
DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS
CHENNAI – 600036

Building Cryptography for
Distributed Data and Authority

A Thesis

Submitted by

ANSHU YADAV

For the award of the degree

Of

DOCTOR OF PHILOSOPHY

May 2023

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS
CHENNAI – 600036

Building Cryptography for
Distributed Data and Authority

A Thesis

Submitted by

ANSHU YADAV

For the award of the degree

Of

DOCTOR OF PHILOSOPHY

May 2023

© 2023 Indian Institute of Technology Madras

To

my parents, and

sweet memories of chhota bhaiya

LIST OF PUBLICATIONS

I. PUBLICATIONS FROM THE THESIS

1. Shweta Agrawal, Junichi Tomida, Anshu Yadav. Attribute-Based Multi-Input FE
(and more) for Attribute-Weighted Sums. In CRYPTO, 2023. (To appear).

2. Shweta Agrawal, Mélissa Rossi, Anshu Yadav, Shota Yamada. Constant Input
Attribute Based (and Predicate) Encryption from Evasive and Tensor LWE. In
CRYPTO, 2023. (To appear).

3. Shweta Agrawal, Anshu Yadav, Shota Yamada. Multi-input Attribute Based and
Predicate Encryption. In CRYPTO, volume 13507 of LNCS, pages 590-621,
Springer, 2022. https://doi.org/10.1007/978-3-031-15802-5_21.

4. Shweta Agrawal, Damien Stehlé, Anshu Yadav. Round-Optimal Lattice-Based
Threshold Signatures, Revisited. In ICALP, pages, volume 229 of LIPIcs, pages
8:1-8:20, Dagstuhl Publishing, 2022. https://doi.org/10.4230/LIPIcs.
ICALP.2022.8

5. Shweta Agrawal, Elena Kirshanova, Damien Stehlé, Anshu Yadav. Practical,
Round-Optimal, Lattice-Based Blind Signatures, In ACM-CCS, pages 39–53,
ACM, 2022. https://doi.org/10.1145/3548606.3560650.

II. OTHER PUBLICATIONS

1. Shweta Agrawal, Simran Kumari, Anshu Yadav, Shota Yamada. Trace and Revoke
with Optimal Parameters from Polynomial Hardness. In EUROCRYPT, volume
14006 of LNCS, pages 605-636. Springer, 2023. https://doi.org/10.1007/
978-3-031-30620-4_20

https://doi.org/10.1007/978-3-031-15802-5_21
https://doi.org/10.4230/LIPIcs.ICALP.2022.8
https://doi.org/10.4230/LIPIcs.ICALP.2022.8
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1007/978-3-031-30620-4_20
https://doi.org/10.1007/978-3-031-30620-4_20

ACKNOWLEDGEMENTS

I take this opportunity to thank everyone who has contributed to my journey for Ph.D.

First and foremost, I express my deepest gratitude to my advisor Prof. Shweta Agrawal

for her immense support and guidance throughout this journey. This work would not have

been possible without her active involvement at every stage. I thank her for believing

in me at the time when I was going through a low phase in my career. I feel extremely

blessed that I got the opportunity to work with her. Her constant encouragement has

always kept me motivated. Even beyond research, her advice towards life, in general, has

been invaluable. She has always been there as a strong support in every part of my PhD

journey both at the professional and the personal level. I am deeply grateful and will

always be indebted to her for everything that she has done for me.

I sincerely thank all my co-authors, Prof. Shweta, Dr. Elena Kirshanova from TII Abu

Dhabi, Simran Kumari from IIT Madras, Dr. Mélissa Rossi from ANSSI Paris, Prof.

Damien Stehlé from ENS Lyon, Dr. Junichi Tomida from NTT Japan and Dr. Shota

Yamada from AIST Tokyo, for all the interesting discussions. I got to learn a lot while

working with them. I thank Prof. Damien and Dr. Shota, also for their guidance in

writing papers and preparing conference talks. I am also thankful to Prof. Jung Hee

Cheon and Hyeongmin Choe from Seoul National University, for insightful discussions

on a project that unfortunately could not be successful. I want to thank Prof. Damien

and Dr. Alain Passelègue for inviting me to ENS Lyon for a short visit and for having

fruitful discussions.

I want to thank my current Doctoral Committee members - Prof. Balaram Ravindran,

Prof. John Augustine, Dr. Nishanth Chandran, and Prof. Aishwarya Thiruvengadam, as

well as the previous members - Prof. Narayanaswamy N. S., Prof. Chester Rebeiro, and

Prof. Jayalal Sarma, for their questions, comments, and suggestions during my seminars.

I am thankful to all the anonymous reviewers of our papers for their useful comments.

i

I also want to thankfully acknowledge Microsoft Research and Google Research for

supporting me with travel grants for presenting our work at ICALP 2022 and ACM CCS

2022, respectively.

I would also like to extend my thanks to the faculties and staff from the Computer Science

Department at IIT Madras. Of special mention are Prof. Shweta and Prof. Jayalal for

their amazing style of teaching with lots of clarity that helped me understand many

difficult concepts with much ease. It was a very good experience sitting through their

lectures.

I want to thank all the members of the Cryptography Cybersecurity and Distributed Trust

(CCD) lab and the previous Theoretical Computer Science (TCS) lab for interesting

discussions during talks and seminars, and also for organizing various fun events. I

particularly want to thank Monosĳ Maitra, who was a senior Ph.D. student with Shweta.

He has been very helpful during my Ph.D. - in solving my research-related doubts as well

as many other things. I enjoyed having technical discussions with him during my Ph.D. I

would also like to specially mention Simran for all the long discussions, especially while

working on a joint project and for her company in late-night snacking at Usha cafe.

Finally, I am thankful to everyone in my family who contributed in my Ph.D. journey

in different ways. I express my deepest gratitude towards my parents and my brother,

my cousin brother, and my sister for their immense love and strong support. My interest

in mathematics developed due to my father because of his wonderful style of teaching

during my early schooling. He taught me to think logically and to understand different

concepts using relatable examples from daily life. I have no words to thank my parents,

for always believing in me and giving me complete freedom and full support in choosing

my career path and every other choice. I will always be indebted to them for all the

love and care and the sacrifices that they have made. I am extremely thankful to my

brother and sister for being an incredible support system. My brother has always been

the guiding force throughout my journey so far. I thank my sister for always being very

caring and encouraging. My entry into the world of computer science was guided by my

cousin brother. I want to express my special thanks to him for all his help and support. I

must also thank my loving nephews and niece for all the interesting conversations that I

had with them. Talking to them or just about them would help me forget all my problems.

I thank them for being a part of my Ph.D. journey in the most beautiful way.

ABSTRACT

KEYWORDS multi-input predicate encryption; multi-input attribute based

encryption; attribute weighted sums; attribute based multi-input

functional encrytion; multi-client functional encryption; dynamic

decentralized functional encryption; blind signature; one-more-isis;

threshold signature

In the modern era of advanced digital technologies, there exists a plethora of online

applications on the internet including e-commerce, net banking, online games and

movies, and many more. These applications generate huge amount of data which includes

sensitive information of their users, like bank account details, credit card numbers, and

personal details like date of birth, mobile number, address, and such others. This poses

new challenges in ensuring data privacy and secrecy without compromising with the

enormous opportunities of performing useful studies on these data. For example, consider

a researcher who wants to study the correlation between hypertension and the profession

of patients in the age group 30-50 years and hence needs access to records of patients

who fall in this category. The hospital would want to encrypt the records of patients and

provide a decrypting key to the researcher that allows access to only the relevant records

and nothing else. Traditional methods like standard public key encryption (PKE) do

not suffice because anyone having the decryption key gets unrestricted access to all the

records of all the patients. While what we want is a tailored key that lets the researcher

access only the relevant data related only to her research. Advanced tools like functional

encryption (FE), attribute based encryption (ABE), and predicate encryption (PE) give

us such guarantees but are generally defined in a single input setting where the data

is assumed to be held by a single party. In practice, data related to a single entity is

generated independently in parts at different locations. In such a scenario, we would

want to have the same security guarantees as if the data were generated from a single

source. Furthermore, for better security in cryptographic primitives, it is often desired

v

that the authority is distributed among multiple parties so that there is no single point

of security failure. For example, a user of an online application may want to distribute

his/her key on multiple devices, like smartphone and tablet so that the security is ensured

unless all the devices are compromised.

Motivated by these observations, we study different cryptographic primitives in a

distributed setup. Our work can be broadly viewed in two parts - in the first part, we

study such primitives, where the data to be encrypted is generated in a distributed manner.

In the second part, we focus on primitives with distributed authority.

In the first part, we study ABE, PE, and FE in distributed settings. We initiate the

study of multi-input PE (MIPE) and further develop multi-input ABE (MIABE). We

define MIABE and MIPE in symmetric key setting and formalize the security in standard

indistinguishability (IND) based paradigm against unbounded collusions. We provide the

first construction for 2ABE for NC1 using learning with errors (LWE) and pairings and

give a generic compiler that for any constant 𝑘 , transforms any 𝑘-input ABE to 𝑘-input

PE. We also provide the first construction of MIABE for NC1 for any constant arity from

evasive LWE assumption, recently introduced independently by Wee (Eurocrypt 2022)

and Tsabary (Crypto 2022). We extend our construction to support functions in P by

using evasive and suitable strengthening of tensor LWE introduced by Wee (Eurocrypt

2022). By combining our compiler with our results for MIABE, we get 2PE for NC1 using

LWE and pairings and constant-arity PE for NC1 and P from lattice based assumptions

of evasive and tensor LWE that are conjectured to be post-quantum secure.

Furthermore, we extend FE for attribute weighted sums (AWS), recently given by Abdalla

et al. (Crypto 2020), where encryption takes 𝑁 (unbounded) (public-private) attribute-

value pairs {x𝑖, z𝑖}𝑖∈[𝑁] , the secret key is given for an arithmetic branching programs 𝑓 ,

and the decryption returns the weighted sum
∑
𝑖∈[𝑁] 𝑓 (x𝑖)⊤z𝑖, to the significantly more

challenging multi-party setting and provide the first construction for attribute-based

multi-input FE (MIFE) supporting AWS. We also provide the first constructions of

multi-client FE (MCFE) and dynamic decentralized FE (DDFE) for AWS. Previously,

these primitives were known only for linear functions (or inner products) [Abdalla et

al. (Asiacrypt 2020), Chotard et al. (ePrint 2018), Abdalla et al. (Asiacrypt 2019), and

Chotard et al. (Crypto 2020)].

In the second part, we study advanced digital signature schemes - threshold signatures

and blind signatures. Both the primitives find applications in modern applications like

cryptocurrencies, e-voting, blockchains, etc. Threshold signature is a digital signature

scheme, where the signing power is distributed among 𝑁 signers such that at least some

threshold 𝑡 number of signers are needed to generate a valid signature. We improve the

only lattice based construction for 𝑡-out-of-𝑁 access structure with round optimality

by Boneh et al. in terms of efficiency and security. We reduce the signature size from

�̃� (𝜆3) to �̃� (𝜆), where 𝜆 is the security parameter. Boneh et al’s construction achieve

only selective security, where all the corrupt parties are declared in the beginning. We

give two constructions that achieve (i) partial adaptivity - which allows corruption at any

time, but all the corruptions must be declared together, and (ii) full adaptivity - which

allows corruption at any time in any order.

In blind signatures, there are two parties involved - the user and the signer. The userU,

holding a public key and message, may request a signature from the signer S, holding

a signing key, such that the signer is not able to link a message-signature pair with

a protocol execution, and the user is not able to forge signatures even after multiple

interactions with the signer. We construct the first overall practical round optimal lattice

based blind signature supporting an unbounded number of signature queries. We provide

a detailed estimate of parameters achieved – we obtain a signature of size slightly above

45KB, for a core-SVP hardness of 109 bits. All the run-times are also very small. Its

security stems from a new and arguably natural assumption that we introduce. To gain

confidence in our assumption, we provide a detailed analysis of diverse attack strategies.

vii

CONTENTS

Page

ACKNOWLEDGEMENTS i

ABSTRACT v

LIST OF TABLES xv

LIST OF FIGURES xvii

NOTATION xix

CHAPTER 1 INTRODUCTION 1

1.1 Motivation . 1
1.2 Overview of the thesis . 4

1.2.1 Distributed Data . 4
1.2.2 Distributed Authority . 9

1.3 Organisation of the Thesis . 11

CHAPTER 2 PRELIMINARIES 13

2.1 Lattices and Discrete Gaussians . 13
2.1.1 Hardness Assumptions . 14
2.1.2 Lattice Trapdoors . 16

2.2 Public Key Encryption . 16
2.3 Digital Signature . 17
2.4 Pseudorandom Function . 18
2.5 Some Useful Lemmas . 18

CHAPTER 3 MULTI-INPUT ATTRIBUTE BASED AND PREDICATE
ENCRYPTION 21

3.1 Introduction . 21
3.2 Our Results . 24
3.3 Technical Overview . 26
3.4 Preliminaries . 40

3.4.1 Single User Attribute Based Encryption 40
3.4.2 Lockable Obfuscation . 43
3.4.3 Batch Inner Product Functional Encryption 45
3.4.4 Lattice Preliminaries . 47
3.4.5 kpABE Scheme by Boneh et al. 49
3.4.6 Bilinear Map Preliminaries . 52

3.5 Multi-Input Attribute Based and Predicate Encryption 55
3.5.1 Strong Security for k-ABE and k-PE 58

ix

3.5.2 Generalization to Multi-Slot Message Scheme 59
3.6 Two-Input ABE for NC1 from Pairings and LWE 60

3.6.1 Construction . 60
3.6.2 Security . 63

3.7 Two-Input ABE for NC1 in Standard Model 74
3.7.1 Assumption . 74
3.7.2 Construction . 77
3.7.3 Security . 80

3.8 Compiling 𝑘-ABE to 𝑘-PE via Lockable Obfuscation 86
3.8.1 Construction . 86
3.8.2 Security . 90

3.9 Two-Input PE with Stronger Security . 98
3.9.1 Construction . 99
3.9.2 Security . 101

3.10 Three-Input ABE from Pairings and Lattices 113
3.10.1 Construction . 113
3.10.2 Discussion of Security . 120

3.11 Two-Input ABE for Polynomial Circuits using BV22 120
3.11.1 Construction . 121

CHAPTER 4 CONSTANT INPUT ATTRIBUTE BASED
ENCRYPTION FROM EVASIVE AND TENSOR LWE 125

4.1 Introduction . 125
4.2 Our Results . 126
4.3 Technical Overview . 129
4.4 Preliminaries . 147

4.4.1 Multi-Input Attribute Based Encryption 147
4.4.2 Lattice Preliminaries . 150
4.4.3 Tensors . 153

4.5 Assumptions and New Implications . 154
4.5.1 Evasive LWE . 154
4.5.2 Tensor LWE . 158
4.5.3 New Implications for Tensor LWE 159
4.5.4 New Implications from LWE . 162

4.6 Two-input ABE from Evasive and Tensor LWE 165
4.6.1 Construction . 165
4.6.2 Security . 169

4.7 Multi-Input ABE for Any Constant Arity 180
4.7.1 Construction for NC1 Circuits . 180
4.7.2 Security . 188
4.7.3 A Construction for P . 204

CHAPTER 5 ATTRIBUTE-BASED MULTI-INPUT FE (AND MORE)
FOR ATTRIBUTE-WEIGHTED SUMS 207

5.1 Introduction . 207

x

5.2 Our Results . 210
5.2.1 New Applications . 213

5.3 Technical Overview . 215
5.4 Preliminaries . 234

5.4.1 Computation Models . 234
5.4.2 Basic Cryptographic Notions . 235
5.4.3 Variants of Functional Encryption 239

5.5 Attribute-Based FE for Attribute-Weighted Sums with Inner Product . . . 242
5.5.1 Construction . 243
5.5.2 Security . 245

5.6 Attribute-Based MIFE for Attribute-Weighted Sums 255
5.6.1 Construction . 257
5.6.2 Security . 258
5.6.3 Amplifying security against Any Keys 261

5.7 Multi-Client FE for Attribute-Weighted Sums 263
5.7.1 Construction . 266
5.7.2 Security . 266

5.8 Dynamic Decentralized FE for Attribute Weighted Sums 270
5.8.1 Definition . 270
5.8.2 Construction . 273
5.8.3 Security . 276

Appendix . 282
5.A Detailed Comparison with Prior Work 282
5.B Multi-Party Functional Encryption . 283

5.B.1 Dynamic Multi-Party Functional Encryption 287
5.B.2 Capturing our primitives in the MPFE framework 291

CHAPTER 6 ROUND-OPTIMAL LATTICE-BASED THRESHOLD
SIGNATURES 295

6.1 Introduction . 295
6.2 Our Results . 297
6.3 Technical Overview . 298
6.4 Preliminaries . 306

6.4.1 Threshold Signatures . 306
6.4.2 Fully Homomorphic Encryption (FHE) 309
6.4.3 Threshold Fully Homomorphic Encryption 311
6.4.4 Multi-data Homomorphic Signature 313
6.4.5 Rényi Divergence . 316
6.4.6 Secret Sharing . 318
6.4.7 Lattice preliminaries . 320

6.5 More Efficient Threshold Signatures from Lattices 320
6.5.1 Optimizing the Boneh et al scheme using the Rényi Divergence . . 321
6.5.2 Unforgeability . 323
6.5.3 Robustness . 329
6.5.4 On the Optimality of Our Flooding 330

xi

6.6 Instantiating Threshold Signatures: Rejection-Free Lyubashevsky 333
6.6.1 Construction . 333
6.6.2 Security . 334
6.6.3 Optimality of Flooding . 337

6.7 Threshold Signatures with Adaptive Security 340
6.7.1 Construction for Partially Adaptive Unforgeability 340
6.7.2 Unforgeability . 342
6.7.3 Robustness . 349

6.8 Fully Adaptive Unforgeability in the Preprocessing Model 349
6.8.1 Construction . 349
6.8.2 Unforgeability . 352
6.8.3 Robustness . 357

6.9 Threshold Signatures for 𝑡-out-of-𝑁 access structures 358
6.9.1 Construction . 358
6.9.2 Unforgeability . 360
6.9.3 Robustness . 364
6.9.4 Construction for adaptive unforgeability 364

CHAPTER 7 PRACTICAL, ROUND-OPTIMAL LATTICE-BASED
BLIND SIGNATURES 365

7.1 Introduction . 365
7.2 Our Results. 367
7.3 Our Techniques . 367
7.4 Preliminaries . 375

7.4.1 Blind Signatures . 376
7.4.2 Non-Interactive Zero Knowledge Arguments 378

7.5 Starting Point: Instantiating Fischlin’s Blind Signature 379
7.5.1 Construction . 379
7.5.2 Unforgeability . 381
7.5.3 Blindness . 383
7.5.4 Efficiency Estimate . 384

7.6 Two Round Blind Signature from One-More-ISIS 385
7.6.1 The One-More-ISIS Assumption 385
7.6.2 Construction . 386
7.6.3 Unforgeability . 388
7.6.4 Blindness . 391
7.6.5 Concrete Instantiation . 393
7.6.6 Security Analysis of One-More-ISIS 401

Appendix . 405
7.A Full-fledged Blindness . 405

7.A.1 Construction . 405
7.A.2 Unforgeability . 407
7.A.3 Blindness . 410

CHAPTER 8 CONCLUSIONS AND FUTURE DIRECTIONS 413

xii

BIBLIOGRAPHY 419

CURRICULUM VITAE 443

DOCTORAL COMMITTEE 445

xiii

LIST OF TABLES

Table Caption Page

4.1 Comparison with Related Work in MIPE. 127
4.2 Summary of hybrids in the proof of security for 2ABE construction. . . 181

5.1 Comparison with related work in MIABE and MIPE.We consider CPA-1
sided security for the comparison with [FFMV23]. 212

5.2 Prior state of the art and our results in MIFE, MCFE and DDFE. 214
5.3 Detailed summary of prior state of the art and our results in MIFE, MCFE

and DDFE. 282

7.1 Instantiation of our blind signature protocol from [LNP22b, Figure 1]. . 398
7.2 Concrete parameter selection for the zero-knowledge protocol

from [LNP22b, Figure 10]. 400

8.1 Summary of our contributions in the first part of the thesis 414
8.2 Summary of our contributions in the second part of the thesis 416

xv

LIST OF FIGURES

Figure Caption Page

3.1 Generic group model for bilinear group setting
G = (𝑞,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) and distribution D. 54

3.2 Circuit Obfuscated by Slot 𝑖 Encryption for 1 ≤ 𝑖 ≤ 𝑘 88
3.3 Circuit Obfuscated by Slot 1 Encryption 100
3.4 Circuit Obfuscated by Slot 2 Encryption 100

5.1 Construction Outline of AGW Multi-Client Scheme. 217
5.2 Outline of our constructions of MIFE, MCFE and DDFE. 234

7.1 Instantiation of PKE for the construction of blind signature in
Section 7.6.2 . 396

7.2 Combinatorial Attack on one-more-ISIS. 402

xvii

NOTATION

[𝑚, 𝑛], for 𝑚, 𝑛 ∈ N {𝑖 : 𝑚 ≤ 𝑖 ≤ 𝑛}

[𝑛] for 𝑛 ∈ N {1, . . . , 𝑛}

M (bold capital letter) Matrix M

v (bold small letter) Vector v

DΛ,𝜎,c Discrete Gaussian distribution over lattice Λ with std. deviation
𝜎 and mean c

DΛ,𝜎 Discrete Gaussian distribution over lattice Λ with std. deviation
𝜎 and mean 0

P(𝑆) Power set of set 𝑆

log 𝑥 Base 2 logarithm of 𝑥

negl(𝜆) A negligible function of 𝜆

∥v∥ ℓ2 norm of vector v

∥v∥∞ ℓ∞ norm of vector v

poly(𝜆) Polynomial in 𝜆

PPT Probabilistic Polynomial Time

1ℓ×𝑛(resp. 0ℓ×𝑛) A matrix of dimensions ℓ × 𝑛, having each entry as 1 (resp. 0)

1ℓ(resp. 0ℓ) vector (1, . . . , 1) ∈ Zℓ(resp. (0, . . . , 0) ∈ Zℓ)

x∥y (resp. X∥Y) Horizontal concatenation of vectors x and y (resp. matrices X
and Y)

𝐷1 ≈𝑐 𝐷1 Distributions 𝐷1 and 𝐷2 are computationally indistinguishable

𝐷1 ≈𝑠 𝐷1 Distributions 𝐷1 and 𝐷2 are statistically indistinguishable

𝐷1 ≡ 𝐷1 Distributions 𝐷1 and 𝐷2 are perfectly indistinguishable

xix

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

The developments in the field of information technology have facilitated easy storage and

access to data generated at different locations. This has further facilitated the performing

of different kinds of studies on these data, like medical research, market analysis, etc.

These data generally contain many sensitive information about the users and therefore, it

poses cryptographic challenges to provide secure and controlled access to it so that only

authorized users can access only the relevant part in an efficient manner. For example,

consider a medical researcher who wants to access medical records of patients from a

hospital to study the efficacy of certain medicine in patients in the age group ’60-80’

years having covid and asthma. In this case, we would like to provide the researcher,

restricted access to the records of only those patients who fall in the said group. We

would like to use cryptographic tools to provide this facility. One possible way for

achieving this could be that the hospital encrypts and places the medical records of

all its patients in a public cloud and provides a specialized key to the researcher that

allows her to access the records of only those patients who are relevant to her study.

Clearly, traditional methods, like public key encryption schemes are not enough since

anyone having the decryption key gets unrestricted access to the entire database. There

exist advanced encryption schemes like attribute based encryption (ABE), functional

encryption (FE) that provide such functionality and has seen remarkable progress in

recent years [SW05; GPSW06; CW14; AFV11; LW11; LW12; Wat12; GVW13; Wee14;

Att14; BGG+14; GVW15; GV15; BV16; BW07; SBC+07; GVW15; Lin16; Lin17a;

LV16; Agr19; AJL+19; JLMS19; GJLS21; JLS21; JLS22]. In ABE, a message 𝑚 is

encrypted with respect to a public attribute 𝑥 (for. e.g. age, gender, and disease can be

attributes of a patient corresponding to which his/her records are encrypted), and the

decryption key is generated corresponding to a function 𝑓 such that the decryption is

possible iff 𝑓 (𝑥) = 1. In the stronger notion of predicate encryption (PE), the attributes

are also hidden by the ciphertext. In case of FE, the encryption is done for an input 𝑥 and

the key is generated for a function 𝑓 such that on decryption only 𝑓 (𝑥) is received and

nothing else.

Note that the above solutions implicitly assume a single source of input - ABE/PE

assume that the message 𝑚 is generated at a single source and is encrypted with respect

to a single attribute 𝑥. Similarly, in the case of FE, the input 𝑥 is assumed to be generated

and encrypted at a single source. However, we observe that different parts of a single

logical data may be generated independently in multiple locations and it is often pertinent

to consider the input as a concatenation of these correlated partial inputs. For instance, a

patient is likely to visit different medical centers for the treatment of different diseases

and his/her overall medical record is a concatenation of the medical data generated at

different centers. Similarly, a company is likely to conduct research and development

related to a given technology in different locations but the complete data pertaining to

that technology is a concatenation of these. Now, it may be desirable to provide restricted

access to relevant consumers of the data, exactly as before, but with the caveat that the

input was generated in a distributed manner and is encoded in multiple ciphertexts.

One trivial solution to the above situation can be that the records generated at each

department/center are collected at a central repository where they can then be treated

as a single data. But it poses two challenges: (i) how to transfer the data to the central

repository? If we send the data in plain, it raises security issues. Alternatively, each

center can first encrypt the locally generated data with the repository’s public key and

then send this encrypted data. The repository can use its secret key to decrypt and then

re-encrypt using ABE/PE or FE. However, this method is too cumbersome and wasteful.

(ii) One may desire to use a public cloud for storage in which case the solution proposed

in (i) will be doubly inefficient.

2

Instead, what we would actually want is to be able to provide the same functionality and

security guarantees as in the single input setting in an efficient manner. In particular,

we would want that each part of the data is independently encrypted at the source and

placed on the cloud directly. For decryption, we would want to simply concatenate the

independently generated ciphertexts into a single ciphertext and perform decryption as if

the ciphertext is generated from a single source.

To further enhance the security against secret key getting compromised, in any

cryptographic primitive, it is desired that the trust is distributed among multiple parties

so that there is no single point of security failure. For example, consider a user who uses

Google Pay on his/her phone. Now, if someone gets access to his/her phone, then this

will completely break the security and the money will be lost. Such an attack can be

addressed by distributing the key for GPay on multiple devices, like the user’s phone,

laptop, tablet, etc. such that access to at least two or more devices is needed to make any

transaction. This reduces the security risk due to key compromise since probability of

compromising a single key is higher than compromising two or more keys. Another

familiar example is that of two-step authentication used by several online portals, like net

banking, Gmail etc., which requires both the password and the OTP sent on the user’s

phone for login. This, again, ensures that unless both the login password and the users’

phone are compromised, the user’s account remains secure.

Motivated by these observations, the central theme of this thesis is to study various

cryptographic primitives in distributed setups. In particular, we study multi-input

ABE/PE, multi-party FE, threshold signatures, and blind signatures. Our contributions

include formalizing the definitions for MIABE and MIPE and providing their first

constructions under various assumptions. We also provide the first constructions for

different forms of multi-party FE for attribute weighted sums (AWS) functionality.

We improve the only known construction for round-optimal threshold signatures from

lattice based assumptions in terms of efficiency and security properties. Lattice based

3

assumptions have the advantage of conjectured post quantum security. Finally, we give

the first overall practical and round-optimal construction of blind signatures from a

lattice based assumption that we introduce. We also study our assumption from different

possible attack strategies to gain more confidence in its hardness. Below we give a brief

overview of our thesis.

1.2 OVERVIEW OF THE THESIS

The thesis can be broadly viewed in two parts. In the first part, we study cryptographic

primitives in multi-input setting where data is generated in a distributed way. The second

part focuses on primitives supporting distributed authority.

1.2.1 Distributed Data

In the first part, we study ABE, PE, and FE in multi-input setting. We begin with initiating

the study of multi-input predicate encryptions and extend the study of multi-input attribute

based encryption. Even though both ABE and PE have been widely studied and have

seen remarkable progress [SW05; GPSW06; BW07; KSW08; LOS+10; OT10; OT12;

CW14; AFV11; LW11; LW12; Wat12; GVW13; Wee14; Att14; BGG+14; GVW15;

GV15; BV16; BW07; SBC+07; KSW08; GVW15], all the known constructions, prior to

our work, were limited to single input setting. While the more realistic setting of multi-

inputs has been studied for other related primitives like fully homomorphic encryption

(FHE) and functional encryption (FE) [LATV12; CM15; MW16], [GGG+14; AJ15;

AGRW17; DOT18; ACF+18; CDG+18a; Tom19; ABKW19; ABG19; LT19; AGT21a],

in case of ABE and PE, there has been no significant work. While the idea of ABE was

introduced in the context of constructing witness encryption (WE) [BJK+18], it was not

formally defined and no construction was given. In the case of PE there has been no

prior study at all.

We argue that the multi-input setting is important even in the context of ABE and PE

and generalizing these primitives to support multiple sources enables a host of new

4

and natural applications. For concreteness, we continue with the previous example of

hospital in more detail. As before, consider a doctor who wants to understand the relation

between Covid and other medical conditions such as asthma or cancer, each of which are

treated at different locations. The records of a given patient are encrypted independently

and stored in a central repository, and the doctor can be given a key that filters stored

(encrypted) records according to criteria such as condition = ‘Covid’ and condition =

‘asthma’ and age group =‘60-80’ and enables decryption of these. Similarly, a company

(e.g. IBM) that conducts research in quantum technologies is likely to have different

teams for theoretical and experimental research, and these teams are likely to work in

different locations – indeed, even members of the same team may not be co-located.

Data pertaining to the research could be stored encrypted in a central location where

individual ciphertexts are generated independently, and the company may desire to give

restricted access to a patent office. As a third example, a company may have been sued for

some malpractice, and the data pertinent to the case could span multiple locations. Now

the company may wish to provide restricted access to a law firm that enables decryption

only of the data pertaining to the lawsuit, encrypted independently by multiple sources.

Multi-input attribute based encryption (MIABE) or predicate encryption (MIPE) arise

as natural fits to the above applications. Similarly to the single input case, the secret

key corresponds to a function 𝑓 but the arity of this function can now be 𝑘 > 1 – we

may have 𝑘 ciphertexts generated independently encoding (x𝑖, 𝑚𝑖)𝑖∈[𝑘] , and decryption

reveals (𝑚1, . . . , 𝑚𝑘) if and only if 𝑓 (x1, . . . , x𝑘) = 1. Indeed, any application of single

input ABE and PE where the underlying data is generated in multiple locations and is

correlated in meaningful ways can benefit from the abstraction of multi-input ABE and

PE.

We begin with formalizing the definition of MIPE and MIABE and their security under

unbounded collusions. We construct two-input ABE (2ABE) using LWE and pairings.

Our construction leverages the surprising connection that we observe between the

5

techniques developed in the context of succinct CPABE to a seemingly unrelated setting

of multi-input kpABE. We then give a generic compiler that for a constant 𝑘 , transforms

any 𝑘-input ABE (kABE) to 𝑘-input PE (kPE). Our compiler uses the tool of Lockable

Obfuscation (LO) defined by [GKW17; WZ17] for translating single input ABE to PE in

much more challenging setting of MIABE to MIPE. We note that LO can be instantiated

from LWE. Using our compiler with our results for kABE, we get constructions for

2PE. We then give constructions for 3ABE for NC1 and 2ABE for polynomial circuits

by leveraging the techniques developed in [BV22] in context of constructing succinct

ciphertext policy ABE (CPABE) for polynomial circuits. Similar to [BV22], these

constructions are heuristic.

We then extend our result for MIABE to support any constant arity, 𝑘 using recently

introduced lattice based assumptions of evasive and tensor LWE [Wee22; Tsa22]. We

provide construction of MIABE for the function class NC1 for any constant arity from

evasive LWE assumption. We further extend our construction to support the function

class P by using evasive and a suitable strengthening of tensor LWE. For the special case

of arity 2, we need only the assumptions introduced by Wee, i.e. evasive LWE for NC1

and evasive plus tensor LWE for P (i.e. we do not need to strengthen tensor LWE).

We further continue with the same thread of distributed data where we now focus on

constructing FE in the decentralized setting.

While initially defined and constructed in the single input setting, i.e. with only one

encryptor and one key generator, FE soon began to be generalized to distributed settings

to capture the decentralized nature of both data and authority in the modern world.

Computation on encrypted data generated independently at multiple sources, with

fine-grained control on which data may be combined and with secret keys supporting

decryption of meaningful aggregate functionalities, holds the promise of making FE

much more relevant for real-world applications. These generalizations took different

6

forms, from multi-input FE (miFE) [GGG+14] to multi-client FE (MCFE) [CDG+18a]

to dynamic decentralized FE (DDFE) [CDSG+20] and such others [ACF+20]. These

generalizations were captured via the abstraction of multi-party FE (MPFE) [AGT21b],

which sought to unify these different notions in a single framework. In this thesis, we

study these primitives for attribute weighted sums functionality (AWS).

The Attribute-Weighted Sums Functionality: Recently, Abdalla, Gong, and Wee

[AGW20] introduced the functionality of Attribute-Weighted Sums (AWS) which

supports computation of aggregate statistics on encrypted databases. Concretely,

consider a database with 𝑁 attribute-value pairs (x𝑖, z𝑖)𝑖∈[𝑁] where x𝑖 is a public

attribute associated with user 𝑖, and z𝑖 is private. Given a function 𝑓 , the AWS

functionality on input (x𝑖, z𝑖)𝑖∈[𝑁] is defined as∑︁
𝑖∈[𝑁]

𝑓 (x𝑖)⊤z𝑖 .

The AWS functionality is very natural, and Abdalla, Gong, and Wee suggested several

compelling applications for it – for example, when 𝑓 is a Boolean predicate then AWS

can capture (i) the average salaries of minority groups holding a particular job title –

here, z𝑖 represents salary, while 𝑓 (x𝑖) tests for membership in the minority group, (ii)

approval ratings of an election candidate amongst specific demographic groups in a

particular state – here, z𝑖 is the rating, while 𝑓 (x𝑖) computes membership in said group.

Similarly, when z𝑖 is Boolean, AWS can capture the average age of smokers with lung

cancer, where z𝑖 is lung cancer and 𝑓 computes the average age.

Distributing the Data: Abdalla et al’s construction work in the single input setting,

where all the 𝑁 attribute-value pairs are held by a single party who performs the

encryption. We argue that for several applications of AWS, including the motivating

examples provided by [AGW20], the data (x𝑖, z𝑖)𝑖∈[𝑁] is likely to be distributed across

7

multiple sources which must compute ciphertexts independently. Concretely, in the

example of computing average salaries of minority groups holding a particular job title,

the data about the individuals would be generated across organizations, which are unlikely

to even be in the same location. Similarly, when we compute whether a user is in a

specific demographic group in a particular state, it is natural that user data would be

distributed across different states, indeed even across different cities in a given state. In

the third example, data about patients with lung cancer will naturally be generated and

maintained at different hospitals that offer treatment for lung cancer, which would again

be distributed geographically.

Thus, to capture data generation by independent sources, we extend FE for AWS to the

multi-party setting. Concretely, we focus on the construction of the following primitives

for AWS functionality:

1. Multi-Input FE (MIFE): The primitive of multi-input FE (MIFE) [GGG+14] allows
the input to a function to be distributed among multiple (say 𝑛) parties. In more
detail, the 𝑖𝑡ℎ party encrypts its input z𝑖 to obtain ct𝑖, a key authority holding a
master secret generates a functional key sk 𝑓 and these enable the decryptor to
compute 𝑓 (z1, . . . , z𝑛) and nothing else.

We consider a further generalization of MIFE, namely attribute-based MIFE
introduced by Abdalla et al.[ACGU20], which enables greater control on the
leakage inherent by the functionality of MIFE, making it more suitable for practical
applications. In an AB-MIFE for some functionality 𝑓 , an attribute y𝑖 is associated
with a ciphertext for slot 𝑖, in addition to an input z𝑖. The secret key is associated
with an access control policy 𝑔 in addition to the function input c. Decryption
first checks if 𝑔(y1, . . . , y𝑛) = 1, and if so, it computes the MIFE functionality
𝑓 ({z𝑖}, c).

2. Multi-Client FE (MCFE): MCFE [GGG+14; CDG+18a; CDG+18b] is a
generalization of MIFE. In MCFE, the inputs z𝑖 are additionally associated with
public “labels” 𝐿𝑖 and inputs can only be combined with other inputs that share
the same label. As in MIFE, a functional key sk 𝑓 is provided which allows the
decryptor to compute 𝑓 (z1, . . . , z𝑛) as long as the corresponding labels match, i.e.
𝐿1 = . . . = 𝐿𝑛.

3. Dynamic Decentralized FE (DDFE): DDFE [CDSG+20], as the name suggests, is
a decentralized variant of FE, where not only can ciphertexts be generated locally
and independently but so can the keys. In DDFE for some functionality 𝑓 , the

8

setup step is localized and run independently by users, letting them generate their
private and public keys individually. During encryption, the set of users with
whom a given input or key object should be combined can be chosen dynamically.
In more detail, each party can specify the set of parties with which its input may
be combined, a label that controls which values should be considered together
and the input z𝑖 itself. Similarly, every user can also generate a key object which
specifies the set of parties with which the key may be combined, and a key vector
c𝑖. For decryption, the ciphertexts and keys from the parties who mutually agree
to combine their inputs and keys are put together to compute 𝑓 ({z𝑖}𝑖, {c 𝑗 } 𝑗).

We note that DDFE implies MCFE which implies MIFE1.

