) (v=1)
(i, di) = {pgb™ (¢, (¥, X(), Vg (¥") + 2 jepyoi (h(x0), 27

+(p"P, ¢f) + 1 1) (v>1)

(d},....d) =pgb*(4, (y',x), (0,2,°),7;0) (v>1)

where t, t' «— Z;_l, ri,—Zpandr, = -1y — Zie[Nz]\{Lv}(wf,r).

Fiﬁ ,3 This hybrid is the same as Fif ,. except that d;, d; fori € [r] is defined as

(dy.....d;) = pgb* (¢, (v, x0), Vg (y") + (h(x0), 2Py + (p'F. ¢f) + (Wi, x)st) (v=1)

(d},....d) = pgb* (¢, (¥, x\), (h(x0), 2Py +Fs) (v > 1)

Fif ,.4 Forv =1, this hybrid is the same as Fif 13- Otherwise, this hybrid is the same as

al

7.3 €Xcept that d;, d’ for i € [t] is defined as

(dr, ... dp) = pgb™ (¢, (¥, x0), Te(y) + > (h(x), 27y + (0. @) +7:0) (v> 1)
Jelvl

249

(d),....d) = pgb*(¢, (¥, x\), (W= 27y + 7,5 0) (v > 1)

8

H? _ Forv =1, this hybrid is the same as H 714

v5 Otherwise, this hybrid is the same as

ﬁf .4 €xcept that X in the {-th ciphertext query is defined as

(0%, 0m,0%, 05,0",0",1,0) (j=1)

X5 =1 (x; ®u;,0m,w;,0,0",0",0,0) (1< ;<)

(x; ®u;, 7, w;,05,0",0",0,0) (v <)
and Y for all queries are defined as

(vec(L;T),0m, r, 05,¢% q" d;,0) (j=1)

(vec(L;T),0m, 0%,0%,0m,0",d;,0) (1<j<s)

(vec(L;T),0™, 0k s, 0™,0™,d;,0) (j=s+1)

(vec(L;T), e;_s_1,0,05,0m,0m,d;,0) (s+1<j)

where t «— Z;‘l and
(di,...,d;) =pgb*(¢, (yf,Xf)’Vg(yf) + Z <h(X§),Z§"B> +(p", ¢’y + (wf,r);f)
Jelv]

Thanks to Theorems 5.8 to 5.12, Theorem 5.7 holds. []

Lemma 5.8. Ler H’

€05 = HY . Forallv € [NV], we have Hf,v—

L5~ HY | ifiFE is

function-hiding.

Proof. Observe that the difference of ﬁf ,_15and FI? ,1 18 described as the two cases:

v =1 In this case, Xf in the ¢-th ciphertext and Y in all the secret keys in ﬁf 05 = Hf_l

are defined as follows:

X = (x,®u, zf), wi,v, pP, 0"?)

250

(vec(L,T),0m, r, 0K¢P, 0") (j=1,0=1)
(vec(L;T),0", r, 05,45 q°,0%) (j=1,>1)
Y =1 (vec(L;T),0m, 0K,0507, 0"?) (1<j<s)

(vec(L;T),0m, 0k s, 0™, 0™2) (j=s+1)

(vec(L;T), e;_s_1,05,05,0m, 0"*2) (s+1 <)

B

r1, are defined as

while the corresponding vectors in H

X{= (0", o 04050707 1,0

(vec(L;T),0™, 1, 04", q° d;,0) (j=1)
(vec(L;T),0™, 0%,0%,0", 07,d;,0) (1<j<s)

(vec(L;T),0m, 0s, 0™, 0",d;,0) (j=s+1)

(vec(L;T), e;_s_1,0%, 0%, 0™, 0",d;,0) (s+1<))

where (dy, ..., d;) = pgb* (¢, (y*,x°), ((s, V[),zf’ﬁ), P, ¢P) + (wi,r); Tul). It
is not hard to see that for all secret keys and j, (X{,Y ;) in Hf_l and that in ﬁf 11
are both equal to d;. Hence, thanks to the function-hiding security of iFE, the two
hybrids are indistinguishable. Note that the second to last entry of X; other than
X‘{ is 0, and thus the change of Y; does not affect the other vectors.

v > 1 In this case, X/, in the £-th ciphertext and Y ; in all the secret keys in ﬁf ,_|s are

1,5

defined as follows:

XC= (y,®u, z¢, w,050"0" 0,0)

v

251

(vec(L,;T),0m, r, 0%,¢% ¢° d;,0) (j=1)
(vec(L;T),0m, 0F,0K,0", 0™,d;,0) (1<j<s)

(vec(L;T),0m, 0k s, 0™, 0",d;,0) (j=s+1)

(vec(L;T),e;_s_1,0%,05,0m, 0™, d;,0) (s+1<j)

while the corresponding vectors in Fif ,1 are defined as

,1

Xf — (On()k ,Onl, Ok’ok’om’ Om’(), l)

14

(vec(L,T),0", r, 0%.4%, ", d;.d) (j=1)
(vec(L;T),0m, 0%,0%,0m, 0",d;,d;) (1<j<s)

(vec(L;T),0m, 0%, 0", 0",d;,d) (j=s+1)

(vec(L,T), e;j_s-1,0%,0%,0", 0", d;,d}) (s+1<)

where (d/, ..., d!) = pgb* (¢, (y,x%), (0,257), (wl, r); Tul). It is not hard to see

are both equal

1

that for all secret keys and j, (X}, Y j)yin FI? b 1

5 and that in FI? y
to d}.. Hence, thanks to the function-hiding security of iFE, the two hybrids are
indistinguishable. Note that the last entry of X; other than X/, is 0, and thus the

change of Y; does not affect the other vectors.
|

Lemma 5.9. For all v € [N©], we have /H\/ZV’ R ’I:l'zv’2 if the MDDH), assumption

1
holds in G.

Proof. Observe that the difference of ﬁf , and ﬁf v is described as the two cases:

1

v =1 Inthis case, d; in Y; in ﬁf |1 18 generated as

(di......dr) = pgb™ (¢, (. x7). ((8.v). "), (0.) + (Wi, 1): T}

252

while the corresponding terms in ﬁf 12 is generated as

(d1,....dy) = pgb* (¢, (. x0), (@, 27), (p“P, ¢) + (wl, 1) D).

Observe that ﬁf 1= ﬁf 1o If y’{ = %. Hence, we focus on the case y’* # x. Recall
that pgb™ is efficiently computable if the random tape is given as group elements

due to its linearity. Hence, Flf L1 e Flf 12 is reduced to

[{TK’ SK’ TKul ’ <SK’ Vf)}KE[qk]]Z e [{Tka SK,TK? F{;K}KE[qk]]z
where ¢ is the number of queries to QKeyGen”, which are essentially what the
MDDH,, assumption asserts. Thanks to the linearity of pgb™, this reduction is
efficient.

v > 1 In this case, d; and d;. inY;in ﬁf ,1 are generated as

1
(di.....dy) =pgb™ (4, (¥ x).Tg(¥) + Y (h(x)).2%) + (4, o) + (Wi, 1))
jelv-1]

(d.....d;) =pgb* (¢, (¥'.%.). (0,2,), (Wl r): Tub)
while the corresponding term in ﬁf ,.0 are generated as

(di,...,d) =pgb”(¢, (v, x0), Ty + > (h(x)),2}%) + (p"F, ¢%) + Fis1)
Jelv-1]

(d),....d) =pgb* (¢, (y,x\), (0,257),7,;T)

and H? can be shown by two steps. The

The indistinguishability between ﬁf vl 2

first step changes the random tape in pgb* from Tu, to t’. This can be proven in
the same way as the case v = 1. The second step changes <w‘17, r) and (W), r) to 7y

and 7. In this step, we would like to prove that

({1 T2, Twi, £]2, [EW ¥]2 eefgus W)} rernven 1))

~e ({2 [P T2, [P 12 beetgn)s (W5} jernep)

253

wherer"<—Zk,wf . N([) <—Z s.t. X ie[no) w =0, and"(K),FﬁKN—Zp
s.t. ?{IK) +709 4 Zje[N(f)]\{Ly}(wj, r) = 0. It is not hard to see that the following

indistinguishability suffices to prove the above indistinguishability:

([A]2, [Amy]2, [Amy]2, m3, ... ,my) = ([A]2, [s1]2, [S2]2,m3, ..., my)

where d > 1,n are any natural numbers, A « Z;‘,Xk, mip,...,my < fo, S.t
Zie[d] m; = 0, and s,y «— ZZ S.t. S| +87 + Zie{3,d} Am; = 0. It is easy to see
that they are distributed the same if n < k, so we consider the case n > k. The

above relation can be rewritten as

([Al2, [Ami]2, [-Am; —b]2, m3, ..., my)
~c ([Al2, [s1]2, [-81 = b]2, m3, ..., my)
where b = >;c(3 4y Am;. Hence, this is implied by the MDDH assumption, which

assert that ([A]2, [Am;]2) =, ([A]2, [s1]2). Thanks to the linearity of pgb* and

pgb™, this reduction is efficient.

Lemma 5.10. For all v € [N©], we have Hf 2 ® fv 5 if the partial garbling scheme

s secure.

Proof. The lemma readily follows from the security of the extension of the partial

garbling scheme.]

¢ Hf —HP
Lemma 5.11. Forallv € [N()], we have Hg,,,3 Hgy4

Proof. Recall that 7; and 7, are randomly distributed such that

n+r, = —Zie[Np]\{L,,}(wf,r>. Therefore, ¥} = 7 + (h(x%),z ﬂ) and
rnooo= T, - (h(xf),zi’ﬁ) are also randomly distributed such that
i+, = - Zie[N[]\{l’v}(wf, r). By applying this replacement, we can see that both
hybrids are identical.]

254

Lemma 5.12. Forall v € [N©], we have ﬁf,v,4 R /I:If’v’5 if IFE is function-hiding, the

partial garbling scheme is secure, and the MDDH; assumption holds in G.

Proof. The proof of this lemma is similar to that of ﬁf R HE .]
v=1,5 .3

5.6 ATTRIBUTE-BASED MIFE FOR ATTRIBUTE-WEIGHTED SUMS

In this section, we present our AB-MIFE for AWS in two steps as discussed in Section
5.1. In Appendix 5.B, we show how it can be captured in the context of MPFE.
Definition 5.12 (Multi-Input Functional Encryption). Let ¥ be a function family such

that, for all f € F, f : X" — Z.° An MIFE scheme for # consists of four algorithms.

Setup(14,1") It takes a security parameter 1* and a number 1" of slots, and outputs a
public parameter pp, encryption keys {ek;};c[,], a master secret key msk. The

other algorithms implicitly take pp.
Enc(ek;, x;) It takes ek; and x; € X and outputs a ciphertext ct;.
KeyGen(msk, f) It takes msk and f € ¥, and outputs a secret key sk.

Dec(cty,...,ct,,sk) It takes cty,...,ct, and sk, and outputs a decryption value d € Z

or a symbol L.

Correctness. An MIFE scheme is correct if it satisfies the following condition. For all

In general, the domain of each slot can be different, i.e., f can be definedas f : X|--- X X,, > Z. In
this work, however, we only handle the case where X; = X for all i € [n].

255

AneN, (x,...,x,) € X", f€F,wehave

(pp. {ek;}, msk) « Setup(17,1")

ct; «— Enc(ek;,x;) fori € [n]
Pr|d=f(x1,...,xn): =1.

sk «— KeyGen(msk, f)

d = Dec(cty,...,ct,,sk)

Security. We consider the case where each x; € X consists of a public part x; pyp and a
private part X; priv, i.€., X; = (X; pub, Xi priv). An MIFE scheme is selectively partially-hiding
if for every stateful PPT adversary A, there exists a negligible function negl such that

for all 4,n € N, the following holds

B —{0,1}

IA
N —

PriB=£": (pp,{eki},msk) Setup(1*, 1) +neel

B — ﬂOCor(),QEncﬁ(),KeyGen(msk,-) (PP)

where QCor(i) outputs ek;, and QEnc? (i, x, x!) outputs Enc(eki,xlﬁ). Let ¢.; be the
numbers of queries of the forms of QEnc? (i, *, *). Let S be the set of parties on which
the adversary has not queried QCor at the end of the game, and CS = [n]\HS. Then,
the admissible adversary’s queries must satisfy the following conditions.

1

it

* Fori € CS, the queries QEnCﬂ(i,x?,xi]) must satisfy x? =X
o . . Br: 0 1 . 0 1
Fori € HS, the queries QEnc” (7, x;, x;) must satisfy X oub = Xi.pub-

o £(x0...,x0) = F(xl, ..., x!) for all sequences (xY,...,x% x!, ..., x! £) that
1 n 1 n q 1 n* n
satisfy the two conditions:

— For alli € [n], [QEnCB(i,x?,xl.l) is queried and i € HS] or [le = xl.l € X;
andi € CS].

— KeyGen(msk, f) is queried.
* The adversary must make all queries to QCor and QEnc in one shot. That is, first

it outputs (CS, {i,x?,xl.l}) and obtains the response: ({ek;}iccs, {Enc(eki,xiﬁ)}).

256

Only after the one-shot query, the adversary can query KeyGen adaptively.
We formally define attribute-based MIFE scheme for attribute-weighted sums and its
security.
Definition 5.13 (AB-MIFE for AWS). Attribute-based MIFE for Attribute-Weighted
Sums (AB-MIFE for AWS) is a class of MIFE (Definition 5.12) that supports the following
functionality. Let G be bilinear groups. Let X = (ZZ{) U {x}) X Uien(Z) x ZZ')i
be a message space. Let ¥ = (?:lzﬁp X ﬁﬁi‘?)” be a family of functions, where

((g1,h1),...,(gn, hy)) € F represents the function f : X" — G defined as

f(()’l, {Xl,j’ Zl,j}jG[N|])’ cees (Yn’ {Xn,j’ Zn,j}jE[Nn]))

[Zicpn) Zjern$hi(Xij)szij) e (gi(y:) = 0 forall i € [n])

1 (otherwise)

where y;, X; ; are public inputs while z; ; is a private input, and we always have g;(%) = 0.
Definition 5.14 (Security of AB-MIFE for AWS). We say that an AB-FE scheme for AWS
satisfies security against legitimate keys if the scheme is secure against adversaries that
follows the condition defined below in addition to the conditions defined in Definition 5.12.
Let (CS, {i,Xf’o,Xf’l}ie[n]’ge[qc’i], {f"}nelq)) be the query of the adversary, where gy is
the number of queries to KeyGen, xf’ﬁ = (v, {xﬁj, Zi’jﬁ}jE[Nf]) and f7 = {g], h] }icin)-
We say that f7 is legitimate if for all i € HS, there exists £ € [g.;] such that g? (yf£) =0.
In security against legitimate keys, f” must be legitimate for all € [g¢]. In contrast,

we say that an AB-FE scheme for AWS satisfies security against any keys if the scheme is

secure against adversaries that follows just the condition defined in Definition 5.12.

5.6.1 Construction
Let aFE = (aSetup, aEnc, aKeyGen, aDec) be an FE scheme for AB-FE for AWSw/IP.
Then our AB-MIFE scheme for AWS is described as follows.

257

Setup(14, 1) It runs aPP;, aMSK; « aSetup(1*) for i € [n] and outputs

pp = {aPP;}ic[,, ek; = aMSK; fori € [n], msk = {ek;}ic[n]-

Enc(ek;, (yi, {Xij>Z,j}jen;])) It outputs

ct; = aCT; « aEnc(aMSK,, (yi, {xi,j, Zi,j } je[ni1» [1]1))-

KeyGen(msk, {g;, hi}ic(n)) It samples ry,... 11 < Zp, sets 1y, = = Yjc[n—1] i» and

outputs sk = {aSK;};c[,] where

aSK; «— aKeyGen(aMSK;, (g;, hi, [ri]2)).

Dec(cty, ..., ct,, sk) It parse ct;, sk as aCT;, {aSK;}c[,], respectively. If there exists i
such that g;(y;) # 0, it outputs L. Otherwise, it computes

[d/]r = aDec(aCT;,aSK;) for i € [n], and outputs [d]7 = Yic(,[dil7-

Correctness. Due to the correctness of aFE, we have

d; = Z (f(Xij)s2ij) +7i

JE[N:]

Hence d = Z,-e[n] Zje[Ni](f(X,-,j),zi,j) since Z,-e[n] r; =0.

5.6.2 Security
The proposed scheme is secure against legitimate keys as stated by the following theorem.
Theorem 5.13. If aFE is partially function-hiding, then the proposed AB-MIFE scheme

for AWS satisfies security against legitimate keys as per Definition 5.14.

Proof. We prove the theorem via two hybrids Hf and H/; . We show that Hf R Hf = Hg ,

258

where Hf for B € {0, 1} is the original security game. Recall that in Hf the challenger

replies
aEnc(aMSK;, (y;, {xi ;, Z'fj}je[Ni]a [1]1)) and {aKeyGen(aMSK;, (gi, hi, [7i]2)) }ie[n]
for the queries QEnCﬁ(z’,x?,xi]) and KeyGen(msk, f), respectively, where

X = (Vi %02 Yjeing) and f = {gi hikien)-

The hybrid Hf is the same as Hf except that for all i € H.S, the challenger replies

aEnc(aMSK;, (y;, {Xi,j»zgj}je[N,»]’ [1]1)) and

{aKeyGen(aMSK;, (g, /i, [ri+ D (hi(x'), 20y = > (hi(x{",), 20]2)) e
JeIN;T] JeIN;T]

for the queries QEnc?(i,x%x!) and KeyGen(msk, f), respectively, where {xi"j,

6,0 L1

Zi\j i Y ety

are the components of the ¢;-th challenge message, and
¢ =min{{’ € [q.,] | g,-(yf/) =0} fori € HS. Since all secret keys are legitimate, such

¢; always exists for each key query.

The hybrid Hg is the same as H[f except that for all i € H.S, the challenger replies

aEnC(aMSKi’ (Yi, {Xi,j9Z2j}j€[N,-]9 [1]1)) and

3 is
), Z."
; i.j

Y2) Yieln)

i\ o lis
{aKeyGen(aMSK;, (g, h;, [ri + Z <hi(xfjj)’ Zi,jIB> —
je[N'

for the queries QEncA(i, x?, X il) and KeyGen(msk, f), respectively. Note that the
advantage of the adversary is 0 in Hg since it does not obtain the information of 5. Hence

the theorem follows from Theorems 5.14 and 5.15.]

Lemma 5.14. We have HE R H[f if aFE is partially function-hiding.

Proof. Let g.; be the number of the ciphertext queries for slot i, and g be the number

259

of the secret key queries. For y € [g.;] and v € [gy], let aCTlH be the u-th challenge
ciphertext for slot i, and aSK! be the i-th element of the v-th secret key. For j € {s, 1},
let 6?7’; = aDec(aCT¥, aSK)) be the decryption value in Hf . Then, what we need to

prove is (5’;”; = 6?"’;’ foralli € HS, u € [qcil,v € [qk].