1.2.2 Distributed Authority

In the second part, we construct threshold signatures and blind signatures from lattice

based assumptions.

Threshold signature schemes [Des94] enable distribution of the signature issuing

capability to multiple users to mitigate the threat of signing key compromise. In more

detail, in a 𝑡-out-of-𝑁 threshold signature scheme, each of the 𝑁 parties holds a partial

signing key and any set of at least 𝑡 parties can participate in a protocol to generate a

signature. The security requires that any set of less than 𝑡 parties cannot generate a

signature. Thus, it provides security against 𝑡 − 1 corruptions.

While threshold signatures have been studied for a long time [Lin17b; DKLS18; CCL+19;

GGN16; GG18; LN18; DKLS19; DOK+20; CCL+20; CGG+20; GKSŚ20; DJN+20;

GG20; BKP13], they have received renewed attention in recent years due to numerous

applications in modern topics such as cryptocurrencies and blockchains. Most prior

work has focused on creating distributed versions of ECDSA or Schnorr signatures

LN18; GG18; DKLS19; CCL+19; CCL+20 which are not quantum secure. From

lattice based assumptions, which are conjectured to be post quantum secure, the results

are either not round optimal [CS19] or work only for more restrictive 𝑁-out-of-𝑁

access structure [DOTT21]. The only lattice-based, round-optimal threshold signature
1In this work, we use the term MCFE as a generalization of MIFE, so that it allows multiple uses of labels

[CDG+18b]. In contrast, a weaker notion of MCFE, where each label can be used only once, does not
imply MIFE [GGG+14; CDG+18a].

9

construction for 𝑡-out-of-𝑁 access structure is by Boneh et al [BGG+18], relying on

the Learning With Errors problem (LWE). While their construction provides the first

feasibility result, it has several limitations, which we address in this work. Firstly, they

use the so-called technique of noise flooding which hides a sensitive noise into much

larger noise, often known as flooding. Their construction uses exponential flooding which

results in signature size of �̃� (𝜆3), where 𝜆 is the security parameter. We reduce the noise

flooding from exponential to polynomial by performing a careful analysis using Rényi

divergence based distance measurement instead of statistical distance. This helps us bring

down the signature size to �̃� (𝜆, log2𝑄), where 𝜆 is the security parameter and 𝑄 is the

number of signing queries. Second, the construction of [BGG+18] achieves only selective

security, where the corrupt members need to be declared apriori. We provide two new

constructions: (i) the first construction achieves partial adaptivity, where members can

be corrupted at any stage, but all the corruptions need to be declared at once, and (ii)

the second one achieves full adaptivity, where corruptions can happen in any order. Our

fully adaptive construction, however, has the limitation that the signing key size grows

with the number of signing queries, 𝑄𝑆. Finally, to instantiate [BGG+18] scheme, we

need a homomorphism-friendly signature scheme, for which we provide a variant of

Lyubashevsky’s signature [Lyu12] scheme which uses rejection sampling which renders

it unsuitable for homomorphic computation. We trade off rejection sampling at a cost of

adding a moderate noise of polynomial size.

We then continue the thread of studying distributed authority based primitives, with

blind signatures. Blind signatures find numerous applications like e-voting, e-cash,

cryptocurrencies, and many more. They are like standard digital signature schemes, but

now the message and the signing key are held by two different parties, the user (U)

and the signer (S). The user, U, holding a public key and message, 𝑚 may request a

signature from the signer S, such that the signer is not able to link a message-signature

pair with a protocol execution, and the user is not able to forge signatures even after

multiple interactions with the signer.

10

While there exist many practical blind signatures from number-theoretic assumptions,

the situation is far less satisfactory from post-quantum assumptions. In this work, we

propose the first overall practical, lattice-based blind signature, supporting an unbounded

number of signature queries and additionally enjoying optimal round complexity. We

provide a detailed estimate of parameters achieved – we obtain a signature of size slightly

above 45KB, for a core-SVP hardness of 109 bits. The run-times of the signer, the

user, and the verifier are also very small. The security of our construction stems from

a new and arguably natural assumption which we introduce, called the one-more-ISIS

assumption. This assumption can be seen as a lattice analogue of the one-more-RSA

assumption by Bellare et al [JoC’03]. To gain confidence in our assumption, we provide

a detailed analysis of diverse attack strategies.

1.3 ORGANISATION OF THE THESIS

The rest of the thesis is organized as follows: we provide some preliminaries, used

commonly in multiple chapters, in the thesis, in Chapter 2. In Chapter 3, we describe

our constructions for 2ABE for NC1 using LWE and pairings and heuristic constructions

of 3ABE for NC1 and 2ABE for P. We also define our 𝑘ABE to 𝑘PE compiler in the

same chapter. We extend our construction of MIABE to support any constant arity using

evasive and tensor LWE in Chapter 4. In chapter 5, we define our constructions of

multi-party functional encryption for AWS. In Chapter 6, we describe our constructions

for threshold signatures. We introduce our assumption of one-more-ISIS and describe

our construction of blind signature based on the assumption in Chapter 7. In Chapter 8,

we conclude the thesis and discuss interesting directions for future work.

11

CHAPTER 2

PRELIMINARIES

In this chapter, we provide some preliminaries commonly used in this thesis. Additional

preliminaries are given in respective chapters.

2.1 LATTICES AND DISCRETE GAUSSIANS

In this section, we provide definitions of lattices and discrete Gaussian distributions.

Definition 2.1 (Lattice). An 𝑚-dimensional lattice Λ is a discrete additive subgroup of

R𝑚. For an integer 𝑛 < 𝑚 and a rank 𝑛 matrix B ∈ R𝑚×𝑛, Λ(B) = {Bx : x ∈ Z𝑛} is the

lattice generated by integer linear combinations of columns of matrix B. The matrix B is

called a basis of the lattice.

Definition 2.2 (Integral lattice). An 𝑚-dimensional integral lattice Λ is a full-rank

subgroup of Z𝑚. Among these lattices are the “𝑞-ary” lattices defined as follows: for any

integer 𝑞 ≥ 2 and any A ∈ Z𝑛×𝑚𝑞 , we define

Λ⊥𝑞 (A) :=
{
e ∈ Z𝑚 : A · e = 0 mod 𝑞

}
.

For a vector u ∈ Z𝑛𝑞, we define the following coset of Λ⊥𝑞 (A):

Λu
𝑞 (A) :=

{
e ∈ Z𝑚 : A · e = u mod 𝑞

}
.

We have Λu
𝑞 (A) = Λ⊥𝑞 (A) + t for any t such that A · t = u mod 𝑞.

Definition 2.3 (Gaussian distribution). For any vector c ∈ R𝑚 and any real 𝑠 > 0, the

(spherical) Gaussian function with standard deviation parameter 𝑠 and center c is defined

as:

∀x ∈ R𝑚, 𝜌𝑠,c(x) = exp
(
−𝜋∥x − c∥2

𝑠2

)
.

The Gaussian distribution is D𝑠,c(x) = 𝜌𝑠,c(x)/𝑠𝑚.

The (spherical) discrete Gaussian distribution over a lattice Λ ⊆ R𝑚, with standard

deviation parameter 𝑠 > 0 and center c is defined as:

∀x ∈ Λ,DΛ,𝑠,c =
𝜌𝑠,c(x)
𝜌𝑠,c(Λ)

,

where 𝜌𝑠,c(Λ) =
∑

x∈Λ 𝜌𝑠,c(x). When c = 0, we omit the subscript c.

Definition 2.4 (Smoothing parameter). The smoothing parameter of an 𝑚-dimensional

lattice Λ with respect to 𝜖 > 0, denoted by 𝜂𝜖 (Λ), is the smallest 𝑠 > 0, such that

𝜌1/𝑠 (Λ∗ \ {0}) ≤ 𝜖 .

2.1.1 Hardness Assumptions

We will need the Learning With Errors (LWE) problem, which is known to be at least as

hard as certain standard lattice problems in the worst case [Reg09; BLP+13] when it is

appropriately parameterized.

Definition 2.5 (Learning With Errors (LWE)). Let 𝑞, 𝑛, 𝑚, 𝛼 be functions of a parameter𝜆

and 𝜒 be some distribution overZ. For a secret s ∈ Z𝑛𝑞, the distribution 𝐴𝑞,𝑛,𝜒,s overZ𝑛𝑞×Z𝑞
is obtained by sampling a←Z𝑛𝑞 and an 𝑒←𝜒, and returning (a, ⟨a, s⟩ + 𝑒) ∈ Z𝑛+1𝑞 . The

Learning With Errors problem LWE𝑞,𝑛,𝑚,𝜒 is as follows: For s←Z𝑛𝑞, the goal is to

distinguish between the distributions:

𝐷0(s) := 𝑈 (Z𝑚×(𝑛+1)𝑞) and 𝐷1(s) := (𝐴𝑞,𝑛,𝜒,s)𝑚 .

We say that a PPT algorithm A solves LWE𝑞,𝑛,𝑚,𝜒 if it distinguishes 𝐷0(s) and 𝐷1(s)

with non-negligible advantage (over the random coins of A and the randomness of the

samples), with non-negligible probability over the randomness of s.

Subexponential LWE: Here we allow the adversary A to run in 2𝑜(𝜆) time and win with

2−𝑜(𝜆) advantage (over the random coins of A and the randomness of the samples), with

2−𝑜(𝜆) probability over the randomness of s.

When 𝜒 = DZ,𝛼𝑞, we denote the LWE distribution as 𝐴𝑞,𝑛,𝛼,s and the LWE problem as

LWE𝑞,𝑛,𝑚,𝛼

14

Definition 2.6 (Short Integer Solution (SIS)). Let 𝑞, 𝑛, 𝑚, 𝛽 be functions of a parameter 𝜆.

An instance of the SIS𝑞,𝑛,𝑚,𝛽 problem is a matrix A←Z𝑛×𝑚𝑞 . A solution to the problem is

a nonzero vector v ∈ Z𝑚 such that ∥v∥ ≤ 𝛽 and A · v = 0 mod 𝑞.

In order for the above problem to not be vacuously hard, we need to have 𝛽 ≥
√
𝑚𝑞𝑛/𝑚.

This ensures that there exists a solution v.

Like LWE, the SIS problem is known to be at least as hard as certain lattice problems

in the worst case [Ajt96; MR07; GPV08], when it is appropriately parameterized. The

same holds for the inhomogeneous version of the SIS problem stated below.

Definition 2.7 (Inhomogeneous Short Integer Solution (ISIS)). Let 𝑞, 𝑛, 𝑚, 𝛽 be functions

of a parameter 𝜆. An instance of the ISIS𝑞,𝑛,𝑚,𝛽 problem is a matrix A←Z𝑛×𝑚𝑞 and a

vector t←Z𝑛𝑞. A solution to the problem is a vector v ∈ Z𝑚 such that ∥v∥ ≤ 𝛽 and

A · v = t mod 𝑞.

The SIS (and ISIS) problems can be defined for other norms as well. In Chapter 7, we

also use the following version of ISIS:

Let A←Z𝑛×𝑚𝑞 , s←{−𝑑, . . ., 0, . . . , 𝑑}𝑚 and t = As. Then given A, t, the task is to find

s′ ∈ {−𝑑, . . . , 0, . . . , 𝑑}𝑚 such that As′ = t.

The following lemma provides bound on the size of vectors sampled from discrete

Gaussian distribution.

Lemma 2.1 ([Lyu12, Lemma 4.4]). The following hold.

1. For any 𝑘 > 0, Pr[|𝑧 | > 𝑘𝜎; 𝑧←DZ,𝜎] ≤ 2 exp(−𝑘2/2).

2. For any 𝜎 ≥ 3/
√

2𝜋, 𝐻∞(DZ𝑚,𝜎) ≥ 𝑚.

3. For any 𝑘 > 1,

Pr[∥z∥ > 𝑘𝜎
√
𝑚; z←DZ𝑚,𝜎] < 𝑘𝑚 exp(𝑚

2
(1 − 𝑘2)).

15

2.1.2 Lattice Trapdoors

We will use algorithms for generating a random lattice with a trapdoor, and for sampling

short vectors in a lattice coset. The first algorithm is derived from [Ajt99; GPV08; MP12],

whereas the second is derived from [Kle00; GPV08; BLP+13].

Lemma 2.2. Let 𝑞, 𝑛, 𝑚 be positive integers with 𝑞 ≥ 2 and 𝑚 ≥ 6𝑛 log2 𝑞.

There is a PPT algorithm TrapGen(𝑞, 𝑛, 𝑚) that with probability 1 − 2−Ω(𝑛) outputs a

pair (A,T) ∈ Z𝑛×𝑚𝑞 × Z𝑚×𝑚 such that A is within 2−Ω(𝑛) statistical distance to uniform

in Z𝑛×𝑚𝑞 and T is a basis for Λ⊥𝑞 (A).

There is a PPT algorithm SamplePre(A,T, u, 𝜎), which takes as input the above pair

(A,T), a vector u ∈ Z𝑛𝑞 and a sufficiently large 𝜎 = Ω(
√︁
𝑛 log 𝑞 log𝑚) and outputs a

vector e from DΛu
𝑞 (A),𝜎. Further, with probability 2−Ω(𝑛) , we have ∥e∥ ≤ 𝜎

√
𝑚.

For our purpose, we assume that the SamplePre algorithm provides the same output

when invoked with the same input – this can be ensured by generating the randomness

used by the algorithm using a PRF (with the given input as argument).

2.2 PUBLIC KEY ENCRYPTION

Definition 2.8 (Public Key Encryption (PKE)). A PKE scheme is a tuple of PPT

algorithms denoted by PKE = (KeyGen, Enc,Dec) defined as follows:

• KeyGen(1𝜆) → (pk, sk): The KeyGen algorithm is a probabilistic algorithm. It
takes as input a security parameter 𝜆, and outputs a public key pk and a secret key
sk.

• Enc(pk, 𝑚) → ct: The Enc algorithm is a probabilistic algorithm. It takes as
input a public key pk and a message 𝑚 and outputs an encryption ct of 𝑚.

• Dec(sk, ct) → 𝑚′: The decryption algorithm is a deterministic algorithm. It takes
as input a (secret) decryption key sk and a ciphertext ct and outputs a message 𝑚′.

Correctness. For correctness, we require that for all 𝜆 and for all 𝑚, following holds.

For (pk, sk) ← KeyGen(1𝜆), ct ← Enc(pk, 𝑚), we have that Pr[Dec(sk, ct) = 𝑚] ≥

16

1 − 𝜆−𝜔(1) .

IND-CPA Security A PKE scheme is IND-CPA secure if for any adversary PPT adversary

A the output of the following experiment ExptIND-CPA
PKE,A (1𝜆) is 1 with negligible probability.

1. The challenger runs generates (pk, sk) ← KeyGen(1𝜆) and sends pk to A.

2. A then outputs two messages 𝑚0 and 𝑚1.

3. The challenger samples a bit 𝑏 ← {0, 1} and returns ct← Enc(pk, 𝑚𝑏) to A.

4. A outputs a bit 𝑏′.

5. The experiment outputs 1 if 𝑏′ = 𝑏.

2.3 DIGITAL SIGNATURE

Definition 2.9 (Digital Signature). A digital signature scheme is a tuple of PPT algorithms

denoted by Sig = (KeyGen, Sign,Verify) defined as follows:

• KeyGen(1𝜆) → (vk, sk): The KeyGen algorithm is a probabilistic algorithm. It
takes as input a security parameter 𝜆 and outputs a verification key vk and a secret
signing key sk.

• Sign(sk, 𝑚) → 𝜎: The Sign algorithm is a probabilistic algorithm. It takes as
input a signing key sk and a message 𝑚 ∈ {0, 1}∗ and outputs a signature 𝜎.

• Verify(vk, 𝑚, 𝜎) → accept/reject: The verification algorithm is a deterministic
algorithm. It takes as input a verification key vk, a message 𝑚, and a signature 𝜎,
and outputs accept or reject.

Correctness. For correctness, we require that for all 𝜆, the following holds. For

(vk, sk) ← KeyGen(1𝜆), 𝜎 ← Sign(sk, 𝑚), we have that

Pr[Verify(vk, 𝑚, 𝜎) = 𝑎𝑐𝑐𝑒𝑝𝑡] ≥ 1 − 𝜆−𝜔(1) .

Unforgeability A TS scheme is unforgeable if for any adversary PPT adversary A the

output of the following experiment Exptuf
Sig,A (1𝜆) is 1 with negligible probability.

1. The challenger runs generates (vk, sk) ← KeyGen(1𝜆) and sends vk to A.

2. AdversaryA then issues polynomial number signing queries, where for each query

17

it outputs a message 𝑚 ∈ {0, 1}∗.

3. The challenger computes 𝜎𝑚 as Sign(sk, 𝑚) and provides it to A.

4. At the end of the experiment, A outputs a message-signature pair (𝑚∗, 𝜎∗).

5. The experiment outputs 1 if the following condition is met: 𝑚∗ was not queried
previously as a signing query and Verify(vk, 𝑚∗, 𝜎∗) = accept.

2.4 PSEUDORANDOM FUNCTION

Definition 2.10 (Pseudorandom functions (PRF)). A pseudorandom function (PRF)

family F = {PRFK}K∈K with a key space K, a domain X, and a range Y is a function

family that consists of functions PRFK : X → Y. Let R be a set of functions consisting

of all functions whose domain and range are X and Y respectively. A PRF family F is

said to be secure if for any PPT adversary A, the following condition holds,

| Pr[APRFK (·) (1𝜆) = 1] − Pr[A𝑅(·) (1𝜆) = 1] | ≤ negl(𝜆),

where 𝐾 ← K and 𝑅 ← R.

2.5 SOME USEFUL LEMMAS

Lemma 2.3 (Leftover Hash Lemma). Let H = {ℎ : X→Y} be a 2-universal hash

function family. Then for any random variable 𝑋 ∈ X, for 𝜀 > 0 such that log |Y| ≤

𝐻∞(𝑋) − 2 log(1/𝜀), the distributions

(ℎ, ℎ(𝑋)) and (ℎ,U(Y))

are within statistical distance 𝜀.

Further, the family {A ∈ Z𝑛×𝑚𝑞 : r ↦→ Ar} is 2-universal for any prime 𝑞.

Lemma 2.4 (Smudging Lemma [WWW22). Let 𝜆 be a security parameter. Take any

18

𝑎 ∈ Z where |𝑎 | ≤ 𝐵. Suppose 𝜒 ≥ 𝐵𝜆𝜔(1) . Then the statistical distance between the

distributions {𝑧 : 𝑧 ← DZ,𝜒} and {𝑧 + 𝑎 : 𝑧 ← DZ,𝜒} is negl(𝜆).

19

CHAPTER 3

MULTI-INPUT ATTRIBUTE BASED AND
PREDICATE ENCRYPTION

In this, and the next chapter, we study multi-input attribute based and predicate encryption

where the data to be encrypted is distributed among different parties.

3.1 INTRODUCTION

Attribute based encryption (ABE) is a generalization of public key encryption which

enables fine grained access control on encrypted data. In an ABE scheme, the ciphertext

is associated with a secret message 𝑚 and a public attribute vector x while a secret

key is associated with a function 𝑓 . Decryption succeeds to reveal 𝑚 if and only if

𝑓 (x) = 1. Security seeks ciphertext indistinguishability in the presence of collusion

attacks, namely an adversary possessing a collection of keys {sk 𝑓𝑖 }𝑖∈[poly] should not be

able to distinguish between ciphertexts corresponding to (x, 𝑚0) and (x, 𝑚1) unless one

of the keys sk 𝑓𝑖∗ is individually authorised to decrypt, i.e. 𝑓𝑖∗ (x) = 1. ABE comes in two

flavours – “key-policy” and “ciphertext-policy”, depending on whether the function 𝑓 is

embedded in the key or the ciphertext.

The stronger notion of predicate encryption (PE) [BW07; SBC+07; KSW08; GVW15]

further requires the attribute vector x to be hidden so that ciphertexts corresponding

to (x0, 𝑚0) and (x1, 𝑚1) remain indistinguishable so long as 𝑓𝑖 (x0) = 𝑓𝑖 (x1) = 0 for all

secret keys {sk 𝑓𝑖 }𝑖∈[poly] seen by the adversary.

Both ABE and PE have been widely studied, and possess elegant instantiations from

a variety of assumptions [SW05; GPSW06; BW07; KSW08; LOS+10; OT10; OT12;

CW14; AFV11; LW11; LW12; Wat12; GVW13; Wee14; Att14; BGG+14; GVW15;

GV15; BV16; BW07; SBC+07; KSW08; GVW15]. Despite all this amazing progress,

however, all known constructions supported the single input setting – namely, the function

𝑓 embedded in the secret key sk 𝑓 has arity one, so that the secret key can be used to decrypt

only a single ciphertext at a time. While the more realistic multi-input setting has been

studied for other closely related notions such as fully homomorphic encryption [LATV12;

CM15; MW16] and functional encryption [GGG+14; AJ15; AGRW17; DOT18; ACF+18;

CDG+18a; Tom19; ABKW19; ABG19; LT19; AGT21a], this was not investigated at all in

the context of predicate encryption, and only sparingly [BJK+18] in the context of attribute

based encryption, prior to our work. In concurrent work, Francati et al. [FFMV23]

provided multi-input PE schemes for restricted functionality of conjunctions of bounded

polynomial depth from LWE in a weaker security model that does not allow collusions.

A more detailed comparison with their results is given in Chapter 4.

Prior Work. Brakerski et al. [BJK+18] studied the notion of MIABE and showed that

MIABE for polynomial arity implies witness encryption (WE). However, though they

provided the first definition of MIABE, they only used it as a new pathway for achieving

witness encryption, not as a notion with its own applications – in their definition, only

the first encryptor has any input, since this suffices for WE. They do not consider strong

notions of security or provide any constructions of MIABE. They also defined the notion

of non-trivially exponentially efficient witness encryption (XWE), where the encryption

run-time is only required to be much smaller than the trivial 2𝑚 bound for NP relations

with witness size 𝑚. They show how to construct such XWE schemes for all of NP

with encryption run-time 2𝑚/2 using the single input ABE by [GVW13]. For encryption

run-time 2𝛾·𝑚, the term 𝛾 is denoted as compression factor, and they explicitly left open

the problem of constructing XWE schemes with an improved compression factor.

ABE and PE as special cases of functional encryption (FE): Both ABE and PE can

be captured as special cases of functional encryption [SW05; BSW11], which has been

22

studied extensively, in both the single-input [SW05; BSW11; GVW13; BGG+14] and

multi-input setting [GGG+14; AJ15; AGRW17; DOT18; ACF+18; CDG+18a; Tom19;

ABKW19; ABG19; LT19; AGT21a]. Recall that in functional encryption (FE), a secret

key is associated with a function 𝑓 , a ciphertext is associated with an input x and

decryption allows to recover 𝑓 (x) and nothing else. It is easy to see that PE and

ABE are both special cases of FE – in particular, both PE and ABE achieve the same

functionality but restrict the security requirements of FE. In PE, we ask that the attribute

x be hidden but only when the adversary does not see any decrypting keys, namely

𝑓𝑖 (x) = 0 for all function keys 𝑓𝑖 received by the adversary. On the other hand, in FE, the

attacker may request a key sk 𝑓 , so long as 𝑓 does not distinguish the challenge messages

(x0, 𝑚0), (x1, 𝑚1), namely, we may have 𝑓 (x0) = 𝑓 (x1) = 1 so long as 𝑚0 = 𝑚1
1. In the

even weaker ABE, we do not ask any notion of hiding for x, and this may be provided in

the clear with the ciphertext.

Why not Functional Encryption? The informed reader may wonder what is the

advantage of studying primitives like MIPE or MIABE when these are special cases

of multi-input functional encryption (miFE), which has recently been constructed

from standard assumptions [JLS21; AJ15]. It was shown by [AJ15; BV15a] that FE

satisfying a certain efficiency property (known as compactness) implies multi-input

functional encryption, which in turn implies the powerful primitive of indistinguishability

obfuscation (iO) [BGI+01]. A long line of exciting works endeavoured to construct

compact FE (and hence iO) from standard assumptions [Lin16; Lin17a; LV16; Agr19;

AJL+19; JLMS19; GJLS21], coming ever-closer, until the very recent work of Jain,

Lin and Sahai closed the last remaining gap and achieved this much sought after goal

[JLS21; JLS22]. In [JLS21; JLS22], the authors provide a construction for compact

FE, which in turn implies miFE for polynomial arity (albeit with exponential loss in the

reduction).
1We note that a message 𝑚 separate from attribute x is not required in the definition of FE, but we include

it here for simpler comparison with PE and ABE.

23

Going via the route of compact FE, we obtain an exciting feasibility result for miFE and

hence MIABE as well as MIPE. However, we argue that using something as strong as

miFE or iO to construct MIABE and MIPE is undesirable, and indeed an “overkill” for

the following reasons:

• Assumptions: Compact FE of [JLS21] is constructed via a careful combination
of 4 assumptions – Learning Parity with Noise (LPN), Learning With Errors
(LWE), SXDH assumption on Pairings, and pseudorandom generators computable
in constant depth. In the follow-up work of [JLS22], this set of assumptions was
trimmed to exclude LWE. Therefore any construction built using compact FE must
make at least this set of assumptions, which is restrictive. A major goal in the
theory of cryptography is developing constructions from diverse assumptions.

• Complexity: The construction of compact FE is extremely complex, comprising
a series of careful steps, and this must then be lifted to miFE using another
complex construction [AJ15]. Unlike FE, both PE and ABE are much simpler,

“all or nothing” primitives and permit direct constructions in the single-input
setting [GVW13; BGG+14; GVW15]. Do we need the full complexity of an miFE
construction to get MIPE or MIABE? Indeed, even in the context of miFE, there is
a large body of work that studies direct constructions for smaller function classes
such as linear and quadratic functions [AGRW17; DOT18; ACF+18; CDG+18a;
Tom19; ABKW19; ABG19; LT19; AGT21a].

• New Techniques: Finally and most importantly, we believe that it is extremely
useful to develop new techniques for simpler primitives that are not known to be
in obfustopia, and provide direct constructions. While direct constructions are
likely to be more efficient, and are interesting in their own right, they may also
lead to new pathways even for obfustopia primitives such as witness encryption
or compact FE. Note that the only known construction of FE from standard
assumptions is by [JLS21; JLS22], which makes crucial (and surprising) use of
LPN in order to overcome a technical barrier – is LPN necessary for other primitives
implied by compact FE? We believe that exploring new methods to construct
weaker primitives is of central importance in developing better understanding of
cryptographic assumptions, their power and limits.

3.2 OUR RESULTS

In this chapter, we initiate the study of multi-input predicate and attribute based encryption

(MIABE and MIPE) and make the following contributions:

1. Formalizing Security: We provide definitions for MIABE and MIPE in the symmetric
key setting and formalize two security notions in the standard indistinguishability

24

(IND) paradigm, against unbounded collusions. The first (regular) notion of
security assumes that the attacker does not receive any decrypting keys, as is
standard in the case of PE/ABE. The second strong notion, allows some decrypting
queries in restricted settings.

2. Two-input ABE for NC1 from LWE and Pairings: We provide the first constructions
for two-input key-policy ABE for NC1 from LWE and pairings. Our construction
leverages a surprising connection between techniques recently developed by
Agrawal and Yamada [AY20] in the context of succinct single-input ciphertext-
policy ABE, to the seemingly unrelated problem of two-input key-policy ABE.
Similarly to [AY20], our construction is proven secure in the bilinear generic group
model. By leveraging inner product functional encryption and using (a variant
of) the KOALA knowledge assumption, we obtain a construction in the standard
model analogously to Agrawal, Wichs and Yamada [AWY20].

3. Heuristic two-input ABE for P from Lattices: We show that techniques developed
for succinct single-input ciphertext-policy ABE by Brakerski and Vaikuntanathan
[BV22] can also be seen from the lens of MIABE and obtain the first two-input
key-policy ABE from lattices for P. Similarly to [BV22], this construction is
heuristic.

4. Heuristic three-input ABE and PE for NC1 from Pairings and Lattices: We
obtain the first three-input ABE for NC1 by harnessing the powers of both the
Agrawal-Yamada [AY20] and the Brakerski-Vaikuntanathan [BV22] constructions.

5. Multi-input ABE to multi-input PE via Lockable Obfuscation: We provide a
generic compiler that lifts multi-input ABE to multi-input PE by relying on the
hiding properties of Lockable Obfuscation (LO) by Wichs-Zirdelis and
Goyal-Koppula-Waters (FOCS 2018), which can be based on LWE. Our compiler
generalises such a compiler for single-input setting to the much more challenging
setting of multiple inputs. By instantiating our compiler with our new two and
three-input ABE schemes, we obtain the first constructions of two and three-input
PE schemes.

In Chapter 4, we extend our results to any constant arity for class NC1 and P under recently

introduced lattice-based assumptions of evasive and tensor LWE [Tsa22; Wee22].

Our constructions of multi-input ABE provide the first improvement to the compression

factor (from 1/2 to 1/3 or 1/4) of non-trivially exponentially efficient Witness Encryption

defined by Brakerski et al. [BJK+18] without relying on compact functional encryption

or indistinguishability obfuscation. We believe that the unexpected connection between

25

succinct single-input ciphertext-policy ABE and multi-input key-policy ABE may lead to

a new pathway for witness encryption.

3.3 TECHNICAL OVERVIEW

In this section, we begin with an overview of our modeling of multi-input attribute

based and predicate encryption followed by an overview of the techniques used in our

constructions and proof strategies.

Modeling Multi-Input Attribute Based and Predicate Encryption. Our first

contribution is to model multi-input attribute based encryption (MIABE) and predicate

encryption (MIPE) as relevant primitives in their own right. To begin, we observe that

similarly to multi-input functional encryption (miFE) [GGG+14], these primitives are

meaningful primarily in the symmetric key setting where the encryptor requires a secret

key to compute a ciphertext. This is to prevent the primitive becoming trivial due to

excessive leakage occurring by virtue of functionality. In more detail, let us say 𝑘

encryptors compute an unbounded number ciphertexts in each slot, i.e.

{(x 𝑗1, 𝑚
𝑗

1), . . . (x
𝑗

𝑘
, 𝑚

𝑗

𝑘
)} 𝑗∈[poly] and the adversary obtains secret keys corresponding to

functions { 𝑓𝑖}𝑖∈[poly] . In the multi-input setting, ciphertexts across slots can be

combined, allowing the adversary to compute 𝑓𝑖 (x 𝑗11 , x
𝑗2
2 , . . . , x

𝑗𝑘
𝑘
) for any indices

𝑖, 𝑗1, . . . , 𝑗𝑘 ∈ [poly]. In the public key setting, an adversary can easily encrypt

messages for various attributes of its choice and decrypt these with the challenge

ciphertext in a given slot to learn a potentially unbounded amount of information. 2 Due

to this, we believe that the primitives of MIABE and MIPE are meaningful in the

2The triviality of public-key MIABE depends on the function class being supported. For example, consider
the inner product functionality (which is in NC1) defined as - let 𝑓v (x1, x2) = 1 if ⟨v, x1 | |x2⟩ = 0,
where x1 and x2 are inputs in the ciphertext and v is in the key. Given a slot-1 ciphertext CT1 (x1, 𝑚1)
we would like to argue that 𝑚1 remains hidden. However, in the public key case, it is possible to
compute slot-2 ciphertext CT2 (x2, 𝑚2) so that for any 𝑣, x1 (note that these are public) the decryption
condition can be satisfied and the message 𝑚1 can be recovered. This argument can also be extended
to some interesting polynomials. On the other hand, there are function classes in NC1, such as 3-SAT
where it would be hard for the attacker to find a satisfying input and even the public key setting would
not create excessive leakage (although it is unclear if such a functionality is useful in practice).

26

symmetric key setting where encryption also requires a secret key.

For security, we require the standard notion of ciphertext indistinguishability in the

presence of collusion attacks, as in the single-input setting. Recall that in the single-input

setting, the adversary cannot request any decrypting keys for challenge ciphertexts to

prevent trivial attacks. However, since we are in the symmetric key setting where the

adversary cannot encrypt herself, we propose an additional notion of strong security which

also permits the adversary to request decrypting ciphertexts in some cases. In more detail,

for the case of MIABE, our strong security game allows the attacker to request function

keys for { 𝑓𝑖}𝑖∈[poly] and ciphertexts for tuples {(x 𝑗1, 𝑚
𝑗

𝛽,1), . . . , (x
𝑗

𝑘
, 𝑚

𝑗

𝛽,𝑘
)}𝛽∈{0,1}, 𝑗∈[poly]

so that it may hold that 𝑓𝑖 (x 𝑗11 , . . . , x
𝑗𝑘
𝑘
) = 1 for some 𝑖, 𝑗1, . . . , 𝑗𝑘 ∈ [poly] as long as

the challenge messages do not distinguish, i.e. (𝑚 𝑗1
1,0 = 𝑚

𝑗1
1,1), . . . , (𝑚

𝑗𝑘
𝑘,0 = 𝑚

𝑗𝑘
𝑘,1). For

the case of MIPE, we analogously define a strong version of security by asking that if

𝑓𝑖 (x 𝑗11,𝛽, . . . , x
𝑗𝑘
𝑘,𝛽
) = 1 holds for some 𝑖, 𝑗1, . . . , 𝑗𝑘 ∈ [poly] and 𝛽 ∈ {0, 1}, then it is also

true that (x 𝑗11,0, . . . , x
𝑗𝑘
𝑘,0) = (x

𝑗1
1,1, . . . , x

𝑗𝑘
𝑘,1) and (𝑚 𝑗1

1,0, . . . , 𝑚
𝑗𝑘
𝑘,0) = (𝑚

𝑗1
1,1, . . . , 𝑚

𝑗𝑘
𝑘,1). For

more details, please see Section 3.5.

Constructing Two Input ABE from LWE and Bilinear GGM. In constructing

two input ABE (2ABE), the main difficulty is to satisfy two seemingly contradicting

requirements at the same time: (1) the two ciphertexts should be created independently,

(2) these ciphertexts should be combined in a way that decryption is possible. If we look

at specific ABE schemes (e.g., [GPSW06; BGG+14]), it seems that these requirements

cannot be satisfied simultaneously. If we want to satisfy the second requirement, the two

ciphertexts should have common randomness. However to satisfy the first requirement,

the randomness in the two ciphertexts needs to be sampled independently. An approach

might be to fix the randomness and put it into the master secret key which is then used by

both ciphertexts – but this will compromise security since fresh randomness is crucial in

safeguarding semantic security.

27

Generating Joint Randomness: For resolving this problem, we consider a scheme that

modifies two independently generated ciphertexts so that they have common randomness

and then “joins” them. This common randomness is jointly generated using

independently chosen randomness in each ciphertext by using a pairing operation.

Specifically, we compute a ciphertext for slot 1 with randomness 𝑡1 and encode it in G1

and similarly, for slot 2 with randomness 𝑡2 in G2, where G : G1 ×G2 → G𝑇 is a pairing

group with prime order 𝑞. Then, both ciphertexts may be combined to form a new

ciphertext with respect to the randomness 𝑡1𝑡2 on G𝑇 . This approach seems to be

promising, because we can uniquely separate every pair of ciphertexts, since each pair

(𝑖, 𝑗) will have unique randomness 𝑡𝑖1𝑡
𝑗

2. In the generic group model, this is sufficient to

prohibit “mix and match” attacks that try to combine components of different ciphertexts

in the same slot.

Moving Beyond Degree 2: However, since we “used up" the pairing operation here, it

appears we cannot perform more than linear operations on the generated ciphertext, which

would severely restrict the function class supported by our construction. In particular,

pairing based ABE schemes seem not to be compatible with the above approach, because

these require additional multiplication in the exponent during decryption, which cannot

be supported using a bilinear map. However, at this juncture, a trick suggested by

Agrawal and Yamada [AY20] comes to our rescue – to combine lattice based ABE with

bilinear maps in a way that lets us get the “best of both”.

At a high level, the Agrawal-Yamada trick rests on the observation that in certain lattice

based ABE schemes [BGG+14; GV15], decryption is structured as follows: (i) evaluate

the circuit 𝑓 on ciphertext encodings of x, (ii) compute a matrix-vector product of the

ciphertext matrix and secret key vector, (iii) perform a rounding operation to recover the

message. Crucially, step (i) in the above description is in fact a linear operation over the

encodings, even for circuits in P, and the only nonlinear part of decryption is the

28

rounding operation in step (iii). They observe that steps (i) and (ii) may be done

“upstairs” in the exponent and step (iii) may be done “downstairs” by recovering the

exponent brute force, when it is small enough. Importantly, the exponent is small

enough when the circuit class is restricted to NC1 using asymmetry in noise growth

[GV15; GVW13]. While this idea was developed in the context of a single-input

ciphertext-policy ABE, it appears to be exactly what we need for two-input key-policy

ABE!

Perspective: Connection to Broadcast Encryption: In hindsight, the application of

optimal broadcast encryption requires succinctness of the ciphertext, which recent

constructions [BV22; AY20; AWY20] obtain by relying on the decomposability of

specific ABE schemes [BGG+14; GV15] – this decomposability is also what the

multi-input setting intrinsically requires, albeit for a different reason. In more detail,

decomposability means that the ciphertext for a vector x can be decomposed into |x|

ciphertext components each encoding a single bit x𝑖, and these components can be tied

together using common randomness to yield a complete ciphertext. The bit by bit

encoding of the vector allows 2|x| ciphertext components, each component encoding

both bits for a given position, to together encode 2|x| possible values of x, which leads to

the succinctness of ciphertext in optimal broadcast encryption schemes

[BV22; AY20; AWY20]. In the setting of multi-input ABE, decomposability allows to

morph independently generated full ciphertexts with distinct randomness to components

of a single ciphertext with common randomness. The randomness is “merged” using

pairings (or lattices, see below) and the resultant ciphertext can now be treated like the

ciphertext of a single input scheme.

Adapting to the 2ABE Setting: Let us recall the structure of the ciphertext in scheme of

Boneh et al. [BGG+14], which is denoted as BGG + 18 hereafter. As discussed above, a

29

ciphertext for an attribute x ∈ [2ℓ]3 in BGG + 18 is generated by first generating LWE

encodings (their exact structure is not important for this overview) for all possible values

of the attribute x, namely, {𝜓𝑖,𝑏}𝑖∈[2ℓ],𝑏∈{0,1} (along with other components which are not

relevant here) and then selecting {𝜓𝑖,𝑥𝑖 }𝑖∈[2ℓ] based on x, where 𝑥𝑖 is the 𝑖-th bit of the

attribute string x.

Given the above structure, a candidate scheme works as follows. The setup algorithm

computes encodings for all possible x, namely {𝜓𝑖,𝑏}𝑖,𝑏 and puts them into the master

secret key. The encryptor for slot 1 chooses 𝑡1 ← Z𝑞 and encodes (𝑡1, {𝑡1𝜓𝑖,𝑥1,𝑖 }𝑖∈[ℓ]) in

the exponent of G1. Similarly, the encryptor for slot 2 chooses 𝑡2 ← Z𝑞 and encodes

(𝑡2, {𝑡2𝜓𝑖,𝑥2,𝑖−ℓ }𝑖∈[ℓ+1,2ℓ]) in the exponent of G2. In decryption, we compute a pairing

of matching components of the two ciphertexts to obtain (𝑡1𝑡2, {𝑡1𝑡2𝜓𝑖,𝑥𝑖 }𝑖∈[2ℓ]) in the

exponent of G𝑇 . Using the BGG + 18 decryption procedure described above, we may

perform linear operations to evaluate the circuit, apply the BGG + 18 secret key and

obtain the message plus noise in the exponent, which is brought “downstairs” by brute

force to perform the rounding and recover the message.

Challenges in Proving Security. While the above sketch provides a construction template,

security is far from obvious. Indeed, some thought reveals that the multi-input setting

creates delicate attack scenarios that need care to handle. As an example, consider

the strong security definition which allows the adversary to request ciphertexts that are

decryptable by secret keys so long as they do not lead to a distinguishing attack. For

simplicity, let us restrict to the setting where only the slot 1 ciphertext carries a message

and slot 2 ciphertexts carry nothing except attributes (this restriction can be removed).

Now, a slot 1 ciphertext may carry a message that depends on the challenger’s secret bit

as long as it is not decryptable by any key. However, slot 2 ciphertexts may participate

in decryption with other slot 1 ciphertexts that do not encode the challenge bit, and

decryption can (and does) lead to randomness leakage of participating ciphertexts. When

3The length of the attribute is set to 2ℓ to match our two-input setting.

30

such a “leaky” slot 2 ciphertext is combined with the challenge slot 1 ciphertext for

decryption, security breaks down.

For concreteness, let us consider the setting where the adversary makes slot 1 ciphertext

queries for (x1, (𝑚0, 𝑚1)) and (x′1, (𝑚
′
0, 𝑚

′
1)) and slot 2 ciphertext query for (x2).

Furthermore, the adversary makes a single key query for a circuit 𝐹 such that 𝐹 (x1, x2) = 0

(unauthorized) and 𝐹 (x′1, x2) = 1 (authorized). Note that to prevent trivial attacks, we

pose the restriction that 𝑚′0 = 𝑚′1, but we may have 𝑚0 ≠ 𝑚1. In this setting, the 2ABE

construction described above is not secure since the noise associated with the slot 2

ciphertext for x2 leaks during decryption of the jointly generated ciphertext for (x′1, x2)

and this prevents using BGG + 18 security for the pair (x1, x2).

To resolve the above problem, we need to somehow “disconnect” randomness used in the

challenge ciphertexts of slot 1 from randomness used in leaky/decrypting ciphertexts of

other slots. This is tricky since the multi-input setting insists that ciphertexts be combined

across slots in an unrestricted way. Fortunately, another technique developed [AY20]

for a completely different reason comes to our assistance – we discontinue encoding the

BGG + 18 ciphertexts in 2ABE ciphertexts for slot 2, so that even if a slot 2 ciphertext is

decrypted, this does not affect the security of the BGG + 18 encoding. Instead, we encode

a binary “selection vector" in the exponent of G2, which enables the decryptor to recover

𝜓2,𝑥2,𝑖 when matching positions of slot 1 and slot 2 ciphertext components are paired. In

the context of broadcast encryption (i.e. succinct ciphertext-policy ABE) [AY20] this

trick was developed because the key generator could not know the randomness used by

the encryptor, and moreover this randomness is unbounded across unbounded ciphertexts.

In our setting, this trick instead allows to break the leakage of correlated randomness

caused by combining ciphertexts across different slots, some of which may be challenge

ciphertexts and others of which may be decrypting ciphertexts. However, though we

made progress we are still not done and the formal security argument still be required to

address several issues – please see Section 3.6 for more details.

31

Constructing 2ABE in the Standard Model. We next turn to adapting the construction

to the standard model – a natural starting point is the standard model adaptation of

[AY20] by Agrawal, Wichs and Yamada [AWY20] which is based on a non-standard

knowledge type assumption KOALA on bilinear groups. Our proof begins with these

ideas but again departs significantly due to the nuanced security game of the multi-input

setting – indeed, we will run into subtle technical issues related to the distribution of

auxiliary information which will require us to formulate a variant of KOALA.

We first outline our construction, which uses a version of inner product functional

encryption (IPFE), where one can directly encrypt group elements (rather than Z𝑞

elements) and can generate a secret key for group elements. Thus, a ciphertext may

encrypt a vector [v]1 and a secret key is for [w]2 and the decryption result of the

ciphertext using the secret key is [⟨v,w⟩]𝑇 . Using IPFE and ideas similar to our first

construction discussed above, we encode vectors into ciphertexts and secret keys so that

the decryption result ends up with the BGG + 18 ciphertext randomized by a secret key

specific randomness 𝑡. In more detail, a slot 1 ciphertext is an IPFE ciphertext encoding

[v, 0]2 and a slot 2 ciphertext is an IPFE secret key encoding [𝑡w, 0]2 so that [𝑡⟨v,w⟩]𝑇

is recovered upon decryption, which is a corresponding BGG + 18 ciphertext randomized

by 𝑡 on the exponent. Here, the last 0 entries are used for the security proof. We note that

compared to the solution in bilinear generic group model we explained, we dropped the

randomness on the ciphertext encoding and only the secret key encoding is randomized

by 𝑡. The reason why the randomness on the ciphertext encoding can be removed is that

the encoding is already protected by the IPFE and this change allows to simplify the

construction and proof.

In the security game, we will have {ct(𝑖) := IPFE.Enc([v(𝑖) , 0]1)}𝑖 and

{sk(𝑖) := IPFE.sk([𝑡 (𝑖)w(𝑖) , 0]2)}𝑖, where ct(𝑖) is the 𝑖-th slot 1 ciphertext and sk(𝑖) is the

𝑖-th slot 2 ciphertext. Let us say that the adversary requests 𝑄 ciphertexts in each slot.

The security proof is by hybrid argument, where slot 1 ciphertexts are changed from

32

ciphertexts for challenge bit 0 to 1 one by one. Now, to change the message in a slot 1

ciphertext 𝑖∗, we must account for its combination with all slot 2 ciphertexts – note that

such a constraint does not arise in single input ABE/BE [AWY20]. To handle this, we

leverage the power of IPFE so that the 𝑄 second slot ciphertexts hardcode the decryption

value for the chosen slot 1 ciphertext 𝑖∗ and behave as before with other slot 1

ciphertexts. A bit more explicitly, the 𝑗-th secret key may be hardwired with

([𝑡 (𝑗)]2, [𝑡 (𝑗)BGG + 18.ct(𝑗)]2), where BGG + 18.ct(𝑗) is a set of BGG + 18 ciphertexts

derived from v(𝑖★) and w(𝑗) . We note that since {BGG + 18.ct(𝑗)} 𝑗 are derived from the

same vector v(𝑖★) , their distribution is mutually correlated.

At this stage, we have a vector of BGG + 18 ciphertexts encoded in the exponent,

randomized with a unique random term 𝑡 (𝑗) and would like to change the ciphertexts

BGG + 18.ct(𝑗) into random strings using the security of BGG + 18. A similar situation

was dealt with by [AWY20], who essentially showed that if BGG + 18.ct(𝑗) is individually

pseudorandom given an auxiliary information aux, then by a variant of the KOALA

assumption, {[𝑡 (𝑗)]2, [𝑡 (𝑗)BGG + 18.ct(𝑗)]2} 𝑗 looks pseudorandom, even if ciphertexts

are mutually correlated for 𝑗 ∈ [𝑄]. However, this idea is insufficient for our setting

due to the distribution of the auxiliary information. In more detail, for the construction

of [AWY20], it sufficed to have a single BGG + 18 secret key in aux, since their

construction only needed a single key secure BGG + 18. By applying a standard trick

in lattice cryptography, they could sample the secret key first (setting other parameters

accordingly) and thus regard aux as a random string. In contrast, our scheme crucially

requires multiple BGG + 18 secret keys, which can no longer be considered as random

strings. This necessitates formulating a variant of the KOALA assumption whose

distribution of the auxiliary input is structured rather than random. We do not know how

to weaken this assumption using our current techniques and leave this improvement as

an interesting open problem. For more details, please see Section 3.7.

33

Compiling multi-input ABE to multi-input PE. Next, we discuss how to lift 𝑘-input

MIABE to 𝑘-input MIPE. For the purposes of the introduction, let us focus on the case of

𝑘 = 2. As a warm-up, we begin with the simpler setting of standard security, i.e. where

there are no decrypting ciphertexts.

The natural first idea to construct MIPE is to replace the single input ABE, BGG + 18 in

our 2ABE scheme by single input PE, which has been constructed for all polynomial

circuits by Gorbunov, Vaikuntanathan and Wee [GVW15]. However, this idea quickly

runs into an insurmountable hurdle – for our construction template, we need to bound the

decryption noise by polynomial so that it can be recovered by brute force computation of

discrete log in the final step. This is possible for ABE supporting NC1 using asymmetric

noise growth [GV15]. In the context of PE however, we do not know how to restrict

the noise growth to polynomial – this is due to the usage of the fully homomorphic

encryption in the scheme, which extends the depth of the evaluated circuit beyond what

can be handled.

An alternative path to convert ABE to PE in the single input setting uses the machinery of

Lockable Obfuscation (LO) [GKW17; WZ17]. Lockable obfuscation allows to obfuscate

a circuit𝐶 with respect to a lock value 𝛽 and a message𝑚. The obfuscated circuit on input

𝑥 outputs 𝑚 if 𝐶 (𝑥) = 𝛽 and ⊥ otherwise. For security, LO requires that if 𝛽 has high

entropy in the view of the adversary, the obfuscated circuit should be indistinguishable

from a garbage program that does not carry any information.

Single to Multiple Inputs. The conversion in the single input setting is as follows. To

encrypt a message 𝑚 for an attribute x, we first encrypt a random value 𝛽 using the

ABE to obtain an ABE cipheretxt ct. We then construct a circuit 𝐶 [ct] that hardwires ct

in it, takes as input an ABE secret key and decrypts the hardwired ciphertext using it.

We obfuscate 𝐶 [ct] with respect to the lock value 𝛽 and the message 𝑚. The final PE

ciphertext is the obfuscated circuit. It is easy to see that the PE scheme has correctness,

34

since if the decryption is possible, 𝛽 is recovered inside the obfuscated circuit and the

lock is unlocked. By the correctness of LO, the message is revealed. In the security

proof, we first change 𝛽 encrypted inside ct to a zero string. This is possible using the

security of ABE. Now the lock value 𝛽 has high entropy from the view of the adversary.

We then erase the information inside the obfuscated circuit, which includes the attribute

information, using the security of LO.

Some thought reveals that the above conversion breaks down completely in the multi-input

setting. For instance, if we apply the above conversion to a slot 1 ciphertext, the resulting

obfuscation expects to receive slot 2 ciphertext in the clear. However, a slot 2 ciphertext of

PE must also constitute an obfuscated circuit since otherwise the attribute associated with

it will be leaked. But then there is no way to communicate between the two ciphertexts,

both of which are obfuscated circuits!

To overcome this barrier, we develop a delicate nested approach which takes advantage of

the fact that LO is powerful enough to handle general circuits. To restore communication

between two ciphertexts while maintaining attribute privacy, we obfuscate a circuit for

slot 1 that takes as input another obfuscated circuit for slot 2 and runs this inside itself.

In more detail, the outer LO takes as input the “inner” LO circuit and the 2ABE secret key

2ABE.sk 𝑓 . The inner LO instance encodes the circuit for 2ABE decryption with the LO

message as an SKE secret and the lock value as random tag 𝛽. It also has hardcoded in it

the slot 2 2ABE ciphertext 2ABE.ct2 with message 𝛽. The other piece of 2ABE, namely

the slot 1 ciphertext 2ABE.ct1 is hardwired in the outer LO. The outer LO encodes a

circuit which runs the inner LO on inputs 2ABE.ct1 and 2ABE.sk 𝑓 . By correctness of

the inner LO, the 2ABE decryption with 2ABE.ct1, 2ABE.ct2 and 2ABE.sk 𝑓 is executed

and if the functionality is satisfied, the inner LO outputs the SKE secret key. Thus, the

SKE secret key signals whether the inner LO is unlocked, and if so, uses the recovered

key to decrypt an SKE ciphertext which is hardcoded in the circuit. This ciphertext

encrypts some random 𝛾 which is also set as the lock value of outer LO. If the SKE

35

decryption succeeds, the lock value matches the decrypted value and outputs the message

𝑚 which is the message in the outer LO. We note that the same SKE secret key must be

used for both the inner and outer LO for them to effectively communicate.

Supporting Strong Security. This construction lends itself to a proof of security for the

standard game where decrypting ciphertexts are not allowed, although via an intricate

sequence of hybrids especially for the case of general 𝑘 . We refer the reader to Section 3.8

for details and turn our attention to the far more challenging case of strong security. In the

setting of strong security, the proof fails – note that once any slot 2 ciphertext is decrypted,

we no longer have the guarantee that the message value of the inner obfuscation is hidden.

Since this message is a secret key of an SKE scheme and is used to encrypt the lock

values for slot 1 ciphertexts, security breaks down once more.

To overcome this hurdle, we must make the construction more complex so that the message

value of the inner obfuscation is no longer a global secret and does not compromise

security even if revealed. To implement this intuition, we let the inner obfuscation output

a slot 2 (strong) 2ABE ciphertext when the lock is unlocked, which is then used to

perform 2ABE decryption in the circuit of the outer LO. Now, even if the security of a

inner obfuscated circuit is compromised, this does not necessarily mean that the security

of the entire system is compromised because of the guarantees of the strong security

game of 2ABE. While oversimplified, this intuition may now be formalized into a proof.

For more details, please see Section 3.9.

Constructing 3ABE from Pairings and Lattices. Finally, we discuss our candidate

construction for three input ABE scheme based on techniques developed by Brakerski and

Vaikuntanathan [BV22] in conjunction with our 2ABE construction in Section 3.6.1. The

work of Brakerski and Vaikuntanathan [BV22] provided a clever candidate for succinct

ciphertext-policy ABE for P from lattices. Their construction also uses decomposability

in order to achieve succinctness which is the starting point for the multi-input setting

36

as discussed above. Additionally, they provide novel ways to handle the lack of shared

randomness between the key generator and encryptor – while [AY20] use pairings to

generate shared randomness, [BV22] use lattice ideas and it is this part which makes their

construction heuristic. Here, we show that the algebraic structure of their construction

not only fits elegantly to the demands of the two-input setting, but can also be made

compatible with our current 2ABE construction to amplify arity to three! This surprising

synergy between two completely different candidates of broadcast encryption, namely

Agrawal-Yamada and Brakerski-Vaikuntanathan, created by decomposability and novel

techniques of handling randomness, already provides an XWE of compression factor 1/4

as against the previous best known 1/2 [BJK+18], and may lead to other applications as

well.

Recap of the Brakerski-Vaikuntanathan construction. To dig deeper into our construction,

let us first recap the core ideas of [BV22]. First recall the well known fact that security of

BGG + 18 encodings is lost when we have two encodings for the same position encoding

a different bit, namely, 𝜓𝑖,0 = sB𝑖 + e𝑖,0 and 𝜓𝑖,1 = s(B𝑖 + G) + e𝑖,1, where s is a LWE

secret, B𝑖 is a matrix, and e1,𝑏 is an error vector for 𝑏 ∈ {0, 1}. What [BV22] suggested is,

if we augment BGG + 18 encodings and mask them appropriately, then both encodings

can be published and still hope to be secure. Namely, they change BGG + 18 encodings

to be 𝜓𝑖,𝑏 = S(B𝑖 + 𝑏G) + E𝑖,𝑏, where we replace the vector s with a matrix S. They then

mask the encodings by public (tall) matrices {C𝑖,𝑏}𝑖,𝑏 as

𝜓𝑖,𝑏 := C𝑖,𝑏Ŝ𝑖,𝑏 + S(B𝑖 + 𝑏G) + E𝑖,𝑏

where {Ŝ𝑖,𝑏}𝑖,𝑏 are random secret matrices. By releasing appropriate information, one

can recover BGG + 18 encodings with different LWE secrets. In more detail, we can

publish a short vector tx for any binary string x that satisfies txC𝑖,𝑥𝑖 = 0 (and txC𝑖,1−𝑥𝑖 is

random) for all 𝑖. This allows us to compute

tx

(
C𝑖,𝑥𝑖 Ŝ𝑖,𝑥𝑖 + S(B𝑖 + 𝑥𝑖G) + E𝑖,𝑥𝑖

)
= txS(B𝑖 + 𝑥𝑖G) + txE𝑖,𝑥𝑖 = sx(B𝑖 + 𝑥𝑖G) + ex,𝑖,𝑥𝑖

37

where we set sx = txS and ex,𝑖,𝑏 = txE𝑖,𝑏. Namely, we can obtain BGG + 18 samples

specific to the string x. This is similar to the idea of using pairings to choose the

appropriate encoding based on the attribute string, which is used in our two-input ABE

with strong security. Similarly to that case, the obtained encodings are randomized by

the user specific randomness. One of the heuristic aspects of [BV22] is that in order for

their scheme to be secure, we have to assume that there is no meaningful way to combine

the BGG + 18 samples obtained from different vectors tx and tx′ .

Let us now adapt these techniques to provide a construction of two-input ABE. In our

candidate, {B𝑖}𝑖 and {C𝑖,𝑏}𝑖,𝑏 matrices are made public.4 An encryptor for the slot 1

computes for 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}:{
𝜓𝑖,𝑥1,𝑖 := S(B𝑖 + 𝑥1,𝑖G) + E𝑖,𝑥1,𝑖

}
𝑖
,

{
𝜓𝑖,𝑏 := Cℓ+𝑖,𝑏Ŝℓ+𝑖,𝑏 + S(Bℓ+𝑖 + 𝑏G) + Eℓ+𝑖,𝑏

}
𝑖,𝑏

where 𝑥1,𝑖 denotes the 𝑖-th bit of the attribute x1 for slot 1, ℓ denotes the length of an

attribute, and S and Ŝ𝑖,𝑏 are freshly chosen by the encryptor. Intuitively, this is a partially

stripped off version of the encodings in [BV22]. We believe this does not harm security,

because the encryptor provides one out of two encodings for each position that is not

masked by C𝑖,𝑏Ŝ𝑖,𝑏. The encryptor for slot 2 generates a vector tx2 such that tx2C𝑖,𝑥2,ℓ+𝑖 = 0

for all 𝑖 ∈ [ℓ]. The secret key for function 𝐹 is simply BGG + 18 secret key for the same

function. In the decryption, the decryptor uses tx2 to choose BGG + 18 encodings for

attribute x2 from {𝜓𝑖,𝑏}𝑖,𝑏. The obtained encodings are with respect to the LWE secret

txS. The decryptor can also choose BGG + 18 encodings for attribute x1 from {𝜓𝑖}𝑖.

These obtained encodings constitutes a BGG + 18 ciphertext for attribute (x1, x2), which

can be decrypted by the BGG + 18 secret key. The intuition about security in [BV22]

is that the BGG + 18 encodings obtained by using tx vectors cannot be combined in a

meaningful way due to the different randomness.

Amplifying Arity. We now amplify arity by leveraging the above techniques in conjunction
4The construction described here is simplified. For example, we omit the additional message carrying

part in the construction, which is not necessary for the overview.

38

with our pairing based construction. Our idea is to develop the scheme so that the

decryptor can recover the above partially stripped off version of the encoding in the

exponent from slot 1 and slot 2 ciphertexts by using the pairing operations, where the

encodings may be randomized. Then, slot 3 ciphertext corresponds to a vector tx3 , which

annihilates C𝑖,𝑏 matrices for corresponding positions to the attribute x3. To do so, an

encryptor for the first slot encodes

{𝑡1𝜓𝑖,𝑥𝑖 }𝑖∈[ℓ] , {𝑡1𝜓𝑖,𝑏}𝑖∈[ℓ+1,2ℓ],𝑏∈{0,1}, {𝑡1𝜓𝑖,𝑏}𝑖∈[2ℓ+1,3ℓ],𝑏∈{0,1}

of the exponent of G1, where 𝑡1 is freshly chosen randomness by the encryptor. An

encryptor for the second slot encodes 𝑡2, 𝑡2dx2 in the exponent of G2, where 𝑡2 is freshly

chosen randomness by the encryptor and dx2 is a selector vector that chooses 𝜓𝑖,𝑥2,𝑖 out

of (𝜓𝑖,0, 𝜓𝑖,1) by the pairing operation. Concretely, dx2 = {𝑑𝑖,𝑏}𝑖,𝑏, where 𝑑𝑖,𝑏 = 1 if

𝑏 = 𝑥2,𝑖 and 0 otherwise. These vectors are randomized by position-wise randomness

as is the case for our other schemes. Finally, an encryptor for slot 3 with attribute x3

chooses tx3 such that tx3C2ℓ+𝑖,𝑥3,𝑖 = 0.

A somewhat worrying aspect of the candidate above may be that both 𝑡1𝜓𝑖,0 and 𝑡1𝜓𝑖,1

are encoded on G1. However, this is also the case for [AY20] and as in that work, these

two encodings are randomized by the position-wise randomness and cannot be combined

in a meaningful way (at least in the GGM). The only way to combine them is to take a

pairing product with G2 elements. However, after the operation, we end up with partially

stripped encoding that is randomized with 𝑡1𝑡2. Therefore, a successful attack against

the scheme may end up with attacking a partially stripped version of [BV22], which we

expect to be as secure as the original scheme. Please see Section 3.10 for more details.

Organisation of the chapter. The rest of the chapter is organised as follows. In

Section 3.4, we provide the preliminaries used in this chapter. In Section 3.5, we define

MIABE and MIPE. We construct 2ABE for NC1 from LWE and pairings in Section 3.6.

In Section 3.7, we provide the construction of 2ABE for NC1 in standard model from

39

KOALA assumption. We define our compiler for kABE to kPE in Section 3.8. This

compiler works for the weaker security. The compiler for 2PE with stronger security

is given in Section 3.9. We provide our heuristic constructions for 3ABE for NC1 and

2ABE for P in Sections 3.10 and 3.11, respectively.

3.4 PRELIMINARIES

Notation used in this chapter. By default, in this chapter, we treat a vector as a

row vector. For any vector x of length ℓ, we let 𝑥𝑖 denote the 𝑖-th coordinate of x, for

𝑖 ∈ [ℓ]. We use 1ℓ×𝑚 (resp. 0ℓ×𝑚) to represent a matrix of dimensions ℓ × 𝑚 having

each entry as 1 (resp. 0). Similarly, we write 1𝑎 (resp. 0𝑎) to represent (1, . . . , 1) ∈ Z𝑎𝑞
((0, . . . , 0) ∈ Z𝑎𝑞) We say a function 𝑓 (𝑛) is negligible if it is 𝑂 (𝑛−𝑐) for all 𝑐 > 0, and

we use negl(𝑛) to denote a negligible function of 𝑛. We say 𝑓 (𝑛) is polynomial if it is

𝑂 (𝑛𝑐) for some constant 𝑐 > 0, and we use poly(𝑛) to denote a polynomial function

of 𝑛. For two distributions D1, D2, we use the notation D1 ≈𝑐 D2 to denote that a

PPT adversary cannot distinguish between the distributions D1 and D2 except only with

negligible distinguishing advantage.

3.4.1 Single User Attribute Based Encryption

For ease of readability, we define single user CPABE and kpABE below.

Let 𝑅 = {𝑅𝜆 : 𝐴𝜆 × 𝐵𝜆 → {0, 1}}𝜆 be a relation where 𝐴𝜆 and 𝐵𝜆 denote “ciphertext

attribute" and “key attribute” spaces. An attribute-based encryption (ABE) scheme for 𝑅

is defined by the following PPT algorithms:

Setup(1𝜆) → (mpk,msk): The setup algorithm takes as input the unary representation

of the security parameter 𝜆 and outputs a master public key mpk and a master

secret key msk.

Enc(mpk, 𝑋, 𝜇) → ct: The encryption algorithm takes as input a master public key mpk,

40

a ciphertext attribute 𝑋 ∈ 𝐴𝜆, and a message bit 𝜇. It outputs a ciphertext ct.

KeyGen(mpk,msk, 𝑌) → sk𝑌 : The key generation algorithm takes as input the master

public key mpk, the master secret key msk, and a key attribute 𝑌 ∈ 𝐵𝜆. It outputs

a private key sk𝑌 .

Dec(mpk, ct, 𝑋, sk𝑌 , 𝑌) → 𝜇 or ⊥: We assume that the decryption algorithm is

deterministic. The decryption algorithm takes as input the master public key mpk,

a ciphertext ct, ciphertext attribute 𝑋 ∈ 𝐴𝜆, a private key sk𝑌 , and private key

attribute 𝑌 ∈ 𝐵𝜆. It outputs the message 𝜇 or ⊥ which represents that the

ciphertext is not in a valid form.

Definition 3.1 (Correctness). An ABE scheme for relation family 𝑅 is correct if for all

𝜆 ∈ N, 𝑋 ∈ 𝐴𝜆, 𝑌 ∈ 𝐵𝜆 such that 𝑅(𝑋,𝑌) = 1, and for all messages 𝜇 ∈ g,

Pr

(mpk,msk) ← Setup(1𝜆), sk𝑌 ← KeyGen(mpk,msk, 𝑌),

ct← Enc(mpk, 𝑋, 𝜇) : Dec
(
mpk, ct, 𝑋, sk𝑌 , 𝑌

)
≠ 𝜇

 = negl(𝜆)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 3.2 (Ada-IND security for ABE). For an ABE scheme ABE = {Setup,Enc,

KeyGen,Dec} for a relation family 𝑅 = {𝑅𝜆 : 𝐴𝜆 × 𝐵𝜆 → {0, 1}}𝜆 and a message

space {g𝜆}𝜆∈N and an adversaryA, let us define Ada-IND security game, ExptAda-IND
ABE,A as

follows.

1. Setup phase: On input 1𝜆, the challenger samples (mpk,msk) ← Setup(1𝜆) and
gives mpk to A.

2. Query phase: During the game, A adaptively makes the following queries, in
an arbitrary order. A can make unbounded many key queries, but can make only
single challenge query.

a) Key Queries: A chooses an input 𝑌 ∈ 𝐵𝜆. For each such query, the
challenger replies with sk𝑌 ← KeyGen(mpk,msk, 𝑌).

b) Challenge Query: At some point, A submits a pair of equal length
messages (𝜇0, 𝜇1) ∈ (g)2 and the target 𝑋★ ∈ 𝐴𝜆 to the challenger. The

41

challenger samples a random bit 𝑏 ← {0, 1} and replies to A with
ct← Enc(mpk, 𝑋★, 𝜇𝑏).

We require that 𝑅(𝑋★, 𝑌) = 0 holds for any 𝑌 such thatA makes a key query for 𝑌
in order to avoid trivial attacks.

3. Output phase: A outputs a guess bit 𝑏′ as the output of the experiment.

We define the advantage AdvAda-IND
ABE,A (1𝜆) of A in the above game as

AdvAda-IND
ABE,A (1

𝜆) :=
���Pr[ExptAda-IND

ABE,A (1
𝜆) = 1|𝑏 = 0] − Pr[ExptAda-IND

ABE,A (1
𝜆) = 1|𝑏 = 1]

��� .
The ABE scheme ABE is said to satisfy Ada-IND security (or simply adaptive security)

if for any stateful PPT adversary A, there exists a negligible function negl(·) such that

AdvAda-IND
ABE,A (1𝜆) = negl(𝜆).

We can consider the following stronger version of the security where we require the

ciphertext to be pseudorandom.

Definition 3.3 (Ada-INDr security for ABE). We define Ada-INDr security game,

ExptAda-INDr
ABE,A similarly to Ada-IND security game, ExptAda-IND

ABE,A except that the adversary

A chooses single message 𝜇 instead of (𝜇0, 𝜇1) at the challenge phase and the

challenger returns ct ← Enc(mpk, 𝑋★, 𝜇) if 𝑏 = 0 and a random ciphertext ct ← CT

from a ciphertext space CT if 𝑏 = 1. We define the advantage AdvAda-INDr
ABE,A (1𝜆) of the

adversary A accordingly and say that the scheme satisfies Ada-INDr security if the

quantity is negligible.

We also consider (weaker) selective versions of the above notions, where A specifies its

target 𝑋★ at the beginning of the game.

Definition 3.4 (Sel-IND security for ABE). We define Sel-IND security game, ExptSel-IND
ABE,A

as Ada-IND security game with the exception that the adversary A has to choose the

challenge ciphertext attribute 𝑋★ before the setup phase but key queries 𝑌1, 𝑌2, . . . and

choice of (𝜇0, 𝜇1) can still be adaptive. We define the advantage AdvSel-IND
ABE,A (1𝜆) of the

adversary A accordingly and say that the scheme satisfies Sel-IND security (or simply

selective security) if the quantity is negligible.

Definition 3.5 (Sel-INDr security for ABE). We define Sel-INDr security game,

42

ExptSel-INDr
ABE,A as Ada-INDr security game with the exception that the adversary A has to

choose the challenge ciphertext attribute 𝑋★ before the setup phase but key queries

𝑌1, 𝑌2, . . . and choice of 𝜇 can still be adaptive. We define the advantage AdvSel-INDr
ABE,A (1𝜆)

of the adversaryA accordingly and say that the scheme satisfies Sel-INDr security if the

quantity is negligible.

In the following, we recall definitions of various ABEs by specifying the relation. We

start with the standard notions of ciphertext-policy attribute-based encryption (CPABE)

and key-policy attribute-based encryption (kpABE).

CPABE for circuits. We define CPABE for circuit class {C𝜆}𝜆 by specifying the relation.

Here, C𝜆 is a set of circuits with input length ℓ(𝜆) and binary output. We define 𝐴CP
𝜆

= C𝜆

and 𝐵CP
𝜆

= {0, 1}ℓ. Furthermore, we define the relation 𝑅CP
𝜆

as 𝑅CP
𝜆
(𝐶, x) = ¬𝐶 (x).5

kpABE for circuits. To define kpABE for circuits, we simply swap key and ciphertext

attributes in CPABE for circuits. More formally, to define kpABE for circuits, we

define 𝐴KP
𝜆

= {0, 1}ℓ and 𝐵KP
𝜆

= C𝜆. We also define 𝑅KP
𝜆

: 𝐴KP
𝜆
× 𝐵KP

𝜆
→ {0, 1} as

𝑅KP
𝜆
(x, 𝐶) = ¬𝐶 (x).

Remark 1. We observe that the symmetric key variants of the above definitions can

be easily obtained by letting the encryptor have access to the master secret key and

permitting the adversary to make ciphertext requests in the security game.

3.4.2 Lockable Obfuscation

We define lockable obfuscation [GKW17; WZ17] below. Let 𝑛, 𝑚, 𝑑 be polynomials,

and C𝑛,𝑚,𝑑 (𝜆) be the class of depth 𝑑 (𝜆) circuits with 𝑛(𝜆) bit input and 𝑚(𝜆) bit output.

A lockable obfuscator for C𝑛,𝑚,𝑑 consists of algorithms Obf and Eval with the following

syntax. LetM be the message space.

Obf(1𝜆, 𝑃, g, 𝛼) → 𝑃 : The obfuscation algorithm is a randomized algorithm that takes

5Here, we follow the standard convention in lattice-based cryptography where the decryption succeeds
when 𝐶 (x) = 0 rather than 𝐶 (x) = 1.

43

as input the security parameter 𝜆, a program 𝑃 ∈ C𝑛,𝑚,𝑑 , message g ∈ M and ‘lock

string’ 𝛼 ∈ {0, 1}𝑚(𝜆) . It outputs a program 𝑃.

Eval(𝑃, 𝑥) → 𝑦 ∈ M ∪ {⊥} : The evaluator is a deterministic algorithm that takes as

input a program 𝑃 and a string 𝑥 ∈ {0, 1}𝑛(𝜆) . It outputs 𝑦 ∈ M ∪ {⊥}.
Correctness: For correctness, it is required that if 𝑃(𝑥) = 𝛼, then the obfuscated

program 𝑃← Obf(1𝜆, 𝑃, g, 𝛼), evaluated on input 𝑥, outputs g, and if 𝑃(𝑥) ≠ 𝛼, then 𝑃

outputs ⊥ on input 𝑥.

Definition 3.6 (Perfect Correctness). Let 𝑛, 𝑚, 𝑑 be polynomials. A lockable obfuscation

scheme for C𝑛,𝑚,𝑑 and message spaceM is said to be perfectly correct if it satisfies the

following properties:

1. For all security parameters 𝜆, inputs 𝑥 ∈ {0, 1}𝑛(𝜆) , programs 𝑃 ∈ C𝑛,𝑚,𝑑 and
messages g ∈ M, if 𝑃(𝑥) = 𝛼, then

Eval(Obf(1𝜆, 𝑃, g, 𝛼), 𝑥) = g.

2. For all security parameters 𝜆, inputs 𝑥 ∈ {0, 1}𝑛(𝜆) , programs 𝑃 ∈ C𝑛,𝑚,𝑑 and
messages g ∈ M, if 𝑃(𝑥) ≠ 𝛼, then

Eval(Obf(1𝜆, 𝑃, g, 𝛼), 𝑥) =⊥ .

Definition 3.7 (Security). Let 𝑛, 𝑚, 𝑑 be polynomials. A lockable obfuscation scheme

(Obf,Eval) for C𝑛,𝑚,𝑑 and message spaceM is said to be secure if there exists a PPT

simulator Sim such that for all PPT adversaries A = (A0,A1), there exists a negligible

function negl(·) such that:

�������������
Pr

A1(𝑃𝑏, st) = 𝑏

�������������

(𝑃, g, st) ← A0(1𝜆)

𝑏 ← {0, 1}, 𝛼← {0, 1}𝑚(𝜆)

𝑃0 ← Obf(1𝜆, 𝑃, g, 𝛼)

𝑃1 ← Sim(1𝜆, 1|𝑃 |, 1|g|)

− 1

2

�������������
≤ negl(𝜆).

Analogously, we can define the security for multiple queries case.

44

Definition 3.8 (LO security with multiple queries). Let 𝑛, 𝑚, 𝑑 be polynomials. A

lockable obfuscation scheme (Obf,Eval) for C𝑛,𝑚,𝑑 and message spaceM is said to be

secure (for multiple adaptive queries) if there exists a PPT simulator Sim such that for all

PPT adversaries A, the probability of winning in the following game is 1/2 + negl(𝜆).

The security game between challenger C and adversary A is defined as follows:

1. C Samples a bit 𝑏 ← {0, 1}.

2. A issues 𝑝 = 𝑝(𝜆) adaptive queries of the form (𝑃𝑖, g𝑖) to C.

3. For each query, C returns 𝑃𝑖
𝑏
, where

𝑃𝑖0 ← Obf(1𝜆, 𝑃𝑖, g𝑖, 𝛼𝑖), 𝛼𝑖 ← {0, 1}𝑚(𝜆) and 𝑃𝑖1 ← Sim(1𝜆, 1|𝑃𝑖 |, 1|g𝑖 |)

4. In the end, the adversary outputs a bit 𝑏′.

The adversary wins if 𝑏′ = 𝑏.

Reduction from multi-queries definition to single query can be shown using hybrids. We

sketch the reduction here. We consider 𝑝 + 1 hybrids Hybrid0 to Hybrid𝑝. In Hybrid𝑖,

first 𝑖 programs are simulated programs and remaining 𝑝 − 𝑖 are obfuscated programs.

Indisntinguishability of Hybrid𝑖 and Hybrid𝑖+1 follows from the security in case of single

query.

3.4.3 Batch Inner Product Functional Encryption

We define batch inner product functional encryption (BIPFE) in the secret key setting.

This is a straightforward extension of the standard notion of the IPFE in the secret key

setting [BJK15; DDM16; LV16] and is introduced for the purpose of describing our

scheme with notational ease. In BIPFE, a ciphertext and a secret key are associated with

matrices of the same size consisting of group components [V]1 = [(vT
1 , . . . , v

T
𝑛)]1 ∈ G𝐵×𝑛1

and [W]2 = [(wT
1 , . . . ,w

T
𝑛)]2 ∈ G𝐵×𝑛2 , respectively. Here, we refer to 𝐵 as the batch size

45

and 𝑛 as the dimension. Upon decryption, the following is recovered

[V ⊡W]𝑇 :=

∑︁
𝑖∈[𝑛]

v𝑖 ⊙ w𝑖

𝑇 .
Namely, we recover inner product of each row of V and W in parallel as a decryption

result. More formal definition follows.