This can be proven by the three cases.
. Ifgl.v(yf) # 0, we have 6?"’: = 6‘1"’; =1 foralli e HS, u € [gcil, v € [q«]-
* If u = ;, we have 6 = 5’1‘”; = Zje[Nf,.](hl‘.’(xfj), zfj’.’g) foralli € HS,v € [q«].
* If > ¢; and g! (y") = 0, we have 6% = zje[Nf,,]my(x;jj), zf.jf> and
O = Q. (.2 + (. 1) = i (1), 7))
jelN;]

for all i € HS,v € [gqx]. We can prove 6,7 = 6/ as follows. Due to the
admissibility of the adversary, we have

2, 2, WA =)L D Al G

keHS je[lek] keHS je[N]fk]

v 0 ,
IRV AR AND YD IRCC I Y

]€[le'] kG?‘(S\{l} JE[NIik]

, 1 viooli \ bl
IR UICPE AR N R CACHPR Y

(5.5)

We can readily obtain 62" ’l.V = 6’1‘,’;' by subtracting Eq.(5.4) from Eq.(5.5) in the third
case.

Lemma 5.15. H? = H’.

Proof. From Eq.(5.4), the following distributions are identical:

(FlyoeosTn) @ Flyenostnol & Zp, Ty =— Z ri¢ and
ie[n-1]

260

Flowooslh | = Zp, Th=— Z ri
i€[n-1]
A2 T & . t; [N & €0 .
S ()) A HS)
;=
ri (ieCS)
Hence H[f and Hg are identically distributed. |

5.6.3 Amplifying security against Any Keys

In this section, we present how to convert an AB-MIFE scheme for AWS with security
against legitimate keys to one with security against any keys. In the conversion, we use
a ciphertext-policy ABE (CP-ABE) scheme for ABP and a (n-out-of-n) secret sharing
scheme. A CP-ABE scheme for ABP with wildcards is an ABE scheme (Definition 5.7)
that supports predicate P : X x Y — {0, 1} where X = ﬁﬁﬁp, Y =7, U {x}, and for
g € X,y € Y, Pis defined as

1 g(y)=0
P(g.y) =

0 g(y)#0

A CP-ABE scheme for ABP with wildcards is easily obtained from the CP-ABE scheme

for ABP in [LL20b] just by setting the master secret key as the secret key for the wildcard.

Construction Let wmFE = (wmSetup, wmEnc, wmKeyGen,wmDec) be an
AB-MIFE scheme for AWS with security against legitimate keys, ABE = (abSetup,
abEnc, abKeyGen, abDec) be an CP-ABE scheme for ABP, and (Share, Rec) be a
secret sharing scheme. Then, an AB-MIFE scheme for AWS can be constructed as shown

below.

Setup(14,1") It runs wmPP, {WmEK;};c[,, WmMSK « wmSetup(1?) and abPK;,

261

abMSK; « abSetup(1%) fori € [n]. It outputs pp, {ekK;}ie[n], msk as follows:

pp = (WmPP, {abPK;}ic[)), ek; = (wmEK;,abMSK;), msk = wmMSK

Enc(ek;, (yi, {Xi,j. 2 j}je[n,))) It outputs ct; = (wmCT;, abSK;) where

wmCT; < wmEnc(WmEK;, (yi, {Xij,Zi;}je[n,])), abSK; < abKeyGen(abMSK;,y;)

KeyGen(msk, {g;, h;}ic[n)) It outputs sk as follows:

wmSK < wmKeyGen(wmMSK;, {g;, i }ic[n), (o71,...,0,) < Share(wmSK, n)

abCT; « abEnc(g;,0;) fori € [n], sk ={abCT,;}c[,

Dec(cty, ..., ct,, sk) It parse ct;, sk as (wmCT;, abSK;), {abCT, };c[,), respectively. If
there exists i such that g;(y;) # 0, it outputs L. Otherwise, it outputs [d]7 as

follows:

o/ = abDec(abCT;,abSK;) fori € [n], wmSK’ = Rec(o7,...,07})

[d]r = wmDec(wmCTy,...,wmCT,, wnSK")

Correctness and Security. Due to the correctness of ABE, 0'{ ,...,0, are valid

shares of wmSK for {g;, h;}ic[n). Thus, thanks to the correctness of wmFE, we have

d = Yiemn) Zjeng Ji(Xij), 2ij)-

We argue security via the following theorem.
Theorem 5.16. I[f wWnFE has security against legitimate keys, ABE is selectively secure,
and the secret sharing scheme is secure, then the proposed scheme satisfies security

against any keys, i.e., selectively partially-hiding security in Definition 5.12.

262

Proof. We prove the theorem via three hybrids H/f , H'g , Hf . We show that Hf R Hf =
Hg R Hf , where Hf for B € {0, 1} is the original security game. Let us call a secret key
with which all the combinations of challenge ciphertexts decrypt to L a illegitimate key.
For each illegitimate key for {g;, h;}ic[4], there exists i’ € HS such that g;- (y?) # 0 for
all € € [gci].

In Hf , we change the replies to the illegitimate-secret-key queries. Specifically, abCT;
in sk is generated as abCT; « abEnc(g;;,0") instead of abCT;; « abEnc(g;, o),
where m is the bit-length of a share. We can easily observe that H; ~. H; due to the

security of the CP-ABE scheme for ABP.

In Hg , we change the replies to the illegitimate-secret-key queries. Specifically, o, ..., 0y
is generated as o; < {0, 1}" for i € [n] instead of being generated by the sharing

algorithm. H; = H, directly follows from the security of the secret sharing scheme.

In Hg, we change the challenge ciphertexts. Instead of replying Enc(ek;, (y;,
{X,-,j,zf j} je[n;])) to ciphertext queries, the challenger replies Enc(ek;, (yi, {x;;,
zg i }jern,1)) for all the queries. Hy =, Hj directly follows from the security of wmFE.
Note that the advantage of the adversary is O in Hf since it does not obtain the

information of S. [

5.7 MULTI-CLIENT FE FOR ATTRIBUTE-WEIGHTED SUMS

We define multi-client functional encryption, which basically follows the definition in
[ABG19]. The essential difference from the definition in [ABG19] is that we add the
definition of selective security.

Definition 5.15 (Multi-Client Functional Encryption). Let F be a function family such
that, forall f € F, f : X" — Z. Let L be a label space. An MCFE scheme for ¥ and

L consists of four algorithms.

263

Setup(14,1") It takes a security parameter 1* and a number 1" of slots, and outputs a
public parameter pp, encryption keys {ek;};c[,], a master secret key msk. The

other algorithms implicitly take pp.

Enc(ek;, x;, L) It takes ek;, an index i € [n], x; € X, and a label L and outputs a

ciphertext ct;.
KeyGen(msk, f) It takes msk and f € ¥, and outputs a secret key sk.

Dec(cty,...,ct,, sk) Ittakescty,...,ct, and sk, and outputs a decryption value d € Z

or a symbol L.
Correctness. An MCFE scheme is correct if it satisfies the following condition. For all

AneN, (x,...,x,) € X", feF, LeL,wehave

(pp. {ek;}, msk) « Setup(1%,1")
ct; «— Enc(ek;,x;, L) fori € [n]
Pr|d=f(x1,...,xn): =1.
sk « KeyGen(msk, f)

d = Dec(cty,...,,ct,,sk)

Security. We consider the case where each x; € X consists of a public part x; pyp and a
private part X; priv, i.€., X; = (X; pub, Xipriv). An MCFE scheme is xx-yy-partially-hiding
(xx € {sel, sta, adt}, yy € {any, pos}) if for every stateful PPT adversary ‘A, there exists

a negligible function negl such that for all 4, n € N, the following holds

B —{0.1}

Pr|B=p": (pp,{ek;}, msk) « Setup(1%,1") < 5 +negl

| =

B — ﬂQCor(),QEncﬁ (),KeyGen(msk,-) (PP)

where QCor (i) outputs ek;, and QEncﬁ(i,x?, xl.l, L) outputs Enc(ek,-,xf, L). Letqc,r

264

be the numbers of queries of the forms of QEnc” (i,*,%, L). Let HS be the set of parties
on which the adversary has not queried QCor at the end of the game, and CS = [n]\'HS.
Then, the admissible adversary’s queries must satisfy the following conditions.

1
i

* Fori € CS, the queries QEnCﬁ(z’,x?,x}, L) must satisfy x? =X

1

. . . 0 1 . 0 _
* Fori € HS, the queries QEnCﬁ(z,xi ,X; , L) must satisfy X oub = ¥i.pub-
o (Y, 00 x9) = f(x],...,xp) for all sequences (xY,...,x9,x],...,x,, f, L) that

satisfy the two conditions:

— Foralli € [n], [QEnCﬁ(i,x?,x}, L) is queried and i € HS] or [x? = xl.1 € X;
andi € CS].

— KeyGen(msk, f) is queried.

* When xx = sta: the adversary cannot query QCor after querying QEnc or KeyGen
even once.

* When xx = sel: the adversary must make all queries to QCor and QEnc in
one shot. That is, first it outputs (CS, {i,x?,x},L}) and obtains the response:

({ek;}iecs, {Enc(ek;, xf ,L)}). Only after the one-shot query, the adversary can
query KeyGen adaptively.

* When yy = pos: for each L € L, either g.;; > O foralli € HS or g.; 1 = 0 for
alli e HS.

First, we formally define MCFE for AWS.

Definition 5.16 (MCFE for Attribute-Weighted Sums). MCFE for Attribute-Weighted
Sums (AWS) is a class of MCFE (Definition 5.15) that supports the following functionality.
Let G = (p,G1,G2,Gr,g1, &2,) be bilinear groups. Let X = U,‘eN(ZZO X Z;’,‘)i be a
message space. Let ¥ = (7-:1%‘,5,1'?)” be a family of functions, where (fi,...,f;) €
represents the function f’ : X" — Gr defined as

f/({xl,j’zl,j}je[Nl]’---’{Xn,j,zn,j}je[N,,]) = [Z Z <fi(Xi,j)’Zi,j>]T-

i€[n] je[Ni]

"We can covert a xx-pos-partially-hiding scheme to xx-any-partially-hiding scheme generically [ABG19].

265

5.7.1 Construction
Let aFE = (aSetup, aEnc, aKeyGen, aDec) be an FE scheme for AWSw/IP. Let PRFK :
L - Zf, be a PRF with key space K. Let k be the parameter for the MDDH} assumption.

Then construction of our MCFE scheme for AWS is described as follows.

Setup(14,1") It runs aPP;, aMSK; « aSetup(1%) for i € [n], chooses K; ; « K for

i,j € [n],i < j,andsets K; ; = K;; for j <i. It outputs

pp = {aPP;}ic[n), €k; = (aMSK;, {K; ;}je[n\iy) fori € [n], msk = {ek;}ic[n)-

Enc(ek;, L,x; = {X; j, 2 j}je[n;,)) It computes vz ; = Zje[n]\{i}(—1)f<"PRFK’¥f(L) and
outputs

ct; = aCT,; « aEnc(aMSK;, x;, [(vL;, 0)]1).

KeyGen(msk, { fi}ic[n]) It samples s « Zj‘, and outputs sk = {aSK;}c[,) where

aSK; « aKeyGen(aMSK,, f;, [(s,0)]2).

Dec(cty, ..., ct,, sk) It parse ct;, sk as aCT;, {aSK;} e[, respectively. It computes

[di]7 = aDec(aCT;, aSK;) fori € [n], and outputs [d]r = ¥cp, [di]T.

Correctness. Due to the correctness of aFE, we have

di=) (F(%i)),2i)) +(Viis)

JE[Ni]

Hence d = Yjc) 2 jern,) (f (Xi,j) Zij) since Ye(){(VLi>S) = 0.

5.7.2 Security

We argue security via the following theorem.

266

Theorem 5.17. If aFE is partially function-hiding, and the MDDH,, assumption holds
in G, then the proposed MCFE scheme for AWS is sel-pos-partially-hiding as per

Definition 5.15.

Proof. We prove the theorem via a series of hybrid games H? for € € {0} U [g1] where
qr = {L | gcir > 0}| fori € HS is the maximum number of labels queried by the
adversary. We show that Hf R Hg R H’f R - R Hij, where Hf for B € {0, 1} is the
original security game. Recall that in Hf the challenger replies aEnc(aMSKi,xf ,[pil1)
and {aKeyGen(aMSK,, f, [qi]2) }ic[n) for the queries QEncA(i, x?,xi‘, L) and

KeyGen(msk, f), respectively, where

= {Xi,j,ij}je[N,-], pi = (v2.i,0), q; = (s,0).

Let QL ={Ly,..., L, } be the labels that are queried by the adversary. Hg is the same
as Hf except that the challenger randomly chooses vy ; € Zf, fori €e HS,L € QL such
that Yjeqqs Vii + Yices X jepnp iy (—1)/<'PRFS/ (L) = 0. The hybrid H? is the same
as H'g except that for the queries QEnCﬁ(i,x?,xil, L) such that L € {Ly,..., L.}, the
challenger replies aEnc(aMSK;, x?, p:). Note that the advantage of the adversary is 0 in
HgL since it does not obtain the information of 3. It is not hard to see that H? . Hg

follows from the security of the PRF. Hence, the theorem holds from Theorem 5.18. =

Lemma 5.18. Let Hg = H’f. Forall € € [qr], we have Hf_l X Hf.

Proof. To prove the lemma we introduce intermediate hybrids H? 1 H? 2 H'? 39 which are

defined as follows:

Hf , This hybrid is the same as Hf_l except that the challenger replies aEnc
(aMSK,-,le, [pi]1) and {aKeyGen(aMSK;, f;, [q;]2) }ic[n] for the queries QEnc?

(i,x0,x!, L) and KeyGen(msk, f), respectively, where

pi= (0. 1), qr=(s.{s.vL.0) + filx,) = filx!})) fori € HS.

267

B

where (xl, Lo

xl'.(’f[) is the pair of challenge messages in the «x-th query to QEnc of

the form (i, %, *, Ly).

Hf , This hybrid is the same as Hf , except that in the replies for the queries QEnc”
(i,x%,x!, L) and KeyGen(msk, f), p; and g; is defined as

Vi < Z, fori € HS s.t. Z Vit Z (s,vr,i)=0
ieHS ieCS

pi= (0. 1), @ =(s,vi.i+filx,D) = filx/})) fori e HS.

Hﬁ 5 This hybrid is the same as Hg , except that in the replies for the queries QEnc?

(i,x?,xl.l, L¢) and KeyGen(msk, f), p; and q; is defined as

Vigi < Zp fori € HS s.t. Z Vigi+t Z (s, VL[,[) =0

ieHS ieCS
pi = (05 1), qr=(s.vi,i+ filx Dy —ftwe) fori € HS.
Thanks to Theorems 5.19 to 5.22, Theorem 5.18 holds. []

Lemma 5.19. Let Hg = Hf. Forall € € [qr], we have H?_l R H?,l if aFE is partially

function-hiding.

Proof. Observe that for all aCT;s that the adversary obtains as a reply to the query of
the form QEnc? (i, x?, xl.l, L) and all aSK;s that it obtains as a reply to the query of the
form KeyGen(msk, f = {f;}icxts), the output of aDec(aCT;, aSK;) in Hf_l and that in
Hﬁ , are equal for all i € HS. Here, we use the fact that for all i € HS and k € [gcr,],
we have

FOE) = H)0) = fixiD) = filxly).
This is basically obtained by Eq.(5.6) — Eq.(5.7):

DR = Rk (5.6)

iEHS iEHS

268

)+ > R =REE) D A (5.7)

ieHS\{i"} ieHS\{i"}
which follows from the query condition in Definition 5.15. Hence, thanks to the partially

function-hiding security of aFE, these hybrids are indistinguishable.]

Lemma 5.20. Forall € € [q1], we have Hfl R Hfz if the MDDH, holds in G.

Proof. We would like to prove that

{[8]2, {[(s", v,) o tierts beelgn) e {8"]2 AV, i2tierts eelqn]

where g is the number of queries to QKeyGen, s «— ZX v, ; « Zf; fori € HS s.t.
Zie?—{S Vieit ZiECS Zje[n]\{l}(—l)j<lPRFK’J(L) =0, and sz’l. — Zp fori € HS and
K € [qk] sit. Yieqs Vi + 2iecs (S, vr,i) = 0. It is not hard to see that the following

indistinguishability suffices to prove the above indistinguishability:

([Al2, [Amq]2, ..., [Amy]s) = ([A]2, [ri]2, ..., [r4]2)

where d > 1, n are any natural numbers, ¢ is any vectors in ZX, A « ZZXk, mp,..., my «—
Zf, .t Djefg) M = ¢, and ry, ..., rg «— Zjy s.t. Yie[q) Ti = Ac. Itis easy to see that they
are distributed the same if n < k, so we consider the case n > k. The above relation can
be rewritten as
([Al2, [Amy]o, ..., [Amg], [Ac= " Ami])
ie[d-1]

e ([Aly, [N]2, . [rai]o, [Ae = > 1ila)
ie[d-1]

This is implied by the d — 1-fold MDDH; assumption, which asserts that

[(A,Amy,...,Amy_1)]2 = [(A, 1y, ..., 1q-1)]2.

Lemma 5.21. Forall € € [q1], we have Hf,z = H€3

269

Proof. As we see above, Eq.(5.6) holds due to the query condition in Definition 5.15.
Thus, {vr,,}iejns) and {vy,; + f,-(xl.1 fg) - ﬁ(xl.li)g)}ie[ﬁS] are both randomly distributed

in Z,, such that the summation of these is equal to — > ;ccs(S, Vi,.i)-]

Lemma 5.22. Forall € € [qL], we have H§3 R Hf if aFE is partially function-hiding
and the MDDH, holds in G.

Proof. This lemma can be proven in the same way as Hf_l R Hf 5]

5.8 DYNAMIC DECENTRALIZED FE FOR ATTRIBUTE WEIGHTED SUMS
In this section, we present a dynamic decentralized FE scheme for attribute weighted

sums (DDFE for AWS). In Appendix 5.B, we show how it can be captured in the context
of dynamic MPFE.

5.8.1 Definition

Definition 5.17 (Dynamic Decentralized Functional Encryption). Let 7D, K, M be an
ID space, a key space, and a message space, respectively. M consists of a public part
Mopup and a private part Mpry. Let f be a function such that f : ;e (ZD X K)' X
Uien (ZD x M) — Z. A DDFE scheme for f consists of five algorithms.

Setup(11) It takes a security parameter 11 and outputs a public parameter pp. The other

algorithms implicitly take pp.

LSetup(pp) It takes pp and outputs local public parameter pk; and a master secret key

msk;. The following three algorithms implicitly take pk;.
Enc(msk;, m) It takes msk; and m € M, and outputs a ciphertext ct;.
KeyGen(msk;, k) It takes msk; and k € %, and outputs a secret key sk;.

270

Dec({sk;}icw» {Cli}icar,,) Ittakes {sK;}icasy» {Cli}icus,, and outputs a decryption value

d € Z orasymbol L where Ux C 7D and Uy, C 1D are any sets.
Correctness. A DDFE scheme for f is correct if it satisfies the following condition.