Let GroupGen be a group generator that outputs bilinear group

G = (𝑝,G1,G2,G𝑇 , 𝑒, [1]1, [1]2). A BIPFE scheme based on G consists of 4 efficient

algorithms:

Setup(1𝜆, 1𝐵, 1𝑛) → msk: The setup algorithm takes as input the security parameter,

the batch size 𝐵, the dimension 𝑛 all in unary and outputs master secret key msk.

KeyGen(msk, [W]2) → skW: The key generation algorithm takes as input the master

secret key and a matrix of group elements [W]2 ∈ G2, and outputs a secret key

skW.

Enc(msk, [V]1) → ctV: The encryption algorithm takes as input the master secret key

and a matrix of group elements [V]1 and outputs a ciphertext ctV.

Dec(skW, ctV) → [Z]𝑇 ∨ ⊥: The decryption algorithm takes as input a secret key skW

and a ciphertext ctV, and outputs an element [Z]𝑇 ∈ G𝑇 or ⊥.

Definition 3.9 (Correctness). We say the BIPFE scheme satisfies decryption correctness

if for all 𝜆 ∈ N, all batch size 𝐵, all dimension 𝑛, and all matrices V,W ∈ Z𝐵×𝑛𝑝 ,

Pr

Dec(skW, ctV) = [W ⊡ V]𝑇

����������
msk← Setup(1𝜆, 1𝐵, 1𝑛)

skW ← KeyGen(msk, [W]2)

ctV ← Enc(msk, [V]1)

= 1 .

46

Next, we define the function hiding property.

Definition 3.10 (Function Hiding Security). Let (Setup,KeyGen,Enc,Dec) be a BIPFE

scheme as defined above. The scheme is function hiding if Expt0FH is indistinguishable

from Expt1FH for all PPT adversary A where Expt𝑏FH for 𝑏 ∈ {0, 1} is defined as follows:

1. Setup: Run the adversary A on input 1𝜆 to obtain the batch size 1𝐵 and the
dimension 1𝑛 from A. Let msk← Setup(1𝜆, 1𝐵, 1𝑛) and return msk to A.

2. Challenge: Repeat the following for arbitrarily many rounds determined by A: In
each round, A has 2 options:

• A submits [W(𝑖)
0]2, [W

(𝑖)
1]2 ∈ G

𝐵×𝑛
2 as a secret key query. Upon receiving

this, compute sk(𝑖) ← KeyGen(msk, [W(𝑖)
𝑏
]2) and return this to A.

• A submits [V(𝑖)0]1, [V
(𝑖)
1]1 ∈ G

𝐵×𝑛
1 as an encryption query. Upon receiving

this, compute ct(𝑖) ← Enc(msk, [V(𝑖)
𝑏
]1) and return this to A.

3. Guess: A outputs its guess 𝑏′.

The adversary is called admissible if V(𝑖)0 ⊡W(𝑗)
0 = V(𝑖)1 ⊡W(𝑗)

1 for all combinations

of 𝑖 and 𝑗 . We say that the BIPFE scheme is function hiding if | Pr[𝑏 = 𝑏′] − 1/2| is

negligible for all admissible PPT adversaries.

Note that function hiding IPFE is captured as a special case of our notion of BIPFE

with the batch size 𝐵 = 1. It can be seen that function hiding IPFE can be converted to

BIPFE by running the former in parallel for 𝐵 times. Function hiding IPFE schemes are

constructed from various assumptions including SXDH and DLIN [DDM16; LV16] and

thus BIPFE can be constructed from the same assumptions.

3.4.4 Lattice Preliminaries

We use LWE𝑞,𝑛,𝑚,𝜒 assumption defined in Chapter 2, where 𝑛, 𝑚, 𝑞 are such that

𝑛 = poly(𝜆), 𝑚 ≥ 𝑛⌈log 𝑞⌉. We define 𝜒 = SampZ(𝛾), where SampZ(𝛾) is a sampling

algorithm for the truncated discrete Gaussian distribution over Z with parameter 𝛾 > 0

whose support is restricted to 𝑧 ∈ Z such that |𝑧 | ≤
√
𝑛𝛾.

We also consider subexponential hardness of LWE where the advantage of the adversary

47

is bounded by 2−𝑛𝜖 · negl(𝜆) for some constant 0 < 𝜖 < 1 for all PPT A6. As shown by

previous works [Reg09; BLP+13], for 𝜒 = SampZ(𝛾), the LWE𝑞,𝑛,𝑚,𝜒 problem is as hard

as solving worst case lattice problems such as gapSVP and SIVP with approximation factor

poly(𝑛) · (𝑞/𝛾) for some poly(𝑛). Since the best known algorithms for 2𝑘 -approximation

of gapSVP and SIVP run in time 2�̃� (𝑛/𝑘) , it follows that the above LWE𝑞,𝑛,𝑚,𝜒 with

noise-to-modulus ratio 2−𝑛𝜖 is likely to be (subexponentially) hard for some constant 𝜖 .

Lattice Trapdoors. Let us consider a matrix A ∈ Z𝑛×𝑚𝑞 . For all V ∈ Z𝑛×𝑚′𝑞 , we let

A−1
𝛾 (V) be an output distribution of SampZ(𝛾)𝑚×𝑚′ conditioned on A · A−1

𝛾 (V) = V. A

𝛾-trapdoor for A is a trapdoor that enables one to sample from the distribution A−1
𝛾 (V)

in time poly(𝑛, 𝑚, 𝑚′, log 𝑞) for any V. We slightly overload notation and denote a

𝛾-trapdoor for A by A−1
𝛾 . We also define the special gadget matrix G ∈ Z𝑛×𝑚𝑞 as

the matrix obtained by padding I𝑛 ⊗ (1, 2, 4, 8, . . . , 2⌈log 𝑞⌉) with zero-columns. The

following properties had been established in a long sequence of works [GPV08; CHKP10;

ABB10a; ABB10b; MP12; BLP+13].

Lemma 3.1 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given A−1
𝜏 , one can obtain A−1

𝜏′ for any 𝜏′ ≥ 𝜏.

2. Given A−1
𝜏 , one can obtain [A∥B]−1

𝜏 and [B∥A]−1
𝜏 for any B.

3. There exists an efficient procedure TrapGen(1𝑛, 1𝑚, 𝑞) that outputs (A,A−1
𝜏0
)

where A ∈ Z𝑛×𝑚𝑞 for some 𝑚 = 𝑂 (𝑛 log 𝑞) and is 2−𝑛-close to uniform, where
𝜏0 = 𝜔(

√︁
𝑛 log 𝑞 log𝑚).

Lattice Evaluation. The following is an abstraction of the evaluation procedure in

previous LWE based FHE and ABE schemes. We follow the presentation by Tsabary

[Tsa19], but with different parameters.

Lemma 3.2 (Fully Homomorphic Computation [GV15]). There exists a pair of

6This notion is weaker than the definition of subexponential LWE defined in Chapter 2, where A is
allowed to run in time 2𝑜 (𝜆) and win with probability 2−𝑜 (𝜆) .

48

deterministic algorithms (EvalF,EvalFX) with the following properties.

• EvalF(B, 𝐹) → H𝐹 . Here, B ∈ Z𝑛×𝑚ℓ𝑞 and 𝐹 : {0, 1}ℓ → {0, 1} is a circuit.

• EvalFX(𝐹, x,B) → Ĥ𝐹,x. Here, x ∈ {0, 1}ℓ and 𝐹 : {0, 1}ℓ → {0, 1} is a circuit
with depth 𝑑. We have

[B − x ⊗ G]Ĥ𝐹,x = BH𝐹 − 𝐹 (x)G mod 𝑞,

where we denote [𝑥1G∥ · · · ∥𝑥𝑘G] by x ⊗ G. Furthermore, we have

∥H𝐹 ∥∞ ≤ 𝑚 · 2𝑂 (𝑑) , ∥Ĥ𝐹,x∥∞ ≤ 𝑚 · 2𝑂 (𝑑) .

• The running time of (EvalF,EvalFX) is bounded by poly(𝑛, 𝑚, log 𝑞, 2𝑑).

The above algorithms are taken from [GV15], which is a variant of similar algorithms

proposed by Boneh et al. [BGG+14]. The algorithms in [BGG+14] work for any

polynomial-sized circuit 𝐹, but ∥H𝐹 ∥∞ and ∥H𝐹,x∥∞ become super-polynomial even if

the depth of the circuit is shallow (i.e., logarithmic depth). On the other hand, the above

algorithms run in polynomial time only when 𝐹 is of logarithmic depth, but ∥H𝐹 ∥∞ and

∥H𝐹,x∥∞ can be polynomially bounded. The latter property is crucial for our purpose.

Modified Noise Distribution. For a distribution 𝜒 over Z and an integer 𝑚, we define

𝜒𝑚 as follows. To sample from 𝜒𝑚, we first sample x ← 𝜒𝑚 and S ← {−1, 1}𝑚×𝑚

and output Sx. By triangular inequality, it can be seen that if the absolute value of a

sample from 𝜒 is always bounded by 𝐵, the infinity norm of a sample from 𝜒𝑚 is always

bounded 𝑚𝐵. This modified noise distribution is used in the kpABE scheme by Boneh

et al. [BGG+14] described in Sec. 3.4.5 for the case of 𝜒 being the discrete Gaussian

distribution. The modification of the noise is introduced in order to make the security

proof work. We refer to their paper for the details.

3.4.5 kpABE Scheme by Boneh et al. [BGG+14]

We will use a variant of the kpABE scheme proposed by Boneh et al. [BGG+14]. We

call the scheme BGG + 18 and provide the description of the scheme in the following.

We focus on the case where the policies associated with secret keys are limited to circuits

49

with logarithmic depth rather than arbitrary polynomially bounded depth, so that we can

use the evaluation algorithm due to Gorbunov and Vinayagamurthy [GV15] (see Lemma

3.2). This allows us to bound the noise growth during the decryption by a polynomial

factor, which is crucial for us as in [AY20].

The scheme supports the circuit class Cℓ(𝜆),𝑑 (𝜆) , which is a set of all circuits with input

length ℓ(𝜆) and depth at most 𝑑 (𝜆) with arbitrary ℓ(𝜆) = poly(𝜆) and 𝑑 (𝜆) = 𝑂 (log𝜆).

Setup(1𝜆): On input 1𝜆, the setup algorithm defines the parameters 𝑛 = 𝑛(𝜆),𝑚 = 𝑚(𝜆),

noise distributions 𝜒 over Z, 𝜏0 = 𝜏0(𝜆), 𝜏 = 𝜏(𝜆), and 𝐵 = 𝐵(𝜆) as specified later.

It then proceeds as follows.

1. Sample (A,A−1
𝜏0
) ← TrapGen(1𝑛, 1𝑚, 𝑞) such that A ∈ Z𝑛×𝑚𝑞 .

2. Sample random matrix B = (B1, . . . ,Bℓ) ← (Z𝑛×𝑚𝑞)ℓ and a random vector
u← Z𝑛𝑞.

3. Output the master public key mpk = (A,B, u) and the master secret key
msk = A−1

𝜏0
.

KeyGen(mpk,msk, 𝐹): The key generation algorithm takes as input the master public

key mpk, the master secret key msk, and a circuit 𝐹 ∈ Cℓ,𝑑 and proceeds as follows.

1. Compute H𝐹 = EvalF(B, 𝐹) and B𝐹 = BH𝐹 .

2. Compute [A∥B𝐹]−1
𝜏 from A−1

𝜏0
and sample r ∈ Z2𝑚 as rT ← [A∥B𝐹]−1

𝜏 (uT).

3. Output the secret key sk𝐹 := r.

Enc(mpk, x, 𝜇): The encryption algorithm takes as input the master public key mpk,

an attribute x ∈ {0, 1}ℓ, and a message 𝜇 ∈ {0, 1} and proceeds as follows.

1. Sample s← Z𝑛𝑞, 𝑒0 ← 𝜒, e← 𝜒𝑚, and e𝑖,𝑏 ← 𝜒𝑚 for 𝑖 ∈ [ℓ] and 𝑏 ∈ {0, 1},
where 𝜒𝑚 is defined as in Sec. 3.4.4 from 𝜒.

50

2. Compute

For all 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}, 𝜓𝑖,𝑏 := s(B𝑖 − 𝑏G) + e𝑖,𝑏 ∈ Z𝑚𝑞
𝜓2ℓ+1 := sA + e ∈ Z𝑚𝑞 , 𝜓2ℓ+2 := suT + 𝑒0 + 𝜇⌈𝑞/2⌉ ∈ Z𝑞,

3. Output the ciphertext ctx := ({𝜓𝑖,𝑥𝑖 }𝑖∈[ℓ] , 𝜓2ℓ+1, 𝜓2ℓ+2), where 𝑥𝑖 is the 𝑖-th
bit of x.

Dec(mpk, skx, ct𝐹): The decryption algorithm takes as input the master public key

mpk, a secret key sk𝐹 for a circuit 𝐹, and a ciphertext ctx for an attribute x and

proceeds as follows.

1. Parse ctx → ({𝜓𝑖,𝑥𝑖 ∈ Z𝑚𝑞 }𝑖∈[ℓ] , 𝜓2ℓ+1 ∈ Z𝑚𝑞 , 𝜓2ℓ+2 ∈ Z𝑞), and sk𝐹 ∈ Z2𝑚. If
any of the component is not in the corresponding domain or 𝐹 (x) = 1, output
⊥.

2. Compute Ĥ𝐹,x = EvalF(𝐹, x,B).

3. Concatenate {𝜓𝑖,𝑥𝑖 }𝑖∈[ℓ] to form 𝜓x = (𝜓1,𝑥1 , . . . , 𝜓ℓ,𝑥ℓ).

4. Compute
𝜓′ := 𝜓2ℓ+2 − [𝜓2ℓ+1∥𝜓xĤ𝐹,x]rT.

5. Output 0 if 𝜓′ ∈ [−𝐵, 𝐵] and 1 if [−𝐵 + ⌈𝑞/2⌉, 𝐵 + ⌈𝑞/2⌉].

Remark 2. We note that the encryption algorithm above computes redundant components

{𝜓𝑖,¬𝑥𝑖 }𝑖∈[ℓ] in the second step, which are discarded in the third step. However, due to

this redundancy, the scheme has the following special structure that will be useful for

us. Namely, the first and the second steps of the encryption algorithm can be executed

without knowing x. Only the third step of the encryption algorithm needs the information

of x, where it chooses {𝜓𝑖,𝑥𝑖 }𝑖∈[ℓ] from {𝜓𝑖,𝑏}𝑖∈[ℓ],𝑏∈{0,1} depending on each bit of x and

then output the former terms along with 𝜓2ℓ+1 and 𝜓2ℓ+2.

Parameters and Security. We choose the parameters for the scheme as follows:

𝑚 = 𝑛1.1 log 𝑞, 𝑞 = 2Θ(𝜆) , 𝜒 = SampZ(3
√
𝑛),

51

𝜏0 = 𝑛 log 𝑞 log𝑚, 𝜏 = 𝑚3.1ℓ · 2𝑂 (𝑑) 𝐵 = ℓ𝑛2𝑚5𝜏 · 2𝑂 (𝑑) .

The parameter 𝑛 will be chosen depending on whether we need Sel-INDr security or

Ada-INDr security for the scheme. If it suffices to have Sel-INDr security, we set 𝑛 = 𝜆𝑐

for some constant 𝑐 > 1. If we need Ada-INDr security, we have to enlarge the parameter

to be 𝑛 = (ℓ𝜆)𝑐 in order to compensate for the security loss caused by the complexity

leveraging.

We remark that if we were to use the above ABE scheme stand-alone, we would have been

able to set 𝑞 polynomially bounded as in [GV15]. The reason why we set 𝑞 exponentially

large is that we combine the scheme with bilinear maps of order 𝑞 to lift the ciphertext

components to the exponent so that they are “hidden" in some sense. In order to use the

security of the bilinear map, we set the group order 𝑞 to be exponentially large.

The following theorem summarizes the security and efficiency properties of the

construction. There are two parameter settings depending on whether we assume

subexponential hardness of LWE or not.

Theorem 3.3 (Adapted from [GV15; BGG+14]). Assuming hardness of LWE(𝑛, 𝑚, 𝑞, 𝜒)

with 𝜒 = SampZ(3
√
𝑛) and 𝑞 = 𝑂 (2𝑛1/𝜖) for some constant 𝜖 > 1, the above scheme

satisfies Sel-INDr security (Definition 3.5). Assuming subexponential hardness of

LWE(𝑛, 𝑚, 𝑞, 𝜒) with the same parameters, the above scheme satisfies Ada-INDr security

(Definition 3.3) with respect to the ciphertext space CT := Z𝑚(ℓ+1)+1𝑞

3.4.6 Bilinear Map Preliminaries

Here, we introduce our notation for bilinear maps and the bilinear generic group model

following Agrawal and Yamada [AY20], which in turn is based on [BCFG17; BFF+14]

for defining generic 𝑘-linear groups to the bilinear group settings. The definition closely

follows that of Maurer [Mau05], which is equivalent to the alternative formulation by

Shoup [Sho97].

52

Notation on Bilinear Maps. A bilinear group generator GroupGen takes as input 1𝜆 and

outputs a group description G = (𝑞,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2), where 𝑞 is a prime of Θ(𝜆)

bits, G1, G2, and G𝑇 are cyclic groups of order 𝑞, 𝑒 : G1 ×G2 → G𝑇 is a non-degenerate

bilinear map, and 𝑔1 and 𝑔2 are generators of G1 and G2, respectively. We require that

the group operations in G1, G2, and G𝑇 as well as the bilinear map 𝑒 can be efficiently

computed. We employ the implicit representation of group elements: for a matrix A over

Z𝑞, we define [A]1 := 𝑔A
1 , [A]2 := 𝑔A

2 , [A]𝑇 := 𝑔A
𝑇

, where exponentiation is carried out

component-wise.

We also use the following less standard notations. For vectors w = (𝑤1, . . . , 𝑤ℓ) ∈ Zℓ𝑞
and v = (𝑣1, . . . , 𝑣ℓ) ∈ Zℓ𝑞 of the same length, w⊙ v denotes the vector that is obtained by

component-wise multiplications. Namely, v ⊙ w = (𝑣1𝑤1, . . . , 𝑣ℓ𝑤ℓ). When w ∈ (Z∗𝑞)ℓ,

v ⊘ w denotes the vector v ⊘ w = (𝑣1/𝑤1, . . . , 𝑣ℓ/𝑤ℓ). It is easy to verify that for

vectors c, d ∈ Zℓ𝑞 and w ∈ (Z∗𝑞)ℓ, we have (c ⊙ w) ⊙ (d ⊘ w) = c ⊙ d. For group

elements [v]1 ∈ Gℓ1 and [w]1 ∈ Gℓ2, [v]1 ⊙ [w]2 denotes ([𝑣1𝑤1]𝑇 , . . . , [𝑣ℓ𝑤ℓ]𝑇), which

is efficiently computable from [v]1 and [w]2 using the bilinear map 𝑒.

Generic Bilinear Group Model. Let G = (𝑞,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) be a bilinear group

setting, 𝐿1, 𝐿2, and 𝐿𝑇 be lists of group elements in G1, G2, and G𝑇 respectively, and let

D be a distribution over 𝐿1, 𝐿2, and 𝐿𝑇 . The generic group model for a bilinear group

setting G and a distribution D is described in Fig. 3.1. In this model, the challenger

first initializes the lists 𝐿1, 𝐿2, and 𝐿𝑇 by sampling the group elements according to D,

and the adversary receives handles for the elements in the lists. For 𝑠 ∈ {1, 2, 𝑇}, 𝐿𝑠 [ℎ]

denotes the ℎ-th element in the list 𝐿𝑠. The handle to this element is simply the pair (𝑠, ℎ).

An adversary running in the generic bilinear group model can apply group operations

and bilinear maps to the elements in the lists. To do this, the adversary has to call the

appropriate oracle specifying handles for the input elements. The challenger computes

the result of a query, stores it in the corresponding list, and returns to the adversary its

(newly created) handle. Handles are not unique (i.e., the same group element may appear

53

more than once in a list under different handles). As in [AY20], we replace the equality

test oracle from Baltico et. al [BCFG17] with the zero-test oracle, which is given a handle

(𝑠, ℎ) and returns 1 if 𝐿𝑠 [ℎ] = 0 and 0 otherwise only for the case of 𝑠 = 𝑇 .

State: Lists 𝐿1, 𝐿2, 𝐿𝑇 over G1, G2, G𝑇 respectively.

Initializations: Lists 𝐿1, 𝐿2, 𝐿𝑇 sampled according to distribution D.

Oracles: The oracles provide black-box access to the group operations, the bilinear
map, and equalities.

For all 𝑠 ∈ {1, 2, 𝑇}: add𝑠 (ℎ1, ℎ2) appends 𝐿𝑠 [ℎ1] + 𝐿𝑠 [ℎ2] to 𝐿𝑠 and returns its
handle (𝑠, |𝐿𝑠 |).

For all 𝑠 ∈ {1, 2, 𝑇}: neg𝑠 (ℎ1, ℎ2) appends −𝐿𝑠 [ℎ1] to 𝐿𝑠 and returns its handle
(𝑠, |𝐿𝑠 |).

map𝑒 (ℎ1, ℎ2) appends 𝑒(𝐿1 [ℎ1], 𝐿2 [ℎ2]) to 𝐿𝑇 and returns its handle (𝑇, |𝐿𝑇 |).

zt𝑇 (ℎ) returns 1 if 𝐿𝑇 [ℎ] = 0 and 0 otherwise. All oracles return ⊥ when given
invalid indices.

Figure 3.1: Generic group model for bilinear group setting G =

(𝑞,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) and distribution D.

Symbolic Group Model. The symbolic group model for a bilinear group setting G and

a distribution D𝑃 gives to the adversary the same interface as the corresponding generic

group model, except that internally the challenger stores lists of element in the field

Z𝑝 (𝑋1, . . . , 𝑋𝑛) instead of lists of group elements, where 𝑋1, . . . , 𝑋𝑛 are indeterminates.

The oracles add𝑠, neg𝑠, map, and zt computes addition, negation, multiplication, and

equality in the field. In our work, we will use the subring

Z𝑝 [𝑋1, . . . , 𝑋𝑛, 1/𝑋1, . . . , 1/𝑋𝑛] of the entire field Z𝑝 (𝑋1, . . . , 𝑋𝑛). Note that any

element 𝑓 in Z𝑝 [𝑋1, . . . , 𝑋𝑛, 1/𝑋1, . . . , 1/𝑋𝑛] can be represented as

𝑓 (𝑋1, . . . , 𝑋𝑛) =
∑︁

(𝑐1,...,𝑐𝑛)∈Z𝑛
𝑎𝑐1,...,𝑐𝑛𝑋

𝑐1
1 · · · 𝑋

𝑐𝑛
𝑛

using {𝑎𝑐1,...,𝑐𝑛 ∈ Z𝑝}(𝑐1,...,𝑐𝑛)∈Z𝑛 , where we have 𝑎𝑐1,...,𝑐𝑛 = 0 for all but finite

(𝑐1, . . . , 𝑐𝑛) ∈ Z𝑛. Note that this expression is unique.

54

3.5 MULTI-INPUT ATTRIBUTE BASED AND PREDICATE ENCRYPTION

We define multi-input Attribute Based Encryption (ABE) and Predicate Encryption (PE)

below. Since the only difference between the two notions is in the security game, we

unify the syntax for the algorithms in what follows.

A 𝑘-input ABE/PE scheme is parametrized over an attribute space {(𝐴𝜆)𝑘 }𝜆∈N and

function space {F𝜆}𝜆∈N, where each function maps {(𝐴𝜆)𝑘 }𝜆∈N to {0, 1}. Such a scheme

is described by procedures (Setup,KeyGen,Enc1, . . . , Enc𝑘 ,Dec) with the following

syntax:

Setup(1𝜆) → (pp,msk): The Setup algorithm takes as input a security parameter and

outputs some public parameters pp and a master secret key msk.

KeyGen(pp,msk, 𝑓) → sk 𝑓 : The KeyGen algorithm takes as input the public

parameters pp, a master secret key msk and a function 𝑓 ∈ F𝜆 and outputs a key

sk 𝑓 .

Enc1(pp,msk, 𝛼, 𝑏) → ct𝛼,𝑏,1: The encryption algorithm for slot 1 takes as input the

public parameters pp, a master secret key msk, an attribute 𝛼 ∈ 𝐴𝜆, and message

𝑏 ∈ {0, 1}, and outputs a ciphertext ct𝛼,𝑏,1. For the case of ABE, the attribute

string 𝛼 is included as part of the ciphertext.

Enc𝑖 (pp,msk, 𝛼) → ct𝛼,𝑖 for 𝑖 ≥ 2: The encryption algorithm for the 𝑖𝑡ℎ slot where

𝑖 ∈ [2, 𝑘], takes as input the public parameters pp, a master secret key msk, and an

attribute 𝛼 ∈ 𝐴𝜆 and outputs a ciphertext ct𝛼,𝑖. For the case of ABE, the attribute

string 𝛼 is included as part of the ciphertext.

Dec(pp, sk 𝑓 , ct𝛼1,𝑏,1, ct𝛼2,2, . . . , ct𝛼𝑘 ,𝑘) → 𝑏′: The decryption algorithm takes as input

the public parameters pp, a key for the function 𝑓 and a sequence of ciphertext of

55

(𝛼1, 𝑏), 𝛼2, . . . , 𝛼𝑘 and outputs a string 𝑏′.
Next, we define correctness and security. For ease of notation, we drop the subscript 𝜆 in

what follows.

Correctness: For every 𝜆 ∈ N, 𝑏 ∈ {0, 1}, 𝛼1, . . . , 𝛼𝑘 ∈ 𝐴, 𝑓 ∈ F , it holds that if

𝑓 (𝛼1, . . . , 𝛼𝑘) = 1, then

Pr

Dec
©«

pp,KeyGen(pp,msk, 𝑓),

Enc1(pp,msk, 𝛼1, 𝑏), . . . ,Enc𝑘 (pp,msk, 𝛼𝑘)

ª®®¬ = 𝑏

 = 1 − negl(𝜆)

where the probability is over the choice of (pp,msk) ← Setup(1𝜆) and over the internal

randomness of KeyGen and Enc1, . . . ,Enc𝑘 .

Definition 3.11 (Ada-IND security for k-ABE). For a k-ABE scheme

k-ABE = {Setup,KeyGen, Enc1, . . ., Enc𝑘 ,Dec} for an attribute space {(𝐴𝜆)𝑘 }𝜆∈N,

function space {F𝜆}𝜆∈N and an adversary A, we define the Ada-IND security game,

ExptAda-IND
k-ABE,A as follows.

1. Setup phase: On input 1𝜆, the challenger samples (pp,msk) ← Setup(1𝜆) and
gives pp to A.

2. Query phase: The challenger samples a bit 𝛽 ← {0, 1}. During the game, A
adaptively makes the following queries, in an arbitrary order.

a) Key Queries: A makes polynomial number of key queries, say 𝑝 = 𝑝(𝜆).
As an 𝑖-th key query, A chooses a function 𝑓𝑖 ∈ F𝜆. The challenger replies
with sk 𝑓𝑖 ← KeyGen(pp,msk, 𝑓𝑖).

b) Ciphertext Queries: A issues polynomial number of ciphertext queries for
each slot, say 𝑝 = 𝑝(𝜆). As an 𝑖-th query for a slot 𝑗 ∈ [𝑘], A declares{

(𝛼𝑖
𝑗
, (𝑏𝑖0, 𝑏

𝑖
1)) if 𝑗 = 1

𝛼𝑖
𝑗

if 𝑗 ≠ 1

to the challenger, where 𝛼𝑖
𝑗
∈ 𝐴𝜆 is an attribute and (𝑏𝑖0, 𝑏

𝑖
1) ∈ {0, 1} × {0, 1}

is the pair of messages. Then, the challenger computes

ct𝑖𝑗 ,𝛽 =

{
Enc 𝑗 (pp,msk, 𝛼𝑖

𝑗
, 𝑏𝑖

𝛽
) if 𝑗 = 1

Enc 𝑗 (pp,msk, 𝛼𝑖
𝑗
) if 𝑗 ≠ 1

56

and returns it to A.

3. Output phase: A outputs a guess bit 𝛽′ as the output of the experiment.

For the adversary to be admissible, we require that for every 𝑓1, . . . , 𝑓𝑝 ∈ F , it holds that

𝑓𝑖 (𝛼𝑖11 , . . . , 𝛼
𝑖𝑘
𝑘
) = 0 for every 𝑖, 𝑖1, . . . , 𝑖𝑘 ∈ [𝑝].

We define the advantage AdvAda-IND
k-ABE,A (1𝜆) of A in the above game as

AdvAda-IND
k-ABE,A (1

𝜆) :=
���Pr[ExptAda-IND

k-ABE,A (1
𝜆) = 1|𝛽 = 0] − Pr[ExptAda-IND

k-ABE,A (1
𝜆) = 1|𝛽 = 1]

��� .
The k-ABE scheme k-ABE is said to satisfy Ada-IND security (or simply adaptive

security) if for any stateful PPT adversary A, there exists a negligible function negl(·)

such that AdvAda-IND
k-ABE,A (1𝜆) = negl(𝜆).

Definition 3.12 (Ada-IND security for 𝑘-PE.). For an 𝑘-PE scheme

k-PE = {Setup,KeyGen, Enc1, . . ., Enc𝑘 ,Dec} for an attribute space {(𝐴𝜆)𝑘 }𝜆∈N,

function space {F𝜆}𝜆∈N and an adversary A, we define the Ada-IND security game as

follows.

1. Setup phase: On input 1𝜆, the challenger samples (pp,msk) ← Setup(1𝜆) and
gives pp to A.

2. Query phase: The challenger samples a bit 𝛽 ← {0, 1}. During the game, A
adaptively makes the following queries, in an arbitrary order.

a) Key Queries: A makes polynomial number of key queries, say 𝑝 = 𝑝(𝜆).
For each key query 𝑖 ∈ [𝑝], A chooses a function 𝑓𝑖 ∈ F𝜆. The challenger
replies with sk 𝑓𝑖 ← KeyGen(pp,msk, 𝑓𝑖).

b) Ciphertext Queries: A issues polynomial number of ciphertext queries for
each slot, say 𝑝 = 𝑝(𝜆). As an 𝑖-th query for a slot 𝑗 ∈ [𝑘], A declares{

((𝛼𝑖
𝑗 ,0, 𝛼

𝑖
𝑗 ,1), (𝑏

𝑖
0, 𝑏

𝑖
1)) if 𝑗 = 1

(𝛼𝑖
𝑗 ,0, 𝛼

𝑖
𝑗 ,1) if 𝑗 ≠ 1

to the challenger, where (𝛼𝑖
𝑗 ,0, 𝛼

𝑖
𝑗 ,1) is a pair of attributes and (𝑏𝑖0, 𝑏

𝑖
1) is the

57

pair of messages. Then, the challenger computes

ct𝑖𝑗 ,𝛽 =

{
Enc 𝑗 (pp,msk, 𝛼𝑖

𝑗 ,𝛽
, 𝑏𝑖

𝛽
) if 𝑗 = 1

Enc 𝑗 (pp,msk, 𝛼𝑖
𝑗 ,𝛽
) if 𝑗 ≠ 1

and returns it to A.

3. Output phase: A outputs a guess bit 𝛽′ as the output of the experiment.

For the adversary to be admissible, we require that for every 𝑓1, . . . , 𝑓𝑝 ∈ F , it holds that

𝑓𝑖 (𝛼𝑖11,𝛽, . . . , 𝛼
𝑖𝑘
𝑘,𝛽
) = 0 for every 𝑖, 𝑖1, . . . , 𝑖𝑘 ∈ [𝑝] and 𝛽 ∈ {0, 1}.

We define the advantage AdvAda-IND
k-PE,A (1𝜆) of A in the above game as

AdvAda-IND
k-PE,A (1

𝜆) :=
��Pr[expk-PE,A (1𝜆) = 1|𝛽 = 0] − Pr[expk-PE,A (1𝜆) = 1|𝛽 = 1]

�� .
The 𝑘-PE scheme k-PE is said to satisfy Ada-IND security (or simply adaptive security)

if for any stateful PPT adversary A, there exists a negligible function negl(·) such that

AdvAda-IND
k-PE,A (1𝜆) = negl(𝜆).

3.5.1 Strong Security for k-ABE and k-PE

We also consider a stronger security notion for both k-ABE as well as k-PE where the

adversary is allowed to make decrypting key requests for ciphertexts so long as they do

not distinguish the challenge bit.

Definition 3.13 (Strong Ada-IND security for 𝑘-ABE). The definition for strong Ada-IND

security for k-ABE is the same as standard Ada-IND security (Definition 3.11) except

for the following modification. For the k-ABE adversary to be admissible in the strong

Ada-IND game, we require that

• If 𝑓𝑖 (𝛼𝑖11 , . . . , 𝛼
𝑖𝑘
𝑘
) = 1 holds for some 𝑖, 𝑖1, . . . , 𝑖𝑘 ∈ [𝑝], then 𝑏𝑖10 = 𝑏

𝑖1
1 .

Let (𝛼𝑖, (𝑏𝑖0, 𝑏
𝑖
1)) be the 𝑖𝑡ℎ ciphertext query in slot 1. Then, if 𝑏𝑖0 ≠ 𝑏𝑖1, we call the

ciphertext returned by the challenger as a challenge ciphertext as it encodes the challenge

bit 𝛽. Otherwise, we refer to it as decrypting ciphertext, as the adversary may potentially

request a key to decrypt it.

58

Definition 3.14 (Strong Ada-IND security for 𝑘-PE.). The definition for strong Ada-IND

security for k-PE is the same as standard Ada-IND security (Definition 3.12) except

for the following modification. For the k-PE adversary to be admissible in the strong

Ada-IND game, we require that

• If 𝑓𝑖 (𝛼𝑖11,𝛽, . . . , 𝛼
𝑖𝑘
𝑘,𝛽
) = 1 holds for some 𝑖, 𝑖1, . . . , 𝑖𝑘 ∈ [𝑝] and 𝛽 ∈ {0, 1}, then

(𝛼𝑖11,0, . . . , 𝛼
𝑖𝑘
𝑘,0) = (𝛼

𝑖1
1,1, . . . , 𝛼

𝑖𝑘
𝑘,1) and 𝑏𝑖10 = 𝑏

𝑖1
1 .

Let
(
(𝛼𝑖0, 𝛼

𝑖
1), (𝑏

𝑖
0, 𝑏

𝑖
1)

)
be the 𝑖𝑡ℎ ciphertext query in slot 1. Then, if 𝛼𝑖0 ≠ 𝛼𝑖1 or 𝑏𝑖0 ≠ 𝑏𝑖1,

we call the ciphertext returned by the challenger as a challenge ciphertext as it encodes

the challenge bit 𝛽. Otherwise, we refer to it as decrypting ciphertext, as the adversary

may potentially request a key to decrypt it.

Definition 3.15 (Strong VerSel-IND security for 𝑘-ABE and 𝑘-PE). The definitions for

strong VerSel-IND security for k-ABE and k-PE are the same as strong Ada-IND security

above except that the adversary A is required to submit the challenge queries and secret

key queries to the challenger before it samples the public key.

3.5.2 Generalization to Multi-Slot Message Scheme

In the above, we focus our attention on k-ABE and k-PE schemes that only contain

a message in a single slot, the remaining slots being free of messages. We can also

consider a generalized version of the notions where each slot carries a message and all

the messages are recovered in successful decryption. For 𝑘 polynomial, it is easy to

extend a construction with single slot message to the generalized version where each slot

contains a message, simply by running 𝑘 instances of the scheme in parallel and rotating

the slot which contains the message in each instance to cover all 𝑘 slots. Moreover we

claim that since the 𝑘 message scheme is a concatenation of 𝑘 one message schemes,

security of the latter implies security of the former. In more detail, suppose there exists

an adversary against the 𝑘 message scheme with non-negligible advantage 𝜖 . This can be

used to construct an adversary against one of the underlying one message schemes with

non-negligible advantage 𝜖/𝑘 .

59

3.6 TWO-INPUT ABE FOR NC1 FROM PAIRINGS AND LWE

In this section, we construct two input ABE for NC1 circuits. More formally, our

construction can support attribute space 𝐴𝜆 = {0, 1}ℓ(𝜆) , and any circuit class F = {F𝜆}𝜆

that is subclass of {C2ℓ(𝜆),𝑑 (𝜆)}𝜆 with arbitrary ℓ(𝜆) ≤ poly(𝜆) and 𝑑 (𝜆) = 𝑂 (log𝜆),

where C2ℓ(𝜆),𝑑 (𝜆) is a set of circuits with input length 2ℓ(𝜆) and depth at most 𝑑 (𝜆).

We can prove that the scheme satisfies strong security as per Definition 3.13 assuming

LWE in bilinear generic group model. Since the intuition was described in Section 3.1,

we proceed directly with the construction. We refer to Sec. 3.4.4 and Sec. 3.4.6 for

backgrounds on lattices and pairings respectively and Sec. 3.4.5 for description of the

kpABE scheme by Boneh et al. [BGG+14] on which our construction is based.

3.6.1 Construction

We proceed to describe our construction.

Setup(1𝜆): On input 1𝜆, the setup algorithm defines the parameters 𝑛 = 𝑛(𝜆),𝑚 = 𝑚(𝜆),

noise distribution 𝜒 over Z, 𝜏0 = 𝜏0(𝜆), 𝜏 = 𝜏(𝜆), and 𝐵 = 𝐵(𝜆) as specified in

Sec. 3.4.5. It samples a group description G = (𝑞,G1,G2,G𝑇 , 𝑒, [1]1, [1]2). Sets

𝐿 := (3ℓ + 1)𝑚 + 2 and proceeds as follows.

1. Sample BGG + 18 scheme:

a) Sample (A,A−1
𝜏0
) ← TrapGen(1𝑛, 1𝑚, 𝑞) such that A ∈ Z𝑛×𝑚𝑞 .

b) Sample random matrix B = (B1, . . . ,B2ℓ) ← (Z𝑛×𝑚𝑞)2ℓ and a random
vector u← Z𝑛𝑞.

2. Sample w← (Z∗𝑞)𝐿 .

3. Output pp = (A,B, u), msk =
(
A−1
𝜏0
,w, [1]1, [1]2

)
.

KeyGen(pp,msk, 𝐹): Given input the public parameters pp, master secret key msk

and a circuit 𝐹, compute BGG + 18 function key for circuit 𝐹 as follows:

1. Compute H𝐹 = EvalF(B, 𝐹) and B𝐹 = BH𝐹 .

60

2. Compute [A∥B𝐹]−1
𝜏 from A−1

𝜏0
and sample r ∈ Z2𝑚 as rT ← [A∥B𝐹]−1

𝜏 (uT).

3. Output the secret key sk𝐹 := r.

Enc1(pp,msk, x1, 𝑏): Given input the public parameters pp, master secret key msk,

attribute vector x1, message bit 𝑏, encryption for slot 1 is defined as follows:

1. Sample LWE secret s← Z𝑛𝑞 and noise terms 𝑒0 ← 𝜒, e← 𝜒𝑚, e𝑖, eℓ+𝑖,𝑏 ←
𝜒𝑚 for 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}, where 𝜒𝑚 is defined as in Sec. 3.4.4.

2. For 𝑖 ∈ [ℓ], compute 𝜓𝑖 := s(B𝑖 − 𝑥1,𝑖G) + e𝑖 .

3. For 𝑖 ∈ [ℓ + 1, 2ℓ], 𝑏 ∈ {0, 1}, compute 𝜓𝑖,𝑏 := s(B𝑖 − 𝑏G) + e𝑖,𝑏 .

4. Compute 𝜓2ℓ+1 := sA + e and 𝜓2ℓ+2 := suT + 𝑒0.

5. Set 𝜇 =
⌊ 𝑞

2
⌉
𝑏.

6. Set c = (1, {𝜓𝑖}𝑖∈[ℓ] , {𝜓𝑖,𝑏}𝑖∈[ℓ+1,2ℓ],𝑏∈{0,1}, 𝜓2ℓ+1, 𝜓2ℓ+2 + 𝜇).

7. Sample 𝑡1 ← Z∗𝑞 and output ct1 = [𝑡1c ⊙ w]1.

Enc2(pp,msk, x2): Given input the public parameters pp, master secret key msk,

attribute vector x2, encryption for slot 2 is defined as follows:

1. Let 1𝑎 := (1, . . . , 1) ∈ Z𝑎𝑞 and 0𝑎 := (0, . . . , 0) ∈ Z𝑎𝑞. Set

�̂�𝑖,𝑏 :=

{
1𝑚 ∈ Z𝑚𝑞 if 𝑏 = 𝑥2,𝑖

0𝑚 ∈ Z𝑚𝑞 if 𝑏 ≠ 𝑥2,𝑖
for 𝑖 ∈ [ℓ + 1, 2ℓ] and 𝑏 ∈ {0, 1}.

2. Set d = (1, 1ℓ𝑚, {�̂�𝑖,𝑏}𝑖∈[ℓ+1,2ℓ],𝑏∈{0,1}, 1𝑚, 1).

3. Sample 𝑡2 ← Z∗𝑞 and output ct2 = [𝑡2d ⊘ w]2.

Dec(pp, sk𝐹 , ct1, ct2): The decryption algorithm takes as input the public parameters

pp, the secret key sk𝐹 for circuit 𝐹 and ciphertexts ct1 and ct2 corresponding to

the two attributes x1 and x2 and proceeds as follows:

1. Take the coordinate-wise pairing between ciphertexts:
Compute [v]𝑇 = [𝑡1𝑡2c ⊙ d]𝑇 as ct1 ⊙ ct2.

61

2. De-vectorize obtained vector:
Expand [v]𝑇 for 𝑖 ∈ [ℓ], 𝑗 ∈ [ℓ + 1, 2ℓ], 𝑏 ∈ {0, 1}, to obtain:

[𝑣0]𝑇 = [𝑡1𝑡2]𝑇 , [v𝑖]𝑇 = [𝑡1𝑡2𝜓𝑖]𝑇 ,

[v 𝑗 ,𝑏]𝑇 = [𝑡1𝑡2𝜓′𝑗 ,𝑏]𝑇 , where 𝜓′𝑗 ,𝑏 =

{(
s(B 𝑗 − 𝑥2, 𝑗G) + e 𝑗 ,𝑏

)
, if 𝑏 = 𝑥2, 𝑗

0, if 𝑏 = 1 − 𝑥2, 𝑗
,

[v2ℓ+1]𝑇 = [𝑡1𝑡2𝜓2ℓ+1]𝑇 , [𝑣2ℓ+2]𝑇 = [𝑡1𝑡2(𝜓2ℓ+2 + 𝜇)]𝑇 .

3. Compute Evaluation function for BGG + 18 ciphertexts in exponent:

Let x = (x1, x2). Compute Ĥ𝐹,x = EvalFX(𝐹, x,B).

4. Perform BGG + 18 decryption in the exponent:
Form [vx]𝑇 = [v1, . . . , vℓ, vℓ+1,𝑥2,1 , . . . v2ℓ,𝑥2,ℓ]𝑇 and parse sk𝐹 = r as r =

(r1 ∈ Z𝑚𝑞 , r2 ∈ Z𝑚𝑞). Then compute

[𝑣′]𝑇 := [(𝑣2ℓ+2 −
(
v2ℓ+1rT

1 + vxĤ𝐹,xrT
2)

)
]𝑇

5. Recover exponent via brute force if 𝐹 (x) = 0:
Find 𝜂 ∈ [−𝐵, 𝐵] ∪ [−𝐵 + ⌈𝑞/2⌉, 𝐵 + ⌈𝑞/2⌉] such that [𝑣0]𝜂𝑇 = [𝑣′]𝑇 by
brute-force search. If there is no such 𝜂, output ⊥. To speed up the operation,
one can employ the baby-step giant-step algorithm.

6. Output 0 if 𝜂 ∈ [−𝐵, 𝐵] and 1 if [−𝐵 + ⌈𝑞/2⌉, 𝐵 + ⌈𝑞/2⌉].

Correctness: To see correctness, we first make following observations:

1. c ⊙ d = (1, {𝜓𝑖}𝑖∈[ℓ] , {𝜓′𝑖,𝑏}𝑖∈[ℓ+1,2ℓ],𝑏∈{0,1}, 𝜓2ℓ+1, 𝜓2ℓ+2 + 𝜇) where,

𝜓′𝑖,𝑏 =

{(
s(B𝑖 − 𝑥2,𝑖G) + e𝑖

)
if 𝑏 = 𝑥2,𝑖

0 if 𝑏 = 1 − 𝑥2,𝑖
.

Recall that [v]𝑇 = [𝑡1𝑡2c ⊙ d]𝑇 . Now, letting vx = (v1, . . . , vℓ, vℓ+1,𝑥2,1 , . . . v2ℓ,𝑥2,ℓ)
and x = (x1, x2), on de-vectorizing it the decryptor obtains

[𝑣0]𝑇 = [𝑡1𝑡2]𝑇 , [v𝑖]𝑇 = [𝑡1𝑡2(s(B𝑖 − 𝑥𝑖G) + e𝑖)]𝑇 for 𝑖 ∈ [ℓ],
[v𝑖,𝑥𝑖]𝑇 = [𝑡1𝑡2(s(B𝑖 − 𝑥𝑖G) + e𝑖,𝑥𝑖)]𝑇 for 𝑖 ∈ [ℓ + 1, 2ℓ],
[v2ℓ+1]𝑇 = [𝑡1𝑡2(sA + e)]𝑇 , [𝑣2ℓ+2]𝑇 = [𝑡1𝑡2(suT + 𝑒0 + 𝜇)]

62

2. Next, observe that:

vx = 𝑡1𝑡2(s(B1 − 𝑥1G) + e1, . . . , s(B2ℓ − 𝑥2ℓG) + e2ℓ)
= 𝑡1𝑡2s((B1, . . . ,B2ℓ) − (𝑥1G, . . . , 𝑥2ℓG)) + 𝑡1𝑡2(e1, . . . , e2ℓ)
= 𝑡1𝑡2s(B − x ⊗ G) + 𝑡1𝑡2ex,

where e𝑖 = e𝑖,𝑥𝑖 for 𝑖 ∈ [ℓ + 1, 2ℓ] and ex = (e1, e2, . . . , e2ℓ)

3. Performing BGG + 18 evaluation and decryption in the exponent yields:

[𝑣′]𝑇 = [
(
𝑣2ℓ+2 − (v2ℓ+1rT

1 + vxĤ𝐹,xrT
2)

)
]𝑇

= [𝑡1𝑡2(suT + 𝜇 + 𝑒0) − 𝑡1𝑡2(sA + e)rT
1 − 𝑡1𝑡2(s(B − x ⊗ G) + ex)Ĥ𝐹,xrT

2]𝑇
= [𝑡1𝑡2(suT + 𝜇 − s(ArT

1 + (BH𝐹 − 𝐹 (x)G)rT
2)) + 𝑡1𝑡2(𝑒0 − erT

1 − exĤ𝐹,xrT
2)]𝑇

(∵ (B − x ⊗ G)Ĥ𝐹,x = BH𝐹 − 𝐹 (x)G (Lemma 3.2)).

For 𝐹 (x) = 0, and replacing BH𝐹 by B𝐹 , (r1, r2) by r, we get,

[𝑣′]𝑇 = [𝑡1𝑡2(suT + 𝜇 − s(A∥B𝐹)rT + 𝑒′)]𝑇 (replacing (𝑒0 − erT
1 − exĤ𝐹,xrT

2) by 𝑒′)
= [𝑡1𝑡2(suT + 𝜇 − suT + 𝑒′)]𝑇 , because (A∥B𝐹)rT = u.

= [𝑡1𝑡2(𝜇 + 𝑒′)]𝑇 = [𝑣0] (𝜇+𝑒
′)

𝑇
.

4. Error bound in 𝑣′:
Recall that we set 𝜒 = SampZ(3

√
𝑛). By the definition of SampZ, we have

∥𝑒0∥∞ ≤ 3𝑛 and ∥e∥∞ ≤ 3𝑛. Furthermore, we have ∥eℓ∥∞, ∥eℓ+𝑖,𝑏∥∞ ≤ 3𝑚𝑛 for
𝑖 ∈ [ℓ] and 𝑏 ∈ {0, 1} by the definition of 𝜒𝑚, ∥r∥∞ ≤

√
𝑛𝜏, and ∥Ĥ𝐹,x∥∞ ≤

𝑚 · 2𝑂 (𝑑) , where the last inequality follows from Lemma 3.2. Thus, we have

𝑒′ = 𝑒0 − erT
1 − exĤ𝐹,xrT

2 ≤ 𝑂 (ℓ𝑚
5𝑛1.5𝜏 · 2𝑂 (𝑑)) ≤ 𝐵

by our choice of 𝐵.

5. Finally, since 𝐵 = poly(𝑛, ℓ) · 2𝑂 (𝑑) = poly(𝜆), we can recover 𝜂 = 𝜇 + 𝑒′ by brute
force search in polynomial time as defined in step 5 and then the message as defined
in step 6 of decryption algorithm.

3.6.2 Security

We prove the security via the following theorem.

Theorem 3.4. Our 2ABE scheme for function class NC1 satisfies strong Ada-IND

security in the generic group model assuming that the kpABE scheme BGG + 18 for

function class NC1 satisfies Ada-INDr security.

63

Overview. The proof is designed via a sequence of games. To begin, we prove that it is

pointless for the adversary to take pairing products between non-matching positions of the

ciphertexts of the two parties and then take linear combinations among them. This may

be argued because of the randomness w in the ciphertexts which is only cancelled when

matching positions are paired. This enables us to argue that the only possible strategy for

the adversary is to take linear combinations among partial decryption results yielded

by computing the pairing between matching positions of the ciphertexts. Next we show

that taking partial decryption results between matching positions of different pairs of

ciphertexts is useless, because the randomness 𝑡1𝑡2 will change across multiple ciphertexts.

This step excludes mix and match attacks between different pairs of ciphertexts and

reduces the adversary strategy to gaining information about the message(s) via results

obtained by legitimate pairing of two entire ciphertexts. At this point, we invoke the

security of BGG + 18 to argue that the message is hidden.

Proof. Consider a PPT adversary A that makes at most 𝑄ct(𝜆) ciphertext queries (in

both slots) and 𝑄zt(𝜆) zero-test queries during the game. We denote the event that A

outputs correct guess for the challenge bit 𝛽 at the end of Gamex as Ex.

Game0: This is the real game in the generic group model. Without loss of generality,

we assume that the challenger simulates the generic group oracle for A. At the

beginning of the game, the challenger samples the public parameters pp = (A,B, u)

and master secret key msk =
(
A−1
𝜏0
,w, [1]1, [1]2

)
as described in the scheme. It

also samples a random bit 𝛽 and keeps it with itself. Then, it returns the public

parameters pp to A. It handles A’s queries as follows:

1. Slot 1 ciphertext queries: To answer the 𝑖-th slot 1 ciphertext query (x𝑖1, 𝑏
𝑖
0, 𝑏

𝑖
1),

it samples 𝑡𝑖1 ← Z
∗
𝑞, computes c𝑖 = (𝑐𝑖1, . . . , 𝑐

𝑖
𝐿
) as specified by Enc1 for

message 𝑏𝑖
𝛽

and returns handles to ct𝑖1 = [𝑡𝑖1c𝑖 ⊙ w]1.

2. Slot 2 ciphertext queries: To answer the 𝑖-th slot 2 ciphertext query x𝑖2, the
challenger samples 𝑡𝑖2 ← Z

∗
𝑞, computes d𝑖 as specified by Enc2 and returns

handles to ct𝑖2 = [𝑡𝑖2d𝑖 ⊘ w]2.

64

3. Secret Key queries: To respond to the 𝑗-th key query 𝐹 𝑗 made by A, the
challenger computes r 𝑗 as specified in the KeyGen algorithm and returns it
to A.

By definition, the advantage of A against the scheme is
��Pr[E0] − 1

2

�� .
Game1: In this game, we switch partially to the symbolic group model and change

the variables (𝑤1, . . . , 𝑤𝐿), (𝑡11, . . . , 𝑡
𝑄ct
1), (𝑡

1
2, . . . , 𝑡

𝑄ct
2) and (𝑐𝑖1, . . . , 𝑐

𝑖
𝐿
) to formal

variables (𝑊1, . . . ,𝑊𝐿), (𝑇1
1 , . . . , 𝑇

𝑄ct
1), (𝑇

1
2 , . . . , 𝑇

𝑄ct
2), (𝐶

𝑖
1, . . . , 𝐶

𝑖
𝐿
). As a result,

all handles given to A refer to elements in the ring

T := Z𝑞

𝑊1, . . . ,𝑊𝐿 , 1/𝑊1, . . . , 1/𝑊𝐿 , 𝑇

1
1 , . . . , 𝑇

𝑄ct
1 , 𝑇1

2 , . . . , 𝑇
𝑄ct
2 ,

𝐶1
1 , . . . , 𝐶

1
𝐿
, . . . , 𝐶

𝑄ct
1 , . . . , 𝐶

𝑄ct
𝐿

 .

where {1/𝑊𝑖}𝑖 are needed to represent the components in the secret keys. However,

when the challenger answers the zero-test queries, it substitutes the formal variables

with corresponding elements in Z𝑞. In doing so, if the variable is not assigned

a value in Z𝑞, we sample corresponding value from the same distribution as in

the real world. Once a value is assigned to a variable, we use the same value

throughout the rest of the game. As we argue in Lemma 3.5, we have:

Pr[E0] = Pr[E1] .

Here, we list all the components in T for which corresponding handles are given to A in

Game1 as handles to the group elements in ciphertexts of both slots:

S1 :=
{
{𝑇 𝑖1 𝐶

𝑖
𝑘 𝑊𝑘 }𝑘∈[𝐿],𝑖∈[𝑄ct]

}
, S2 :=

{
{𝑇 𝑖2/𝑊𝑘 }

𝑘∈[𝐿],𝑖∈[𝑄ct] s.t. 𝑑𝑖
𝑘
= 1

}
Note that S1 and S2 correspond to handles for elements in G1 and G2, respectively. We

then define S𝑇 as S𝑇 := {𝑋 ·𝑌 : 𝑋 ∈ S1, 𝑌 ∈ S2, 𝑋 ·𝑌 ≠ 0}. If we explicitly write down

65

S𝑇 , we have S𝑇 = S𝑇,1 ∪ S𝑇,2, where

S𝑇,1 :=
{
𝑇 𝑖1 𝑇

𝑗

2 𝐶
𝑖
𝑘
𝑊𝑘/𝑊𝑘 ′ , for 𝑘, 𝑘′ ∈ [𝐿], 𝑖, 𝑗 ∈ [𝑄ct]

}
and S𝑇,2 := { 𝑇 𝑖1 𝑇

𝑗

2 𝐶
𝑖
𝑘

for 𝑘 ∈ [𝐿], 𝑖, 𝑗 ∈ [𝑄ct], s.t. 𝑑 𝑗
𝑘
= 1 }.

Note that any handle submitted to the zero-test oracle by A during the game refers to an

element 𝑓 in T that can be represented as

𝑓 (𝑊1, . . . ,𝑊𝐿 , 𝑇
1
1 , . . . , 𝑇

𝑄ct
1 , 𝑇1

2 , . . . , 𝑇
𝑄ct
2 , 𝐶1

1 , . . . , 𝐶
𝑄ct
𝐿
) =

∑︁
𝑍∈S𝑇

𝑎𝑍𝑍 (3.1)

where the coefficients {𝑎𝑍 ∈ Z𝑞}𝑍∈S𝑇 can be efficiently computed. Furthermore,

{𝑎𝑍 ∈ Z𝑞}𝑍∈S𝑇 satisfying the above equation is unique since all monomials in S𝑇 are

distinct.

Game2: In this game, we use the formal variables (𝑊1, . . . ,𝑊𝐿), (𝑇1
1 , . . . , 𝑇

𝑄ct
1),

(𝑇1
2 , . . . , 𝑇

𝑄ct
2) even while answering zero test queries. However, 𝐶1

1 , . . . , 𝐶
𝑄ct
𝐿

are

still replaced by 𝑐1
1, . . . , 𝑐

𝑄ct
𝐿

. Namely, given a zero test query 𝑓 ∈ T, the

challenger returns 1 if:

𝑓 (𝑊1, . . . ,𝑊𝐿 , 𝑇
1
1 , . . . , 𝑇

𝑄ct
1 , 𝑇1

2 , . . . , 𝑇
𝑄ct
2 , 𝑐1

1, . . . , 𝑐
𝑄ct
𝐿
) = 0. (3.2)

We show in Lemma 3.6 that

| Pr[E1] − Pr[E2] | ≤ 𝑄zt(𝐿 + 3)/𝑞.

Game3: In this game, we further change the way zero-test queries are answered. In

particular, when A makes a zero-test query for a handle corresponding to 𝑓 ∈ T

that can be represented as Eq. (3.1), the challenger returns 0 if there exists 𝑍 ∈ S𝑇,1

such that 𝑎𝑍 ≠ 0. Otherwise, the challenger answers the query as in the previous

game. As we prove in Lemma 3.7, we have Pr[E2] = Pr[E3] .

66

Game4: In this game, we partition the set S𝑇,2 by (𝑖, 𝑗) pairs as:

S𝑇,2 = ∪𝑖, 𝑗∈[𝑄ct]S𝑇,2,𝑖, 𝑗 where S𝑇,2,𝑖, 𝑗 = { 𝑇 𝑖1 𝑇
𝑗

2 𝐶
𝑖
𝑘

for 𝑘 ∈ [𝐿] s.t 𝑑 𝑗
𝑘
= 1 }.

We note the that every term 𝑍 in S𝑇,2,𝑖, 𝑗 can be represented by the variables 𝑇 𝑖1,

𝑇
𝑗

2 , and 𝐶𝑖1, . . . , 𝐶
𝑖
𝐿

by the definition of S𝑇,2,𝑖, 𝑗 . For a zero test query 𝑓 that is

represented as

𝑓 (𝑊1, . . . ,𝑊𝐿 , 𝑇
1
1 , . . . , 𝑇

𝑄ct
1 , 𝑇1

2 , . . . , 𝑇
𝑄ct
2 , 𝐶1

1 , . . . , 𝐶
𝑄ct
𝐿
) =

∑︁
𝑖, 𝑗∈[𝑄ct]

∑︁
𝑍∈S𝑇,2,𝑖, 𝑗

𝑎𝑍𝑍,

(3.3)

we change the game so that the challenger returns 0 if there exists a pair (𝑖, 𝑗) such

that ∑︁
𝑍∈S𝑇,2,𝑖, 𝑗

𝑎𝑍𝑍 (𝑇 𝑖1, 𝑇
𝑗

2 , 𝑐
𝑖
1, . . . , 𝑐

𝑖
𝐿) ≠ 0 over T. (3.4)

As we prove in Lemma 3.8, we have Pr[E3] = Pr[E4] .

Game5: Recall that in the previous game, for a zero test query that is represented as

Eq. (3.3), the challenger returns 0 unless Eq. (3.4) holds for all 𝑖, 𝑗 . In this game,

for (𝑖, 𝑗) such that the 𝑖-th ciphertext for slot 1 is a challenge ciphertext (please see

Section 3.5.1 to recall the definition of challenge ciphertext), we replace the check

with the new one that checks whether∑︁
𝑍∈S𝑇,2,𝑖, 𝑗

𝑎𝑍𝑍 (𝑇 𝑖1, 𝑇
𝑗

2 , 𝐶
𝑖
1, . . . , 𝐶

𝑖
𝐿) = 0

holds over T. Namely, for such (𝑖, 𝑗), we stop replacing the variables {𝐶𝑖
𝑘
}𝑘

with the corresponding values {𝑐𝑖
𝑘
}𝑘 in Z𝑞. As we prove in Lemma 3.9, we have

| Pr[E4] − Pr[E5] | ≤ negl(𝜆) assuming Ada-INDr security of BGG + 18, which

follows from LWE.

Next, we observe that the adversary cannot obtain any information about the encrypted

messages in Game5 since the challenge ciphertexts are replaced by formal variables that

do not contain any information of the challenge bit, and the answers to the zero test

67

queries do not depend on the challenge bit either.

Indistinguishability of Hybrids. We next argue that consecutive hybrids are

indistinguishable.

Lemma 3.5 (Game0 ≡ Game1). We have Pr[E0] = Pr[E1].

Proof. Since zero-test queries in Game1 are answered by using variables that are sampled

from exactly the same distribution as that in Game0, the view of A in Game1 is not

altered from that in Game0. The lemma therefore follows. ■

Lemma 3.6 (Game1 ≈𝑠 Game2). We have | Pr[E1] − Pr[E2] | ≤ 𝑄zt(𝐿 + 3)/𝑞.

Proof. The two games are different only when A submits a zero test query corresponding

to a polynomial 𝑓 ∈ T such that

𝑓 (𝑤1, . . . , 𝑤𝐿 , 𝑡
1
1, . . . , 𝑡

𝑄ct
1 , 𝑡12, . . . , 𝑡

𝑄ct
2 , 𝑐1

1, . . . , 𝑐
𝑄ct
𝐿
) = 0 (3.5)

but

𝑓 (𝑊1, . . . ,𝑊𝐿 , 𝑇
1
1 , . . . , 𝑇

𝑄ct
1 , 𝑇1

2 , . . . , 𝑇
𝑄ct
2 , 𝑐1

1, . . . , 𝑐
𝑄ct
𝐿
) ≠ 0 (3.6)

We will use the Schwartz-Zippel lemma to bound the probability that this occurs. We

define a new polynomial 𝑔 ∈ T to clear the denominators as:

𝑔(𝑊1, . . . ,𝑊𝐿 , 𝑇
1
1 , . . . , 𝑇

𝑄ct
1 , 𝑇1

2 , . . . , 𝑇
𝑄ct
2)

=
©«
∏
𝑖∈[𝐿]

𝑊𝑖
ª®¬ · 𝑓 (𝑊1, . . . ,𝑊𝐿 , 𝑇

1
1 , . . . , 𝑇

𝑄ct
1 , 𝑇1

2 , . . . , 𝑇
𝑄ct
2 , 𝑐1

1, . . . , 𝑐
𝑄ct
𝐿
)

Observe that the polynomial has degree 𝐿 + 3 where 𝐿 comes from the leading product

of𝑊𝑖 and 3 comes from the degree of the terms in S𝑇 . We can bound the probability by
𝑄zt (𝐿+3)

𝑞
. ■

Lemma 3.7 (Game2 ≡ Game3). We have Pr[E2] = Pr[E3].

68

Proof. We observe that Game2 and Game3 differ only when A makes a zero-test query

for a handle 𝑓 ∈ T represented as Eq. (3.1) such that 𝑎𝑍 ≠ 0 for some 𝑍 ∈ S𝑇,1 and

corresponding 𝑓 equals to 0 in T. We claim that such 𝑓 does not exist and two games

are actually equivalent. This is because monomials in S𝑇,1 and S𝑇,2 are distinct even if

we replace the formal variables {𝐶𝑖
𝑗
}𝑖, 𝑗 with values {𝑐𝑖

𝑗
}𝑖, 𝑗 in Z𝑞. Hence, if there exists

𝑍 ∈ S𝑇,1 such that 𝑎𝑍 ≠ 0, there would be no way to cancel this term using the remaining

monomials. ■

Lemma 3.8 (Game3 ≈𝑠 Game4). We have | Pr[E3] − Pr[E4] | ≤ 2𝑄zt/𝑞.

Proof. We observe that the two games differ only when the adversary submits a query

𝑓 ∈ T represented as Eq. (3.1) such that Eq. (3.2) holds, but there is (𝑖, 𝑗) such that

Eq. (3.4) holds. Note that for such 𝑓 , 𝑖, and 𝑗 , we have∑︁
𝑍∈S𝑇,2,𝑖, 𝑗

𝑎𝑍𝑍 (𝑇 𝑖1, 𝑇
𝑗

2 , 𝑐
𝑖
1 . . . 𝑐

𝑖
𝐿) = −

∑︁
(𝑖′, 𝑗 ′)≠(𝑖, 𝑗)

∑︁
𝑍∈S𝑇,2,𝑖′ , 𝑗′

𝑎𝑍𝑍 (𝑇 𝑖
′

1 , 𝑇
𝑗 ′

2 , 𝑐
𝑖′

1 . . . 𝑐
𝑖′

𝐿).

However, the above is impossible unless the left hand side equals to 0 since any monomial

in S𝑇,2,𝑖, 𝑗 never appears in S𝑇,2,𝑖′, 𝑗 ′ for (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′) (since the product 𝑇 𝑖1𝑇
𝑗

2 ≠ 𝑇 𝑖
′

1 𝑇
𝑗 ′

2)

even if we replace the formal variables {𝐶𝑖
𝑘
}𝑘 and {𝐶𝑖′

𝑘
}𝑘 with values {𝑐𝑖

𝑘
}𝑘 and {𝑐𝑖′

𝑘
}𝑘 in

Z𝑞. Therefore, the change made in this game is only conceptual and Pr[E3] = Pr[E4] . ■

Lemma 3.9 (Game4 ≈𝑐 Game5). There exists a PPT adversary B against Ada-INDr

security of BGG + 18 such that | Pr[E4] − Pr[E5] | ≤ 𝑄2
ct𝑄zt ·

(
AdvAda-INDr

BGG+18,B(1𝜆) + 1/𝑞
)
.

Proof. We call a zero test query 𝑓 ∈ T as bad if 𝑓 is represented as Eq. (3.3) and there

exists (𝑖, 𝑗) such that 𝑖-th ciphertext for slot 1 is a challenge ciphertext (i.e., 𝑏𝑖0 ≠ 𝑏𝑖1) and

the following equations hold:∑︁
𝑍∈S𝑇,2,𝑖, 𝑗

𝑎𝑍𝑍 (𝑇 𝑖1, 𝑇
𝑗

2 , 𝑐
𝑖
1, . . . , 𝑐

𝑖
𝐿) = 0 and

∑︁
𝑍∈S𝑇,2,𝑖, 𝑗

𝑎𝑍𝑍 (𝑇 𝑖1, 𝑇
𝑗

2 , 𝐶
𝑖
1, . . . , 𝐶

𝑖
𝐿) ≠ 0.

(3.7)

69

It is easily seen that Game4 and Game5 are equivalent unless the adversary makes a

bad query. To bound the probability of a bad query being issued, consider the following

sequence of games. Below, we define Fx as the event that the challenger does not abort

in Game4,x.

Game4.0: This game is the same as Game4. However, the challenger checks whether A

has made a bad query and aborts if not at the end of the game. By definition, the

probability that A makes a bad query in Game4 is Pr[F0].

Game4.1: In this game, we change the previous game so that the challenger picks a

random guess 𝑘∗ for the first bad query as 𝑘∗ ← [𝑄zt] at the beginning of the

game. Furthermore, we change the game so that the challenger aborts if the 𝑘∗-th

zero-test query is not the first bad query. Since 𝑘∗ is chosen uniformly at random

and independent from the view of A, the guess is correct with probability 1/𝑄zt

conditioned on F0. Therefore, we have Pr[F1] = Pr[F0]/𝑄zt.

Game4.2: This game is the same as the previous game except that the challenger aborts

the game immediately after A makes the 𝑘∗-th zero-test query. Since the occurrence

of F1 is irrelevant to how the game proceeds after the 𝑘∗-th zero-test query, we

clearly have Pr[F2] = Pr[F1] .

Game4.3: In this game, we change the game so that the the challenger stop aborting even

if a bad query occurs before the 𝑘∗-th zero test query. Furthermore, any query

before the 𝑘∗-th one, regardless of whether bad or not, is answered as in Game5.

Since Game4 and Game5 proceed exactly the same until the first bad query and

removing the abort condition simply increases the chance of making a bad query,

we have Pr[F3] ≥ Pr[F2] .

70

Game4.4: In this game, we change the previous game so that the challenger picks

(𝑖∗, 𝑗∗) ← [𝑄2
ct] uniformly at random at the beginning of the game. Furthermore,

we change the abort condition so that the challenger aborts if Eq. (3.7) does not

hold with respect to (𝑖, 𝑗) = (𝑖∗, 𝑗∗) when the 𝑘∗-th zero-test query 𝑓 is represented

as Eq. (3.3). We note that the challenger does not check the equations with respect

to other indices. Since there exists at least one pair of (𝑖, 𝑗) ∈ [𝑄2
ct] that satisfies

Eq. (3.7) as long as F4 occurs and (𝑖∗, 𝑗∗) is chosen uniformly at random and

independent from the view of A, we have Pr[F4] ≥ Pr[F3]/𝑄2
ct.

Game4.5: In this game, we have the challenger abort if the (𝑖∗, 𝑗∗)-th ciphertext queries

were not made at the point when the 𝑘∗-th zero-test query was made. We claim that

conditioned on F5 happens, the challenger never aborts. To see this, we observe

that if the (𝑖∗, 𝑗∗)-th ciphertext queries have not been made, then terms that contain

𝑇 𝑖
∗

1 , 𝑇
𝑗∗

2 have not been given to A and there is no way to make a zero-test query

for 𝑓 such that
∑
𝑍∈S𝑇,2,𝑖∗ , 𝑗∗ 𝑎𝑍𝑍 ≠ 0, since all terms in S𝑇,2,𝑖∗, 𝑗∗ are multiples of

𝑇 𝑖
∗

1 𝑇
𝑗∗

2 . We therefore have Pr[F5] = Pr[F4] .

Game4.6: Recall in the previous game, Eq. (3.7) is checked with respect to (𝑖, 𝑗) = (𝑖∗, 𝑗∗)

and c𝑖∗ = (𝑐𝑖∗1 , . . . , 𝑐
𝑖∗

𝐿
) is used there. In this hybrid, we only compute c𝑖∗ ⊙ d 𝑗∗

instead of c𝑖∗ for the 𝑘∗-th challenge query. Equivalently, we only compute 𝑐𝑖∗
𝑘

for 𝑘 such that 𝑑 𝑗
∗

𝑘
= 1. We claim that the game is still well-defined. To see this,

we first observe that the only place in the game where we need actual ciphertexts

(not formal variables) is for the 𝑘∗-th zero-test query. Furthermore, for the 𝑘∗-th

zero-test query, we observe that only the terms{
𝑍 (𝑇 𝑖∗1 , 𝑇

𝑗∗

2 , 𝑐
𝑖∗

1 , . . . 𝑐
𝑖∗

𝐿)
��� 𝑍 ∈ S𝑇,2,𝑖∗, 𝑗∗ } =

{
𝑐𝑖
∗

𝑘𝑇
𝑖∗

1 𝑇
𝑗∗

2

��� 𝑘 ∈ [𝐿] s.t. 𝑑 𝑗
∗

𝑘
= 1

}
are required, where the equality follows from the definition of S𝑇,2,𝑖∗, 𝑗∗ . We

therefore can see that the game is well-defined and the change is only conceptual.

71

Hence we have Pr[F6] = Pr[F5] .

Game4.7: Recall that c𝑖∗ ⊙ d 𝑗∗ constitutes a vector that is obtained by padding the

ciphertext of BGG + 18 for the attribute (x𝑖∗1 , x
𝑗∗

2) with 1 and 0. In this game, we

pick the ciphertext elements in c𝑖∗ ⊙ d 𝑗∗ uniformly at random from Z𝑞 except for

the positions that are fixed to be 0 or 1. As we prove in Lemma 3.10, there exists a

PPT adversary B such that AdvAda-INDr
BGG+18,B(1𝜆) ≥ | Pr[F7] − Pr[F6] |.

We also show in Lemma 3.11 that Pr[F7] = 1/𝑞. This allows us to bound Pr[F0] as:

Pr[F0] ≤ 𝑄2
ct𝑄zt · (AdvAda-INDr

BGG+18,B(1
𝜆) + 1/𝑞),

where B is a PPT adversary. ■

Lemma 3.10. There exists a PPT adversary B such that AdvAda-INDr
BGG+18,B(1𝜆) ≥ | Pr[F6] −

Pr[F7] |.

Proof. We show that if A can distinguish Game4.6 from Game4.7, we can build another

adversary B against Ada-INDr security of BGG + 18. The adversary B acts as the

challenger and simulates the game for A.

Setup phase. At the beginning of the game, B is given 1𝜆 and the master public key of

BGG + 18 (A,B, u) which it returns to A. B also samples (𝑖∗, 𝑗∗) ← [𝑄2
ct], 𝑘∗ ← [𝑄zt],

and 𝛽← {0, 1} and keeps them secret.

Key Queries. Given the 𝑗-th secret key query for 𝐹 𝑗 made by A, B makes a secret key

query for 𝐹 𝑗 to its challenger and is given r sampled as r← [A∥B𝐹]−1
𝜏 (u).

Ciphertext Queries. When A makes ciphertext queries, B prepares handles for the

ciphertexts components and returns them to A. In more detail, B returns {𝑇 𝑖1𝐶
𝑖
𝑘
𝑊𝑘 }𝑘∈[𝐿]

72

for 𝑖-th ciphertext query in slot 1 and {𝑇 𝑖2/𝑊𝑘 }
𝑘∈[𝐿], s.t. 𝑑𝑖

𝑘
= 1 for 𝑖-th ciphertext query

in slot 2.

Generic Group Queries. B honestly handles the queries for the generic group oracle

corresponding to addition, negation, and multiplication (bilinear map) made by A by

keeping track of the underlying encodings in T associated with the handles.

When A makes a 𝑘-th zero test query that refers to an element 𝑓 ∈ T, B returns 0 if 𝑓

cannot be represented as Eq.(3.3) (i.e., there is 𝑎𝑍 ≠ 0 such that 𝑍 ∈ S𝑇,1). Otherwise, B

proceeds as follows:

1. If 𝑓 is the 𝑘-th zero-test query with 𝑘 < 𝑘∗, it runs the following test for all
𝑖, 𝑗 ∈ [𝑄ct].

a) If the 𝑖-th ciphertext query is the challenge query (i.e., 𝑏𝑖0 ≠ 𝑏𝑖1), it checks
whether

∑
𝑍∈S𝑇,2,𝑖, 𝑗 𝑎𝑍𝑍 = 0 or not (without replacing the formal variables

(𝐶𝑖1, . . . , 𝐶
𝑖
𝐿
) in 𝑍 with values (𝑐𝑖1, . . . , 𝑐

𝑖
𝐿
)).

b) If the 𝑖-th ciphertext query is not a challenge query, it checks whether the
variables {𝐶𝑖

𝑘
}𝑘 are already assigned values. If the values are already assigned,

it will use the values. Otherwise, it samples c𝑖 = {𝑐𝑖
𝑘
}𝑘 as in Game4. We

then check
∑
𝑍∈S𝑇,2,𝑖, 𝑗 𝑎𝑍𝑍 (𝑇 𝑖1, 𝑇

𝑗

2 , 𝑐
𝑖
1, . . . , 𝑐

𝑖
𝐿
) = 0 or not.

If all the equations hold, B returns 1 to A. Otherwise, it returns 0.

2. If 𝑓 is the 𝑘∗-th zero-test query, B first checks whether the (𝑖∗, 𝑗∗)-th ciphertext
queries have already been made and the 𝑖∗-th query for slot 1 is the challenge query
and aborts otherwise. It then requests the BGG + 18 challenger for ciphertexts for
attributes (x𝑖∗1 ∥x

𝑗∗

2) and message bit 𝑏𝑖∗
𝛽
. It constructs c𝑖∗ ⊙ d 𝑗∗ using the received

BGG + 18 ciphertexts. Then it checks whether Eq. (3.7) holds with respect to
(𝑖, 𝑗) = (𝑖∗, 𝑗∗). As we observed, the above check can be done only given c𝑖∗ ⊙ d 𝑗∗ .
It outputs 1 if they hold and 0 otherwise.