Forall A e N, Uy CID, Uy C ID, {i,kiticu, € Uien(T D X K)', {i,m;}icus,, €
Uien(ZD x M)!, we have

pp « Setup(14)

pk;, msk; « LSetup(pp)
Prid= f({l’ ki}iG'UKa {lﬁ mi}ieﬂM) : ct; «— EnC(mSki,mi) =1.

sk; « KeyGen(msk;, k;)

d = Dec({sk; }icuy» {Cli}ictsy,)

Note that we can consider the case where Uk and Uy, are multisets as in the original
definition in [CDSG*20]. However, we do not consider the case here since it induces
ambiguity that can be also found in [CDSG*20]®. We assume that N contains 0 here
and (7D x K)° = {i, kj}icp = 0. That is, Ux and Uy can be an empty set, which

corresponds to the case where Dec does not take secret keys/ciphertexts as input.

Security. We define the security of DDFE as follows. A DDFE scheme is xx-yy-
partially hiding (xx € {sel, adt}, yy € {sym, asym}) if for every stateful PPT adversary

A, there exists a negligible function negl(-) such that for all 1 € N, the following holds

, B« {0,1}
Pr ,8 — ﬂQHonestGen(),QCor(),QEnc (),QKeyGen()(pp) . <-4 negl(/l).

| =

pp « Setup(l”)

Each oracle works as follows. For i € 79, QHonestGen(i) runs (pk;, msk;) «
LSetup(pp) and returns pk;. For i such that QHonestGen(i) was queried, the adversary
can make the following queries: QCor(i) outputs msk;, QEnc?(i,m°, m') outputs

Enc(msk;, m#), and QKeyGen(i, k) outputs KeyGen(msk;, k). Note that m”? consists

8Concretely, when Uy is a multiset, and i’ € Uk has multiplicity 2, how to treat k; € {k;}icqs is
unclear.

271

B

of the private elements Moy and the public elements mpp, respectively (we always

0

— 1
pub_m

require that m oub

= mpyp as the public elements are not hidden in ct). Let S
be the set of parties on which QHonestGen(i) is queried, S be the set of parties on
which the adversary has not queried QCor at the end of the game, and CS = S\CS.

Then, the adversary’s queries must satisfy the following conditions.

* There are no sequences ({i, k; };ews, {i. m?},-eruM), {i, ml1 }Yiew,,) that satisfy all the
conditions:

— For all i € Uk, [QKeyGen(i, k;) is queried] or [i € CS].

— For all i € Uy, [QEI’]C’B(i, m?,m}) is queried] or [m? = ml.l € M and
i € CS].

- f({l’ ki}iGWK’ {i’m?}iE(LIM) * f({l’ ki}iE(HK’ {l’ ml'l}iG(HM)‘

* When xx = sel: the adversary first generates a set S of honest users in one shot.
After that it makes the corruption, key generation, encryption queries in one shot
to obtain {msk;}, {KeyGen(msk;, k)}, {Enc(ek;, mP)}.

« When yy = sym: fori € CS, the queries QEnc? (i, m°, m") must satisfy m® = m!°.

We formally define DDFE for AWS as follows.

Definition 5.18 (DDFE for Attribute Weighted Sum). DDFE for AWS is a class of DDFE
(Definition 5.17) where 7D C {0, 1}*, K = Ugcrp(Fmar)S x SO M = X x 270 x L,
where X = U;en(Z) % ZZl)i, and supports the following functionality: Let G =
(p,G1,G2,Gr, 81, &2, €) be bilinear groups. The function f” is defined as follows: for
ki = (fi, Uk) € K, where f; = {fi}jcuy, and m; = ({Xi . 2; ;} je(n,)» Unmir Li) € M

(here {z; ;} jc[n,] is the private part and {X; ;} jc[n,], U > L; are the public parts of m;),

Ui kitiewg,, (i, mitiew;,) =

9The symmetric setting captures the case where msk; can be used to not only encrypt/key generation but
also decryption/decoding of ct;/sk;.

10An element in (7—;{3?,2)5 x S is of the form ({f;};es, S). We note that in more precise notation, (7—',1‘(\32)S
contains elements of the form {i, f; };cs, which itself carries information about S, but we explicitly add
xS, to keep the notation more intuitive.

272

[Z,-E(L,I/(2jenvi{fi(Xij),2ij)]T the condition below is satisfied

1 otherwise

l. Uy =U,,and Vi e U, Uk = Uy, = Uy.
2. Vipewy, fi = frand L; = Ly
For a building block of DDFE for AWS, we use a class of DDFE called all-or-nothing
encryption. Chotard et al. showed that sel-sym-IND-secure AoNE can be generically
constructed from identity-based encryption [CDSG*20].
Definition 5.19 (All-or-nothing encryption (AoNE)). AoNE is a class of DDFE
(Definition 5.17) where 7O = {0,1}", Mpiy = {0,1} for some L € N,
Mpup = 21D % £,K =0,Z ={0, 1}*. The function f is defined as, for Uy € 21D and
{mi = (xi, Unm is L i) Yiews, »
{x[}ieru]fw the condition below is satisfied

F{iiew, . i, mitiews,) =
1 otherwise

e Vie U, U,=Uy,.
e Ly € L. Vie 7/{1’”,LM71' =Ly.
This means that KeyGen is unnecessary, and Dec works without taking secret keys as

input in AoNE (recall that Z/}, can be an empty set).

5.8.2 Construction

Let aFE = (aSetup, aEnc, aKeyGen,aDec) be an FE scheme for AWSw/IP with
the length of the random tape for aSetup being ¢,, AONE = (anGSetup, anLSetup,
anEnc, anDec) be an all-or-nothing encryption scheme!!, NIKE = (nSetup, nKeyGen,

nSharedKey) be a non-interactive key exchange scheme, {PRFE(} 2D £ — Zf,,

We use AoNE to encrypt messages from two different spaces. So, either we can use two AoNE schemes
with appropriate message spaces or can use padding to make the message spaces same. For simplicity,
we present our construction with same AoNE scheme.

273

{PRFg} : 27D 5 {0, 1}% be families of pseudorandom functions, with key space
XK1, ¥, respectively and 7 D denotes an identity space and H : {0, 1}* — G’z‘ is a hash
function modeled as a random oracle. Our construction of DDFE for AWS is given

below.

GSetup(11) On input the security parameter 14, the setup algorithm outputs pp as

follows.

anPP «— anGSetup(1%), nPP « nSetup(1'), pp = (anPP, nPP).

LSetup(pp) On input pp, user i € 7D generates (pk;, msk;) via the setup algorithm as

follows.

(nPK;, nSK;) <« nKeyGen(nPP), (anPK;, anMSK;) « anLSetup(anPP), K;, <« %,

pk; = (nPK;, anPK;), msk; = (nSK;,anMSK;, K; 2).

Enc(msk;, m) The encryption algorithm takes as input the public parameters pp, the
master secret key msk;, and an input m = ({X;;,Z;;}jen;Um,, L;) such that

i € Uy and outputs ct; as follows.

rti = PRFS™ (), aMSK; = aSetup(1%; 1), K; ;.1 — nSharedKey(nSK;, nPK;)

Vi = Z (=1)/<'PRF"" (Unzi» L), Xi = ({Xi)2 j} jen,» [Vi, 0]1),
JeUk i
i#]

aCT; « aEnc(aMSK;, £;) (5.8)

anCT; « anEnc(anMSK;, (aCT;, Un;, L)), ct; = (anCT;, Ui, L;). (5.9)

KeyGen(msk;, k) The key generation algorithm takes the master secret key msk;, and

274

an input k = ({fj}jeuy ;» Uk.i) such thati € Uk ; and outputs sk; as follows.

rt; = PRFS" (g 1), aMSK; = aSetup(1%; rt;)
[s]> = H({ fiYicux ,» Ur i) fi = (fi, [(s,0)]2), aSK; «— aKeyGen(aMSK;,)
(5.10)

anCT; « ankEnc(anMSK;, (aSK;, Uk i, { fi}jeux;))> ski = (@nCT;, Uk i, {fi}jeuix)
(5.11)

Dec({sk;}iew, {Cti}icrs,,) The decryption algorithm takes as input the public
parameters pp, secret keys {sk;}icqs, ciphertexts {ct;};cqs,, such that
U = Uk = Uy and outputs d as follows. Parse sk; = (anCT;, Uk i, { [} jeuy)

and ct; = (anCT}, Uy, L;). Compute

{aSK;};ces = anDec({anCT;}iecqs), {aCT;}ices = anDec({anCT}icqs),
[d]r = 1_[aDec(eTSWZ,-, aCT)).

e

Correctness. Firstly, we observe that if Ux = Uy = U, L; = Ly for all i € U, where
Ly is any label in £2 and { fi}jeu; is same in all the ciphertexts input to the decryption

algorithm, then
¢ we have from the correctness of AoNE, aﬂék,- = aSK; and aCT ; =aCT;.

* vector s computed by every user i € U is same.
Then from the correctness of NIKE, K; ; 1 = K; ;1 and hence, }’;cq; Vi = 0. Hence, from

the correctness of aFE,

| |aDec(aSk;, aCT;) = [| aDec(asK;,aCTy) = [[D] (fi(xij),2:;) + (s, vi)lr

ieU el €U je[Ni]
=) > iz + Y (svlr =10 > (i) z e
ieU je[N;] el ieU je[N;]

275

5.8.3 Security

We argue security via the following theorem.

Theorem 5.23. If {PRF'f}, {F’RF?} are families of pseudorandom functions, NIKE is
IND-secure, AONE is sel-sym-IND-secure, the MDDH; assumption holds in G, and
aFE is function-hiding, then our AWS-DDFE scheme is sel-sym-partially-hiding in the

random oracle model as per Definition 5.17.

Proof. Let S be the set of parties generated by QHonestGen queries. Let HS C S be
the set of uncorrupted parties and CS = S\'HS. We prove the theorem via a series of

hybrids, which are defined as follows.

Hf This is the original game. In particular, in response to QEnc”? (i, x?,xl.l, Uy, L)
and QKeyGen(i, { f;}jeu» Uk), where xf’ = {x;, Z,l?,j}je[N,-] for b € {0, 1}, the
challenger sets

2= (P [vi,011), fi = (fir [5,0]2),

(in egs. (5.8) and (5.10), respectively). Vectors v; and s are computed as desribed

in the construction.

Hf In this hybrid, the challenger samples rt; randomly instead of computing using PRF5.

Indistinguishability between Hf and H[f follows from the security of PRF,.

Hg We say an encryption query on (i,x?,xl.l,(LlM, Lyy) is incomplete, if there exists
i’ € Uy such thati’ € HS and no encryption query of the form (i/, %, x, Uy, L)
is made. In this hybrid, in response to all the incomplete encryption queries, anCT;
is computed as anEnc.(0, Uy, Lyr) (eq. (5.9)). The indistinguishability between

Hf and Hg follows from the security of AoNE.

Hf We say a key query on (i, f = {fi}jeux» Uk) is incomplete if there exist i’ € Uy

276

such that i’ € HS and there is no key query of the form (i’, f, Ux). In this
hybrid, for all the incomplete key queries anCT; encrypts 0 (eq. (5.11)). The

indistinguishability between Hg and Hg follows from the security of AoNE.

H? In this hybrid, for all the complete encryption queries of the form (i, xf.), xl.l, Uy, L)
with i € HS, the challenger sets £; = (xl(.), [vi,0]1). We note that the adversary has
zero advantage in this hybrid because its view is independent of 3 (recall that for
ieCS, x? = xl.l.). We show that Hff. is indistinguishable from Hf in Lemma 5.24

Lemma 5.24. If {PRF}f} is a family of pseudorandom functions, NIKE is IND-secure,

the MDDHy, assumption holds in G, and aFE is partially function-hiding, then Hg ~ ch

in the random oracle model.

Proof. To prove the lemma, we consider the following sub hybrids between Hf and
H?. Let g, be the total number of ID sets with complete encryption queries. Let
{Uy,...,U,,} be some fixed ordering on the ID sets from complete encryption queries

and let g;, be the upper bound on g,.. Then define sub hybrid ﬁf as follows

ﬁf (for j € {0} U [q;,]). This hybrid is same as Hf except that for every complete
encryption query of the form (i, x?, X l.l, Uy, Lyy) such that i € HS, the challenger

sets

(x?, [Vi,o]l) if(LIM c {Wl,...,wj'}

A

Xi =
(P v, O1) i Uy € {Ujsr. .., Uy,),
where U; = {1} for j > q,. We observe that ﬁ’g = Hg and ﬁ/qg{l = pr. So, now we

need to show that for all j € [q,], FI?_I ~ ﬁf

To show this, we let {L} ..., LXHA} be the set of labels used in complete encryption
J J

queries of the form (x, %, %, U;, x). Let v < gr. Then define the following sub hybrids:

—~

B e
H]._l’0 Same as HJ._I.

277

ﬁf_l , (for k € [gL]). Same as ﬁ'f_l except that for every complete encryption query of

the form (i,x?,x/,U;, L), fori € HS,

(0, [vi,01)) ifLe{LlL5}
J J

A

Xi =

(', [vi,) if L e (L. Ly,)
J J

We observe that ﬁg_ Lo = H”. So now, we need to show that ﬁ[.g_ o /Hﬁ_ , for all
J—LqL J j—Lk—1 j-1,k

€ [gr]. For this, we further define following sub hybrids between /I-W_l _, and ﬁﬁ._l
J—L,K J—Lk
Let (LI]?{S =U;N"HS ={uy,...,u,} and w’ be an upper bound on w. Define

Hg (for n € [w’]). Same as ’I:|['fz_ except that for each complete encryption query

_l’
QEnc? (u;, x0 , x| U, Ly,)andcompletekeyqueryQKeyGen(u,,{f]}Jeru U;),

ui> VUi’

Xyu; and fui, respectively, are set as follows:

(ngi’ [Vuia O]l) lfl < I]

Xup = (xgi, [v.,,0]1) ifp<i<w

(xfp[vui’l]l) ifi=w

(fu;» [8,0]2) ifi <w
(fu,a [S Zle[n u LK]2) ifi=w

Here, Aﬁ = fu (xulﬂ) — fu (x), where 1 in the superscript indicates the first
QEnc? query of the form (u;, %, x, U;, L&). We have, from the admissibility
J

conditions,

e Let qeu.u;, Ly, be the number of encryption queries of the form
(ul,**ﬂ,,LK), then fi,(if) = fuGl) = AL L, for all
€ [gew.u; L,] where 7 denotes the sequence number of the query of this

form (see proof] of Lemma 5.19).

. B —
Luersont) By, e =0
J

Now we argue the indistinguishability of the sub hybrids. Firstly, we observe the

278

following:

1. ﬁﬂ._l LR I:|§ : The only difference between the two hybrids is that for encryption
j-1x
query of the form QENC’ (uy,x0 ,x, U;, LE), %4, = (x5, [Vu,,»0]1) in the
J

former and %, = (xfw, [Vu,, 1]1) in the latter hybrid. Note that fuw for any key
queries of the form (u,, {f;};e[w;], U;) is of the form (f,,, [s,0]2) (notice the
last bit being 0) in both the hybrids. Hence, the two hybrids are indistinguishable
due to partially function-hiding security of aFE.

2. Similarly, Izlﬁ, ~ ﬁf_l’,(from aFE security.
So, all that is left is to show that Hg e Hg . For this, we first note that the two hybrids

differ only in the values of £, and ., as follows:

In I:I'g_1

A O v, 01 ifi=n | (fu- [8.0]2) ifi =n
Xy = R ;=

"’ (xi., [vy,, 1]1) ifi=w ' (fui» S5 Zle[n—l] Afl,Lij]Z) ifi=w
In I:I'g :

A (), [V, 011) ifi=n ; (fus» [8,0]2) ifi=n
Xy = , ;=

"’ OB [V 111) ifi=w u (fui> [S5 2teqn) A{fl,%]z) ifi=w

To show indistinguishability, we consider sub hybrids with the following sequence of

changes in £,, and £, for u; € (L{Z{S :

Hfj _1,; Forevery complete QEnc” query, sample Ky, u,.1(= Ku,y u,,.1) randomly instead
of computing from nSharedKey!2. Indistinguishability from H®_ follows from
n-1

the security of NIKE.

Hfj _;, For any complete encryption query of the form (u;,x, %, U;, Ly,), the
’ J

Zthis change will happen for all the ID sets, since K, u,..1 does not depend on the ID set or the label.

279

A . Kun,uw,l(wj,LK«uA)
computation of v,, and v, use random value in place of PRF, I

Thus, vectors v,,, and v,,, changes from

> (PR)

VM" =
iE(L{j,l':ﬁuq
. K, ,’,l((L{"LK)
Vi, = Z (_1)l<u,7PRF Ui R tu,,,uw
iG'L/j,i%{Mq,uw}
; Kuw,i,l(wstK)
Vo, =), (-I)"PRF “, 1o
ie"LIj,i;tuw
~ Ky it (Ue, LY,)
Vu, = Z (-1)"~"PRF " “ ~tu,

ieU;,ig{u,,uw}
where t,, 4, is chosen randomly. Indistinguishability from the previous sub hybrid

follows from the security of PRF;.

-8 e o 2 2 .
Hn—1,3 Change £, , £y,,, fu, and f,, as:

(Xl s [V tuy s 11) ifi =1

o) —_—
Xy; =

(s [Vig=tu > 111) if i = w

A

(furs [8: =(8 tu,y 0, 0]2) ifi=n

(flha [S’ Zle[n—l] A/ugl,Lwa-'_(s’ tuq,uw>]2) ifi=w
The indistinguishability follows from the partially function-hiding property of

aFE.

Hg _1.4 Replace (s, t,, 4,,) with random 1,,, 4.

(s [V + b, 111 ifi =7

<o —_—
Xy, =

(Xgi, [Vui - tu,,,uw’ 1]1) ifi=w

280

(fu," [Sa _tun,uw]Z) ifi = n

(fu,-a [S, Zle[n—l] Afl,LKqJ + tun,uw]Z) ifi=w
J -

Indistinguishability between Hfj _,5 and Izlg _,4 follows from the MDDH;

4

assumption. In more detail, let f Lo, f 9k be the functions for which the

adversary issues complete key queries of the form (x,*, U;) queries and let

S1

,...,8%% be the corresponding s vectors (recall that these are computed from the
hash function modeled as a random oracle). Then, to argue indistinguishability

between the two hybrids, we need to show

{87, (8™ tu M retan) & {0, Yrelanls

Up,Uy

which follows directly from the MDDH,, assumption.

’
Uy ,Uw

i - _ .
Hn_l’5 Implicitly set 7, 4, =1 + AM,I,L%. That is,

. (s [V + by, 1) ifi =1
Xy; =

('xfi? [Vu,' - tu,,,uwa 1]1) lfl =W

(fui’ [S’ _t;n,uw - A“'I’qu,(j]Z) ifi = n

fui =
(fuw’ [S’ Zle[n] AllljlsLK(u + t;n’MW]Z) ifi=w
j —_—

Hg_l 6 Change)2,477 and fn as

0 [V + by, - 111) ifi=7

A

Xy, =

(xﬁ-’ [Vui - tu,,,uw’ 1];) ifi=w

A

(fui’ [S’ _t;, ,MW]Z) ifi = n
fu = e
u; —

(furs [8 Zisepy) Afl,Lg,_ +1, u,02) ifi=w
J

281

EK Pub, Pri . . Function cl f
Work Parties Label (Pub, Pri) Key Functionality une 10F classes o
Cor. CT f.8h
AB-FE ACGU20 1 v N/A (x,2) (f,¢) f(x) - (z,¢) f € MSPs
FE for AWS AGW20 1 v N/A ({x;}j. {z;})) f Y f(x))Tz; f € ABPs
JEIN]
MIFE AGT22 n v X (L,2z) c (¢, z®1z) N/A
MIFE AGT22 n X v (L,2z;) c (¢, z®1z) N/A
AB-MIFEACGU20 n /X (L7) Onehies F(ihes) - 3 (7) FEyiD) = Nies &(0i)
ieS fixed g; € MSPs
: F(y) = Ni(gi(yi) = 0)
AB-MIFE, Sec. 5.6,5.6.3 v X i AXi i) {zi i} i»hiti hi(x Z;
n ((yir { t,/}/) { 1,/}/) {gi l}ze[rzl fy)- lE[VIJ/E[N (:/) i,j gi» hi € ABPs
MCFE CDG"18b; ABG19 n v v (L,z) [(¢, z) N/A
AB-MCFE NPP22 n v oT (xi> %) (g e} F)) - (e 2) Sx}) = A gilx)
gi € LSS
MCEFE, Sec. 5.7 n v o v ({xij}j» {Zij})) {fitietn 2[:] X fixi) Tz Ji € ABPs
i€[n]je[N;
DDFE, CDSG*20; AGT21b|Unbdd n v v (L,%) [(¢, z) N/A
DDFE, Sec. 5.8 Unbddn Vv v ({xij}j-{zij})) {fities Y Y filxij) Tz fi € ABPs
i€eSje[N;]

Table 5.3: Prior state of the art and our results. We do not consider function hiding here.
Above, we denote y = (y1,...,¥n), Z=(Z1,...,2Z;) Or Z = (Z;)jes. S C [n]
is some subset of authorized users for a given key. EK Cor. refers to whether
an adversary is allowed to obtain encryption keys in the security game. Label
refers to the capability of labeling functionality that restricts decryption such
that it is allowed only when all labels are equal. OT in label means that
each label can be used only one time per input. MSPs/ABPs/LSS stand for
monotone span programs/arithmetic branching programs/linear secret sharing.
MCEFE in a stronger (resp. weaker) notion corresponds to MIFE that satisfies
EK Cor. and Label (resp. One-time label).

Indistinguishability follows from the partlally function hiding property of aFE.
Now, undo the changes in previous steps to get H]

APPENDIX
S5.A DETAILED COMPARISON WITH PRIOR WORK

Here we provide a detailed summary of the related prior work in multi-party FE schemes.

282

5.B MULTI-PARTY FUNCTIONAL ENCRYPTION

In this chapter, we use many classes of functional encryption (FE) such as attribute-based
encryption, secret-key functional encryption, multi-input encryption, etc. To capture
various notions of FE, Agrawal, Goyal, and Tomida proposed a notion called multi-party
functional encryption (MPFE) [AGT21b]. The following definition is verbatim from
[AGT21b].

Definition 5.20 (Multi-Party Functional Encryption). Let n, be the number of ciphertext
inputs and n,, be the number of key inputs. Let X = Xpup X Xpriv be the space of ciphertext
inputs and Y = Youp X Ypriv be the space of key inputs. We define two aggregation

functions as Agg, : X"* — X*, and Agg, : Y™ — Y.

An MPFE scheme is defined as a tuple of 4 algorithms/protocols (Setup,
KeyGen, Enc,Dec). To suitably capture existing primitives, we define our Setup

algorithm/protocol to run in three modes, described next.

Setup modes. The Setup algorithm/protocol can be run in different modes: central,

local, or interactive. For mode € {central, local, interactive}, consider the following.

central Here the Setup algorithm is run by one trusted third party which outputs the

master secret keys and encryption keys for all users in the system.

local Here it is run independently by different parties without any interaction, and each

party outputs its own encryption key and/or master secret key.

interactive Here it is an interactive protocol run by a set of users, at the end of which,
each user has its encryption key and/or master secret key. We note that these keys

may be correlated across multiple users.
A multi-party functional encryption (MPFE) consists of the following:

Setup (11, Ny, Ny, AQQ,, Aggy) This algorithm/protocol can be executed in any one of

283

the three modes described above.Given input the security parameter, number of
ciphertext inputs n,, number of key inputs 7, and two aggregation functions Agg,,
Agg, as defined above, this algorithm outputs a set of encryption keys {ek;}i<,,

master secret keys {msk;};<,, and public key pk.

Enc (pk, ek, i, x = (Xpub, Xpriv)) Given input the public key pk, an encryption key ek,
user index i € [n,], an input x = (xpub,xpriv), this algorithm outputs a ciphertext

ct,.

KeyGen (pk, msk, j,y = (ypubs Ypriv)) Given input the public key pk, a master secret
key msk, user index j € [n,] and a function input y = (ypub, Ypriv), this algorithm

outputs a secret key sk,.

Dec (pk, {sk;}j<n, {ct,-}isnx) Given input the public key pk, a set of secret keys
{sk;}j<n, and a set of ciphertexts {Ct;}i<,, this algorithm outputs a value z

or L.
We remark that in the local setup mode, it will be helpful to separate the setup algorithm

into a global setup, denoted by Gsetup along with a local setup, denoted by Lsetup,
where the former is used only to generate common parameters of the system, such as

group descriptions and such.

Correctness. We say that an MPFE scheme is correct if, V(ny, ny) € N2, ciphertext

inputs x; € X fori € [n,], key inputs y; € Y for j € [n,], message and function

284

aggregation circuits Agg, and Aggy, it holds that:
(pk, {ek;}, {msk;}) <
Setup(1*, ny, ny, Agg,.. Agg,)
ct; < Enc(pk, ek;,i,x;) Vi € [ny]
“sk; « KeyGen(pk, msk;, j,y;) Vj € [ny]
z « Dec (pk, {Skj}jgny, {Cti}iSnx)
¢ = U (Agg, ({xi). Agg, ({1,)

Recall that U is the universal circuit with appropriate input and output size.

Indistinguishability based security. Next, we define security of MPFE. The security
definition is modelled in a similar fashion to MIFE security [GGG™ 14, sec. 2.2] while

taking into account corruption queries.

For any choice of parameters A, n,, n,, aggregation functions Agg,, Aggy, and master
keys K = (pk, {eK;}ie[n,], {MsK;}je[n,]) < Setup(l’l,nx,ny,Aggx,Aggy), we define

the following list of oracles:

QCorX(:), upon a call to this oracle for any i € [n] or j € [ny], the adversary gets the
corresponding encryption key ek; or master secret key msk ;. In the case of a local setup,
the adversary could instead also supply the oracle with adversarially generated keys for
the corresponding user; whereas in case of an interactive setup, the adversary could
simulate the behavior of the queried user index in the setup protocol. (Let Sy C [ny]
and S, C [n,] denote the set of user indices for which the corresponding encryption and

master keys have been corrupted.)

QENcKA(.,), upon a call to this oracle for an honest user index i € [n,], message

inputs (xf’o,xf’l) (where xf’b = (xi’:ub, xi’;’riv) for b € {0, 1}), the challenger first checks
whether the user i was already corrupted or not. That is, if i € S,, then it sends nothing,

B

otherwise it samples a ciphertext for input xf’ using key ek; and sends it to the adversary.

285

QKeyX4(-,), upon a call to this oracle for an honest user index j € [ny], function inputs
(yjf’o, yf.’l) (where yf.’b = (J’§:sub,y pr,v) for b € {0, 1}), the challenger first checks
whether the user j was already corrupted or not. That is, if j € S, then it sends nothing,

otherwise it samples a decryption key for function input yf.’ﬁ using key msk;; and sends

it to the adversary. (Here S is the challenge bit chosen at the start of the experiment.)

We let Q, and Q, be the number of encryption and key generation queries (respectively)
that had non-empty responses. Let Q, = {(i, (x°, X[’l))}ge[Qx] be the set of ciphertext

queries and Q, = {(/, (yf.’o, y;))}ke 1 be the set of key queries.

We say that an adversary (A is admissible if:

1. For each of the encryption and key challenges, the public components of the two
challenges are equal, namely xf;o = xf ! p forall £ € [Oy], and y pub for all

ke [Q,l.

ypub

2. For each of the encryption and key challenges, the private components of the

two challenges are also equal, namely xg r?v = xg nlv for all ¢ € [Q,] whenever

(i, (x€0 51)) € Q,and i € S,, and ypI’IV - yP"'V

(j, (50, yEh)) € Q, and j € S,. That is, the private components must be the
same as well if the user index i or j, that the query was made for, was corrupted
during the execution.'?

for all k € [Qy] whenever

3. There do not exist two sequences (x°,¥°) and (%!, ") such that:
U (Agg, ({0}, Agg, (1Y) # U (Agg, ({x]}). Aga, ({¥}})

and i) for every i € [n,], either xf’ was queried or ek; was corrupted, and ii) for
every j € [n] either yb was queried or msk; was corrupted, and iii) at least one

of inputs = x y were queried and indices i, j were not corrupted. (Note that if
i€[ne]orje [ny] were queried to the QCor oracle, the adversary can generate
partial keys or ciphertexts for any value of its choice.)

An MPFE scheme (Setup, KeyGen, Enc, Dec) is said to be IND secure if for any
admissible PPT adversary A, all length parameters n,, n, € N, and aggregation functions

Agg,, Agg,, there exists a negligible function negl(-) such that for all 1 € N, the following

3This condition is an option. When we would like to claim that ek; /msk; does not help to decode ct; /sk;,
item 2 should be removed.

286

holds
K « Setup(1*, ny, ny, Agg,. Agg,).

K= (pk, {ek;}i, {msk;};),

In
N —

Pr|b' =8: +negl.

B —{0,1},

B — ﬂQCorK(-),QKeyK’B(~),QEncK’B(~)(l/l, pk)

Remark 11 (Weaker notions of security). We say the scheme is selective IND secure if
the adversary outputs the challenge message and function pairs at the very beginning
of the game, before it makes any queries or receives the pk. One may also consider
the semi-honest setting, where the QCor oracle is not provided, or the case of static
corruptions where the adversary provides all its corruptions once and for all at the start

of the game.

5.B.1 Dynamic Multi-Party Functional Encryption

In this section, we define the dynamic notion of multi-party functional encryption
(MPFE). We consider the fully dynamic setting where the number of key/ciphertext
inputs is unspecified during setup time, and the aggregation functions are also specified
only during key generation and encryption times. In the dynamic setting, an interactive
or centalized setup is not meaningful since the number of parties is itself not known
during setup time, hence we restrict ourselves to the local setup mode for simplicity.
Definition 5.21 (Dynamic Multi-Party Functional Encryption). Let X = Xpuo X Xpriv
be the space of ciphertext inputs and Y = Youp X Ypriv be the space of key inputs.
Also, let PK be the space to which each local public key belongs. A dynamic multi-
party functional encryption scheme (MPFE) with local setup is defined as a tuple of 5

algorithms/protocols (Gsetup, Lsetup, KeyGen, Enc, Dec) with the following syntax:

Gsetup(1?) On input the security parameter, the global setup algorithm samples a

globally shared set of public parameters pp.

Lsetup(pp) Given input the public parameters, the local setup algorithm outputs a tuple

287

consisting of local public key pk, an encryption key ek, and a master secret key
msk. (Here the local public key is just regarded as a public identifier for the user,
and not given as explicit input to other algorithms since it could always be added

to the encryption and/or master secret key.)

Enc (ek, i,x = (Xpubs Xpriv) » AQg,) Given inputan encryption key ek, user index i € [n,],
an input x = (Xpub, Xpriv), and an aggregation function Agg, : (PK x X)™ — X*

(for some n, € N), this algorithm outputs a ciphertext ct;.

KeyGen (msk,j, ¥ = (Ypubs Ypriv) ,Aggy) Given input a master secret key msk, user

index j € [n,]

Dec ((sk;);, (ct;);) Given input a sequence of secret keys (sk;); and a sequence of

ciphertexts (ct;);, this algorithm outputs a value z or L.
Correctness. We say that an MPFE scheme is correct if, V(N, ny, ny) € N3, ciphertext

inputs x; € X fori € [n,], key inputs y; € Y for j € [n,], message and function
aggregation circuits Agg, and Agg,, and indexing functions index, : [n.] — [N],
index, : [ny] — [N] it holds that:

pp «— Gsetup(14)

(pk;, eke, msky) «— Lsetup(pp) V¢l € [N]
ct; < Enc(eKindex, (i), i>Xi» AJdy) Vi € [ny]
Priz=2": =1.
sk; « KeyGen(mskKindex, (j)- /- ¥j»A99y) VJj € [ny]
2« Dec((sky)j<n, (Clicn,)

7=U (Aggx ((pkindexx(i)’xi)i) .Agg, ((pkindexy(j)’ y}_).i))

Recall that U is the universal circuit with appropriate input and output size.

Indistinguishability based security. Here we extend the security experiment for
multi-party functional encryption that we provided in Definition 5.20 to the dynamic

user setting in the local setup mode. Since we are working in the dynamic setting, we

288

need to define the following oracles

HonestGen(), upon a call to this oracle, the challenger samples a fresh tuple of local
public key, encryption key, and master key (pk, ek, msk), and stores them in a list Lgetyp.
It sends pk to the adversary. (Note that if the scheme is a public key scheme, then the

challenger sends the encryption key ek to the adversary.)

QCor(-, -), upon a call to this oracle for an honest user local public key pk and key type
type €= enc, master, the challenger first checks whether the list Lgetyp contains a key
pair associated with pk. If there is such a key pair (pk, ek, msk), then it sends either the

ek or msk depending on the type queried. Otherwise, it sends nothing.'*

QEnNcA(., -, -, -), upon a call to this oracle for an honest user local public key pk, inputs
()cf’O 1y (where x“’ (xjf:zub,xj pnv) for b € {0, 1}), index j, aggregation function
Agg’ y,;» the challenger first checks whether the list Lsetup contains a key pair associated
with pk. If there is such a key pair (pk, ek, msk), then it samples a ciphertext for input
xf.’ﬁ using key ek and sends it to the adversary. Otherwise, it sends nothing. (Here S is

the challenge bit chosen at the start of the experiment.)

QKey”(-, -, -, -), upon a call to this oracle for an honest user local public key pk, function

inputs (yJ ,yj 1Y (where yk.’b = (yfzé’ub, Y pnv) for b € {0, 1}), index j, aggregation

function Agg , the challenger first checks whether the list Lgetyp contains a key pair
associated with pk. If there is such a key pair (pk, ek, msk), then it samples a decryption

k.p

key for function input Y; using key msk and sends it to the adversary. Otherwise, it

sends nothing. (Here S is the challenge bit chosen at the start of the experiment.)

We let Q, and Q, be the number of encryption and key generation queries (respectively)

that had non-empty responses. Let @, = {(pk?, (xj’o,xj’l), Js Aggf;’ 1)}eelo,) be the set

14As we point out in the static setting, in case ek; is completely contained in some msk; (or vice versa),
then making a master secret corruption query for i will also imply that encryption key for i has been
corrupted too (and vice versa).

289

of ciphertext challenge queries and Q, = {(pkF, (yf’ RN, g, Aggy) }Ykelo,] be the set

of key challenge queries.

We say that an adversary (A is admissible if:

1. For each of the encryption and key challenges the public components of the two
challenges are equal, namely x gub x; p u forall £ € [Qy], and yj pub yi‘.”éub
forall k € [Q,].

2. For each of the encryption and key challenges the private components of the two
challenges are also equal, namely xb pnv p”v forall ¢ € [Qy], and y pnv

for all k € [Q,] if the encryption key ek’ or the master secret key mskk , that the
query was made for, was corrupted during the execution (respectively).

= y pI’IV

3. There do not exist two sequences ((azx,T)O), (a;y,_y)o)) # ((E(x,YH), (E(y,7l))
and aggregation functions Agg,, Agg, such that:

U (Aggx ((pkx,i’xio)i) -Agg, ((pk ,,y,)]))
U (Ag, (k.- x))i) . Ag, ((pk, ;. ¥);))

and i) xl].’ was queried for aggregation function Agg,, index 7 and public key pk
and ii) yﬁ? was queried for aggregation function Agg,, index j and public key pk

yiJ?
and iii) at least one of inputs = y were queried and public key pk, ;, pk, ; was

not corrupted. Note that if some xl or y} was not queried by the adversary, then it
can generate partial keys or ciphertexts for any value of its choice by performing a
fresh key generation since this is a fully dynamic system, however that samples a
fresh public as well.

An MPFE scheme (Gsetup, Lsetup, KeyGen, Enc, Dec) is said to be IND secure if for
any admissible PPT adversary A, there exists a negligible function negl(-) such that for

all 4 € N, the following holds
¢ | 7HonestGen(), QCor(), oKeyﬁ(),oEncﬁ()(IA) —B:B«—{0,1}] < l+negl
) —_ 2 .

Remark 12 (Potential variations). The above multi-party function encryption system that
we define allows the users to dynamically join the system in the permissionless model,

where each incoming user only needs to know the public parameters and not interact with

290

any authority. A slightly weaker setting could be a permissioned model in which users
can still dynamically join the system but they need to contact the global authority (which
sampled the public parameters) either for some identification tokens or its encryption and
master secret key pair in order to prevent totally unrestricted computation which happens

in the permissionless model.

Also, we want to point out that in our current framework we let the users select the
aggregation functions during individual functional key and ciphertext generation to
allow for more flexibility. This could be relaxed even further by letting the aggregation
functions be either be described in a uniform computation model, or using an ensemble
of non-uniform functions. Also, one could instead restrict the flexibility in aggregation
by asking each user to choose their aggregation functions at setup time. Such flexibilities

will be important in capturing the notion of DDFE described in Definition 5.17.

5.B.2 Capturing our primitives in the MPFE framework
They also proposed a dynamic variant of MPFE, which is presented in Section 5.B.1.
In this work, we use following variants of FE subsumed by MPFE or dynamic MPFE.

Formal definitions of these are found in Section 5.4.3 or respective sections.

Attribute-Based Encryption. Attribute-based encryption (ABE) for predicate P :
X xY — {0, 1} is captured by MPFE as follows: (ny,n,) = (1,1), x = (xpub, Xpriv) =

(", M), y = (Ypubs Ypriv) = (¥, L). Agg,(x) = x, and Agg,(y) outputs f such that
U(x,) =Mif P(x’,y") =1 and U(x, f) = L otherwise.