Analysis. Observe that B simulates Game4.6 if the challenge ciphertext for B is the

real one and Game4.7 if it is chosen uniformly at random from the ciphertext space.

Therefore, it can be seen that B outputs 1 with probability Pr[F6] if the BGG + 18

challenger returned real ciphertexts and Pr[F7] if it returned random. Therefore, B’s

advantage against BGG + 18 is | Pr[F6] − Pr[F7] |. This completes the proof of the

lemma. ■

73

Lemma 3.11. We have Pr[F7] = 1/𝑞.

Proof. We recall that F7 occurs only when A makes a zero-test query that refers to a handle

𝑓 that is represented as Eq. (3.3) and satisfies Eq.(3.7) with respect to (𝑖, 𝑗) = (𝑖∗, 𝑗∗) for

random {𝑐𝑖∗1 , . . . 𝑐
𝑖∗

𝐿
}. However, this can happen only with probability at most 1/𝑞 by the

Schwartz-Zippel lemma because 𝑓 is linear in the variables 𝐶𝑖∗1 , . . . , 𝐶
𝑖∗

𝐿
. ■

■

3.7 TWO-INPUT ABE FOR NC1 IN STANDARD MODEL

In this section, we propose two input ABE construction for NC1 in the standard model.

The construction is shown to be strong very selective secure under the LWE assumption

and a variant of bilinear KOALA assumption introduced in [AWY20], which is proven to

hold under the bilinear generic group model, assuming function hiding BIPFE is available.

Note that function hiding BIPFE can be instantiated from various standard assumptions

on bilinear maps including SXDH and DLIN (See Sec. 3.4.3). The construction is similar

to both our construction in Sec. 3.6 and the construction in [AWY20] in high level.

3.7.1 Assumption

Here, we introduce a variant of the bilinear KOALA assumption introduced in [AWY20],

which in turn is a pairing group variant of the KOALA assumption introduced in [BW19].

The security of our two input ABE scheme in the standard model will be based on the

assumption.

Definition 3.16 (Bilinear KOALA Assumption). Let Samp0 = {Samp0,𝜆}𝜆 be an

efficient sampling algorithm that takes as input an integer 𝑞 and outputs a string aux and

Samp1 = {Samp1,𝜆}𝜆 be an efficient sampling algorithm that takes as input an integer 𝑞

and a string aux and outputs a matrix V ∈ Zℓ1×ℓ2𝑞 with ℓ1 < ℓ2. For an efficient adversary

A = {A𝜆}, let us define

AdvBKOALA,dist
A,G,Samp (𝜆) := | Pr[A𝜆 (G, aux, [sV]2) → 1] − Pr[A𝜆 (G, aux, [r]2) → 1] |.

74

where the probabilities are taken over the choice of G = (𝑞,G1,G2,G𝑇 , 𝑒, [1]1, [1]2) ←

GroupGen(1𝜆), aux ← Samp0(𝑞), V ← Samp1(𝑞, aux), s ← Zℓ1𝑞 , r ← Zℓ2𝑞 , and the

coin of A𝜆.

Furthermore, for an efficient adversary B = {B𝜆}𝜆, we also define

AdvBKOALA,find
B,G,Samp (𝜆) := Pr[B𝜆 (G, aux) → x ∧ VxT = 0 ∧ x ≠ 0]

where the probability is taken over the choice of G = (𝑞,G1,G2,G𝑇 , 𝑒, [1]1, [1]2) ←

GroupGen(1𝜆), aux← Samp0(𝑞), V← Samp1(𝑞, aux), and the coin of B𝜆.

We say that the bilinear KOALA assumption holds with respect to GroupGen and efficient

samplers Samp0,Samp1 if for any efficient adversary A, there exists another efficient

adversary B and a polynomial function 𝑄(𝜆) such that

AdvBKOALA,find
B,G,Samp (𝜆) ≥ AdvBKOALA,dist

A,G,Samp (𝜆)/𝑄(𝜆) − negl(𝜆).

Remark 3. The above assumption is defined with respect to the non-uniform sampling

algorithms Samp0,Samp1 and a non-uniform adversary A. All the security assumptions

and proofs in this chapter except for the ones that use the above assumption can work in

the uniform setting.

Remark 4 (Comparison with [AWY20]). Compared to the original version of the

bilinear KOALA assumption [AWY20], our assumption allows Samp0 to be an efficient

sampler that possibly samples aux from some structured distribution, whereas Samp0 is

restricted to output a random string in their assumption. The reason why they restrict the

distribution is to avoid a kind of attacks that embeds obfuscation into aux. In particular,

as observed by the authors, if we relax the above setting so that aux is chosen along

with V, there is a concrete attack assuming sufficiently secure obfuscation. In more

detail, let us consider a sampler that outputs random V along with auxiliary information

aux = O(𝐶V), which is an obfuscation of circuit 𝐶V that takes as input group description

G and elements [v]2 and returns whether v is in the space spanned by the rows of V

75

or not. Using O(𝐶V), one can easily distinguish [sV]2 from [r]2 with high probability.

However, an efficient adversary may not be able to find a vector x ≠ 0 that satisfies

VxT = 0 even given O(𝐶V), if we use sufficiently strong obfuscator to obfuscate the

circuit 𝐶V.7 This specific attack does not work against our assumption above, since V is

chosen after aux, rather than chosen at the same time. However, as a safeguard against

the future attacks, we assume the assumption to hold for some specific samplers Samp0

and Samp1 rather than for general Samp0 and Samp1. We note that [AWY20] assumes

that the assumption holds for all the efficient samplers Samp1 rather than a specific one,

while restricting Samp0 to the specific sampler that outputs a random string.

To justify the assumption, [AWY20] proves that the assumption holds in the generic

group model. Though they prove the theorem for the case where aux is chosen uniformly

at random, the proof does not depend on this fact and the same proof works for the case

where aux is chosen from general distributions. Namely, we have the following theorem.

Theorem 3.12 (Adapted from [AWY20]). The bilinear KOALA assumption holds under

the bilinear generic group model with respect to all efficient samplers Samp0 and Samp1,

where A has access to the generic group oracles but Samp0 and Samp1 do not.

The following lemma is from [AWY20] with slightly different formulation. The lemma

essentially says that for a sampler that outputs a set of vectors such that the vectors

are individually pseudorandom but mutually correlated, it holds that the vectors appear

mutually pseudorandom when they are lifted to the exponent and randomized by vector-

wise randomness assuming the bilinear KOALA assumption for the related samplers.

Lemma 3.13 (Adapted from Theorem 4.7 in [AWY20]). Let Samp0 = {Samp0,𝜆}𝜆 be

an efficient sampling algorithm that takes as input an integer 𝑞 and outputs a string

aux and Samp1 = {Samp1,𝜆}𝜆 be an efficient sampling algorithm that takes as input an

integer 𝑞 and a string aux and outputs a set of vectors {u(𝑗) ∈ Z𝑚𝑞 } 𝑗∈[𝑡] . For an efficient

adversary A = {A𝜆}𝜆 and 𝑖 := 𝑖(𝜆) ∈ N, let us assume that

| Pr[A𝜆 (G, aux, u(𝑖)) → 1] − Pr[A𝜆 (G, aux, v) → 1] | (3.8)

7The explanation on the attack is taken verbatim from [AWY20, Remark 4.3].

76

is negligible, where the probabilities are taken over the choice of

G = (𝑞,G1,G2,G𝑇 , 𝑒, [1]1, [1]2) ← GroupGen(1𝜆), aux← Samp0(𝑞), {u(𝑗)} 𝑗∈[𝑡] ←

Samp𝜆 (𝑞, aux), v ← Z𝑚𝑞 , and the coin of A𝜆. In the above, we set u(𝑖) := v if

𝑖 > 𝑡. Furthermore, assume that the bilinear KOALA assumption holds with respect to

GroupGen, Samp0, and Samp′1 that runs Samp1 to obtain {u(𝑗)} 𝑗∈[𝑡] and then outputs

V =

1 u(1)

1 u(2)

. . .

1 u(𝑡)

∈ Z𝑡×(1+𝑚)𝑡𝑞 . (3.9)

Then, for any efficient adversary B = {B𝜆},

�������Pr

B𝜆
©«

G, aux,{
[𝛾 (𝑗)]2, [𝛾 (𝑗)u(𝑗)]2

}
𝑗∈[𝑡]

ª®®¬→ 1

 − Pr

B𝜆
©«

G, aux,{
[𝛾 (𝑗)]2, [v(𝑗)]2

}
𝑗∈[𝑡]

ª®®¬→ 1

������� ,

(3.10)

is negligible, where the probabilities are taken over the choice of G, aux← Samp0(𝑞),

{u(𝑗)} 𝑗∈[𝑡] ← Samp1(𝑞, aux), 𝛾 (𝑗) ← Z𝑞, v(𝑗) ← Z𝑚𝑞 for 𝑗 ∈ [𝑡], and the coin of B𝜆.

The lemma is shown for the case where aux is chosen uniformly at random in [AWY20],

but the same proof works for our more general setting.

3.7.2 Construction

Here, we show our construction of two input ABE for NC1 in the standard model. The

function class that the scheme supports is exactly the same as that of Sec. 3.6. In the

construction, we use a BIPFE scheme

BIPFE = (BIPFE.Setup,BIPFEKeyGen,BIPFE.Enc,BIPFE.Dec). We refer to

Sec. 3.4.3 for the definition and instantiations of BIPFE.

Setup(1𝜆): On input 1𝜆, the setup algorithm defines the parameters 𝑛 = 𝑛(𝜆),𝑚 = 𝑚(𝜆),

77

noise distributions 𝜒 over Z, 𝜏0 = 𝜏0(𝜆), 𝜏 = 𝜏(𝜆), and 𝐵 = 𝐵(𝜆) as specified in

Sec. 3.4.5. It samples a group description G = (𝑞,G1,G2,G𝑇 , 𝑒, [1]1, [1]2). It

then proceeds as follows.

1. Sample BGG + 18 scheme:

a) Sample (A,A−1
𝜏0
) ← TrapGen(1𝑛, 1𝑚, 𝑞) such that A ∈ Z𝑛×𝑚𝑞 .

b) Sample random matrix B = (B1, . . . ,B2ℓ) ← (Z𝑛×𝑚𝑞)2ℓ and a random
vector u← Z𝑛𝑞.

2. Sample BIPFE instances BIPFE.msk1 ← BIPFE.Setup(1𝜆, 1𝑚(ℓ+1)+2, 12)
and BIPFE.msk2 ← BIPFE.Setup(1𝜆, 1𝑚ℓ, 13).

3. Output

pp = (A,B, u), msk =
(
[1]1, [1]2, A−1

𝜏 , {BIPFE.msk𝑖}𝑖∈{1,2}
)
.

KeyGen(pp,msk, 𝐹): Given input the public parameters pp, master secret key msk

and a circuit 𝐹, compute BGG + 18 function key for circuit 𝐹 as follows:

1. Compute H𝐹 = EvalF(B, 𝐹) and B𝐹 = BH𝐹 .

2. Compute [A∥B𝐹]−1
𝜏 from A−1

𝜏0
and sample r ∈ Z2𝑚 as rT ← [A∥B𝐹]−1

𝜏 (uT).

3. Output the secret key sk𝐹 := r.

Enc1(pp,msk, x1, 𝑏): Given input the public parameters pp, master secret key msk,

attribute vector x1, message bit 𝑏, encryption for slot 1 is defined as follows:

1. Sample LWE secret s← Z𝑛𝑞 and noises 𝑒0 ← 𝜒, e← 𝜒𝑚, e𝐿 , e𝑅 ← (𝜒𝑚)ℓ,
where 𝜒𝑚 is defined as in Sec. 3.4.4.

2. Compute

c1,1 :=
(
1, sA + e, suT + 𝑒0 +

⌈𝑞
2

⌉
· 𝑏, s (B𝐿 − x1 ⊗ G) + e𝐿

)
,

c1,2 := 0𝑚(ℓ+1)+2,
c2,1 := sB𝑅 + e𝑅, c2,2 := −1ℓ ⊗ sG, c2,3 := 0𝑚ℓ

where we define B𝐿 := [B1, . . . ,Bℓ] and B𝑅 := [Bℓ+1, . . . ,B2ℓ].

3. Set C1 = (cT
1,1, c

T
1,2) and C2 = (cT

2,1, c
T
2,2, c

T
2,3).

78

4. For 𝑖 = 1, 2, compute BIPFE.ct𝑖 := BIPFE.Enc(BIPFE.msk𝑖, [C𝑖]1).

5. Output ct1 = (BIPFE.ct1,BIPFE.ct2).

Enc2(pp,msk, x2): Given input the public parameters pp, master secret key msk,

attribute vector x2, encryption for slot 2 is defined as follows:

1. Sample 𝑡 ← Z𝑞.

2. Compute

d1,1 := 𝑡 · 1𝑚(ℓ+1)+2, d1,2 := 0𝑚(ℓ+1)+2
d2,1 := 𝑡 · 1𝑚ℓ, d2,2 := 𝑡 (x2 ⊗ 1𝑚) , d2,3 := 0𝑚ℓ .

3. Set D1 = (dT
1,1, d

T
1,2) and D2 = (dT

2,1, d
T
2,2, d

T
2,3).

4. For 𝑖 = 1, 2, compute BIPFE.sk𝑖 := BIPFE.KeyGen(BIPFE.msk𝑖, [D]2).

5. Output ct2 = (BIPFE.sk1,BIPFE.sk2).

Dec(pp, sk𝐹 , ct1, ct2): The decryption algorithm takes as input the public parameters

pp, the secret key sk𝐹 for circuit 𝐹 and ciphertexts ct1 and ct2 corresponding to

the two attributes x1 and x2 and proceeds as follows:

1. Parse the ciphertext:
Parse the ciphertexts as ct1 → (BIPFE.ct1,BIPFE.ct2) and
ct2 → (BIPFE.sk1,BIPFE.sk2).

2. Decrypt the BIPFE ciphertexts:
Compute [w𝑖]𝑇 = BIPFE.Dec(BIPFE.sk𝑖,BIPFE.ct𝑖) for 𝑖 = 1, 2.

3. Reorganize the obtained vector:
Let x = (x1, x2). Reorganize [w𝑖]𝑇 for 𝑖 = 1, 2 to obtain:

[𝑣0, v2ℓ+1, 𝑣2ℓ+2, vx1]𝑇 := [w1]𝑇 , [vx2]𝑇 := [w2]𝑇 , [vx]𝑇 := [vx1 , vx2]𝑇 ,

where 𝑣0 ∈ Z𝑞, v2ℓ+1 ∈ Z𝑚𝑞 , 𝑣2ℓ+2 ∈ Z𝑞, and vx1 , vx2 ∈ Z𝑚ℓ𝑞 .

4. Evaluate function on BGG + 18 ciphertexts in exponent:

Compute Ĥ𝐹,x = EvalFX(𝐹, x,B).

79

5. Perform BGG + 18 decryption in the exponent:
Form r = (r1 ∈ Z𝑚𝑞 , r2 ∈ Z𝑚𝑞). Then compute

[𝑣′]𝑇 := [(𝑣2ℓ+2 −
(
v2ℓ+1rT

1 + vxĤ𝐹,xrT
2)

)
]𝑇 .

6. Recover exponent via brute force if 𝐹 (x) = 0:
Find 𝜂 ∈ [−𝐵, 𝐵] ∪ [−𝐵 + ⌈𝑞/2⌉, 𝐵 + ⌈𝑞/2⌉] such that [𝑣0]𝜂𝑇 = [𝑣′]𝑇 by
brute-force search. If there is no such 𝜂, output ⊥. To speed up the operation,
one can employ the baby-step giant-step algorithm.

7. Output 0 if 𝜂 ∈ [−𝐵, 𝐵] and 1 if [−𝐵 + ⌈𝑞/2⌉, 𝐵 + ⌈𝑞/2⌉].

Correctness: Correctness is argued by observing that vectors {w𝑖}𝑖∈{1,2} form the

randomized version of the BGG+ ciphertext w.r.t s on the exponent. Namely, we have

w1 = c1,1 ⊙ d1,1 + c1,2 ⊙ d1,2

= 𝑡

(
1, sA + e, suT + 𝑒0 +

⌈𝑞
2

⌉
· 𝑏, s (B𝐿 − x1 ⊗ G) + e𝐿

)
and

w2 = c2,1 ⊙ d2,1 + c2,2 ⊙ d2,2 + c2,3 ⊙ d2,3

= 𝑡 (sB𝑅 + e𝑅) − 𝑡 (1ℓ ⊗ sG) ⊙ (x2 ⊗ 1𝑚)

= 𝑡 (s (B𝑅 − x2 ⊗ G) + e𝑅) ,

where we used (1ℓ ⊗ sG) ⊙ (x2 ⊗ 1𝑚) = s (x2 ⊗ G) in the third equation above. Having

established above, the rest of the argument for proving the correctness is exactly the same

as Sec. 3.6 and thus omitted.

3.7.3 Security

We prove the security of the construction via following theorem:

Theorem 3.14. Our 2ABE scheme for function class NC1 satisfies strong very selective

security assuming that BIPFE satisfies function hiding security and the bilinear KOALA

80

assumption for certain samplers8 and the LWE assumption hold.

Proof. Consider a PPT adversary A that makes at most 𝑄ct(𝜆) ciphertext queries (in

both slots) and 𝑄kq(𝜆) key queries during the game. We denote the event that A outputs

1 at the end of Gamex as Ex.

Game0: This is the real game with 𝛽 = 0. At the beginning of the game, the adversary

declares its challenge queries {(x(𝑖)1 , 𝑏
(𝑖)
0 , 𝑏

(𝑖)
1)}𝑖∈[𝑄ct] for the first slot, {x(𝑖)2 }𝑖∈[𝑄ct]

for the second slot, and the key queries {𝐹 (𝑗)} 𝑗∈[𝑄kq] . Then, the challenger

samples the public parameters pp = (A,B, u) and master secret key

msk =
(
[1]1, [1]2,A−1

𝜏 , {BIPFE.msk𝑖}𝑖∈{1,2}
)

as described in the scheme. Then,

it computes the ciphertexts ct(𝑖)1 ← Enc(pp,msk, x(𝑖)1 , 𝑏
(𝑖)
0),

ct(𝑖)2 ← Enc(pp,msk, x(𝑖)2), for 𝑖 ∈ [𝑄ct] and secret keys

sk(𝑗) ← KeyGen(pp,msk, 𝐹 (𝑗)) for 𝑗 ∈ [𝑄kq] and returns

pp, {ct(𝑖)1 , ct(𝑖)2 }𝑖, {sk(𝑗)} 𝑗 to A.

Game 𝑗 : This game is defined for 𝑗 ≤ 𝑄ct. In this game, ct(𝑖)1 is computed as

ct(𝑖)1 ←

Enc(pp,msk, x(𝑖)1 , 𝑏

(𝑖)
1) if 𝑖 ≤ 𝑗

Enc(pp,msk, x(𝑖)1 , 𝑏
(𝑖)
0) if 𝑖 > 𝑗

Except for the above, the game is the same as Game0.
We have that Game𝑄ct equals to the real game with 𝛽 = 1. Therefore, we have to show that

| Pr[E0] − Pr[E𝑄ct] | is negligible. To do so, it suffices to show that | Pr[E 𝑗−1] − Pr[E 𝑗] |

is negligible for all 𝑗 ∈ [𝑄ct]. We introduce the following sequence of games to prove

this. In the following, we can assume that the 𝑗-th ciphertext for slot 1 is the challenge

ciphertext (i.e., 𝑏 (𝑗)0 ≠ 𝑏
(𝑗)
1), since otherwise Game 𝑗−1 and Game 𝑗 are equivalent.

Game 𝑗−1,0: This game is the same as Game 𝑗−1. To fix the notation, we describe how

the challenger answers the challenge queries below.
8We refer to the proof of Lemma 3.16 for the description of the sampler.

81

1. Slot 1 ciphertext queries: To answer a slot 1 ciphertext request for
(x(𝑖)1 , 𝑏

(𝑖)
0 , 𝑏

(𝑖)
1), the challenger samples s(𝑖) , e(𝑖) , e(𝑖)

𝐿
, e(𝑖)

𝑅
, and 𝑒

(𝑖)
0 as

specified and computes the vectors as below:

c(𝑖)1,1 :=
(
1, s(𝑖)A + e(𝑖) , s(𝑖)uT + 𝑒(𝑖)0 +

⌈𝑞
2

⌉
· 𝑏 (𝑖) , s(𝑖)

(
B𝐿 − x(𝑖)1 ⊗ G

)
+ e(𝑖)

𝐿

)
,

c(𝑖)1,2 = 0𝑚(ℓ+1)+2

where 𝑏 (𝑖) = 1 if 𝑖 ≤ 𝑗 − 1 and 𝑏 (𝑖) = 0 otherwise,

c(𝑖)2,1 := s(𝑖)B𝑅 + e(𝑖)
𝑅
, c(𝑖)2,2 = −1ℓ ⊗ s(𝑖)G, c(𝑖)2,3 := 0𝑚ℓ .

Then, the challenger sets C(𝑖) and computes ct(𝑖)1 as specified using the vectors.

2. Slot 2 ciphertext queries: To answer a slot 2 ciphertext request for x(𝑖)2 , the
challenger samples 𝑡 (𝑖) as specified and computes the vectors as below:

d(𝑖)1,1 = 𝑡 (𝑖)1𝑚(ℓ+1)+2, d(𝑖)1,2 = 0𝑚(ℓ+1)+2,

d(𝑖)2,1 = 𝑡 (𝑖)1𝑚ℓ, d(𝑖)2,2 = 𝑡 (𝑖)
(
x(𝑖)2 ⊗ 1𝑚

)
, d(𝑖)2,3 = 0𝑚ℓ .

Then, the challenger sets D(𝑖) and computes ct(𝑖)2 as specified using the vectors.

By definition, we have

Pr[E 𝑗−1] = Pr[E 𝑗−1,0] .

Game 𝑗−1,1: In this game, we change how the challenger computes the 𝑗-th ciphertext

for slot 1 and all the ciphertexts for slot 2. In particular, the challenger sets C(𝑗) by

setting the vectors as

c(𝑗)1,1 = 0𝑚(ℓ+1)+2, c(𝑗)1,2 = 1𝑚(ℓ+1)+2,

c(𝑗)2,1 = c(𝑗)2,2 = 0𝑚ℓ, c(𝑗)2,3 = 1𝑚ℓ .

Furthermore, we change the vectors d(𝑖)1,2 and d(𝑖)2,3 for all 𝑖 ∈ [𝑄ct] as follows:

d(𝑖)1,2 = 𝑡 (𝑖)
(
1, s(𝑗)A + e(𝑗) , s(𝑗)uT + 𝑒(𝑗)0 +

⌈𝑞
2

⌉
· 𝑏 (𝑗)0 , s(𝑗)

(
B𝐿 − x(𝑗)1 ⊗ G

)
+ e(𝑗)

𝐿

)
,

d(𝑖)2,3 = 𝑡 (𝑖)
(
s(𝑗)

(
B𝑅 − x(𝑖)2 ⊗ G

)
+ e(𝑗)

𝑅

)
.

We note that other terms in D(𝑖)1 and D(𝑖)2 are unchanged. We show in Lemma 3.15

82

that

| Pr[E 𝑗−1,0] − Pr[E 𝑗−1,1] | ≤ negl(𝜆).

Game 𝑗−1,2: In this game, we further change d(𝑖)1,2 and d(𝑖)2,3 for all 𝑖 ∈ [𝑄ct] as follows:

d(𝑖)1,2 = 𝑡 (𝑖)
(
1, c(𝑖) , 𝑐(𝑖)0 , c

(𝑖)
𝐿

)
, d(𝑖)2,3 = 𝑡 (𝑖) · c(𝑖)

𝑅
,

where c(𝑖) ← Z𝑚𝑞 , 𝑐(𝑖)0 ← Z𝑞, c(𝑖)
𝐿
, c(𝑖)
𝑅
← Z𝑚ℓ𝑞 are freshly chosen for each 𝑖. We

show in Lemma 3.16 that

| Pr[E 𝑗−1,1] − Pr[E 𝑗−1,2] | ≤ negl(𝜆).

Game 𝑗−1,3: This game is the same as Game 𝑗 . We show in Lemma 3.17 that

| Pr[E 𝑗−1,2] − Pr[E 𝑗−1,3] | ≤ negl(𝜆).

Indistinguishability of Hybrids. We next argue that consecutive hybrids are

indistinguishable.

Lemma 3.15 (Game 𝑗−1,0 ≈𝑐 Game 𝑗−1,1). We have | Pr[E 𝑗−1,0] −Pr[E 𝑗−1,1] | ≤ negl(𝜆).

Proof. We observe that C(𝑖)1 ⊡ D(𝑖
′)

1 and C(𝑖)2 ⊡ D(𝑖
′)

2 in Game 𝑗−1,0 are the same as those

in Game 𝑗−1,1 for all the combinations of 𝑖, 𝑖′ ∈ [𝑄ct]. We can change C(𝑖)1 and D(𝑖
′)

1

in Game 𝑗−1,0 to those of Game 𝑗−1,1 in a computationally indistinguishable way by

a straightforward reduction to the function privacy of BIPFE. In the reduction, the

reduction algorithm samples msk except for BIPFE.msk0 and simulates BIPFE secret

keys and ciphertexts by the oracle queries. We can also change C(𝑖)2 and D(𝑖
′)

2 using the

security of BIPFE again. ■

Lemma 3.16 (Game 𝑗−1,1 ≈𝑐 Game 𝑗−1,2). We have | Pr[E 𝑗−1,1] −Pr[E 𝑗−1,2] | ≤ negl(𝜆).

83

Proof. We construct an adversary B against the bilinear KOALA assumption with respect

to certain samplers that are specified later assuming an adversary A that distinguishes

the two games. We first fix the challenge queries {(x(𝑖)1 , 𝑏
(𝑖)
0 , 𝑏

(𝑖)
1)}𝑖∈[𝑄ct] and {x(𝑖)2 }𝑖∈[𝑄ct]

and secret key queries {𝐹 (𝑖)}𝑖∈[𝑄kq] that maximizes the distinguishing advantage of A.

This is possible because the queries are only dependent on the security parameter and

the randomness of A, both of which can be hardwired into A in the non-uniform setting.9

We first consider the sampling algorithm Samp0 that works as follows. In the following, let

BGG + 18 = (BGG + 18.Setup,BGG + 18.KeyGen,BGG + 18.Enc,BGG + 18.Dec)

be the kpABE scheme by [BGG+14] that is introduced in Sec. 3.4.5.

Samp0(1𝜆, 𝑞) : Given the security parameter 1𝜆 and the modulus 𝑞, it works as follows.

1. Run (BGG + 18.mpk,BGG + 18.msk) ← BGG + 18.Setup(1𝜆) for the
circuit class C2ℓ(𝜆),𝑑 (𝜆) and modulus 𝑞.

2. Run BGG + 18.sk(𝑖) ←
BGG + 18.KeyGen(BGG + 18.mpk,BGG + 18.msk, 𝐹 (𝑖)) for 𝑖 ∈ [𝑄kq].

3. Output aux := (BGG + 18.mpk, {BGG + 18.sk(𝑖)}𝑖∈[𝑄kq]).

We then define Samp1 as follows:

Samp1(aux, 𝑞) : Given the auxiliary information

aux = (BGG + 18.mpk, {BGG + 18.sk(𝑖)}𝑖∈[𝑄kq]) and the modulus 𝑞, it works as

follows.

1. Sample z← Z𝑛𝑞, 𝑒0 ← 𝜒, e← 𝜒𝑚, and e𝑘 ← 𝜒𝑚 for 𝑘 ∈ [ℓ].

2. Compute

𝜓2ℓ+1 := zA + e ∈ Z𝑚𝑞 , 𝜓2ℓ+2 := zuT + 𝑒0 + 𝑏 (𝑗)0 ⌈𝑞/2⌉ ∈ Z𝑞,
For all 𝑘 ∈ [2ℓ], 𝑏 ∈ {0, 1}, 𝜓𝑘,𝑏 := z(B − 𝑏G) + e𝑘 ∈ Z𝑚𝑞

3. Set u(𝑖) :=

(
𝜓2ℓ+1, 𝜓2ℓ+2,

{
𝜓
𝑘,𝑥
(𝑗)
1,𝑘

}
𝑘∈[ℓ]

,

{
𝜓
𝑘,𝑥
(𝑖)
2,𝑘

}
𝑘∈[ℓ]

)
.

9This is the only proof in the chapter where we need the non-uniform reduction algorithm.

84

4. Output {u(𝑖)}𝑖∈[𝑄ct]

We can observe that each u(𝑖) is distributed as a BGG + 18 ciphertext for message 𝑏 (𝑗)0

and attribute (x(𝑗)1 , x(𝑖)2), even though when we consider the joint distribution of {u(𝑖)}𝑖,

the set of vectors is mutually correlated. This along with the fact that the 𝑗-th ciphertext

is the challenge ciphertext (i.e., there is no 𝑖 and 𝑖′ such that 𝐹 (𝑖′) (x(𝑗)1 , x𝑖2) = 0) imply

that each u(𝑖) is pseudorandom given aux by Sel-INDr security of BGG + 18 (as per

Definition 3.5). Therefore, assuming the bilinear KOALA assumption with respect to

GroupGen, Samp0, and Samp′1, where Samp′1 is defined as in Lemma 3.13 from Samp1

above10, we have that the following distributions are computationally indistinguishable:

©«
G, aux,{

[𝛾 (𝑖)]2, [𝛾 (𝑖)u(𝑖)]2
}
𝑖∈[𝑄ct]

ª®®¬ ≈𝑐
©«

G, aux,{
[𝛾 (𝑖)]2, [v(𝑖)]2

}
𝑖∈[𝑄ct]

ª®®¬
where G is chosen by GroupGen(1𝜆), aux← Samp0(𝑞), {u(𝑖)}𝑖∈[𝑡] ← Samp1(𝑞, aux),

𝛾 (𝑖) ← Z𝑞, and v(𝑖) ← Z𝑚𝑞 for 𝑖 ∈ [𝑄ct].

To complete the proof, we construct B that distinguishes the above distributions given

the adversary A. At the beginning, given the input, B first parses

aux → (BGG + 18.mpk, {BGG + 18.sk(𝑖)}𝑖∈[𝑄kq]). B then honestly samples

{BIPFE.msk𝑖}𝑖∈{1,2} by itself.

Secret Key Queries: It can answer the secret key queries by A by {BGG + 18.sk(𝑖)}𝑖∈[𝑄kq] .

Ciphertext Queries for Slot 1: For answering the ciphertext queries, the simulation

for slot 1 is straightforward. Namely, B samples s(𝑖) , 𝑒(𝑖)0 , e(𝑖) , e(𝑖)
𝐿

, and e(𝑖)
𝑅

for 𝑖 ≠ 𝑗

and generates the ciphertext ct(𝑖)1 for all 𝑖 ∈ [𝑄ct] as specified in Game 𝑗−1 using

BGG + 18.mpk. Note that s(𝑗) , 𝑒(𝑗)0 , e(𝑗) , e(𝑗)
𝐿

, and e(𝑗)
𝑅

are not necessary for computing

ct(𝑗)1 and are undefined at this point.

Ciphertext Queries for Slot 2: B also has to answer ciphertext queries for slot 2. To
10Thus, matrix V is defined as Eq.(3.9), where vectors {u(𝑖) }𝑖 in the matrix are the vectors output by the

Samp1 algorithm above.

85

answer the 𝑖-th ciphertext query for slot 2, B first sets terms d(𝑖)1,2 and d(𝑖)2,3 as[
d(𝑖)1,2, d

(𝑖)
2,3

]
2

:=
[
𝛾 (𝑖) , v(𝑖)

]
2
,

where v(𝑖) is either random or v(𝑖) = 𝛾 (𝑖)u(𝑖) . The computation of [D(𝑖)]2 for the terms

other than the above terms is straightforward using [𝛾 (𝑖)]2 by implicitly setting 𝑡 (𝑖) := 𝛾 (𝑖) .

It then computes the ciphertext ct(𝑖)2 as in the honest encryption algorithm.

It can be seen that B simulates Game 𝑗−1,4 if v(𝑖) is random and Game 𝑗−1,3 if v(𝑖) = 𝛾 (𝑖)u(𝑖) ,

where B implicitly sets

s(𝑗) := z, 𝑒
(𝑗)
0 := 𝑒0, e(𝑗) := e,

(
e(𝑗)
𝐿
, e(𝑗)
𝐿

)
:= (e1, . . . e2ℓ) .

Therefore, B distinguishes the distributions if A distinguishes the games. ■

Lemma 3.17 (Game 𝑗−1,2 ≈𝑐 Game 𝑗−1,3). We have | Pr[E 𝑗−1,2] −Pr[E 𝑗−1,3] | ≤ negl(𝜆).

Proof. This follows by considering the same sequence of games that is used for showing

the indistinguishability of Game 𝑗−1,0 and Game 𝑗−1,2, but in the reverse order and with

the difference that 𝑏 (𝑗)0 is replaced by 𝑏 (𝑗)1 . The indistinguishability between the games

follows from the security of BIPFE, LWE, and the bilinear KOALA assumption for the

same sampler. ■
■

3.8 COMPILING 𝑘-ABE TO 𝑘-PE VIA LOCKABLE OBFUSCATION

In this section we describe our compiler to lift 𝑘-input ABE to 𝑘-input PE. Namely, we

construct 𝑘-input predicate encryption using 𝑘-input ABE and lockable obfuscation. The

conversion preserves Ada-IND security. The extension of the conversion that preserves

strong security is provided in Section 3.9.

3.8.1 Construction

Our construction uses the following building blocks:

86

1. A secret key encryption scheme SKE = (SKE.Setup,SKE.Enc,SKE.Dec).

2. A Lockable Obfuscator LO = (LO.Obf, LO.Eval) with lock space L = {0, 1}𝑚 and
input space X = {0, 1}𝑛.

3. A 𝑘-input ABE scheme kABE = (kABE.Setup, kABE.KeyGen, kABE.Enc1, . . . ,
kABE.Enc𝑘 , kABE.Dec) in which the message bit is associated with the last slot,
kABE.Enc𝑘 . We require 𝑘 = 𝑂 (1).

In the construction below, we require the message space of the SKE scheme to
be the same as the lock space L of the lockable obfuscator scheme LO and the
message space of kABE to be the same as the key space of SKE.

We now describe the construction of 𝑘-input predicate encryption scheme. Our 𝑘-input

PE construction has the same attribute space and the function class as the underlying

𝑘-input ABE, when we consider the function class of NC1 circuits or polynomial-size

circuits.

Setup(1𝜆) : On input the security parameter 1𝜆, the Setup algorithm does the following:

1. Run (kABE.msk, kABE.pp) ← kABE.Setup(1𝜆).

2. Run SKE.Setup(1𝜆) 𝑘 times and obtain secret keys 𝐾1, 𝐾2, . . . , 𝐾𝑘 .

3. Output msk = (kABE.msk, 𝐾1, . . . , 𝐾𝑘) and pp = kABE.pp.

KeyGen(pp,msk, 𝐹) : On input the public parameters pp, the master secret key

msk = (kABE.msk, 𝐾1, . . . , 𝐾𝑘) and a circuit 𝐹, the KeyGen algorithm does the

following:

1. Run kABE.sk𝐹 ← kABE.KeyGen(pp, kABE.msk, 𝐹).

2. Output sk𝐹 = kABE.sk𝐹 .

Enc1(pp,msk, x1, 𝑚): On input the public parameters pp, master secret key msk =

(kABE.msk, 𝐾1, . . . , 𝐾𝑘), attribute x1 for position 1 and message𝑚, the encryption

algorithm does the following:

1. Sample 𝛾1 ← L and let ct∗1 = SKE.Enc(𝐾1, 𝛾1)

87

2. Compute ct1 = kABE.Enc1(pp, kABE.msk, x1).

3. Define a function 𝑓1 [ct1, ct∗1] as in Figure 3.2.

4. Output ct′1 = LO.Obf(1𝜆, 𝑓1 [ct1, ct∗1], 𝑚, 𝛾1).

Enc𝑖 (pp,msk, x𝑖) for 2 ≤ 𝑖 ≤ 𝑘: On input the public parameters pp, master secret

key msk = (kABE.msk, 𝐾1, . . . , 𝐾𝑘), attribute x𝑖 for position 𝑖, the encryption

algorithm does the following:

1. Sample a random value 𝛾𝑖 ← L and let ct∗
𝑖
= SKE.Enc(𝐾𝑖, 𝛾𝑖).

2. Compute ct𝑖 =

{
kABE.Enc𝑖 (pp, kABE.msk, x𝑖) for 2 ≤ 𝑖 < 𝑘
kABE.Enc𝑘 (pp, kABE.msk, x𝑘 , 𝐾𝑘) for 𝑖 = 𝑘

.

3. Define a function 𝑓𝑖 [ct𝑖, ct∗
𝑖
] as in Figure 3.2.

4. Output ct′
𝑖
= LO.Obf(1𝜆, 𝑓𝑖 [ct𝑖, ct∗

𝑖
], 𝐾𝑖−1, 𝛾𝑖).

Circuit 𝑓𝑖 [ct𝑖, ct∗
𝑖
] for 1 ≤ 𝑖 ≤ 𝑘

1. Parse input as (ct1, . . . , ct𝑖−1, �̃�𝑖+1, . . . , �̃�𝑘 , sk𝐹) where ct 𝑗 is regarded as a slot
𝑗 ciphertext of kABE, �̃� 𝑗 is regarded as an obfuscated circuit of LO and sk𝐹 is
regarded as a kABE secret key.