Secret-Key Functional Encryption. Secret-key functional encryption (SK-FE) for
function class ¥ is captured by MPFE as follows: (ny,ny) = (1,1), x = (xpub, Xpriv) =

(.X1,X2), y = (ypub’)’priv) = (fla f2) = f €F. Aggx(x) = x, and Aggy(y) outputs f such
that U (x,) = f(x).

Multi-Input Functional Encryption. Multi-input functional encryption (MIFE) for

291

function class ¥ is captured by MPFE as follows: (ny,ny) = (n, 1), x; = (xX; pub, Xi priv) =
(xi,1,Xi2), ¥y = (Ypub> Ypriv) = (f1,) = f € F. AgQ,(x1,...,x,) = (x1,...,%,), and
Agg, () outputs f such that U((x1,...,x,),) = f(x1,..., %)

Multi-Client Functional Encryption. Multi-client functional encryption (MCFE) for
function class ¥ is captured by MPFE as follows: (ny,ny) = (n, 1), x; = (xX; pub, Xi priv) =
((xi1, L), xi2)s y = (Ypubs Ypriv) = (f1, f2) = f € F. AQQ, (X1, -+, x0) = (X1, -+, Xn),
and Agg, (y) outputs f such that U ((x1, ..., xn), f) = f((x1,1,X12), - -+, (Xn,1,%p,2)) if

andonlyif Ly =---=L,.

Dynamic Decentralized Functional Encryption. Dynamic decentralized functional
encryption (DDFE) for function F is captured by dynamic MPFE (Section 5.B.1) as
follows: x; = (Xipubs Xipriv) = (mi,1,mi2) = mi, yi = (Yipubs Yipriv) = (Ki1, ki2) = ki.
Agg, is an identity function, and Agg,({pk; ki}ticzy,) outputs f such that
U Pk, mitiew,, f) = FUPK;, miticu,,» {PK;, ki}ticu,). Note that we assume that
aggregate functions here can be described in non-uniform computation model such as

Turing machines as in Remark 12.

Attribute-Based FE for Attribute-Weighted Sums with Inner Product We can capture
Attribute-Based FE for AWS with Inner Product in the context of MPFE as follows. Let
G=(p,G1,G2,Gr,g1, &, ¢) bebilinear groups. The setup algorithm is run in the central
mode, and n, = n, = 1. A message is defined as x = (xpub, Xpriv) = ((¥, {X;}je[n])>
({z;}jerny» [P]1)) where y, x;,z;, p are all vectors in Z,, while a function is defined as
Y = (Ypubs Ypriv) = ((g, h), [q]2) where g, h are ABPs, and q is a vector in Z,,. Agg, is an
identity function, and Agg,, outputs a function fg 5 [q], that outputs [;c[n1(h(X:), Z;) +

(P,]r if and only if g(y) = 0 on input x = ((y, {X;}je[n1). ({Z;} je[n1> [P]1))-

Attribute-Based MIFE for Attribute-Weighted Sums We can capture Attribute-Based
MIFE for AWS in the context of MPFE as follows. Let G = (p,G1,G2,Gr, g1, 82,¢)

292

be bilinear groups. The setup algorithm is run in the central mode, and n, = n,n, = 1
for some n € N. A message is defined as x = (Xpub, Xpriv) = ((¥, {X;} je[n1)s {Z; }je[n])
where y, x;,z; are all vectors in Z, while a function is defined as y = (ypub, Ypriv) =
({8i> hi}ie[n), L) Where g;, h; are ABPs. Agg, is an identity function, and Agg,, outputs a
function fig, n};c(, that outputs [¥ep,) 2 e, (hi(Xi), zi ;)]r if and only if g;(y;) =0

for all i € [n] oninput {x;}ic[n] = {(¥i> {Xi,j}je[ni1)s {Zij }je[ni] bieln)-

Dynamic Decentralized Functional Encryption for AWS We can capture DDFE for
AWS in the context of dynamic MPFE as follows. Let G = (p, G1,G2,Gr, g1, 82, ¢) be
bilinear groups. The setup algorithm is run in the local mode, since it works in a dynamic
manner. A message is defined as x = (Xpup, Xpriv) = (({X;}jen)> Unm> Lm), {2} je[ny)
where X;,z; are vectors in Z,, Uy, is a set of IDs, and Ly, is a label while a function
is defined as y = (ypub, Ypriv) = (({ fi}iewsr» Uk), L) where f is an ABP. Agg, checks
if the public inputs (U, Ly) match for all parties and that all the ciphertexts are
provided for the set Uy . If so, it outputs ({X; ;. Z ;}icwy,.je(n:]» Um)- AQY, checks
({fi}Yieu,» Ux) match for all parties and that all the ciphertexts are provided for the set
Uk . If so, it outputs a function f) that outputs [2;eqs 2 jern,(fi(Xij), 2 ;)] if and

only if Uy = Uk on input (ﬂM, {X,-,j, Zi,j}ie(LIM,je[Ni])-

293

CHAPTER 6

ROUND-OPTIMAL LATTICE-BASED THRESHOLD
SIGNATURES

6.1 INTRODUCTION

In this chapter we describe our constructions of round-optimal threshold signatures from
lattice based assumptions. Threshold signatures [Des94] is a generalization of digital
signatures where the signature issuing capacity is distributed among several users, so
that a signature can be generated only if a sufficient number of users collaborate to sign
a message. In more detail, each of N parties holds a partial signing key, and any set
of parties at least as large as a given threshold + < N can participate in a protocol to
generate a signature. Security requires that a valid signature cannot be generated if fewer

than ¢ parties cooperate.

While threshold signatures have been studied for a long time [Lin17b; DKLS18; CCL*19;
GGN16; GG18; LN18; DKLS19; DOK*20; CCL*20; CGG*20; GKSS20; DIN*20;
GG20; BKP13], they have received renewed attention in recent years due to numerous
applications in modern topics such as cryptocurrencies and blockchains. Most prior
work has focused on creating distributed versions of classical digital signature schemes,
ECDSA or Schnorr signatures [LN18; GG18; DKLS19; CCL*19; CCL*20] which are
not quantum secure. From conjectured post-quantum assumptions such as those related

to Euclidean lattices, much less is known, especially with optimal round complexity.

Prior Work. The thresholdisation of lattice-based signatures from the NIST post-
quantum cryptography project has been investigated in [CS19] but the resulting candidates
incur several rounds of communication. A threshold signature restricted to t = N was

proposed in [DOTT21] but it also involves possibly many rounds, because of aborts.

To the best of our knowledge, the only lattice-based, round-optimal threshold signature
construction is by Boneh et al [BGG*18] (henceforth BGGJKRS), relying on the
Learning With Errors problem (LWE). However, while this construction provided the
first feasibility result for a long-standing open problem, it suffers from the following

drawbacks:

1. Noise Flooding and Impact on Parameters. It makes use of the so-called “noise
flooding” technique [Gen09; BD10; GKPV10], which aims to hide a noise term e €
Z that possibly contains sensitive information, by adding to it a fresh noise term e’
whose distribution has a standard deviation that is much larger than an a priori
upper bound on |e|. To get security against attackers with success probability 270
where A is the security parameter, the standard deviation of e’ must be a factor 22
larger than the upper bound on |e].

Unfortunately, this precludes the use of an efficient LWE parametrisation.
Concretely, one has to set the LWE noise rate @ as 2720 so that |e’| remains
small compared to the working modulus g. As the best known algorithms for
attacking LWE with (typical) parameters n, ¢, @ have run-times that grow as
exp(a(n log g/log” @)) (see, e.g., [HKM18]) this leads to setting nlog g = Q(23).
As the signature shares have bit-sizes that grow as Q(nlogg), this leads to
Q(13)-bit signature sizes — prohibitively expensive in practice.

2. Instantiating Underlying Signature. It requires a standard signature scheme to be
evaluated homomorphically. BGGJKRS do not suggest a candidate and existing
lattice based signatures are not suitable — the GPV signature scheme [GPV08] and
its practical versions [DP16; PP19; FHK™] seem ill-suited, as the signing algorithm
is very sequential, and the required 1-dimensional Gaussian samples are obtained
via algorithms based on rejection sampling (see, e.g., [HPRR20; ZSS20]) that are
costly to transform into circuits. The other candidate is Lyubashevsky’s signature
scheme [Lyu09; Lyul2]. It has the advantage of being far less sequential, but it
also relies on rejection sampling: when some rejection test does not pass, then one
needs to restart the signing process.

3. Selective Security. It only achieves a very restricted notion of selective security,
where all the corrupted parties must be announced before any partial signing query
is made. To obtain security in the more realistic adaptive setting, one option is
to invoke complexity leveraging, which consists in guessing at the outset which
parties will be corrupted. This is not only dissatisfying as a solution but also leads
to a further degradation of the parameters.

296

6.2 OUR RESULTS

We improve the construction from [BGG*18] in different ways. We list them below:

* Efficiency. We decrease the noise flooding ratio from 2(¥ down to O, where Q is
the bound on the number of generated signatures. This gives a one-round threshold
signature of bit-length growing as O (4 log? Q), which is O () for any polynomially
bounded Q,! in contrast with O(A3) for the construction from [BGG*18]. These
bit-lengths are obtained when relying on the ring variants of SIS and LWE [LMO6;
PRO6; SSTX09; LPR10]. Additionally, we show that the amount of noise flooding
used in this construction is optimal, by exhibiting an attack when a smaller noise
flooding ratio is used.

* Instantiation. To instantiate the signature underlying BGGJKRS, we provide a
homomorphism friendly variant of Lyubashevsky’s signature [EUROCRYPT ’12]
which achieves low circuit depth. We remove the rejection sampling at the expense
of adding moderate noise of size v/Q, matching the above. Again, we show that this
amount of flooding is optimal by demonstrating an attack when smaller flooding is
used.

* Selective versus Adaptive. As discussed above, the construction BGGJKRS satisfies
only selective security. We improve this in two ways: in the Random Oracle
Model (ROM), in which a hash function is being modeled as a uniformly sampled
function with the same domain and range, we obtain a notion of partial adaptivity
where signing queries can be made before the corrupted parties are announced.
However, the set of corrupted parties must be announced all at once. In the
standard model, we obtain a construction with full adaptivity, where parties can be
corrupted at any stage in the protocol. However, this construction is in a weaker
pre-processing model where signers must be provided correlated randomness
of length proportional to the number of signing queries. The informed reader
may notice similarities with the “MPC with Preprocessing” model, please see
[FKOS15] and references therein 2.

"For many applications, the bound Q is quite limited and can be considered to be a small polynomial
in A. For example, for applications pertaining to cryptocurrencies, the bound Q may capture the total
number of transactions made with a user’s wallet during the lifetime of a signing key. According
to statistics available at the URLs below, one transaction per day and per user is a generous upper
bound. This suggests that number of signing queries in the lifecycle of the key will be quite
limited. https://www.blockchain.com/charts/n-transactions, https://www.statista.
com/statistics/647374/worldwide-blockchain-wallet-users/

ZNote that we can trade the offline sharing of correlated randomness with an additional communication
round in the signing protocol — however, this would destroy round optimality.

297

https://www.blockchain.com/charts/n-transactions
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/

6.3 TECHNICAL OVERVIEW

Recap of BGGJKRS Threshold Signatures. The round-optimal threshold signatures
provided by [BGG™18] are designed using a “universal thresholdizer” which enables
the thresholdizing of a number of primitives. This thresholdizer is itself instantiated
using a threshold version of “special” fully homomorphic encryption (FHE), which in
turn can be constructed using the LWE assumption. In threshold fully homomorphic
encryption (TFHE), the setup algorithm takes as input a threshold ¢ and produces a set of
decryption key shares ski, .. ., sky for the parties such that every party can perform a
partial decryption using its own decryption key and any ¢ out of N partial decryptions

can be combined into a complete decryption of the ciphertext in a single round.

In more detail, the TFHE construction of BGGJKRS leverages the fact that the decryption
in LWE based FHE schemes [BV11; BGV12; GSW13] requires to compute an inner
product of the ciphertext ct with the secret key sk, followed by a rounding operation. Since
inner product is a linear operation, a natural approach to thresholdize FHE decryption is
by applying a Shamir 7-out-of-N secret sharing to sk. This will yield N keys ski, .. ., sky,
which can be distributed to the N users. Now, to decrypt a ciphertext ct, each user can
compute the inner product with its individual secret key sk; as its partial decryption m;.
To combine any ¢ partial decryptions into the final decryption, the combiner chooses

Lagrange coeflicients y1, . .., y; so that) ; y;sk; = sk. Then, she computes

D vimi =Y yilct ski) = (ct,) yiski) = (ct, sk),

followed by rounding, as desired. However, this appealingly simple construction turns
out to be insecure. This is because each time a party computes a partial decryption, it
leaks information about its secret share sk; via the inner product with (the public) value

ct.

To get around this insecurity, a natural approach is to add noise to the partial decryption

which quickly transforms a simple computation to intractable. However, care must

298

be taken to ensure that this added noise does not affect correctness, since it is later
multiplied by the Lagrange coefficients during reconstruction: the previous) ; y;m; will
now become); yi(m; + e;) for some noise terms e;. BGGJKRS propose two solutions
— one to use a secret sharing scheme whose reconstruction coeflicients are binary, and
another, to “clear the denominators” by observing that since the Lagrange coeflicients
are rational numbers, it is possible to scale them to be integers. The exact details are not
relevant for the current discussion and hence omitted (please refer to [BGG*18] for more

details).

To use this technique to construct threshold signatures, the authors propose the following.
Choose a signature scheme Sig, compute an FHE encryption ctgk of its signing key
Sig.sk and let each signer homomorphically evaluate the signing algorithm for a message
w on this ciphertext. In more detail, given ctsx = FHE.Enc(Sig.sk), each party first
computes FHE.Eval(C, ctsk) where C is the circuit Sig.Sign(u, -). By correctness of
FHE, this yields an FHE encryption of the signature o = Sig.Sign(Sig.sk, u). To this

ciphertext, the thresholdization trick described above may now be applied.

Modeling the Adversary and Effect on Parameters. In their analysis, BGGJKRS
consider the complexity-theory security requirement of “no polynomial time attacks”,
corresponding to assuming attacks with advantage € = 171 and run-time 1°().
However, for practically motivated primitives like threshold signatures, it is more
meaningful to consider attackers with advantage 27°Y) and run-time 2°Y. We choose
our adversarial model so that all attacks should be exponential while all honest algorithms
run in polynomial time. Compared to the complexity-theory definition of security, this
provides a much more significant (and practically meaningful) hardness gap between

honest and malicious parties.

For subexponentially strong attackers as described above, the noise flooding used in

BGGJKRS is exponential, severely damaging the practicality of the scheme, despite the

299

exciting developments in practical FHE [CGGI20; ZDH20; KS21; CKKS17; CHK*18;
DM15]. In more detail, the proof requires to make the statistical distance between
some noise terms e’ and e + ¢’ small, so that knowing e + ¢’ is essentially the same as
knowing e’, which does not carry sensitive information. To get security against attackers
with advantage 27 (D the statistical distance must be set to 2-%@ and, as a result, the

standard deviation of ¢’ must be a factor 221 larger than the upper bound on |e|.

Tightening Analysis via Rényi divergence. In this work, we examine whether this
flooding noise can be improved so that the impact of flooding e by e’ on efficiency is
minimised. To this end, we explore using Rényi divergence rather than statistical distance
to bound the distance between distributions in the security proof. Rényi divergence
has been used in prior work as a replacement to the statistical distance in lattice based
cryptography [LSS14; LPSS14; BGM*16; Prel17; HLS18; ADPS16; BCD*16; AD17,
BLRL*18]. To understand why this may be beneficial, let us first see how statistical
distance is used in typical security proofs of cryptography. Let £ and Q be two
non-vanishing probability distributions over a common measurable support X. Typical
security proofs consider a hard problem relying on some ideal distribution @, and then
replace this ideal distribution by a real world distribution . When the statistical distance
A(Q, P) between the two distributions is small, the problem remains hard, implying
security. This is made rigorous by the so-called “probability preservation” property
which says that for any measurable event £ C X, we have Q(E) > P(E) — A(Q, P).

Let us now define Rényi Divergence (RD). For a € (1, o), the RD of order a is defined

1

by R,(P||IQ) = (erx %)E It enjoys an analogous probability preservation
property, though multiplicative as against additive. For £ C X, we have Q(E) >
P(E)a=1/R,(P||Q). Thus, if an event E occurs with significant probability under P,
and if the SD or the RD is small, then the event E also occurs with significant probability
under Q. As discussed in [BLRL*18], probability preservation in SD is meaningful

when the distance is smaller than any P (E) that the security proof is required to deal with

300

—if P(E) > € for some €, then we require that A(Q, P) < €. The analogous requirement
for RD is R, (P]|Q) < poly(1/e). Bai et al. [BLRL*18] observed that RD is often less
demanding than SD in proofs. This is because RD between distributions may be small
enough to suffice for RD probability preservation while SD may be too large for the SD
probability preservation to be applicable. Thus, RD can often serve as a better tool for
security analysis, especially in applications with search-type security definitions, like

signatures.

In this work, we study the applicability of RD analysis in the construction of threshold
signatures. Building upon the above approach, we show that a limited flooding growing
as VO suffices in BGGJKRS, where Q is the number of signing queries made by the
attacker. We note that this is a substantial improvement in practice, since the number
of sign queries is typically very different, and much smaller, than the run time of the
adversary. Note that signature queries require active participation by an honest user and
there is no reason for an honest user to keep replying after an overly high number of
queries that clearly shows adversarial behavior. As a concrete example, in the NIST post
quantum project [NIS17], adversarial runtimes can go up to 2> in some security levels,

but the number of signature queries is always bounded by 264

(which is itself an overly
conservative bound in many scenarios). Thus, dependence on the number of queries is
significantly better than exponential dependence on the security parameter, and this leads

to a significant improvement in the signature bit size.

Optimality of our Moderate Flooding. We also show that this magnitude of flooding is
necessary for this construction, by exhibiting a statistical attack when smaller noise is
used. At a high level, our attack proceeds as follows. First we show that using legitimate
information available to her, the adversary can compute errys + e s Where erry; is the
error that results from homomorphically evaluating the signing algorithm for message M
and ey is the flooding noise that is used in the partial signature of the first party. As a

warmup, consider the setting where the flooding noise is randomized. Now, since the

301

signature scheme is deterministic, the term erry; depends only on M and remains fixed
across multiple queries for the same message. On the other hand, the term e 3 keeps
changing. Using Hoeffding’s bound, it is possible to estimate the average of e js across

multiple queries and use this to recover erry;, leading to an attack.

This attack may be avoided by making the flooding noise a deterministic function
of the message, e.g., by using a pseudo-random function evaluated on the message
to generate the noise. We show that this modification is not sufficient to make the
threshold signature construction secure. For this purpose, we design a signature scheme
which includes “useless” information in the signature: this information does not affect
correctness nor security of the signature itself, but allows us to recreate the attack
described above on the resulting threshold signature. We start with a secure signature
scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify) whose signing key is a uniform bit-
string among those with the same number of 0’s and 1’s. Now, let us consider a special
signature scheme Sig’ = (Sig’.KeyGen, Sig’.Sign, Sig’.Verify) derived from Sig by
modifying the signing algorithm as follows: for i € [|Sig.sk|], if Sig.sk; = 0, then
append a 0 to the signature. Since our signing key has exactly half as many 0’s as
1’s, this leads to a string of |Sig.sk|/2 zeroes being appended to every signature: this
does not leak any information and does not affect correctness (it is simply ignored
during verification). Now, consider using Sig’ to instantiate our threshold signature
scheme. Then, for any message M, the FHE ciphertext CT,,, now additionally includes
homomorphically evaluated encryptions of {Sig.sk; } <[sig.sk||:Sig.sk;=0- Note that these
extra encryptions are designed to be a deterministic function of the secret key so that
across multiple messages, the corresponding error term (obtained via homomorphic
evaluation) will not change. On the other hand, the message-dependent error terms can
be assumed to change across messages. Due to this, the error term recovered by the
adversary will be a sum of a fixed term (dependent only on the secret key) plus a fresh
term per signature, which allows it to recreate the first attack. Please see Section 6.5 for

more details.

302

Homomorphism-Friendly Signature. Next, we provide a variant of Lyubashevsky’s
signature scheme [Lyul2] which enjoys low circuit depth and is homomorphism friendly.
As discussed above, Lyubashevsky’s signature contains a rejection sampling step, whose
purpose is to make the distribution of the resultant signature canonical, but this step is
cumbersome to implement homomorphically. We show that by using RD analysis in place
of statistical distance, analogously to the case of threshold signatures discussed above,
the rejection sampling step can be replaced by noise flooding of moderate magnitude vO.

Additionally, we show that this flooding is optimal — please see Section 6.6 for details.

Towards Adaptive Security. Another limitation of the construction of BGGJKRS is that
security is proved in the weak “selective” model where the adversary must announce all
corrupted users before receiving the public parameters and verification key. In contrast,
the more reasonable adaptive model allows the adversary to corrupt users based on the
public parameters, the verification key and previous user corruptions it may have made.
We briefly describe the difficulty in achieving adaptive security. At a high level, in the
selective game, the challenger proceeds by simulating the partial keys corresponding
to the honest parties in a “special way”. The challenge in the adaptive setting is that
without knowing who are the honest/corrupted parties, the challenger does not know

which partial keys to program.

For more details, let us consider the case of an N-out-of-N threshold signature. In the
simulation, the challenger knows which party is honest at the start of the game, e.g.,
player N. Now, the challenger can sample FHE secret keys ski, ..., sky_; randomly,
implicitly setting the last share as sk — >;c;y_1 sk;. To invoke the unforgeability of the
underlying signature scheme Sig, the challenger must “forget” the signing key Sig.sk at
some point in the proof, and rely on the Sig challenger to return signatures, which it then
encrypts using the (public key) FHE scheme. By correctness of FHE, this is the same as
computing the signing circuit for a given message on the ciphertext containing the secret

key, which is what happens in the real world. However, the FHE encryption of signing

303

key Sig.sk is provided as part of the public parameters in the real world, which in turn
means that the FHE secret key must be “forgotten” so that the FHE ciphertext of Sig.sk
is indistinguishable from a dummy value. Yet the challenger must return legitimate
partial signatures of queried messages m; in the security game, which in turn are (noisy)
partial decryptions of the FHE ciphertexts o of signatures ;. Knowing all the corrupt
secret keys skj, . .., SKy—1 from the outset enables the challenger to walk this tightrope
successfully — it obtains o; from the Sig challenger, computes an FHE encryption o of
this, computes partial decryptions using sky, ..., sky_;, floods these with appropriate

noise and returns these to the adversary.

In the adaptive game, the honest player is not known at the beginning of the game so the
challenger is unable to sample FHE secret key shares as described above. When requested
for a partial signatures for message m, it can obtain the corresponding signature o; and
can FHE encrypt it, but cannot decrypt it using secret key shares which are unavailable.
To preserve correctness and indistinguishability from the real world, it is forced to return
(noisy) random secret shares {07 ; }ie[n],jepoly Of 07 as partial signatures, for unbounded
J. Later if user 1 is corrupted (say), the adversary receives the secret key share sk;.
Now, to preserve indistinguishability, the challenger must explain the partial signatures
{o1,j} jepoly corresponding to user 1 as (o, ski) ~ o7 j, which seems impossible for

unbounded ;.

We overcome this hurdle in the ROM by having the challenger simulate all partial keys
as though corresponding to a corrupt user and when the list of corrupted parties becomes
available, “program” the ROM to “explain” the returned keys in a consistent way. This
yields an intermediate notion of “partial adaptivity”, in which the attacker can make
signing queries before corruption, but must announce its corrupted users all at once. In
more detail, we modify the signing key to additionally contain a random secret share
of 0, i.e., each party is provided a vector v; of length N, such that };c[y; v; = 0. In the

scheme, to compute a partial signature for a message m, the partial signing algorithm

304

first computes r; ; = H(J, K)T v; where H(j, K) is a random vector of length N, and K
is a secret value required for a technical reason that we will not discuss here. It then
returns (07, Sk;) + noise; ; + r; ;. By linearity, it holds that Y;c(yy H(j, K)T v; = 0, so
correctness is not affected. But the unbounded programmability of the ROM helps
us overcome the aforementioned impasse in the proof. Now, the challenger answers
partial signature queries by returning (noisy) random secret shares {07 ; }ic[n], jepoly Of
oj. When later, user 1 is corrupted, it can correctly explain the returned signatures as
follows: it samples sk, computes d ; = (0, Sk;) + noise and sets r; ; = o7 ; — dy ;.
Now we may program H(j, K) so that r; ; = H(J, K)T v, for all j — it can be checked
that there are enough degrees of freedom to satisfy these equations. However, since
all secrets of a user are revealed when it is corrupted, the value H(j, K) is fixed when
even a single user is corrupted. This is why we require that all corruptions be made

simultaneously and only achieve the restricted notion of “partial” adaptivity.

We also provide a construction in the standard model which achieves full adaptivity where
users can be corrupted at arbitrary points in the security game. But this construction
is only secure in a weaker pre-processing model where the signers must be provided
correlated randomness of length proportional to the number of signing queries, in
an offline pre-processing phase. We emphasize that the correlated randomness is
independent of the messages to be signed later. This model is reminiscent of the “MPC
with Preprocessing” model (please see [FKOS15] and references therein). We refer the

reader to Section 6.7 and 6.8 for more details.

Oraganisation of the chapter. We organize the rest of the chapter as follows. In 6.4,
we give a formal definition of the threshold signatures and define other preliminaries
and notations used in this chapter. In section 6.5, we show how to reduce noise flooding
in BGGJKRS construction. In section 6.6, we describe our rejection free version of

Lyubashevsky’s signature scheme. We give our constructions of partially adaptive and

305

fully adaptive schemes in sections 6.7 and 6.8, respectively. In section 6.9, we give the

construction for #-out-of-N access structure.

6.4 PRELIMINARIES
We use the prliminaries defined in Chapter 2. In addition, we define the notations and

other preliminaries used in this chapter.

Notations used in this chapter. In this chapter, a vector v is by default, a column vector.
Let S be any set, then |S| represents the cardinality of S, while in case of any x € R,
|x| represents absolute value of x. For lattices, we use the definitions and lemmas from
Chapter 2. D, ;. represents discrete Gaussian distribution over lattice A, with center ¢
and standard deviation parameter s. When ¢ = 0, we omit it. Similarly, we omit A, if

AN=7Z.
6.4.1 Threshold Signatures

Definition 6.1 (Threshold Signatures). Let P = {Py,..., Py} be a set of N parties. A
threshold signature scheme for a class of efficient access structures S on P (see
Def. 6.23) is a tuple of PPT algorithms denoted by TS = (TS.KeyGen,
TS.PartSign, TS.PartSignVerify, TS.Combine, TS.Verify) defined as follows:

« TS.KeyGen(14,A) — (pp, VK, {ski}f.\il): On input the security parameter A and an
access structure A, the KeyGen algorithm outputs public parameters pp, verification
key vk and a set of key shares {sk;} .

» TS.PartSign(pp, sk;,m) — o;: On input the public parameters pp, a partial
signing key sk; and a message m € {0, 1}* to be signed, the partial signing
algorithm outputs a partial signature o;.

» TS.PartSignVerify(pp, m, o;) — accept/reject: On input the public parameters
pp, a message m € {0,1}" and a partial signature o7, the partial signature

verification algorithm outputs accept or reject.

* TS.Combine(pp, {0i}ies) — 0 On input the public parameters pp and the

306

partial signatures {o7};es for S € A, the combining algorithm outputs a full
signature oy,.

» TS.Verify(vk, m, o,) — accept/reject: On input a verification key vk, a message
m and a signature g, the verification algorithm outputs accept or reject.

A TS scheme should satisfy the following requirements.

Definition 6.2 (Compactness). A TS scheme for S satisfies compactness if there exist
polynomials poly, (), poly,(-) such that for all 2, A € S and S € A, the following holds.
For (pp, vk, {sk;}Y)« TS.KeyGen(1%, A), oyTS.PartSign(pp, sk;, m) fori € S, and
om—T1S.Combine(pp, {0;}ies), we have that |07,| < poly,(4) and |vk| < poly,(4).
Definition 6.3 (Evaluation Correctness). A signature scheme TS for S satisfies
evaluation correctness if for all 4,A € S and S € A, the following holds. For
(pp, VK, {sk;}¥) « TS.KeyGen(11,A), oy « TS.PartSign(pp, sk;, m) for i € [N]
and Tm — TS.Combine(pp, {07 }ies), we have that
Pr[TS.Verify(vk, m, o) = accept] > 1 — 17«0,

Definition 6.4 (Partial Verification Correctness). A signature scheme TS for S satisfies
partial verification correctness if for all A and A € S, the following holds. For

(PP, VK, {sk;}Y) « TS.KeyGen(1%,A),
Pr[TS.PartSignVerify (pp, m, TS.PartSign(pp, sk;,m)) = 1] =1 - e,

Definition 6.5 (Unforgeability). A TS scheme is unforgeable if for any adversary A

with run-time 2°Y, the output of the following experiment EXpt#fS ﬂ(lﬂ) is 1 with

probability 27X(;

1. On input the security parameter A, the adversary outputs an access structure A € S.

2. Challenger runs the TS.KeyGen(1%) algorithm and generates public parameters
pp, verification key vk and set of N key shares {sk,-}f.\i ,- It sends pp and vk to A.

3. Adversary A then issues polynomial number of following two types of queries in
any order

 Corruption queries: A outputs a party i € [N] which it wants to corrupt. In
response, the challenger returns the key share sk;.

307

* Signature queries: A outputs a query of the form (m, i), where m is a message
and i € [N], to get partial signature o; for m. The challenger computes o7 as
TS.PartSign(pp, sk;, m) and provides it to A.

4. At the end of the experiment, adversary A outputs a message-signature pair
(m*, o¥).

5. The experiment outputs 1 if both of the following conditions are met: (i) Let
S C [N] be the set of corrupted parties, then S is a an invalid party set, i.e. S ¢ A
(i1) m* was not queried previously as a signing query and TS.Verify(vk, m*, c*) =
accept.

We also consider following weaker notions of unforgeability.
Definition 6.6 (Partially Adaptive Unforgeability). Here, all the corruptions are done all

at once. That is, Step 3, is now changed as follows:

* A issues polynomial number of signing queries of the form (m, i) adaptively and
gets corresponding o7’s.

* A outputs a set S C [N] such that S ¢ A. The challenger returns {sk; };cs.

* A continues to issue polynomial number of more signing queries of the form
(m, 1) adaptively, and gets corresponding 0.

Rest of the steps remain the same.
Definition 6.7 (Selective Unforgeability). In this case, all the corruptions happen before

any signing query. That is, Step 3, is now further changed as follows:
* A outputs a set S C [N] such that § ¢ A. The challenger returns {sk; };cs.

* A issues polynomial number of signing queries of the form (m, i) adaptively, and
gets corresponding 0.

Rest of the steps remain the same.
Definition 6.8 (Robustness). A TS scheme for S satisfies robustness if for all A, the
following holds. For any adversary A with run-time 2°V, the following experiment

EXptrTb& #(1%) outputs 1 with probability 27?:

* On input the security parameter 14, the adversary outputs an access structure
AeS.

» The challenger samples (pp, VK, sKi, . . ., sky)«TS.KeyGen(14, A) and provides
(pp, vk, ski, . .., sky) to A.

308

* Adversary A outputs a partial signature forgery (m*, o',).

* The experiment outputs 1 if TS.PartSignVerify(pp,m*,o) = 1 and o #
TS.PartSign(pp, sk;, m™).

6.4.2 Fully Homomorphic Encryption (FHE)

A fully homomorphic encryption scheme is an encryption scheme that allows
computations on encrypted data.

Definition 6.9 (Fully Homomorphic Encryption). A fully homomorphic encryption
scheme FHE is a tuple of PPT algorithms FHE = (FHE.KeyGen, FHE.Enc,
FHE.Eval, FHE.Dec) defined as follows:

» FHE.KeyGen(14,19)—(pk, sk): On input the security parameter A and a depth
bound d, the KeyGen algorithm outputs a key pair (pk, sk).

* FHE.Enc(pk, u)—ct: On input a public key pk and a message u € {0, 1}, the
encryption algorithm outputs a ciphertext ct.

* FHE.Eval(pk, C,cty,..., Ctk)—>6’[: On input a public key pk, a circuit
C : {0, 1}¥*—{0, 1} of depth at most d, and a tuple of ciphertexts cty, . .., Cty, the
evaluation algorithm outputs an evaluated ciphertext ct.

» FHE.Dec(pk, sk, ct)—/: On input a public key pk, a secret key sk and a
ciphertext Ct, the decryption algorithm outputs a message /i € {0, 1, L}.

The definition above can be adapted to handle plaintexts over larger sets than {0, 1}. Note
that the evaluation algorithm takes as input a (deterministic) circuit rather than a possibly
randomized algorithm. An FHE should satisfy compactness, correctness and security

properties defined below.

Definition 6.10 (Compactness). We say that an FHE scheme is compact if there exists a
polynomial function f(-,-) such that for all 2, depth bound d, circuit C : {0, 1}k—>{0, 1}
of depth at most d, and w; € {0,1} for i € [k], the following holds: for
(pk, sk)«FHE.KeyGen(14, 19), ct;«—FHE.Enc(pk, ;) for i € [k],
ct—FHE.Eval(pk, C,cty, . . ., cty), the bit-length of ¢t is at most f(2, d).

Definition 6.11 (Correctness). We say that an FHE scheme is correct if for all A, depth

bound d, circuit C : {0, 1}¥—{0, 1} of depth at most d, and y; € {0, 1} fori € [k], the

309

following holds: for (pk, sk)«—FHE.KeyGen(14, 1¢), ct;«~FHE.Enc(pk, ;) fori € [k],

ct—FHE.Eval(pk, C,cty, ..., ct;), we have
Pr[FHE.Dec(pk, sk, Ct) = C(uq, ..., ux)] =1 — 27U,

Definition 6.12 (Security). We say that an FHE scheme is secure if for all 4 and depth
bound d, the following holds: for any adversary A with run-time 2°Y), the following

experiment outputs 1 with probability 27%(:

1. On input the security parameter A and a depth bound d, the challenger runs
(pk, sk)«FHE.KeyGen(14, 1¢) and ct—FHE.Enc(pk,b) for b—{0,1}. It
provides (pk, ct) to A.

2. A outputs a guess b’. The experiment outputs 1 if b = b’.
In this work, our constructions use a special FHE having some additional properties as
described in [BGG™18]. These properties are satisfied by direct adaptations of typical
FHE schemes such as [BV11; GSW13] (see, e.g., [BGG*18, Appendix B]).
Definition 6.13 (Special FHE). An FHE scheme is a special FHE scheme if it satisfies

the following properties:

1. On input (14, 1), the key generation algorithm FHE.KeyGen outputs (pk, sk),
where the public key contains a prime g and the secret key is a vector sk € Zj' for
some m = poly (4, d).

2. The decryption algorithm FHE.Dec consists of two functions (FHE.decodey,
FHE.decode)) defined as follows:

* FHE.decode(sk, ct): On input an encryption of a message u € {0, 1} and a
secret key vector sk, it outputs p = u | /2] +e € Z, for e € [-cB, ¢B] with
B = B(A,d, q) and e is an integer multiple of ¢. This algorithm must be a
linear operation over Z, in the secret key sk.

» FHE.decode;(p): On input p € Z,, it outputs 1 if p € [~ |g/4], g/4]1],
and O otherwise.
The bound B = B(4,d, g) is referred to as the associated noise bound parameter
of the construction and ¢ as the associated multiplicative constant.

310

6.4.3 Threshold Fully Homomorphic Encryption

Definition 6.14 (Threshold Fully Homomorphic Encryption). A threshold fully
homomorphic encryption for a class of efficient access structures S, defined on a set
P = {Py,P,...,Py} of parties is defined by a tuple of five algorithms
TFHE = (TFHE.KeyGen, TFHE.Enc, TFHE.Eval, TFHE.PartDec, TFHE.FinDec)

with the following specifications:

« TFHE.KeyGen(14,14,A) — (pk,ski,...,sky): On input the security
parameter A, a depth bound d and an access structure A € S, the KeyGen
algorithm outputs a public key pk and a set of secret key shares {Sk,-}l.’i 1

* TFHE.Enc(pk, u) — ct: On input a public key pk and a single bit message
u € {0, 1}, the encryption algorithm outputs a ciphertext ct.

* TFHE.Eval(pk, C,ctj, cty, ..., cty) — ct: On input a public key pk, a circuit
C : {0, 1}* — {0, 1} of depth at most d and a set of ciphertexts ct, ..., cty, the
evaluation algorithm outputs an evaluated ciphertext ct.

» TFHE.PartDec(pk, sk;, ct) — p;: On input a public key pk, a secret key share sk;
and a ciphertext ct, the partial decryption algorithm outputs a partial decryption p;
corresponding to the party P;.

* TFHE.FinDec(pk, {pi}ics) — £ : On input a public key pk and a set of partial
decryptions corresponding to parties in some set S C [N], the final decryption
algorithm outputs a message /i € {0, 1, L}.

Definition 6.15 (Correctness). A TFHE scheme for S is said to satisfy evaluation
correctness if for all A, depth bound d, access structure A € S, circuit C : {0, 1}* — {0, 1}
of depth at most d, S € A, and u; € {0, 1} fori € [k], the following condition holds. For
(pp, sk1, . . .,sky)—TFHE.KeyGen(14, 14, A), ct;«~TFHE.Enc(pk, w;) for i € [k],
CteTFHE.Eval(pk, C,cty, . . ., Cty):

Pr[TFHE.FinDec(pk, {TFHE.PartDec(pk, sk;, t) }ics) = C({ti}ieps))] = 1 — 274,

Definition 6.16 (Semantic security). A TFHE scheme is said to satisfy semantic security
if for all A and depth bound d, the following holds. For any adversary ‘A with run-time

bounded as 2°V, the experiment below outputs 1 with probability 27%:

311

4.