2. Compute𝐾′
𝑖
=

{
LO.Eval(�̃�𝑖+1, (ct1, . . . , ct𝑖, �̃�𝑖+2, . . . , �̃�𝑘 , sk𝐹)) for 1 ≤ 𝑖 < 𝑘
kABE.Dec(pp, sk𝐹 , ct1, . . . , ct𝑘) for 𝑖 = 𝑘

3. Outputs 𝛾′
𝑖
← SKE.Dec(K′

𝑖
, ct∗

𝑖
).

Figure 3.2: Circuit Obfuscated by Slot 𝑖 Encryption for 1 ≤ 𝑖 ≤ 𝑘

Dec(sk𝐹 , ct′1, . . . , ct′
𝑘
) : On input the secret key sk𝐹 for function 𝐹, and kPE ciphertexts

ct′1, . . . , ct′
𝑘
, do the following:

1. Parse ct′1 as an LO obfuscation.

2. Compute and output LO.Eval(ct′1, (ct′2, . . . , ct′
𝑘
, sk𝐹)).

88

Correctness. To establish correctness, we first prove the following statement:

Claim 3.18. For x1, . . . , x𝑘 such that 𝐹 (x1, . . . , x𝑘) = 0, and ct𝑖, ct∗
𝑖
, ct′

𝑖
, for 1 ≤ 𝑖 ≤ 𝑘 ,

computed as per the scheme,

For 2 ≤ 𝑖 ≤ 𝑘, LO.Eval(ct′𝑖, (ct1, . . . , ct𝑖−1, ct′𝑖+1, . . . , ct′𝑘 , sk𝐹)) = 𝐾𝑖−1.

Proof. We can prove this by induction.

Base case: For 𝑖 = 𝑘 , we show that

LO.Eval(ct′𝑘 , (ct1, . . . , ct𝑘−1, sk𝐹)) = 𝐾𝑘−1

Proof: Since, ct′
𝑘
= LO.Obf(1𝜆, 𝑓𝑘 [ct𝑘 , ct∗

𝑘
], 𝐾𝑘−1, 𝛾𝑘), from the functionality of LO,

𝑓𝑘 [ct𝑘 , ct∗
𝑘
] is evaluated on input (ct1, . . . , ct𝑘−1, sk𝐹) in the following steps:

1. kABE.Dec(pp, sk𝐹 , ct1, . . . , ct𝑘) = K𝑘 , from the correctness of kABE.Dec

2. Output SKE.Dec(𝐾𝑘 , ct∗
𝑘
) = 𝛾𝑘 , from the correctness of SKE.Dec

Since, the output of function 𝑓𝑘 [ct𝑘 , ct∗
𝑘
] matches the lock value in ct′

𝑘
,

LO.Eval(ct′
𝑘
, (ct1, . . . , ct𝑘−1, sk𝐹)) = 𝐾𝑘−1, from the correctness of LO.

Inductive Step: We show that for 2 ≤ 𝑖 ≤ 𝑘 − 1, if

LO.Eval(ct′𝑖+1, (ct1, . . . , ct𝑖, ct′𝑖+2, . . . , ct′𝑘 , sk𝐹)) = 𝐾𝑖,

then

LO.Eval(ct′𝑖, (ct1, . . . , ct𝑖−1, ct′𝑖+1, . . . , ct′𝑘 , sk𝐹)) = 𝐾𝑖−1.

Proof: Recall that ct′
𝑖
= LO.Obf(1𝜆, 𝑓𝑖 [ct𝑖, ct∗

𝑖
], 𝐾𝑖−1, 𝛾𝑖). By LO’s functionality,

LO.Eval(ct′
𝑖
, (ct1, . . ., ct𝑖−1, ct′

𝑖+1, . . . , ct′
𝑘
, sk𝐹)) first evaluates 𝑓𝑖 [ct𝑖, ct∗

𝑖
] on input

(ct1, . . . , ct𝑖−1, ct′
𝑖+1, . . . , ct′

𝑘
, sk𝐹) in the following two steps:

1. LO.Eval(ct′
𝑖+1, (ct1, . . . , ct𝑖, ct′

𝑖+2, . . . , ct′
𝑘
, sk𝐹)) = 𝐾𝑖, by the induction hypothesis.

2. Output SKE.Dec(𝐾𝑖, ct∗
𝑖
) = 𝛾𝑖, from the correctness of SKE.

Since, the function output matches with the lock value,

89

LO.Eval(ct′
𝑖
, (ct1, . . . , ct𝑖−1, ct′

𝑖+1, . . . , ct′
𝑘
, sk𝐹)) = 𝐾𝑖−1 from the correctness of LO.Eval.

■

Finally, we observe that the kPE decryption outputs LO.Eval(ct′1, (ct′2, . . . , ct′
𝑘
, sk𝐹)),

where ct′1 = LO.Obf(1𝜆, 𝑓1 [ct1, ct∗1], 𝑚, 𝛾1). Hence from the functionality of LO, firstly

the function 𝑓1 [ct1, ct∗1] is evaluated on input (ct′2, . . . , ct′
𝑘
, sk𝐹) in the following steps:

1. Compute LO.Eval(ct′2, (ct1, ct′3, . . . , ct′
𝑘
, sk𝐹)) = 𝐾1.

2. Output SKE.Dec(𝐾1, ct∗1) = 𝛾1 from the correctness of SKE.

Since, 𝑓1 [ct1, ct∗1] evaluates to 𝛾1, which is the lock value in ct′1, from the correctness of

LO.Eval, we get LO.Eval(ct′1, (ct′2, . . . , ct′
𝑘
, sk𝐹)) = 𝑚 as desired.

3.8.2 Security

We prove that the above construction satisfies Ada-IND security of Definition 3.12 via

the following theorem.

Theorem 3.19. Assume LO is a secure lockable obfuscation scheme as per Definition

3.8, that kABE is a secure 𝑘 input ABE scheme as per Definition 3.11 and SKE is a

secure secret key encryption scheme. Then, the kPE construction presented above is

secure as per Definition 3.12.

Proof. The proof proceeds via a sequence of following games between the challenger

and a PPT adversary A.

Game0: This is the real world.

Game1: In this world, the SKE key 𝐾𝑘 encrypted in the kABE ciphertext ct𝑘 is replaced

with 0.

For 𝑎 = 2 to 𝑘 + 1 define:

90

Game𝑎.0: In this world,

1. For 𝑗 ∈ [1, 𝑘 − (𝑎 − 1)], ct′
𝑗

is computed as in the real world.

2. For 𝑗 = 𝑘 − (𝑎 − 2),

a) ct 𝑗 =

{
kABE.Enc 𝑗 (pp, kABE.msk, x𝑖

𝑗 ,𝑏
) if 𝑗 < 𝑘 (i.e. 𝑎 > 2)

kABE.Enc 𝑗 (pp, kABE.msk, x𝑖
𝑗 ,𝑏
, 0) if 𝑗 = 𝑘 (i.e. 𝑎 = 2)

b) ct∗
𝑗
= SKE.Enc(𝐾 𝑗 , 0)

c) ct′
𝑗
=

{
LO.Obf(1𝜆, 𝑓 𝑗 [ct 𝑗 , ct∗

𝑗
], 𝐾 𝑗−1, 𝛾 𝑗) if 𝑗 > 1 (i.e. 𝑎 < 𝑘 + 1)

LO.Obf(1𝜆, 𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
], 𝑚𝑖

𝑏
, 𝛾 𝑗) if 𝑗 = 1 (i.e. 𝑎 = 𝑘 + 1)

3. For 𝑗 ∈ [𝑘 − (𝑎 − 3), 𝑘], ct′
𝑗

is generated using LO simulator. In more detail,

a) ct 𝑗 =

{
kABE.Enc 𝑗 (pp, kABE.msk, x𝑖

𝑗 ,𝑏
) if 𝑗 < 𝑘

kABE.Enc 𝑗 (pp, kABE.msk, x𝑖
𝑗 ,𝑏
, 0) if 𝑗 = 𝑘

b) ct∗
𝑗
= SKE.Enc(𝐾 𝑗 , 0)

c) ct′
𝑗
= LO.Sim(1𝜆, 1| 𝑓 𝑗 [ct 𝑗 ,ct∗

𝑗
] |
, 1|𝐾 𝑗−1 |)

Game𝑎.1: This is same as Game𝑎.0, except the following change: In this world, ct′
𝑘−(𝑎−2)

is generated using LO simulator.

Indistinguishability of Hybrids. We now show that the consecutive games are

indistinguishable. We let Ex denote the event that the adversary A outputs correct guess

for the challenge bit 𝑏 at the end of Gamex.

Claim 3.20. Assume that kABE satisfies Ada-IND security (Definition 3.11). Then,

Game0 and Game1 are computationally indistinguishable. That is,

| Pr[E0] − Pr[E1] | ≤ negl(𝜆).

Proof. We show that if A can distinguish between Game0 and Game1 with non-

91

negligible probability then there exists an adversary B who can break Ada-IND security

of kABE using A. The reduction is as follows:

1. The kABE challenger samples (kABE.msk, kABE.pp) ← kABE.Setup(1𝜆), a bit
𝑏′← {0, 1} and sends kABE.pp to B.

2. Upon receiving the public parameters kABE.pp from the kABE challenger, B sets
pp = kABE.pp, samples 𝑘 SKE keys 𝐾1, . . . , 𝐾𝑘 using SKE.KeyGen and invokes
A with pp as public parameters and chooses a bit 𝑏 ← {0, 1}. B implicitly sets
msk = (kABE.msk, 𝐾1, . . . , 𝐾𝑘).

3. B then responds to key queries and ciphertext queries from A as follows:

Key Queries: B forwards each key query for a function 𝐹 to kABE challenger
and obtains a secret key kABE.sk𝐹 . B returns sk𝐹 = kABE.sk𝐹 to A.

Ciphertext Queries: Each ciphertext query from A is of the form{
(x𝑖1,0, x

𝑖
1,1), (𝑚

𝑖
0, 𝑚

𝑖
1) (for slot 1), or

(x𝑖
𝑗 ,0, x

𝑖
𝑗 ,1) (for slot 1 < 𝑗 ≤ 𝑘)

On receiving a ciphertext query, B does the following:

a) If the query is for slot 1 ≤ 𝑗 ≤ 𝑘 − 1,

• Samples a random value 𝛾 𝑗 ← L and computes ct∗
𝑗
= SKE.Enc(𝐾 𝑗 , 𝛾 𝑗).

• Sends x𝑖
𝑗 ,𝑏

, as a ciphertext query to the kABE challenger.

• The kABE challenger returns a ciphertext ct 𝑗 = kABE.Enc 𝑗 (kABE.pp,
kABE.msk, x𝑖

𝑗 ,𝑏
) for slot 𝑗 .

• B defines the function 𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
] and returns

ct′
𝑗
=

{
LO.Obf(1𝜆, 𝑓 𝑗 [ct 𝑗 , ct∗

𝑗
], 𝑚𝑖

𝑏
, 𝛾 𝑗) if 𝑗 = 1

LO.Obf(1𝜆, 𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
], 𝐾 𝑗−1, 𝛾 𝑗) otherwise

b) If the query is for slot 𝑘

• Samples 𝛾𝑘 ← L and computes ct∗
𝑘
= SKE.Enc(𝐾𝑘 , 𝛾𝑘).

• Sends (x𝑖
𝑘,𝑏
, (𝜇𝑖0 = 𝐾𝑘 , 𝜇

𝑖
1 = 0)) as ciphertext query to the kABE

challenger.

• The kABE challenger computes and returns a ciphertext ct𝑘 for slot 𝑘 ,

92

computed as ct𝑘 = kABE.Enc𝑘 (kABE.pp, kABE.msk, x𝑖
𝑘,𝑏
, 𝜇𝑖

𝑏′).

• B defines function 𝑓𝑘 [ct𝑘 , ct∗
𝑘
] and computes and returns

ct′𝑘 = LO.Obf(1𝜆, 𝑓𝑘 [ct𝑘 , ct∗𝑘], 𝐾𝑘−1, 𝛾𝑘).

4. In the end, A outputs its guess bit �̂�. If 𝑏 = �̂�, then B returns 𝑏′′ = 1, else 𝑏′′ = 0
to the kABE challenger.

We can observe that if the bit 𝑏′ chosen by kABE challenger is 0, then B simulated

Game0, else Game1 withA. This gives us the advantage of B, against kABE challenger,

as | Pr(𝑏′′ = 1|𝑏′ = 0) − Pr(𝑏′′ = 1|𝑏′ = 1) | = | Pr[E0] − Pr[E1] |. Hence, assuming

Ada-IND security of kABE, we get

| Pr[E0] − Pr[E1] | ≤ negl(𝜆).

Admissibility of B: Observe that the key queries made by B to the kABE challenger

are the same key queries as made by A to B. Also the attribute in each ciphertext query

by B to kABE challenger is taken from the corresponding ciphertext query byA. Hence,

the admissibility of A implies admissibility of B. ■

Claim 3.21. Assume that SKE is a CPA secure encryption scheme. Then Game1 and

Game2.0 are computationally indistinguishable. That is,

| Pr[E1] − Pr[E2.0] | ≤ negl(𝜆).

Proof. We show that if A can distinguish between Game1 and Game2.0 with non-

negligible probability, then there exists an adversary B who can break CPA security of

SKE using A. The reduction is as follows:

1. The SKE challenger samples 𝐾 ← SKE.Setup(1𝜆) and a bit 𝑏′ ← {0, 1} and
invokes B.

2. Upon being challenged by SKE challenger, B does the following:

a) Samples (kABE.pp, kABE.msk) ← kABE.Setup(1𝜆) and SKE keys
𝐾1, . . . , 𝐾𝑘−1. Sets pp = kABE.pp, msk = (kABE.msk, 𝐾1, . . . , 𝐾𝑘−1, 𝐾𝑘),

93

where B implicitly sets 𝐾𝑘 to be the secret key 𝐾 sampled by the SKE
challenger.

b) Samples a bit 𝑏 and invokes A with pp.

c) For each key query for any function 𝐹 from A, B returns
sk𝐹 ← kABE.KeyGen(pp, kABE.msk, 𝐹).

d) To answer each ciphertext query which is of the form{
(x𝑖1,0, x

𝑖
1,1), (𝑚

𝑖
0, 𝑚

𝑖
1) (for slot 1), or

(x𝑖
𝑗 ,0, x

𝑖
𝑗 ,1) (for slot 1 < 𝑗 ≤ 𝑘),

B does the following:

i. If the query is for slot 𝑗 < 𝑘 ,B samples 𝛾 𝑗 and computes ct 𝑗 and ct∗
𝑗
on its

own as ct 𝑗 = kABE.Enc 𝑗 (pp, kABE.msk, x𝑖
𝑗 ,𝑏
), ct∗

𝑗
= SKE.Enc(𝐾 𝑗 , 𝛾 𝑗).

Defines 𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
] and returns

ct′𝑗 =

{
LO.Obf(1𝜆, 𝑓1 [ct1, ct∗1], 𝑚

𝑖
𝑏
, 𝛾1) if 𝑗 = 1

LO.Obf(1𝜆, 𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
], 𝐾 𝑗−1, 𝛾 𝑗), otherwise

ii. If the query is for slot 𝑘

A. B computes ct𝑘 = kABE.Enc𝑘 (pp, kABE.msk, x𝑖
𝑘,𝑏
, 0)

B. Samples 𝛾𝑘 ← L and sends 𝜇𝑖0 = 𝛾𝑘 and 𝜇𝑖1 = 0 as challenge
messages to the SKE challenger.

C. SKE challenger returns ct∗
𝑘
= SKE.Enc(𝐾𝑘 , 𝜇𝑖𝑏′).

D. B defines function 𝑓𝑘 [ct𝑘 , ct∗
𝑘
] and returns

ct′𝑘 = LO.Obf(1𝜆, 𝑓𝑘 [ct𝑘 , ct∗𝑘], 𝐾𝑘−1, 𝛾𝑘)

to A.

e) In the end, A outputs a bit �̂�. If �̂� = 𝑏, then B returns 𝑏′′ = 1, else 𝑏′′ = 0 to
the SKE challenger.

We can observe that if 𝑏′ = 0 then B simulated Game1, else Game2.0. Hence, if A

distinguishes between Game1 and Game2.0, with non negligible probability then B also

94

wins against the SKE challenger. Assuming CPA security of SKE, we get

| Pr[E1] − Pr[E2.0] | ≤ negl(𝜆).

■

Claim 3.22. Assume that LO is a secure lockable obfuscation scheme (Definition 3.8).

Then for 2 ≤ 𝑎 ≤ 𝑘 + 1, Game𝑎.0 and Game𝑎.1 are computationally indistinguishable.

That is,

| Pr[E𝑎.0] − Pr[E𝑎.1] | ≤ negl(𝜆).

Proof. Recall that in both the hybrids,

• For 𝑗 ∈ [1, 𝑘 − (𝑎 − 1)], ct′
𝑗

is computed as in the real world.

• For 𝑗 ∈ [𝑘 − (𝑎 − 3), 𝑘], ct′
𝑗

is generated using LO simulator.

• For 𝑗 = 𝑘 − (𝑎 − 2), ct 𝑗 and ct∗
𝑗

are computed as:

ct 𝑗 =

{
kABE.Enc 𝑗 (pp, kABE.msk, x𝑖

𝑗 ,𝑏
), if 𝑗 < 𝑘, (i.e. 𝑎 > 2)

kABE.Enc 𝑗 (pp, kABE.msk, x𝑖
𝑗 ,𝑏
, 0), if 𝑗 = 𝑘, (i.e. 𝑎 = 2),

ct∗
𝑗
= SKE.Enc(𝐾 𝑗 , 0)

The only difference between the two hybrids is in the generation of ct′
𝑘−(𝑎−2) as following.

Let 𝑗 = 𝑘 − (𝑎 − 2).

In Game𝑎.0,

ct′𝑗 =

LO.Obf(1𝜆, 𝑓 𝑗 [ct 𝑗 , ct∗

𝑗
], 𝑚𝑖

𝑏
, 𝛾 𝑗), if 𝑗 = 1, (i.e. 𝑎 = 𝑘 + 1)

LO.Obf(1𝜆, 𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
], 𝐾 𝑗−1, 𝛾 𝑗), otherwise

In Game𝑎.1,

ct′𝑗 =

LO.Sim(1𝜆, 1| 𝑓 𝑗 [ct 𝑗 ,ct∗

𝑗
] |
, 1|𝑚

𝑖
𝑏
|), if 𝑗 = 1, (i.e. 𝑎 = 𝑘 + 1)

LO.Sim(1𝜆, 1| 𝑓 𝑗 [ct 𝑗 ,ct∗
𝑗
] |
, 1|𝐾 𝑗−1 |), otherwise

95

We show that if A can distinguish between Game𝑎.0 and Game𝑎.1 then there exists

an adversary B who can distinguish between LO obfuscated programs and simulated

programs, thus breaking the security of LO. The reduction is as follows:

1. The LO challenger samples 𝑏′← {0, 1} and starts the game with B. Upon being
challenged by the LO challenger, B does the following:

a) Samples public parameters and master secret key for kPE as (pp,msk =

(kABE.msk, 𝐾1, . . ., 𝐾𝑘)) ← Setup(1𝜆) and invokes A with pp. B also
samples a bit 𝑏.

b) A issues polynomially many key queries and ciphertext queries, to which B
responds as following.

i. For each key query for a function 𝐹 from A, B returns
sk𝐹 ← KeyGen(pp,msk, 𝐹) to A.

ii. To answer each ciphertext query which is of the form{
(x𝑖1,0, x

𝑖
1,1), (𝑚

𝑖
0, 𝑚

𝑖
1) (for slot 1), or

(x𝑖
𝑗 ,0, x

𝑖
𝑗 ,1) (for slot 𝑗 > 1),

B does the following:

A. If the query is for slot 𝑗 ∈ [1, 𝑘 − (𝑎 − 1)],

• Samples 𝛾 𝑗 ← L.

• Computes ct 𝑗 and ct∗
𝑗

using msk and x𝑖
𝑗 ,𝑏

as attribute.

• Defines function 𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
] and returns

ct′𝑗 =

{
LO.Obf(1𝜆, 𝑓1 [ct1, ct∗1], 𝑚

𝑖
𝑏
, 𝛾1), if 𝑗 = 1

LO.Obf(1𝜆, 𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
], 𝐾 𝑗−1, 𝛾 𝑗), otherwise

B. If the query is for slot 𝑗 ∈ [𝑘 − (𝑎 − 3), 𝑘]

• Computes

ct 𝑗 =

{
kABE.Enc 𝑗 (pp, kABE.msk, x𝑖

𝑗 ,𝑏
) if 𝑗 < 𝑘

kABE.Enc 𝑗 (pp, kABE.msk, x𝑖
𝑗 ,𝑏
, 0) if 𝑗 = 𝑘

,

ct∗
𝑗
= SKE.Enc(𝐾 𝑗 , 0) and defines 𝑓 𝑗 [ct 𝑗 , ct∗

𝑗
].

• Returns ct′
𝑗
= LO.Sim(1𝜆, 1| 𝑓 𝑗 [ct 𝑗 ,ct∗

𝑗
] |
, 1|𝐾 𝑗−1 |).

96

C. If the query is for slot 𝑗 = 𝑘 − (𝑎 − 2)

• Computes

ct 𝑗 =

{
kABE.Enc 𝑗 (pp, kABE.msk, x𝑖

𝑗 ,𝑏
) if 𝑗 < 𝑘

kABE.Enc 𝑗 (pp, kABE.msk, x𝑖
𝑗 ,𝑏
, 0) if 𝑗 = 𝑘

,

ct∗
𝑗
= SKE.Enc(𝐾 𝑗 , 0) and defines 𝑓 𝑗 [ct 𝑗 , ct∗

𝑗
].

• If 𝑗 = 1 (i.e. 𝑎 = 𝑘 + 1), sends 𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
], 𝑚𝑖

𝑏
, else sends

𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
], 𝐾 𝑗−1 to the LO challenger and receives either an LO

obfuscated or a simulated program ct′
𝑗

from the LO challenger.

• Returns ct′
𝑗

to A.

c) In the end, A outputs a bit �̂�. If �̂� = 𝑏, then B returns 𝑏′′ = 1, else 𝑏′′ = 0,
to LO challenger.

We can observe that if the LO challenger returned obfuscated programs, then B simulated

Game𝑎.0, else if LO challenger returned simulated programs, then B simulated Game𝑎.1

with A. Hence, if A distinguishes between the two games, then so does B between

obfuscated and simulated programs. Assuming LO is secure, we get

| Pr[E𝑎.0] − Pr[E𝑎.1] | ≤ negl(𝜆).

■

Claim 3.23. Assume that SKE is a CPA secure encryption scheme. Then for 2 ≤ 𝑎 ≤ 𝑘 ,

Game𝑎.1 and Game𝑎+1.0 are computationally indistinguishable . That is,

| Pr[E𝑎.1] − Pr[E𝑎+1.0] | ≤ negl(𝜆).

Proof. The only difference between the two hybrids is in the computation of ct∗
𝑘−(𝑎−1) .

In Game𝑎.1, ct∗
𝑘−(𝑎−1) = SKE.Enc(𝐾𝑘−(𝑎−1) , 𝛾𝑘−(𝑎−1)), while in Game𝑎+1.0, ct∗

𝑘−(𝑎−1) =

SKE.Enc(𝐾𝑘−(𝑎−1) , 0). Hence the indistinguishability of the two hybrids follows from the

CPA security of SKE. The reduction is similar to that in the proof of indistinguishability

between Game1 and Game2.0. ■

Claim 3.24. Pr[E𝑘+1.1] − 1
2 = 0

97

Proof. In Game𝑘+1.1, all the LO, circuits returned as kPE ciphertexts, are simulated

using LO simulator as ct′1 = LO.Sim(1𝜆, 1| 𝑓1 [ct1,ct∗1] |, 1|𝑚
𝑖
𝑏
|) and

ct′
𝑗
= LO.Sim(1𝜆, 1| 𝑓 𝑗 [ct 𝑗 ,ct∗

𝑗
] |
, 1|𝐾 𝑗−1 |) for 2 ≤ 𝑗 ≤ 𝑘 . Hence, they depend only on the

lengths of functions 𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
], length of message and length of SKE keys. Length of

𝑓 𝑗 [ct 𝑗 , ct∗
𝑗
] further depends only on the length of attributes and messages. Since, these

lengths are fixed for the scheme, {ct′
𝑗
} 𝑗∈[𝑘] completely hide the bit 𝑏. Hence, A can do

nothing better than a pure guess for bit 𝑏 in Game𝑘+1.1. ■
■

Applications. The conversion above can be applied to all the multi-input ABE schemes

in this work. Here, we focus on the applications to the candidate two input ABE scheme

from lattices in Sec. 3.11 and the candidate three input ABE scheme in Sec. 3.10. The

other schemes will be discussed in Sec. 3.9 because they satisfy strong (very selective)

security and thus we can apply the conversion in Sec. 3.9. A nice property of the PE

scheme obtained from the two input ABE scheme in Sec. 3.11 is that it can handle any

polynomial-size circuits. Besides, we can expect that it is post-quantum secure, because

it does not use pairings and only uses lattice tools. By applying the conversion to the

three input ABE scheme in Sec. 3.10, we can obtain a three-input PE scheme that can

handle NC1 circuits.

3.9 TWO-INPUT PE WITH STRONGER SECURITY

In this section we describe our compiler to lift 2-input ABE to 2-input PE that preserves

strong security. The conversion uses lockable obfuscation similarly to Sec. 3.8. Unlike

the conversion in Sec. 3.8, we do not know how to extend it to general arity 𝑘 and it is set

to be 𝑘 = 2 here. The construction uses the following building blocks:

1. Two instances of 2-input ABE scheme. In one instance the message is associated
with encryption for position 2, while in the other instance, the message is
associated with the encryption for position 1. We represent the two instances as
2ABE = (2ABE.Setup, 2ABE.KeyGen, 2ABE.Enc1, 2ABE.Enc2, 2ABE.Dec)

98

and 2ABE′ =

(2ABE′.Setup, 2ABE′.KeyGen, 2ABE′.Enc1, 2ABE′.Enc2, 2ABE′.Dec).

2. A Lockable Obfuscator Obf = (LO.Obf, LO.Eval).

3.9.1 Construction

Our two-input PE construction has the same attribute space and the function class as

the underlying two-input ABE, when we consider the function class of NC1 circuits or

polynomial-size circuits.

Setup(1𝜆) : On input 1𝜆, the Setup algorithm does the following:

1. Run (2ABE.msk, 2ABE.pp) ← 2ABE.Setup(1𝜆) and
(2ABE′.msk, 2ABE′.pp) ← 2ABE′.Setup(1𝜆).

2. Output msk = (2ABE.msk, 2ABE′.msk) and pp = (2ABE.pp, 2ABE′.pp).

KeyGen(pp,msk, 𝐹) : On input the public parameters pp, the master secret key msk

and a circuit 𝐹, the keygen algorithm does the following:

1. Parse msk as (2ABE.msk, 2ABE′.msk) and pp = (2ABE.pp, 2ABE′.pp).

2. Run 2ABE.sk𝐹 ← 2ABE.KeyGen(2ABE.pp, 2ABE.msk, 𝐹) and
2ABE′.sk𝐹 ← 2ABE′.KeyGen(2ABE′.pp, 2ABE′.msk, 𝐹).

3. Output sk𝐹 = (2ABE.sk𝐹 , 2ABE′.sk𝐹).

Enc1(pp,msk, x1, 𝑚): On input the public parameters, pp, master secret key msk,

attribute x1 for position 1 and message 𝑚, the encryption algorithm does the

following:

1. Parses msk as (2ABE.msk, 2ABE′.msk) and pp as (2ABE.pp, 2ABE′.pp).

2. Computes ct1 = 2ABE.Enc1(2ABE.pp, 2ABE.msk, x1).

3. Sample 𝛼 ← M and compute
ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk, x1, 𝛼).

4. Define a function 𝑓1 [ct1, ct′1], with ct1, ct′1 being hardwired (Figure 3.3).

99

5. Output ct′′1 = LO.Obf(1𝜆, 𝑓1 [ct1, ct′1], 𝑚, 𝛼).

Circuit 𝑓1 [ct1, ct′1]1. Parse input as (�̃�, sk, sk′) where �̃� is regarded as an obfuscated circuit of LO, and
sk and sk′ are regarded as secret keys of 2ABE and 2ABE′ respectively.

2. Compute 𝑟 ← LO.Eval(�̃�, (ct1, sk)).

3. Output 𝛼′ = 2ABE′.Dec(2ABE′.pp, sk′, ct′1, 𝑟).

Figure 3.3: Circuit Obfuscated by Slot 1 Encryption

Enc2(pp,msk, x2):

1. Parse msk as (2ABE.msk, 2ABE′.msk) and pp as (2ABE.pp, 2ABE′.pp).

2. Sample 𝛽←M.

3. Compute ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk, x2, 𝛽).

4. Compute ct′2 = 2ABE.Enc′2(2ABE′.pp, 2ABE′.msk, x2).

5. Define a function 𝑓2 [ct2], with ct2 being hardwired, as in Figure 3.4.

6. Output ct′′2 = LO.Obf(1𝜆, 𝑓2 [ct2], ct′2, 𝛽).
Circuit 𝑓2 [ct2]

1. Parse input as (ct1, sk) where ct1 is regarded as a ciphertext of 2ABE for the first
slot and sk is regarded a secret key of 2ABE.

2. Output 𝛽′← 2ABE.Dec(2ABE.pp, sk, ct1, ct2).

Figure 3.4: Circuit Obfuscated by Slot 2 Encryption

Dec(sk𝐹 , ct′′1 , ct′′2) : On input the secret key sk𝐹 for function 𝐹, and 2PE ciphertexts

ct′′1 and ct′′2 , do the following:

1. Parse sk𝐹 as (2ABE.sk𝐹 , 2ABE′.sk𝐹) .

2. Output LO.Eval(ct′′1 , (ct′′2 , 2ABE.sk𝐹 , 2ABE′.sk𝐹).

100

Correctness. Recall that ct′′1 = LO.Obf(1𝜆, 𝑓1 [ct1, ct′1], 𝑚, 𝛼). We claim that

𝑓1 [ct1, ct′1] (ct′′2 , 2ABE.sk𝐹 , 2ABE′.sk𝐹) = 𝛼.

This may be argued via the following steps:

1. Recall that ct′′2 = LO.Obf(1𝜆, 𝑓2 [ct2], ct′2, 𝛽) and 𝑓2 [ct2] (ct1, 2ABE.sk𝐹) =
2ABE.Dec(2ABE.pp, 2ABE.sk𝐹 , ct1, ct2) = 𝛽. The second equality follows by
correctness of 2ABE and the fact that ct1 and ct2 encrypt 𝛽 under attributes x1, x2.
Since ct′′2 has lock value 𝛽 and message value ct′2, we have by correctness of LO
that LO.Eval(ct′′2 , (ct1, 2ABE.sk𝐹)) = ct′2.

2. Next, following the description of 𝑓1 [ct1, ct′1] (Figure 3.3), we evaluate
2ABE′.Dec(2ABE′.sk𝐹 , ct′1, ct′2) and recover 𝛼 by correctness of 2ABE′
decryption and the construction of ct′1 and ct′2 as encryptions of 𝛼 under attributes
x1, x2.

Thus, we get that 𝑓1 [ct1, ct′1] (ct′′2 , 2ABE.sk𝐹 , 2ABE′.sk𝐹) = 𝛼. Now, by correctness

of LO, we have that LO.Eval(ct′′1 , (ct′′2 , 2ABE.sk𝐹 , 2ABE′.sk𝐹)) = 𝑚 as desired. This

concludes the proof.

3.9.2 Security

We prove security via the following theorem.

Theorem 3.25. Assume LO is a secure lockable obfuscation scheme as per Definition 3.8

and that 2ABE and 2ABE′ are secure two input ABE schemes satisfying strong security

as in Definition 3.13 (resp., strong very selective security as in Definition 3.15). Then,

the 2PE construction presented above satisfies strong security as per Definition 3.14

(resp., strong very selective security as in Definition 3.15).

Proof. This proof is more complex than that of Theorem 3.19, because the adversary

can make queries for decrypting keys, in which case contents of obfuscated circuits can

be revealed. However, as we argue, this leakage does not compromise the security of

messages that must remain hidden, because for their corresponding 2ABE ciphertexts,

the protecting obfuscators will remain “locked”. Moreover, the “unlocked” LO output

2ABE ciphertexts ct′2 which cannot be used to decrypt slot 1 ciphertexts by admissibility

101

of the adversary, and hence do not compromise security of the hidden instances. This is

in contrast to the previous scheme, where a global secret SKE key 𝐾 was being output

after successful inner 2ABE decryption.

We focus on the case of strong security below. The case of strong very selective security is

similar and simpler. The proof proceeds via a sequence of games between the challenger

and a PPT adversary A.

Game0: This is the real world.

Game1: This world differs from the previous in the way slot 2 ciphertext queries are

answered. Let us recall that each ciphertext query is of the form
(x𝑖1,0, x

𝑖
1,1), (𝑚

𝑖
0, 𝑚

𝑖
1) (for slot 1), or

(x𝑖2,0, x
𝑖
2,1) (for slot 2).

Let S be the set of all those slot 2 ciphertext queries in which x𝑖2,0 ≠ x𝑖2,1. Then in

this world, for queries in S, we replace the value 𝛽 encrypted in 2ABE ciphertext,

ct2 with 0.

Game2: This world differs from the previous in the following ways. In this world, in

response to queries in set S, ct′′2 is simulated using the LO simulator.

Game3: This world differs from the previous in the following ways. Let S′ be the

set of slot 1 ciphertext queries satisfying one of the following two conditions: (i)

x𝑖1,0 ≠ x𝑖1,1 (ii) (x𝑖1,0 = x𝑖1,1) and (𝑚𝑖0 ≠ 𝑚𝑖1). In this world, ct′1 encrypts 0 instead

of 𝛼 for all queries in S′.

Game4: This world differs from the previous in the following ways. In this world, in

response to queries in set S′, ct′′1 is simulated using the LO simulator.

102

Indistinguishability of Hybrids. We now show that the consecutive hybrids are

indistinguishable. We let Ex denote the event that the adversary A outputs correct guess

for the challenge bit 𝑏 at the end of Gamex.

Claim 3.26. Assume that 2ABE satisfies strong Ada-IND security (Definition 3.13).

Then, Game0 and Game1 are computationally indistinguishable. That is,

| Pr[E0] − Pr[E1] | ≤ negl(𝜆).

Proof. We show that ifA distinguishes between Game0 and Game1 with non-negligible

probability then there exists an adversary B who can break strong Ada-IND security of

2ABE using A. The reduction is as follows:

1. The 2ABE challenger samples (2ABE.msk, 2ABE.pp) ← 2ABE.Setup(1𝜆) and
𝑏′← {0, 1} and sends 2ABE.pp to B.

2. Upon receiving the public parameters 2ABE.pp from 2ABE challenger, B does
the following.

a) Samples (2ABE′.msk, 2ABE′.pp) ← 2ABE′.Setup(1𝜆) and sets
pp = (2ABE.pp, 2ABE′.pp). It implicitly sets the master secret key as
(msk = (2ABE.msk, 2ABE.msk′).

b) Invokes A with pp as public parameters and chooses a bit 𝑏 ← {0, 1}.

3. B then responds to key queries and challenge queries from A as follows:

Key Queries:

a) For each key query for a function 𝐹, from A, B makes a key query for 𝐹 to
2ABE challenger and receives 2ABE.sk𝐹 from the challenger.

b) Computes 2ABE′.sk𝐹 ← 2ABE′.KeyGen(2ABE′.pp, 2ABE′.msk, 𝐹).

c) Sets sk𝐹 = (2ABE.sk𝐹 , 2ABE′.sk𝐹) and returns it to A.

Ciphertext Queries: Each ciphertext query from A is of the form{
(x𝑖1,0, x

𝑖
1,1), (𝑚

𝑖
0, 𝑚

𝑖
1) (for slot 1), or

(x𝑖2,0, x
𝑖
2,1) (for slot 2),

Upon receiving such a query, B does the following:

103

a) For slot 1 queries:

i. Samples 𝛼←M.

ii. Sends x𝑖1,𝑏 to 2ABE challenger as slot 1 ciphertext query, to which the
2ABE challenger replies with ct1.

iii. Computes ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk, x𝑖1𝑏, 𝛼)

iv. Defines 𝑓1 [ct1, ct′1] and computes

ct′′1 = LO.Obf(1𝜆, 𝑓1 [ct1, ct′1], 𝑚
𝑖
𝑏, 𝛼).

v. Returns ct′′1 to A.

b) For slot 2 queries:

i. Computes ct′2 = 2ABE′.Enc2(2ABE′.pp, 2ABE′.msk, x𝑖2,𝑏)

ii. Samples 𝛽←M.

iii. If x𝑖2,0 ≠ x𝑖2,1, then sets 𝜇𝑖0 = 𝛽, 𝜇𝑖1 = 0, else sets 𝜇𝑖0 = 𝛽, 𝜇𝑖1 = 𝛽.

iv. Sends x𝑖2,𝑏, (𝜇
𝑖
0, 𝜇

𝑖
1) as ciphertext query for slot 2 to the 2ABE challenger.

v. The 2ABE challenger computes and returns slot 2 ciphertext as

ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk, x𝑖2,𝑏, 𝜇
𝑖
𝑏′),

where 𝑏′ is the coin chosen by the challenger, which is fixed throughout
the game.

vi. B defines 𝑓2 [ct2] and computes

ct′′2 = LO.Obf(1𝜆, 𝑓2 [ct2], ct′2, 𝛽).

vii. Returns ct′′2 to A.