5.

. On input the security parameter A, and a circuit depth d, the adversary A outputs

an access structure A € S.

The challenger runs (pk, ski, . . ., sky)«TFHE.KeyGen(14, 14, A) and provides
pk to A.

A outputs a set S of participants, such that S ¢ A.
The challenger provides {sk; };cs and TFHE.Enc(pk, b), where b«—{0, 1} to ‘A.

A outputs a guess bit b’. The experiment outputs 1 if b = b’.

Definition 6.17 (Simulation security). A TFHE scheme for S is said to satisfy

simulation security if for all 4, depth bound d and access structure A, the following

holds: there exists a stateful PPT algorithm S = (S, S») such that for any adversary A

with

Expt

1.

7.

Expt

1

2

run-time bounded as 2°Y the following two experiments are indistinguishable.

Real (1/1,151) .

TFHE, A

On input the security parameter A and a circuit depth d, the adversary A outputs
an access structure A € S.

The challenger runs (pk, ski, . .., sky)«TFHE.KeyGen(14, 14, A) and provides
pk to A.

. Adversary A outputs a maximal invalid party set S* C [/N] and a set of message

bits, M1, M2, ..oy Uk € {0, 1}.

The challenger provides {sk;};cs+ and {ct; = TFHE.Enc(pk, ;) }iex] to A.

Adversary A issues a polynomial number of adaptive queries of the form (S C
{P1,...,Py},C) for circuits C : {0, 1}*¥ — {0, 1} of depth at most d.

For each query, the challenger computes ct—TFH E.Eval(pk, C,cty,...,cty) and
sends {TFHE.PartDec (pk, sk;, Ct) }ies to A.

At the end of the experiment, adversary ‘A outputs a bit b.

Ideal A qdy .
TrrEA (175 19)

. On input the security parameter A and circuit depth d, the adversary A outputs an

access structure A € S.

. The challenger runs (pk, sk, ..., sky, st) S (14, 14, A) and provides pk to A.

312

3. Adversary A outputs a maximal invalid party set S* C P and a set of message bits,
,Ul,llz, e ’//lk € {07 1}'

4. The challenger provides {sk;};cs+ and {ct; = TFHE.Enc(pk, ;) }ie[x] to A.

5. Adversary A issues a polynomial number of adaptive queries of the form (S C
[N], C) for circuits C : {0, 1}* — {0, 1} of depth at most d.

6. For each query, the challenger runs the simulator S, to compute partial decryptions
as

{Pities—Sa(C,cty, ..., ct, C(u1, .. ., r), S, st) and sends {p; }ies to A.

7. At the end of the experiment, adversary A outputs a bit b.

6.4.4 Multi-data Homomorphic Signature

A homomorphic signature scheme is a signature scheme that allows computations on
authenticated data. In a multi-data homomorphic signature scheme, the signer can sign
many different datasets of arbitrary size. Each dataset is tied to some label 7 (e.g., the
name of the dataset) and the verifier is assumed to know the label of the dataset over
which it wishes to verify computations.

Definition 6.18 (Multi-data Homomorphic Signature). A multi-data homomorphic
signature for messages over a set X is a tuple of PPT algorithms
HS = (HS.PrmsGen, HS.KeyGen, HS.Sign, HS.SignEval, HS.Process, HS.Verify)

with the following syntax.

* HS.PrmsGen(14, 1V)—prms: Gets the security parameter A and a data-size
bound N and generates public parameters prms.

+ HS.KeyGen(1%, prms)—(pk, sk): Produces a public verification key pk and a
secret signing key sk.

* HS.Sign(sk, (x1,...,xn),7)— (0%, 01, . ..,0y): Signs some data (x1,...,xy) €
X* under a label T € {0, 1}".

* HS.SignEval(prms, g, o+, (x1, 01), (x¢, 0¢))—0c*: Homomorphically computes
a signature o* for g(xi,...,xy).

» HS.Process(prms, g)—a,: Produces a “public-key” a, for the function g.

» HS.Verity(pk, ay, y, 7, (07, ")) —accept/reject: Verifies that y € X is indeed

313

the output of the function g over the data signed with label 7. We can define the
“combined verification procedure” HS.Verify*(pk, g, v, 7, 07, o) as: Compute
ag<—HS.Process(prms, g) and output HS.Verify(pk, ay, y, 7, (07, 0)).

A homomorphic signature should satisfy the correctness and security properties defined
below.

Definition 6.19 (Correctness). Correctness of Signing. Let id; : XN — X be a
canonical description of the function id;(x1, ...,xy) = x; (i.e., a circuit consisting of a
single wire taking the i’th input to the output). = We require that for any
prms«—HS.PrmsGen(14, 1Y), (pk, sk)«HS.KeyGen(14, prms), (x1,...,xy) € XV,
any 7 € {0,1}", and any (oy,07q,...,0n8)<—HS.Sign(sk, (x1,...,xy),7), the
following must satisfy:

HS.Verify* (pk, id;, x;, T, (0, 07)) = accept. In other words, the pair (o, 07) certifies x;

as the ith data item of the data with label 7.

Correctness of Evaluation. For any functions Ay, ..., hy with h; : X N_X fori € [€], any

function g : XisX, any (xq,...,x¢) € X¢, any 7 € {0, 1}* and any (o, 01, ..., 0%):

{{HS.Verity(pk, h;, x;, 7, (0, 07)) = accept}ie(s],
0" «HS.SignEval(prms, g, o7, (x1, 071), (x¢, 07)) }

= HS.Verify*(pk, (g o h), g(x1,...,x¢),T, (07, 0%)) = accept.

In other words, if the signatures (o, 0;) certify x; as the outputs of function %; over the
data labeled with 7 for all i € [£], then (o, 0*) certifies g(x1, ..., x/) as the output of
g o h over the data labeled with 7.

Definition 6.20 (Security). The security is defined via the following game between an

attacker A and a challenger:

« The challenger runs prms«—HS.PrmsGen(14, 1V) and
(pk, sk)«HS.KeyGen(prms, 11), and gives prms, pk to the attacker A.

* Signing queries: The attacker A can ask an arbitrary number of signing queries.
In each query j, the attacker chooses a fresh tag 7; which was never queried

314

previously and a message (x;1,...,X;n;) € X*. The challenger responds with

(O'Tj, Tjls-ves 0']-N_/.)<—HS.Sign(Sk, (xj1,. .. S XjN;)s ;).

* The attacker A outputs a function g : X N’ X and values T, Y, (ol,0’). The
attacker wins if .HS.Verify*(pk, g, y’, 7, (0}, 0’)) = accept and either:

— Type 1 forgery: T ¢ {t;}; or T = 7; for some j but N' # N;, i.e., the signing
query with label T was never made or there is a mismatch between the size of
the data signed under label T and the arity of the function g.

— Type 2 forgery: T = 7; for some j with corresponding message x; 1,...,X; N
such that (a) g is admissible on x; 1,...,x; - and (b) y" # g(xj1,...,X;).

We require that for all A with run-time 2°D, we have Pr[A wins] < 2% in the above
game.

We now give a simulation-based notion of context-hiding security, requiring that a context
hiding signature & can be simulated given the knowledge of only the computation g and
output y, but without any other knowledge of underlying data. The simulation remains
indistinguishable even given the underlying data, the underlying signatures, and even the
public/secret key of the scheme. In other words, the derived signature does not reveal
anything beyond the output of the computation even to an attacker that may have some
partial information on the underlying values.

Definition 6.21 (Context Hiding). A multi-data homomorphic signature supports
context hiding if there exist additional PPT procedures & «HS.Hide(pk,y, o),
HS.HVerify(pk, g, HS.Process(g), y, 7, (0, &)) such that:

» Correctness: For any prms«—HS.PrmsGen(14, 1Y), any
(pk, sk)«—HS.KeyGen(1*, prms) and any «,y,7,07,0 such that
HS.Verify(pk, @, y, 7, (0, 7)) = accept, for any &«HS.Hide(pk, y, o) we have

HS.HVerify(pk, a, y, 7, (0, 7)) = accept.

» Unforgeability: Multi-data signature security holds when we replace the HS. Verify
procedure by HS.HVerify in the security game.

* Context hiding security: Firstly, in the procedure (o, {07 }ic[n])<—HS.Sign(sk,
{xi}ie[n], T), We require that o can only depend on (sk, N, 7) but not on the

315

data {x;}. Secondly, we require that there is a simulator HS.Sim such that for any
fixed (worst-case) choice of prms, (pk,sk) and any «,y, 7,0, 0 such that
HS.Verify(pk, a, y, 7, (07,0)) = accept, we have that the distributions
HS.Hide(pk, y, o) and HS.Sim(sk, «, y, 7, o) are indistinguishable, where the
randomness is only over the random coins of the simulator and the HS.Hide
procedure. We say that such schemes are statistically context hiding if the above
indistinguishability holds statistically.

6.4.5 Rényi Divergence

The Rényi Divergence (RD) is a measure of closeness of any two probability distributions.
In certain cases, especially in proving the security of cryptographic primitives where
the adversary is required to solve a search-based problem, the RD can be used as an
alternative to the statistical distance [BLRL*18], which may help obtain security proofs

for smaller scheme parameters and may sometimes lead to simpler proofs.

Definition 6.22 (Rényi Divergence). Let P and Q be any two discrete probability
distributions such that Supp(P) C Supp(Q). Thenfora € (1, o0), the Rényi Divergence

of order a is defined by

1

rRPlO) = Y 2N

—
xeSupp(P) Q (x)a

For a = 1 and a = oo, the RD is defined as

P(x)
Q(x)

For any fixed distributions P and Q, the function f(a) = R,(P||Q) is non decreasing,

P(x)
max)
xeSupp(P) Q(x)

and R (P||Q) =

Ri(PlIQ) =exp| >, P(x)log
xeSupp(P)

continuous over (1, c0) and tends to R (P||Q) as a goes to infinity. Further, if R,(P||Q)

is finite for some a, then it tends to R (P]|Q) as a tends to 1.

The following lemma is borrowed from [BLRL* 18, Lemma 2.9], with the exception of the
multiplicativity property for non-independent variables, which is borrowed from [Ros20,
Proposition 2].

Lemma 6.1. Let a € [1,00]. Let P and Q denote distributions with Supp(P) C

316

Supp(Q). Then the following properties hold
e Log Positivity: R,(P||Q) = R,(P||P) = 1.

e Data Processing Inequality: R,(P’||Q7) < R,(P||Q) for any function f, where
P/ (resp. Q7) denotes the distribution of f(y) induced by sampling y«P (resp.

y<=Q).
o Probability preservation: Let E C Supp(Q) be an arbitrary event. If a € (1,),
then
Q(E) = P(E)=T/Ra(P||Q).
For a = oo,

Q(E) = P(E)/Rw(P||Q).

For a = 1, Pinsker’s inequality gives the following analogue property:

Q(E) = P(E) — vInR,(P[|Q)/2.

e Multiplicativity: Assume that P and Q are two distributions of a pair of random
variables (Y1,Y;). Fori € {1,2}, let P; (resp. Q;) denote the marginal distribution
of Y; under P (resp. Q), and let P;(-|y1) (resp. Q2)1(+|y1)) denote the conditional
distribution of Y, given that Y| = y1. Then we have:

* Ry(Pl|Q) = Ra(P1]|Q1) - Ra(P2||Q2) if Y1 and Y, are independent for
a € [1,c0].

* Ri(P||Q) < R,(P1]|Q1) - maxy, ey, Ra(Poyi (-[y1) Q21 (-ly1))-

o Weak Triangle Inequality: Let Py, P», P53 be three distributions with Supp(P1) C
Supp(P>) € Supp(P3). Then we have

R, (P1||P2) - Reo(P2||P3),

& . (6.1)
Roo(P1||P2)aT - Ry (P2||P3) ifa € (1,+00).

Ra(P1||P3) = {

We will use the following RD bounds. Note that proof tightness can often be improved
by optimizing over a, as suggested in [TT15].

Lemma 6.2 ((BLRL*18]). For any n-dimensional lattice, A C R" and s > 0, let P be
the distribution D s and Q be the distribution Dy s for some fixed ¢,¢’ € R". If

c,c’ € A, let € =0. Otherwise fix € € (0, 1) and assume that s > n.(A). Then for any

317

a € (1,+o00)

1—€\#T (1+e\ar lle = ¢'|?
Ra(PllQ)e[(1+€) ,(1_6)]-exp(aﬂs—z).

6.4.6 Secret Sharing

We now recall some standard definitions related to secret sharing.

Definition 6.23 (Monotone Access Structure). Let P = {P;};c[y] be a set of parties. A
collection A C £ (P) is monotone if for any two sets B,C C P ,if Be Aand B C C,
then C € A. A monotone access structure on P is a monotone collection A C P(P) \ 0.

The sets in A are called valid sets and the sets in P (P) \ A are called invalid sets.

Let § C P be a subset of parties in P. S is called maximal invalid party set if S ¢ A, but
forany P; € P\ S, we have S U {P;} € A. S is called minimal valid party set if § € A,
but for any S’ C S, we have S’ ¢ A.

In this work, since we only use monotone access structures, we sometimes drop the word
monotone. When it is clear from the context, we use either i or P; to represent party P;.
Definition 6.24 (Threshold Access Structure). Let P = {P;};c[n] be a set of N parties.
An access structure A, is called a threshold access structure, if for all § € P, we have
S € Aiff |S| > ¢. We let TAS denote the class of all access structures A, for all ¢ € N.
For any set of parties S C P, we define xg = (x1,...,xy) € {0, 1}" withx; = 1iff P; € S.
Definition 6.25 (Efficient Access Structure). An access structure A on set P as defined
above is called an efficient access structure if there exists a polynomial size circuit
fa : {0, 1}¥—{0, 1}, such that for all § C P, fa(xs) = 1iff S € A.

Definition 6.26 (Secret sharing). Let P = {P,..., Py} be a set of parties and S be a
class of efficient access structures on P. A secret sharing scheme SS for a secret space

K is a tuple of PPT algorithms SS = (SS.Share, SS.Combine) defined as follows:

» SS.Share(k,A)—(s1,...,sy): Oninput a secret k € K and an access structure A,
the sharing algorithm returns shares s1, . . ., sy for all parties.

» SS.Combine(B)—k: On input a set of shares B = {s;};c5, where S C [N], the
combining algorithm outputs a secret k € K.

318

A secret sharing algorithm must satisfy the following correctness and privacy properties.
Definition 6.27 (Correctness). For all § € A and k € K, if

(s1,...,5y)<SS.Share(k, A), then
SS.Combine({s;}ics) = k.

Definition 6.28 (Privacy). For all § ¢ A and ko,k; e K, |if
(Sp.15---»>5p.n)<—SS.Share(kp, A) for b € {0, 1}, then the distributions {s¢,};cs and
{s1.}ies are identical.

Definition 6.29 (Linear Secret Sharing (LSSS)). Let P = {P;};c[n] be a set of parties
and S be a class of efficient access structures. A secret sharing scheme SS with secret
space K = Z, for some prime p is called a linear secret sharing scheme if it satisfies the

following properties:

e SS.Share(k, A): There exists a matrix M € Zf;XN called the share matrix, and
each party P; is associated with a partition 7; C [£]. To create the shares on a

secret K, the sharing algorithm first samples uniform values 7, ..., ry<Z, and
defines a vector w = M - (k, 7o, ..., ry)”. The share for P; consists of the entries
{wi}jer,.

* SS.Combine(B): For any valid set S € A, we have

(1,0,...,0) € span({M[j]}el;.s73)-

over Z, where M| j] denotes the jth row of M. Any valid set of parties S € A can
efficiently find the coefficients {c;} e, . 7; satisfying

Z c;-M[j] = (1,0,...,0)

jEUiESTi

and recover the secret by computing k = 3, ;¢\)._ 7, ¢j - w;. The coeficients {c;}
are called recovery coefficients.

Definition 6.30. Let P = {Py, ..., Py} be aset of parties, S a class of efficient structures
on P, and SS a linear secret sharing scheme with share matrix M € ZfIXN . For a set of
indices T C [£], T is said to be a valid share set if (1,0,...,0) € span({M[j]}er),

and an invalid share set otherwise. We also use following definitions:

* A setof indices T C [£] is a maximal invalid share set if T is an invalid share set,

319

but for any i € [¢] \ T, the set T U {i} is a valid share set.

* A setofindices T C [£] is a minimal valid share set if 7 is a valid share set, but
forany 77 ¢ T, T’ is an invalid share set.

The class of access structures that can be supported by a linear secret sharing scheme on
N parties is represented by LSSSy. When the context is clear LSSSy is simply written
as LSSS. We let {0, 1}-LSSS denote the class of access structures that can be supported
by a LSSS where the recovery coeflicients are binary: for a set P of N parties, let k be the
shared secret and {w} jc7; be the share of party P; fori € [N]; then for every set S € A,
there exists a subset T C |J;eg T; such thatk = 3 ;o7 w. It was shown in [BGG*18] that
suchaset T C [J;cg T; can be computed efficiently, and that TAS belongs to {0, 1}-LSSS.

Hence, we can use {0, 1}-LSSS for secret sharing in TAS.

To secret-share a vector s = {s1,...,s,} € Z}, we can simply secret-share each entry s;
using fresh randomness. This gives secret share vectors sy, ...,s; € Z),. Using these
secret shares, the secret vector s can be recovered using the same coeflicients as that for a

single field element.

6.4.7 Lattice preliminaries
For definitions and related hard problems on lattices, we refer to Chapter 2. We will use
the following adaptation of Lemma 2.1.

Lemma 6.3 (Adapted from [Lyul2, Lemma 4.4]).
1. Forany k > 0, Pr[|z]| > ko; 2Dz] < 2exp(—mk?).
2. Forany o > 3, Ho(Dzn o) > m.

3. For any k > 1/\2x, Pr[||zl| > koV2ram; z—Dgzm] < (kN2m)™ exp(Z(1 -
21k?)).

6.5 MORE EFFICIENT THRESHOLD SIGNATURES FROM LATTICES

In this section, we show how to drastically decrease the exponential flooding used in

the scheme by Boneh er al [BGG"18]. We also show that the limited flooding that we

320

use is in fact optimal, and smaller noise would lead to an attack. For ease of exposition,
the construction below is for the special case of N out of N threshold and restricted
to selective security. We extend it to adaptive security in Section 6.7 and Section 6.8
and ¢ out of N threshold in Section 6.9. In Section 6.6, we show how to instantiate the
underlying signature scheme using a variant of Lyubashevsky’s signature [Lyul2] with

matching moderate flooding.

6.5.1 Optimizing the Boneh ef al scheme using the Rényi Divergence
Our scheme is similar to the one in [BGG*18]. The construction uses the following

building blocks:

* APRF F : K x{0,1}*—{0,1}", where K is the PRF key space and r is the
bit-length of randomness used in sampling from discrete Gaussian 9.

* A fully homomorphic encryption scheme FHE = (FHE.KeyGen, FHE.Enc,
FHE.Dec, FHE.Eval). As in [BGG"18], we also assume that the FHE.Dec can
be divided into two sub-algorithms: FHE.decodey and FHE.decode; as defined
in Section 6.4.2.

c A deterministic UF-CMA signature scheme?®

Sig = (Sig.KeyGen, Sig.Sign, Sig. Verify).

* A context hiding homomorphic signature scheme HS = (HS.PrmsGen,
HS.KeyGen, HS.Sign, HS.SignEval, HS.Process, HS.Verify, HS.Hide,
HS.HVerify) to provide robustness.

* An N out of N secret sharing scheme Share.

Construction.

TS.KeyGen(14): Upon input the security parameter A, do the following.
1. For each party P;, sample a PRF key sprf; K.
2. Generate the signature scheme’s keys (Sig.vk, Sig.sk)«Sig.KeyGen(1%).

3. Generate the FHE keys (FHE.pk, FHE.sk)«FHE.KeyGen(1%) and compute
an FHE encryption of Sig.sk as CTgjgsk«—FHE.Enc(FHE.pk, Sig.sk).

3 Any randomized signature scheme can be made deterministic by using PRF to generate the randomness
used by the signing algorithm.

321

. Generate the HS public parameters HS.pp«—HS.PrmsGen(14, 1") and the

public and the signing keys (HS.pk, HS.sk)«HS.KeyGen (14, HS.pp). Here
n is the bit-length of (FHE.sk, sprf;).

Share FHE.sk as {Ski}ZI&Share(FHE.Sk) such that Zf\il sk; = FHE.sk.

For each party P;, randomly choose a tag 7; € {0, 1}* and compute
(e, m;)«<—HS.Sign(HS.sk, (sk;, sprf;), 7).

. Output TSig.pp = {FHE.pk, CTsig.sk, HS.pp, HS.pk, {7, nTi}ﬁl},

TSig.vk = Sig.vk, TSig.sk = {TSig.sk; = (sk;, sprf;, m;)} Y .

TS.PartSign(TSig.pp, TSig.sk;, M): Upon input the public parameters TSig.pp, a

partial signing key TSig.sk; and a message M, parse TSig.pp as

(FHE.pk, CTsig.sk, HS.pp, HS.pk, {T,-,nTi}f.\;l}) and TSig.sk; as (sk;,sprf;, ;)

and do the following.

1.

3.

Compute u = F(sprf;, M) and sample e;«D,(u), where D;(u) represents
sampling from D using u as the randomness.

. Let Cys be the signing circuit, with message M being hardwired. Compute

CT, = FHE.Eval(FHE.pk, Cy, CTsig.sk)-

Compute o; = FHE.decode((sk;, CT,) +e;.

4. This step computes a homomorphic signature 7; on partial signature o; to

5.

provide robustness (Definition 6.8).
Let Cps be the circuit to compute FHE.decodey(sk;, CT,-) + ¢/ in which
CT is hardcoded and the FHE key share sk; and the PRF key sprf; are given

as inputs.
 Compute 7} = HS.SignEval(HS.pp, Cps, 7+,, (sk;, sprf;), 7;).
* Compute #; = HS.Hide(HS.pk, o7, 7).

Output y; = (07, 7).

TS.Combine(TSig.pp, {y;}ic[n1): Upon input the public parameters TSig.pp and a set

of partial signatures {y;}ic[n), parse y; as (o0;,7;) and output

om = FHE.decode; (XY, 07).

322

TS.PartSignVerify (TSig.pp, M, y;): Upon input the public parameters TSig.pp,

message M, and a partial signature y;, parse y; as (o3, A;) and do the following.
1. Compute CT, = FHE.Eval(FHE.pk, Cy, CTsig.sk)-
2. Compute @ = HS.Process(HS.pp, Cps), where Cps is as described above.

3. Parse y; as (o7, ;) and output HS.HVerify(HS.pk, a, 0, 7;, (4, 7).

TS.Verify (TSig.vk, M, opr): Upon input the verification key TSig.vk, a message M and
a signature oy, output Sig.Verify (TSig.vk, M, oy).

In the above, we set s = B,,q - VOA, where B,,, < poly(A) is a bound on the FHE

decryption noise after homomorphic evaluation of the signing circuit Cys, and Q is the

bound on the number of signatures.

Correctness

From the correctness of FHE.Eval algorithm, CT, is an encryption of Cy;(Sig.sk) =
Sig.Sign(Sig.sk, M) = o, which decrypts with the FHE secret key FHE.sk.

So, FHE.decodeo(FHE.sk,CT,) = o Lg/2] + e. The signature computed by the

TS.Combine algorithm is

N
FHE.decodel(Z o) = FHE.decodel(Zf\:’1 FHE.decodey(sk;, CTo) + 2, ¢

i=1"~i
i=1

= FHE.decode; (FHE.decode (XY, sk;, CT,) + XY, €

i=1%i

FHE.decode; (FHE.decodey(FHE.sk,CT,) + ZN e’

i=1%i

FHE.decode; (o [g/2] +e+ XN, e)) = om.

6.5.2 Unforgeability

For security, we prove the following theorem.

Theorem 6.4. Assume F is a secure PRF, Sig is a UF-CMA secure signature scheme,
FHE is a secure fully homomorphic encryption scheme (Definition 6.12), Share is a
secret sharing scheme that satisfies privacy (Definition 6.28) and HS is a context hiding

secure homomorphic signature scheme (Definitions 6.21). Then our construction of

323

threshold signatures satisfies selective unforgeablity (Definition 6.7) if the flooding noise

is of the size poly(1) - VO, where Q is the number of the signing queries.

Proof. The security of the construction can be argued using a sequence of hybrids.

We assume w.l.o.g. that the adversary A queries for all but the first key share, i.e.,

§=[N]\{1}.

Hybrid,: This is the real world.

Hybrid,: Same as Hybrid,, except that 7; in PartSign is now generated using HS
simulator as g = HS.Sim(HS.sk, a, 0,71, 74,), where

« = HS.Process(HS.pp, Cps).

Hybrid,: Same as Hybrid; except that to compute oy = FHE.decodeg(sk;, CT,) + e,
the randomness u used to sample e’ «—D;(u) is chosen uniformly randomly instead

of computing it using the PRF.

Hybrid;: Same as Hybrid,, except that now, for signing query for (M, 1), the challenger

simulates o as follows:

1. Computes CT, = FHE.Eval(FHE.pk, Cy, CTsig.sk) and
{07 = FHE.decodeq(sk;, CT,) }ici2.n]-

2. Computes oy = Sig.Sign(Sig.sk, M) and set o] = oy L%] - Zflz o} +e,

where e’1 — D;.

Hybrid,: Same as Hybrid; except that instead of sharing FHE.sk, now the challenger

generates the FHE key shares as {ski}f\i < Share(0).

Hybrids: Same as Hybrid,, except that CTgijg sk in TSig.pp is replaced by CTy =
FHE.Enc(FHE.pk, 0).

324

Indistinguishability of Hybrids. ~ Now, we show that consecutive hybrids are
indistinguishable.
Claim 6.5. Assume HS is a context hiding homomorphic signature scheme. Then,

Hybrid, and Hybrid, are indistinguishable.

Proof. The two hybrids differ only in the way 7| is computed. In Hybridy, 7 =
HS.Hide(HS.pk, oy, 7}), where n7 = HS.SignEval(HS.pp, Cps, 7+, (sky, sprf;), 1).
In Hybrid,, #; = HS.Sim(HS.sk, e, 01, 71, 7¢,), where @ = HS.Process(HS.pp, Cps).
Hence, the two hybrids are indistinguishable because of the context hiding property of

HS which ensures that HS.Hide(HS.pk, o, 71]) ~ HS.Sim(HS.sk, @, oy, 71, 717). ®

Claim 6.6. Assume F is a secure PRF. Then Hybrid; and Hybrid, are indistinguishable.

The proof follows via a standard reduction to PRF security and is omitted.

Claim 6.7. If there is an adversary that can win the unforgeability game in Hybrid, with

probability e, then its probability of winning the game in Hybrid, is at least €2 /2.

Proof. Let the number of signing queries that the adversary makes be Q. The two
hybrids differ only in the error term in o, as shown below. In Hybrid,, we have
o = FHE.decodey(sky, CT,) + e’l, for e’1 — D;. In Hybrid;, we have:

N
o = owm.lg/2] - Z FHE.decodey(sk;, CT) + ¢/
=2
N
= oum.lq/2] - Zi:l FHE.decode(sk;, CT.) + FHE.decodey(ski, CT) +]
N
= oum.lq/2] - FHE.decodeo(Z:i=1 sk;, CT,) + FHE.decodey(ski, CT,) + ¢}
= owm.|q/2] - FHE.decodey(sk, CT.) + FHE.decodey(sk;,CT,) + €]
= owm.lq/21 - om.1q/2] + e+ FHE.decodey(ski,CT) + ¢}

= FHE.decode((sk;,CTy) + (e] +e),

for some e satisfying |e| < B4 . Thus, in Hybrid,, the error term in o7y is €/, while in

’

e,
Hybrids, it is el te, where, e

«— Dy, and e is the error in FHE ciphertext CT,.

Recall the distribution seen by the adversary — the public parameters TSig.pp, the

325

verification key TSig.vk, the corrupted secret key shares TSig.sk;, the messages M;
and corresponding partial signatures (o, 7;). Note that since messages are chosen
adaptively, their distribution depends on previous signature queries and responses, and
in particular on the differently generated error terms in both hybrids. On the other
hand TSig.pp, TSig.vk, {TSig.sk;}, {#;} are constructed identically in both hybrids and
independently from the rest (in particular these error terms): we implicitly assume that
they are fixed and known, and exclude them from the analysis. We refer to the distribution

to be considered in Hybrid, as D> and in Hybrid; as Ds.

Let E; be the random variables corresponding to the error term in CT,; in the j-th
response and 8](.2) and 81(.3) be their distributions in Hybrids 2 and 3, respectively.
Similarly, let M; be the random variable corresponding to the queried message in j-th
query and Mj(.z) and M](.3) be their distributions in Hybrids 2 and 3, respectively. Then,
from the discussion above, we have 85.2) = D, and 85.3) = Dy.e; for all j € [Q], where

e; is the error in CT,, and can depend upon previous queries and responses.

Overall, we have D = (S(k), M(Qk), W MW

M8 MPY) for k € 2,3} and

Ro(Ds|D3) = R(EFP MY,....6P MP I MS,....67 M), (62)

Applying the multiplicativity property of the Rényi divergence (Lemma 6.1), we obtain
that R,(D»||D3) is bounded from above by
max Ry(E)) X =x | 851X =x) - Re MY, ... MP M. M)
xeX

= max Ry(DylX = x || DyeolX =) - RaMS .., 8P MP IMD, . gD MD),
(6.3)

where X = (Mg, Eg—1,...,E;) and eg is the error term in CT(TQ; note that ep may

depend on the sample from X (which differs in Hybrids 2 and 3) and is bounded by B,,;.

326

Then applying Lemma 6.2 in Equation (6.3), we get

R,(D>||D3)

IA

2 2 2 3 3 3
exp(arllegl?/s?) - RaMG.....6D. MP I MY6P MP)

IA

2 2 2 3 3 3
exp(anB, /5% - Ra(MS, ... MP I MDD, .. 8P M)

Further, since My is afunctionof Eg_1, Mgp_1, ..., E1, M1, the data processing inequality

(Lemma 6.1) gives

2 (2 (2 (2 (3) 20 (3) 3)
Ra(MS.ES) &P MPIMPD.ED.....eP MP)

2 2 2 3 3 3
<RED,.. 2 MIIED, &P M)

Hence, we get

R,(D>||D3)

IA

exp(anBl,, /s%) - Ra(EY,.....&6P MP 1 EF.....60 M)

IA

where the last inequality follows from induction.

As s = Beyar - VOA, we get R, (D»||D3) < exp(an/A). Therefore, from the probability
preservation property of the Rényi divergence (Lemma 6.1), we have

D3 (E) > % > Dy(E)a—T exp(—“4"). The result is obtained by settinga =2. m

Claim 6.8. Assume that Share is a secret sharing scheme that satisfies privacy

(Definition 6.28). Then, Hybrid; and Hybrid, are indistinguishable.

Proof. The only difference between Hybrid; and Hybrid, is in the way the key shares
ski,ska,...,sky are generated. In Hybrid; (ski,ska,...,sky)«Share(FHE.sk),
while in Hybrid,, (ski, ska, ..., sky)«Share(0). Since, the adversary is given secret

shares for an invalid set of parties, distribution in the two hybrids are identical.]

Claim 6.9. Assume FHE is a fully homomorphic encryption that satisfies security

(Definition 6.12). Then Hybrid, and Hybrids are indistinguishable.

327

Proof. Let A be an adversary who can distinguish Hybrid, and Hybrids. Then we

construct an adversary 8B against the FHE scheme as follows.

1.

6.

After receiving FHE.pk from the FHE challenger, 8 generates
(Sig.sk, Sig.vk)«Sig.KeyGen(1") and the HS keys.

. It generates secret shares of 0 as (ski, sk, ..., sky)«Share(0).

. It sends the challenge messages m(= Sig.sk and m = 0 to the FHE challenger.

After receiving the challenge ciphertext CT;, from the FHE challenger, 8 constructs
TSig.pp using CT,. It also generates TSig.vk and TSig.sk as defined for the hybrid.
In particular, note that in both the hybrids, the key shares {Ski}f\; , are generated as
random secret shares of 0 in place of FHE.sk and hence 8 does not need FHE.sk
to answer key queries.

. To answer a PartSign query for a message M issued by adversary A, B computes

o as follows. It computes o~ = Sig.Sign(Sig.sk, M), samples e} < D; and returns
ol =0 — Zf\iz TS.decodey (TSig.sk;, CTy) + e.

Finally, A outputs a guess bit b’. B returns the same to the FHE challenger.

Clearly, if b = 0, then B simulates Hybrid,, else Hybrids with A. Hence if A wins with

non-negligible probability in distinguishing the two hybrids then so does B against the

FHE challenger.]

Finally the proof of Theorem 6.4 completes with the following claim.

Claim 6.10. If the underlying signature scheme Sig is unforgeable, then the advantage

of the adversary in the unforgeability game of Definition 6.7 is negligible in Hybrids.

Proof. Let A be an adversary who wins the unforgeability game in Hybrids. Then we

can construct an adversary 8 against the signature scheme Sig as follows:

1.

2.

On receiving a verification key Sig.vk from Sig challenger, B generates
(FHE.sk, FHE.pk), HS.pp, (HS.pk, HS.sk) and all the other values required to
define TSig.pp, TSig.vk and TSig.sk on its own. In particular, since in Hybrids,
TSig.pp contains CTy instead of CTsgig.sk, B does not require Sig.sk to generate a
valid TSig.pp.

B then sends TSig.vk = Sig.vk, TSig.pp, {TSig.sk;}Y, to A.

328

3. To simulate PartSign query o7 for any message M, B needs o,. For this, it issues
a signing query on message M to the Sig challenger and receives o;.

4. In the end, let (M*, o) be the forgery returned by A. Then B returns the same to
the Sig challenger.

Since B issues signing queries on only those messages for which (A also issues signing
queries to B, if (M*,o™) is a valid forgery for A, then it is a valid forgery for 8 as

well.]

6.5.3 Robustness
Claim 6.11. If HS is multi data secure (Definition 6.20) homomorphic signature, then

the above construction of TS satisfies robustness.

Proof. In the robustness security experiment Expt ﬂ,TS,rb(ll)’ the adversary wins if A
outputs a partial signature forgery (M*, y’, i) such that

1. TS.PartSignVerify(TSig.pp, M*, y7) =1

2. yi = (o7, 7}) # TS.PartSign(TSig.pp, TSig.sk;, M*).

TS.PartSignVerify (TSig.pp, M*, y7) first computes CT, —
FHE.Eval(FHE.pk, Cy+, CTsig.sk) and outputs 1 iff
HS.HVerify(HS.pk, a, 07, 7, (7, 7)) = 1, where @ = HS.Process(HS.pp, Cps).
Thus, A wins the experiment iff both the following two conditions are true.

1. For @ = HS.Process(HS.pp, Cps)

HS.HVerify(HS.pk, @, o7, 71, (7, #7)) = 1,
2. yi = (o}, 7}) # TS.PartSign(TSig.pp, TSig.sk;, M*), which implies
o’ # FHE.decodeq(sk;, CT,) + e}, which in turn is same as

o, # Cps(sk;, sprf;).

But this is a case for valid forgery of type 2 (Definition 6.20) against HS scheme, which

can happen only with negligible probability. Note that since (7}, 7,) are part of HS.pp,

329

case of type 2 in HS security definition is inherently applied.]

6.5.4 On the Optimality of Our Flooding

We show that the flooding amount that we achieved is optimal for our threshold signature
scheme. To argue this, we show how to attack it if the flooding amount is below
Q(+/Q). For simplicity, we restrict to the case of N = 2. Recall that in our construction,
TS.PartSign(TSig.pp, TSig.sk;, M) outputs oy = FHE.decodey(sk;, CT,,,) + e;’M,
where TSig.sk;, = (sk;,sprf,).* W.Lo.g, assume that the adversary gets the partial
signing key TSig.sk, and the response for any signing query is a partial signature

corresponding to party P;. For any message M of its choice, the adversary receives

o1,m = FHE.decodeo(sky, CTy,,) + €/ ,,- From this the adversary can compute:

o1.m + FHE.decodey(skz, CTy,,) = FHE.decodeo(FHE.sk,CT,,) +e¢] 5,

’
oM +erry +el Ly,

where erryy is the error in CT,,,. Note that if the adversary succeeds in computing erry,

for polynomially many M'’s, then it can compute FHE.sk.

4

LM is randomized, small and of center O, then

As a warm-up, we show that if the error e
the adversary can indeed compute erry;. Later, we will show that even for deterministic
flooding ¢ ,,, there exist secure signature schemes for which the attack can be extended.

Since the adversary knows the key share skj, it can compute 0% js on its own and hence

’

can compute oy = TS.Combine(TSig.pp, 01,1, 02,1). Hence, from oy +erry + €',

the adversary can compute erry + ¢} ,,. Since, the signature scheme is deterministic,
errys depends only on M. Thus, if the same message is queried for signature multiple
times, then each time the term erry; remains the same, but since flooding is randomized,

the term e’ ,, is different.

.M

To compute erry,, the adversary issues all Q signing queries for the same message M and

(1) O'(Q) where o

. (i) D
IeCeives oy v -» 0y M denotes the partial signature returned for message

“We focus only on the o 5, component of PartSign’s output since the second component, the HS
signature of o7;_ps, is not relevant here.

330

M in the ith query. From these responses the adversary gets Q different values of the
form

w'=erry +ely, (6.4)

Since erry, is same, taking average on both sides of Equation (6.4) over all the Q samples,

Zicio) W' Yielo) € '
we get =<2 — erry, + % If |éZi€[Q] e’l”M| < 1/2, then