4. In the end, A outputs a bit �̂�. If �̂� = 𝑏, then B returns 𝑏′′ = 1, else 𝑏′′ = 0, to the
2ABE challenger.

We can observe that if 𝑏′ = 0, then B simulated Game0, else Game1. Hence, if A can

distinguish between the two hybrids, then B can win against 2ABE challenger.

104

Assuming strong Ada-IND security of 2ABE, we get

| Pr[E0] − Pr[E1] | ≤ negl(𝜆).

Admissibility of B: We show that if A is admissible for strong 2PE security then B

is also admissible for strong 2ABE security. Observe that the key queries issued by B

to the 2ABE challenger are the same key queries as issued by A to B. Consider the

challenge queries issued by B. If for some function 𝐹 for which key query has been

made, 𝐹 (x 𝑗11,𝑏, x
𝑗2
2,𝑏) = 1 then we need to ensure that 𝜇 𝑗20 = 𝜇

𝑗2
1 (since 2ABE encrypts

message in slot 2, the message equality condition is required for query index 𝑗2, i.e.

corresponding to slot 2). Since, the ciphertext queries with the same attributes are issued

by A to B, admissibility of A demands that x 𝑗22,0 = x 𝑗22,1. But, when x 𝑗22,0 = x 𝑗22,1, B takes

𝜇
𝑗2
0 = 𝜇

𝑗2
1 = 𝛽, as desired. ■

Claim 3.27. Assume that LO is a secure lockable obfuscation scheme (Definition 3.8).

Then Game1 and Game2 are computationally indistinguishable. That is,

| Pr[E1] − Pr[E2] | ≤ negl(𝜆).

Proof. We show that if A can distinguish between Game1 and Game2 with non-

negligible probability then there exists an adversary B who can distinguish between LO

obfuscated programs and simulated programs using A, thus breaking the security of LO.

The reduction is as follows:

1. Upon being challenged by LO challenger, B does the following:

a) Samples public parameters and master secret for 2PE as
(pp,msk = (2ABE.msk, 2ABE′.msk)) ← Setup(1𝜆) and invokes A with
pp. B also samples a bit 𝑏.

b) A issues polynomially many key queries and ciphertext queries to which B
responds as follows:

Key Queries:
For each key query for a function 𝐹 from A, B returns

105

sk𝐹 ← KeyGen(pp,msk, 𝐹) to A.
Ciphertext Queries: To answer each ciphertext query, which is of the form{

(x𝑖1,0, x
𝑖
1,1), (𝑚

𝑖
0, 𝑚

𝑖
1) (for slot 1), or

(x𝑖2,0, x
𝑖
2,1) (for slot 2),

B does the following:

i. For slot 1 queries:

A. Samples 𝛼←M.

B. Computes

ct1 = 2ABE.Enc1(2ABE.pp, 2ABE.msk, x𝑖1,𝑏)

and

ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk, x𝑖1,𝑏, 𝛼)

.

C. Defines 𝑓1 [ct1, ct′1] and computes

ct′′1 = LO.Obf(1𝜆, 𝑓1 [ct1, ct′1], 𝑚
𝑖
𝑏, 𝛼).

D. Sends ct′′1 to A.

ii. For slot 2 queries:

A. Computes ct′2 = 2ABE′.Enc2(2ABE′.pp, 2ABE′.msk, x𝑖2,𝑏).

B. If x𝑖2,0 = x𝑖2,1,

• Samples 𝛽←M

• Computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk, x𝑖2,𝑏, 𝛽).

• Defines 𝑓2 [ct2] and computes

ct′′2 = LO.Obf(1𝜆, 𝑓2 [ct2], ct′2, 𝛽).

C. Else if x𝑖2,0 ≠ x𝑖2,1,

• Computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk, x𝑖2,𝑏, 0),
defines 𝑓2 [ct2] and sends it along with ct′2 to the LO challenger.

106

• The LO challenger returns either an obfuscated circuit or a
simulated circuit which B sets as ct′′2 .

D. Sends ct′′2 to A.

c) In the end, A outputs a bit �̂�. If �̂� = 𝑏, then B returns 𝑏′′ = 1, else 𝑏′′ = 0,
to LO challenger.

We can observe that if the LO challenger returned obfuscated programs, then B simulated

Game1, else if LO challenger returned simulated programs, then B simulated Game2.

Hence, if A distinguishes between the two games, then so does B between obfuscated

and simulated programs. Assuming LO is secure, we get

| Pr[E1] − Pr[E2] | ≤ negl(𝜆).

■

Claim 3.28. Assume that 2ABE′ satisfies strong Ada-IND security (Definition 3.13).

Then, Game2 and Game3 are computationally indistinguishable. That is,

| Pr[E2] − Pr[E3] | ≤ negl(𝜆).

Proof. We show that if A can distinguish between Game2 and Game3 with non-

negligible probability then there exists an adversary B who can break strong Ada-IND

security of 2ABE′ using A. The reduction is as follows:

1. The 2ABE′ challenger samples (2ABE′.msk, 2ABE′.pp) ← 2ABE′.Setup(1𝜆)
and 𝑏′← {0, 1} and sends 2ABE′.pp to B.

2. Upon receiving the public parameters 2ABE′.pp from 2ABE′ challenger, B does
the following.

a) Samples (2ABE.msk, 2ABE.pp) ← 2ABE.Setup(1𝜆) and sets
pp = (2ABE.pp, 2ABE′.pp). B implicitly sets
msk = (2ABE.msk, 2ABE′.msk).

b) Invokes A with pp as public parameters and chooses a bit 𝑏 ← {0, 1}.

3. B then responds to key queries and ciphertext queries from A as follows:

107

Key Queries:

a) Upon receiving a key query for function 𝐹 from A, B makes a key query for
𝐹 to 2ABE′ challenger and receives 2ABE′.sk𝐹 from 2ABE′ challenger.

b) Computes 2ABE.sk𝐹 ← 2ABE.KeyGen(2ABE.pp, 2ABE.msk, 𝐹).

c) Sets sk𝐹 = (2ABE.sk𝐹 , 2ABE′.sk𝐹) and returns it to A.

Ciphertext Queries: Each ciphertext query 𝑖 from A is of the form{
(x𝑖1,0, x

𝑖
1,1), (𝑚

𝑖
0, 𝑚

𝑖
1) (for slot 1), or

(x𝑖2,0, x
𝑖
2,1) (for slot 2),

Upon receiving such a query, B does the following:

a) For slot 1 queries:

i. Computes ct1 = 2ABE.Enc1(2ABE.pp, 2ABE.msk, x𝑖1,𝑏)

ii. Samples 𝛼←M.

iii. If the query𝑖 ∈ S′, i.e.
(x𝑖1,0 ≠ x𝑖1,1) OR (x𝑖1,0 = x𝑖1,1) and (𝑚𝑖0 ≠ 𝑚𝑖1))

• Sets 𝜇𝑖0 = 𝛼 and 𝜇𝑖1 = 0 and sends ciphertext query (x𝑖1,𝑏, (𝜇
𝑖
0, 𝜇

𝑖
1))

to the 2ABE′ challenger.

• The 2ABE′ challenger computes and returns slot 1 ciphertext as

ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk, x𝑖1,𝑏, 𝜇
𝑖
𝑏′).

iv. Else, if the query𝑖 ∉ S′, i.e.
(x𝑖1,0 = x𝑖1,1) and (𝑚𝑖0 = 𝑚𝑖1)

• Sets 𝜇𝑖0 = 𝛼 and 𝜇𝑖1 = 𝛼 and sends ciphertext query (x𝑖1,𝑏, (𝜇
𝑖
0, 𝜇

𝑖
1))

to the 2ABE′ challenger.

• The 2ABE′ challenger computes and returns slot 1 ciphertext as

ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk, x𝑖1,𝑏, 𝜇
𝑖
𝑏′),

where 𝑏′ is the coin chosen by the challenger, which is fixed
throughout the game.

108

v. B defines 𝑓1 [ct1, ct′1] and computes

ct′′1 = LO.Obf(1𝜆, 𝑓1 [ct1, ct′1], 𝑚
𝑖
𝑏, 𝛼).

vi. Sends ct′′1 to A.

b) For slot 2 queries:

i. Sends ciphertext query x𝑖2,𝑏 for slot 2 to the 2ABE′ challenger. The
2ABE′ challenger computes and returns slot 2 ciphertext as

ct′2 = 2ABE′.Enc2(2ABE′.pp, 2ABE′.msk, x𝑖2,𝑏).

ii. If the query𝑖 ∈ S, i.e. (x𝑖2,0 ≠ x𝑖2,1)

• Computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk, x𝑖2,𝑏, 0).

• Defines 𝑓2 [ct2] and simulates ct′′2 = LO.Sim(1𝜆, 1| 𝑓2 [ct2] |, 1|ct′2 |).

iii. If the query𝑖 ∉ S, i.e. (x𝑖2,0 = x𝑖2,1)

• Samples 𝛽 ← M and computes
ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk, x𝑖2,𝑏, 𝛽).

• Defines 𝑓2 [ct2] and computes ct′′2 = LO.Obf(1𝜆, 𝑓2 [ct2], ct′2, 𝛽).

iv. Sends ct′′2 to A.

4. In the end, A outputs a bit �̂�. If �̂� = 𝑏, then B returns 𝑏′′ = 1, else 𝑏′′ = 0, to the
2ABE′ challenger.

We can observe that if 𝑏′ = 0, then B simulated Game2, else Game3. Hence, if A

distinguishes between the two hybrids, then B wins against 2ABE′ challenger.

Assuming strong Ada-IND security of 2ABE′, we get

| Pr[E2] − Pr[E3] | ≤ negl(𝜆).

Admissibility of B: We show that if A is admissible for strong 2PE security then B is

also admissible for strong 2ABE′ security. Observe that the key queries issued by B are

the same key queries as issued by A. Now consider the challenge queries issued by B.

109

If there is a function 𝐹 for which key has been queried, such that 𝐹 (x 𝑗11,𝑏, x
𝑗2
2,𝑏) = 1 then

we need to ensure that 𝜇 𝑗10 = 𝜇
𝑗1
1 (since, 2ABE′ encrypts message in slot 1, the message

equality condition is required for query index 𝑗1). Since, the challenge queries for the

same attributes are issued by A to B, admissibility of A demands that x 𝑗11,0 = x 𝑗11,1 and

𝑚
𝑗1
0 = 𝑚

𝑗1
1 . But, in this case, B takes 𝜇 𝑗10 = 𝜇

𝑗1
1 = 𝛼, as desired. ■

Claim 3.29. Assume that LO is a secure lockable obfuscation scheme (Definition 3.8).

Then Game3 and Game4 are computationally indistinguishable. That is,

| Pr[E3] − Pr[E4] | ≤ negl(𝜆).

Proof. We show that if A can distinguish between Game3 and Game4 with non-

negligible probability then there exists an adversary B who can distinguish between LO

obfuscated programs and simulated programs using A, thus breaking the security of LO.

The reduction is as follows:

1. Upon being challenged by LO challenger, B does the following:

a) Samples public parameters and master secret for 2PE as
(pp,msk=(2ABE.msk, 2ABE′.msk)) ← Setup(1𝜆) and invokesA with pp.
B also samples a bit 𝑏.

b) A issues polynomially many key queries and ciphertext queries to which B
responds as follows:

Key Queries:
For each key query for a function 𝐹 from A, B returns
sk𝐹 ← KeyGen(pp,msk, 𝐹) to A.

Ciphertext Queries: To answer each ciphertext query, which is of the form{
(x𝑖1,0, x

𝑖
1,1), (𝑚

𝑖
0, 𝑚

𝑖
1) (for slot 1), or

(x𝑖2,0, x
𝑖
2,1) (for slot 2),

B does the following:

i. For slot 1 queries:

A. Computes ct1 = 2ABE.Enc1(2ABE.pp, 2ABE.msk, x𝑖1,𝑏).

110

B. If (x𝑖1,0 = x𝑖1,1) and (𝑚𝑖0 = 𝑚𝑖1),

• Samples 𝛼←M.

• Computes ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk, x𝑖1,𝑏, 𝛼).

• Computes

ct′′1 = LO.Obf(1𝜆, 𝑓1 [ct1, ct′1], 𝑚
𝑖
𝑏, 𝛼).

C. Else,

• Computes ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk, x𝑖1,𝑏, 0)
and defines 𝑓1 [ct1, ct′1].

• Sends 𝑓1 [ct1, ct′1], 𝑚
𝑖
𝑏

to LO challenger.

• The LO challenger returns either an obfuscated or a simulated
program, which B sets as ct′′1 .

D. B sends ct′′1 to A.

ii. For slot 2 queries:

A. Computes ct′2 = 2ABE′.Enc2(2ABE′.pp, 2ABE′.msk, x𝑖2,𝑏).

B. If x𝑖2,0 = x𝑖2,1,

• Samples 𝛽←M

• Computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk, x𝑖2,𝑏, 𝛽).

• Defines 𝑓2 [ct2] and computes

ct′′2 = LO.Obf(1𝜆, 𝑓2 [ct2], ct′2, 𝛽).

C. Else if x𝑖2,0 ≠ x𝑖2,1,

• Computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk, x𝑖2,𝑏, 0).

• Defines 𝑓2 [ct2] and simulates

ct′′2 = LO.Sim(1𝜆, 1| 𝑓2 [ct2] |, 1|ct′2 |).

D. Sends ct′′2 to A.

111

c) In the end, A outputs a bit �̂�. If �̂� = 𝑏, then B returns 𝑏′′ = 1, else 𝑏′′ = 0,
to LO challenger.

If the LO challenger returned obfuscated programs, then B simulated Game3, else if

LO challenger returned simulated programs, then B simulated Game4. Hence, if A

distinguishes between the two games, then so does B between obfuscated and simulated

programs. Assuming LO is secure, we get

| Pr[E3] − Pr[E4] | ≤ negl(𝜆).

■

Claim 3.30. Pr[E4] − 1
2 = 0

Proof. We argue that the adversary cannot obtain any information of 𝑏 in Game4. We

first observe that the only possible way for the adversary to learn information of 𝑏 is

to make challenge ciphertext queries, since decrypting ciphertexts do not convey any

information of 𝑏. However, responses to challenge ciphertext queries does not convey

any information of 𝑏 either as we see below. In Game4, a challenge ciphertext for slot 1

is computed as ct′′1 = LO.Sim(1𝜆, 1| 𝑓1 [ct1,ct′1] |, 1|𝑚
𝑖
𝑏
|). The distribution of ct′′1 depends only

on the lengths of function 𝑓1 [ct1, ct′1] and message 𝑚𝑖
𝑏
. We observe that | 𝑓1 [ct1, ct′1] |

further depends only on the lengths of ct1 and ct′1, which in turn depends only on the

lengths of the underlying message and attribute. Similarly, challenge ciphertext for slot 2

is computed as ct′′2 = LO.Sim(1𝜆, 1| 𝑓2 [ct2] |, 1|ct′2 |). We can see that ct′′2 does not convey

any information of 𝑏 because of the same reason as above. ■
■

Applications. By applying the above conversion to two input ABE scheme with strong

security in Sec. 3.6, we obtain a candidate construction of two input PE scheme with

strong security. A caveat here is that the resulting scheme cannot necessarily be proven

secure under LWE in the bilinear generic group model as one might expect. The problem

here is that our conversion uses the decryption algorithm of the underlying two input ABE

112

scheme in a non-black box way, which especially uses the code of the group operations.

To claim the security of the resulting scheme, we heuristically assume that the two-input

ABE scheme in Sec. 3.6 is strongly secure even in the standard model if we implement

the bilinear generic group model with concrete well-chosen bilinear group and then apply

the above conversion. We note that this kind of heuristic instantiation is widely used in

the context of cryptographic hash functions and bilinear maps. We also mention that

we can apply the above conversion to the two input ABE scheme in Sec. 3.7. Since the

scheme is proven secure in the standard model, the construction does not suffer from the

above problem.

3.10 THREE-INPUT ABE FROM PAIRINGS AND LATTICES

In this section, we provide a candidate construction for 3ABE using the structure of

[BV22] and [AY20] as discussed in Section 3.1. Leveraging ideas from the Brakerski-

Vaikuntanathan construction [BV22], we also obtain a candidate for 2ABE for P – we

provide this construction in Section 3.11. Our 3ABE scheme supports NC1 circuits. More

formally, it supports attribute space 𝐴𝜆 = {0, 1}ℓ(𝜆) and any circuit class F = {F𝜆}𝜆 that

is subclass of {C3ℓ(𝜆),𝑑 (𝜆)}𝜆 with arbitrary ℓ(𝜆) ≤ poly(𝜆) and 𝑑 (𝜆) = 𝑂 (log𝜆), where

C3ℓ(𝜆),𝑑 (𝜆) is a set of circuits with input length 3ℓ(𝜆) and depth at most 𝑑 (𝜆).

3.10.1 Construction

The construction is defined as follows:

Setup(1𝜆): On input 1𝜆, the setup algorithm defines the parameters 𝑛 = 𝑛(𝜆),𝑚 = 𝑚(𝜆),

𝑘 = 𝑘 (𝜆), noise distribution 𝜒, �̂� over Z, 𝜏0 = 𝜏0(𝜆), 𝜏 = 𝜏(𝜆), 𝜏′0 = 𝜏′0(𝜆),

𝜏𝑡 = 𝜏𝑡 (𝜆) and 𝐵 = 𝐵(𝜆) as specified in Sec. 3.10.1. It samples a group description

G = (𝑞,G1,G2,G𝑇 , 𝑒, [1]1, [1]2). It then sets 𝐿 := (5ℓ + 1)𝑚 + 1 and proceeds as

follows.

1. Samples BGG + 18 scheme:

113

a) Samples (A,A−1
𝜏0
) ← TrapGen(1𝑛, 1𝑚, 𝑞) such that A ∈ Z𝑛×𝑚𝑞 .

b) Samples random matrix B = (B1, . . . ,B3ℓ) ← (Z𝑛×𝑚𝑞)3ℓ and a random
vector u← Z𝑛𝑞.

2. Samples 𝑤0 ← Z∗𝑞, W← (Z∗𝑞)𝑘×𝐿 .

3. Samples BV scheme:

a) Samples C along with its trapdoor C−1
𝜏′0

as
(C,C−1

𝜏′0
) ← TrapGen(12(ℓ+1)𝑛, 1𝑘 , 𝑞), where

CT = (C2ℓ+1,0∥C2ℓ+1,1∥ . . . ∥C3ℓ,0∥C3ℓ,1∥C3ℓ+1∥C3ℓ+2) ∈ (Z𝑘×𝑛𝑞)2(ℓ+1) .

4. Outputs
pp = (A,B,C, u), msk =

(
A−1
𝜏0
,C−1

𝜏′0
, 𝑤0,W

)
.

KeyGen(pp,msk, 𝐹): On input the public parameters pp, master secret key msk and a

circuit 𝐹, compute BGG + 18 function key for circuit 𝐹 as follows:

1. Compute H𝐹 = EvalF(B, 𝐹) and B𝐹 = BH𝐹 .

2. Compute [A∥B𝐹]−1
𝜏 from A−1

𝜏0
and sample r ∈ Z2𝑚 as rT ← [A∥B𝐹]−1

𝜏 (uT).

3. Output the secret key sk𝐹 := r.

Enc1(pp,msk, x1, 𝜇): On input the public parameters pp, master secret key msk,

attribute vector x1, message bit 𝜇, encryption for slot 1 is defined as follows:

1. Set m =
⌊ 𝑞
𝐾

⌉
𝜇(1, . . . , 1) ∈ Z𝑘𝑞 . We define 𝐾 = 2𝜏𝑡

√
𝑛𝑘 . .

2. Samples LWEsecret S ← Z𝑘×𝑛𝑞 and error terms e0 ← 𝜒𝑘 , E ← 𝜒𝑘×𝑚,
E𝑖,𝑥1,𝑖 ← �̂�𝑘×𝑚, for 𝑖 ∈ [ℓ], and E𝑖,𝑏 ← �̂�𝑘×𝑚, for 𝑖 ∈ [ℓ + 1, 3ℓ] and
𝑏 ∈ {0, 1}.

3. For 𝑖 ∈ [ℓ], computes

𝜓𝑖,𝑥1,𝑖 := S(B𝑖 − 𝑥1,𝑖G) + E𝑖,𝑥1,𝑖 ∈ Z𝑘×𝑚𝑞 .

4. For 𝑖 ∈ [ℓ + 1, 3ℓ], 𝑏 ∈ {0, 1}, computes

𝜓𝑖,𝑏 := S(B𝑖 − 𝑏G) + E𝑖,𝑏 ∈ Z𝑘×𝑚𝑞 .

114

5. Computes 𝜓3ℓ+1 := SA + E ∈ Z𝑘×𝑚𝑞 and 𝜓T
3ℓ+2 := SuT + eT

0 ∈ Z
𝑘×1
𝑞 .

6. Sample Ŝ3ℓ+1 ← Z𝑛×𝑚𝑞 , ŝ3ℓ+2 ← Z𝑛𝑞, {Ŝ2ℓ+𝑖,𝑏}𝑖∈[ℓ],𝑏∈{0,1} ← (Z𝑛×𝑚𝑞)2ℓ, Ê←
𝜒𝑘×𝑚, ê0 ← 𝜒𝑘 , Ê2ℓ+𝑖,𝑏 ← �̂�𝑘×𝑚 for 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}.

7. Compute all possible “BV encodings" for slot 3 attribute x3 and construct Ĉ1
as follows:

Ĉ1 = ({𝜓𝑖,𝑥1𝑖 }𝑖∈[ℓ] , {𝜓𝑖,𝑏}𝑖∈[ℓ+1,2ℓ],
𝑏∈{0,1}

, {C𝑖,𝑏Ŝ𝑖,𝑏 + Ê𝑖,𝑏 + 𝜓𝑖,𝑏}𝑖∈[2ℓ+1,3ℓ],
𝑏∈{0,1}

,

C3ℓ+1Ŝ3ℓ+1 + Ê + 𝜓3ℓ+1,C3ℓ+2̂sT
3ℓ+2 + êT

0 + 𝜓
T
3ℓ+2 +mT) ∈ Z𝑘×𝐿𝑞

Here, we assume that the entries of Ĉ1 are vectorized in some fixed order.

8. Sample 𝑡x1 ← Z∗𝑞 and

9. Output ct1 = ([𝑡x1𝑤0]1, [𝑡x1Ĉ1 ⊙W]1.

Enc2(pp,msk, x2): On input the public parameters pp, master secret key msk, attribute

vector x2, encryption for slot 2 is defined as follows:

1. Set Ĉ2 = (1𝑘×ℓ𝑚, {�̂�ℓ+𝑖,𝑥2,𝑖 }𝑖∈[ℓ] , 1𝑘×2ℓ𝑚, 1𝑘×𝑚, 1𝑘×1), where

�̂�ℓ+𝑖,𝑏 :=

{
1𝑚 ∈ Z𝑚𝑞 if 𝑏 = 𝑥2,𝑖

0𝑚 ∈ Z𝑚𝑞 if 𝑏 ≠ 𝑥2,𝑖
for 𝑖 ∈ [ℓ] and 𝑏 ∈ {0, 1}.

2. Sample 𝑡x2 ← Z∗𝑞 and output ct2 = ([𝑡x2/𝑤0]2, [𝑡x2Ĉ2 ⊘W]2.

Enc3(pp,msk, x3): Given input the public parameters pp, master secret key msk,

attribute vector x3, encryption for slot 3 is defined as follows:

1. Compute [(C2ℓ+1,x3,1 ∥ . . . ∥C3ℓ,x3,ℓ ∥C3ℓ+1∥C3ℓ+2)T]−1
𝜏𝑡

from C−1
𝜏′0

and sample
short vector tx3 such that
tx3C2ℓ+𝑖,x3,𝑖 = 0 for all 𝑖 ∈ [ℓ], tx3C3ℓ+1 = tx3C3ℓ+2 = 0, as
tT
x3
← [(C2ℓ+1,x3,1 ∥ . . . ∥C3ℓ,x3,ℓ ∥C3ℓ+1∥C3ℓ+2)T]−1

𝜏𝑡
(0T).

2. Output ct3 = tx3 .

Dec(pp, sk𝐹 , ct1, ct2, ct3): On input the public parameters pp, the secret key sk𝐹 for

circuit 𝐹 and ciphertexts ct1, ct2 and ct3 corresponding to the three attributes x1,

115

x2 and x3, the decryption algorithm proceeds as follows:

1. Takes the coordinate-wise pairing between ciphertexts for slot 1 and slot 2:

Computes [𝑣0]𝑇 = [𝑡x1𝑡x2]𝑇 and [V]𝑇 = [𝑡x1𝑡x2Ĉ1 ⊙ Ĉ2]𝑇 as 𝑒(ct1, ct2).

2. Expands obtained matrix:
Let x = (x1, x2, x3). Expands [V]𝑇 to obtain:

[V𝑖]𝑇 = [𝑡x1𝑡x2𝜓𝑖,𝑥𝑖]𝑇 for 𝑖 ∈ [ℓ], [V𝑖,𝑏]𝑇 = [𝑡x1𝑡x2𝜓
′
𝑖,𝑏
]𝑇 , where

𝜓′
𝑖,𝑏

=

{
𝜓𝑖,𝑥𝑖 if 𝑏 = 𝑥𝑖

0 if 𝑏 = 1 − 𝑥𝑖
, for 𝑖 ∈ [ℓ + 1, 2ℓ], 𝑏 ∈ {0, 1}.

[V𝑖,𝑏]𝑇 = [𝑡x1𝑡x2 (𝜓𝑖,𝑏 + C𝑖,𝑏Ŝ𝑖,𝑏 + Ê𝑖,𝑏)]𝑇 for 𝑖 ∈ [2ℓ + 1, 3ℓ], 𝑏 ∈ {0, 1},
[V3ℓ+1]𝑇 = [𝑡x1𝑡x2 (C3ℓ+1Ŝ3ℓ+1 + Ê + 𝜓3ℓ+1)]𝑇 ,
[vT

3ℓ+2]𝑇 = [𝑡x1𝑡x2 (C3ℓ+2̂sT
3ℓ+2 + êT

0 + 𝜓
T
3ℓ+2 +mT)]𝑇 .

3. Recovers BGG + 18 ciphertext components for third slot:

Let us denote V𝑖,𝑥𝑖 as V𝑖 for 𝑖 ∈ [2ℓ + 1, 3ℓ].
Computes [tx3V𝑖]𝑇 = [𝑡x1𝑡x2tx3 (𝜓𝑖,𝑥𝑖 + Ê𝑖,𝑥𝑖)]𝑇 for 𝑖 ∈ [2ℓ + 1, 3ℓ],
[tx3V3ℓ+1]𝑇 = [𝑡x1𝑡x2tx3 (𝜓3ℓ+1 + Ê)]𝑇 and [tx3vT

3ℓ+2]𝑇 = [𝑡x1𝑡x2tx3 (𝜓T
3ℓ+2 +

mT + êT
0)]𝑇 .

(because tx3C𝑖,𝑥𝑖 = 0 for 𝑖 ∈ [2ℓ + 1, 3ℓ], tx3C3ℓ+1 = tx3C3ℓ+2 = 0)

4. Computes function to be applied on BGG + 18 ciphertexts:

Computes Ĥ𝐹,x = EvalFX(𝐹, x,B).

5. Performs BGG + 18 decryption in the exponent:

a) Let us denote V𝑖,𝑥𝑖 as V𝑖 for 𝑖 ∈ [ℓ + 1, 2ℓ].

b) Computes [tx3V𝑖]𝑇 for 𝑖 ∈ [2ℓ].

c) Forms [tx3Vx]𝑇 = [tx3V1∥ . . . ∥tx3V3ℓ]𝑇 , r = (r1 ∈ Z𝑚𝑞 , r2 ∈ Z𝑚𝑞).

d) Then computes
[𝑣′]𝑇 :=

[(
tx3vT

3ℓ+2 −
(
tx3V3ℓ+1rT

1 + tx3VxĤ𝐹,xrT
2

))]
𝑇

6. Recover exponent via brute force if 𝐹 (x) = 0:
After simplification, for 𝐹 (x) = 0, we get 𝑣′ = 𝑡x1𝑡x2 (tx3mT + 𝑒′), where 𝑒′ is

116

the combined error. Find 𝜂 ∈ [−𝐵, 𝐵] ∪ [−𝐵 − ⌈𝑞/2⌉, 𝐵 − ⌈𝑞/𝐾⌉] ∪ [−𝐵 +
⌈𝑞/𝐾⌉, 𝐵 + ⌈𝑞/2⌉] such that [𝑣0]𝜂𝑇 = [𝑣′]𝑇 by brute-force search. If there
is no such 𝜂, output ⊥. In the correctness, we show that 𝜂 can be found in
polynomial steps. To speed up the operation, one can employ the baby-step
giant-step algorithm.

7. Output 0 if 𝜂 ∈ [−𝐵, 𝐵] and 1, otherwise.

Parameters We choose the parameters for the 3-ABE scheme as follows:

𝑚 = 𝑛1.1 log 𝑞, 𝑘 = 𝜃 (𝑛ℓ log 𝑞), 𝑞 = 2Θ(𝜆)

𝜏0 = 𝑛 log 𝑞 log𝑚, 𝜏 = 𝑚3.1ℓ · 2𝑂 (𝑑) 𝜏′0 = 𝜔(
√︁

2𝑛(ℓ + 1) log 𝑞 log 𝑘),

𝜒 = SampZ(3
√
𝑛), �̂� = SampZ(6

√
𝑛𝑚2), 𝐵 = ℓ𝑚5𝑛3𝑘𝜏𝜏𝑡 · 2𝑂 (𝑑) .

We can set 𝜏𝑡 to be arbitrary polynomial such that 𝜏𝑡 > 𝜏′0. The parameter 𝑛 may be

chosen as 𝑛 = 𝜆𝑐 for some constant 𝑐 > 1.

Correctness To see correctness, we first make following observations:

1. Let x = (x1, x2, x3), then

Ĉ1 ⊙ Ĉ2 = ({𝜓𝑖,𝑥𝑖 }𝑖∈[ℓ] , {𝜓′𝑖,𝑏}𝑖∈[ℓ+1,2ℓ],𝑏∈{0,1}, {C𝑖,𝑏Ŝ𝑖,𝑏 + Ê𝑖,𝑏 + 𝜓𝑖,𝑏}𝑖∈[2ℓ+1,3ℓ],
𝑏∈{0,1}

,

C3ℓ+1Ŝ3ℓ+1 + Ê + 𝜓3ℓ+1,C3ℓ+2̂sT
3ℓ+2 + êT

0 + 𝜓
T
3ℓ+2 +mT),

where

𝜓′𝑖,𝑏 =

{
𝜓𝑖,𝑥𝑖 if 𝑏 = 𝑥𝑖

0 if 𝑏 = 1 − 𝑥𝑖
, for 𝑖 ∈ [ℓ + 1, 2ℓ], 𝑏 ∈ {0, 1}.

Hence, on expanding V, the decryptor obtains

[V𝑖]𝑇 = [𝑡x1𝑡x2𝜓𝑖,𝑥𝑖]𝑇 for 𝑖 ∈ [2ℓ],
[V𝑖,𝑏]𝑇 = [𝑡x1𝑡x2 (C𝑖,𝑏Ŝ𝑖,𝑏 + Ê𝑖,𝑏 + 𝜓𝑖,𝑏)]𝑇 , for 𝑖 ∈ [2ℓ + 1, 3ℓ], 𝑏 ∈ {0, 1},
[V3ℓ+1]𝑇 = [𝑡x1𝑡x2 (C3ℓ+1Ŝ3ℓ+1 + Ê + 𝜓3ℓ+1)]𝑇 ,
[vT

3ℓ+2]𝑇 = [𝑡x1𝑡x2 (C3ℓ+2̂sT
3ℓ+2 + êT

0 + 𝜓
T
3ℓ+2 +mT)]

Here, recall that we represent V𝑖,𝑥𝑖 by V𝑖, for 𝑖 ∈ [ℓ + 1, 2ℓ].

117

2. Recovering {𝜓2ℓ+𝑖,𝑥3,𝑖 }𝑖∈[ℓ] , 𝜓3ℓ+1 and 𝜓3ℓ+2:

For 𝑖 ∈ [ℓ],

tx3V2ℓ+𝑖,𝑥3,𝑖 = 𝑡x1𝑡x2 (tx3 (𝜓2ℓ+𝑖,𝑥3,𝑖 + Ê2ℓ+𝑖,𝑥3,𝑖) + tx3C2ℓ+𝑖,𝑥3,𝑖 Ŝ2ℓ+𝑖,𝑥3,𝑖)
= 𝑡x1𝑡x2tx3 (𝜓2ℓ+𝑖,𝑥3,𝑖 + Ê2ℓ+𝑖,𝑥3,𝑖) (because tx3C2ℓ+𝑖,𝑥3,𝑖 = 0).

tx3V3ℓ+1 = 𝑡x1𝑡x2 (tx3 (𝜓3ℓ+1 + Ê) + tx3C3ℓ+1Ŝ3ℓ+1)
= 𝑡x1𝑡x2tx3 (𝜓3ℓ+1 + Ê) (because tx3C3ℓ+1 = 0)
= 𝑡x1𝑡x2tx3 (SA + E + Ê).

tx3v
T
3ℓ+2 = 𝑡x1𝑡x2 (tx3 (𝜓T

3ℓ+2 +mT + êT
0) + tx3C3ℓ+2̂sT

3ℓ+2)
= 𝑡x1𝑡x2tx3 (𝜓T

3ℓ+2 +mT + êT
0) (because tx3C3ℓ+2 = 0)

= 𝑡x1𝑡x2tx3 (SuT +mT + (eT
0 + êT

0)).

Representing tx3V𝑖,𝑥𝑖 by tx3V𝑖 for 𝑖 ∈ [2ℓ + 1, 3ℓ] gives us, for 𝑖 ∈ [2ℓ + 1, 3ℓ],

tx3V𝑖 = tx3V𝑖,𝑥𝑖

= 𝑡x1𝑡x2tx3 (𝜓𝑖,𝑥𝑖 + Ê𝑖,𝑥𝑖)
= 𝑡x1𝑡x2tx3 (S(B𝑖 − 𝑥𝑖G) + E𝑖,𝑥𝑖 + Ê𝑖,𝑥𝑖).

3. Next, observe that:

tx3Vx = tx3 (V1, . . . ,V2ℓ,V2ℓ+1, . . . ,V3ℓ)
= 𝑡x1𝑡x2tx3 (S(B1 − 𝑥1G) + E1,𝑥1 , . . . , S(B2ℓ − 𝑥2ℓG) + E2ℓ,𝑥2ℓ ,

S(B2ℓ+1 − 𝑥2ℓ+1G) + E2ℓ+1,𝑥2ℓ+1 + Ê2ℓ+1,𝑥2ℓ+1 , . . . , S(B3ℓ − 𝑥3ℓG) + E3ℓ,𝑥3ℓ + Ê3ℓ,𝑥3ℓ)
= 𝑡x1𝑡x2tx3S((B1, . . . ,B3ℓ) − (𝑥1G, . . . , 𝑥3ℓG))
+𝑡x1𝑡x2tx3 ((E1,𝑥1 , . . . ,E3ℓ,𝑥3ℓ) + (0𝑘×2ℓ𝑚, Ê2ℓ+1,𝑥2ℓ+1 , . . . , Ê3ℓ,𝑥3ℓ))

= 𝑡x1𝑡x2tx3S(B − x ⊗ G) + 𝑡x1𝑡x2tx3 (Ex + Êx3),
(where Ex = (E1,𝑥1 , . . . ,E3ℓ,𝑥3ℓ) and Êx3 = (0𝑘×2ℓ𝑚, Ê2ℓ+1,𝑥2ℓ+1 , . . . , Ê3ℓ,𝑥3ℓ)).

4. Performing BGG + 18 evaluation and decryption in the exponent yields:

[𝑣′]𝑇 = [(tx3v
T
3ℓ+2 − (tx3V3ℓ+1rT

1 + tx3VxĤ𝐹,xrT
2))]𝑇

= [𝑡x1𝑡x2tx3 (SuT +mT + eT
0 + êT

0) − 𝑡x1𝑡x2tx3 (SA + E + Ê)rT
1

− 𝑡x1𝑡x2tx3 (S(B − x ⊗ G) + Ex + Êx3)Ĥ𝐹,xrT
2]𝑇

= [𝑡x1𝑡x2tx3 (SuT +mT − S(ArT
1 + (BH𝐹 − 𝐹 (x)G)rT

2)
+ 𝑡x1𝑡x2tx3 (eT

0 + êT
0 − (E + Ê)rT

1 − (Ex + Êx3)Ĥ𝐹,xrT
2)]𝑇

(∵ (B − x ⊗ G)Ĥ𝐹,x = BH𝐹 − 𝐹 (x)G (Lemma 3.2))

118

Replacing BH𝐹 by B𝐹 , (r1, r2) by r, tx3 (eT
0 + êT

0 − (E + Ê)rT
1 − (Ex + Êx3)Ĥ𝐹,xrT

2)
by 𝑒′ and for 𝐹 (x) = 0, we get:

[𝑣′]𝑇 = [𝑡x1𝑡x2 (tx3 (SuT +mT − S(A∥B𝐹)rT) + 𝑒′)]𝑇
= [𝑡x1𝑡x2 (tx3 (SuT +mT − SuT) + 𝑒′)]𝑇 (∵ (A∥B𝐹)rT = uT)

= [𝑡x1𝑡x2 (tx3m
T + 𝑒′)]𝑇 = [𝑣0]

(tx3mT+𝑒′)
𝑇

Thus, by brute force search we get 𝜂 = tx3mT + 𝑒′.

5. Bounding error 𝑒′:
Recall that we set 𝜒 = SampZ(3

√
𝑛), �̂� = SampZ(6

√
𝑛𝑚2). By the definition of

SampZ, we have ∥e0∥∞, ∥̂e0∥∞ ≤ 3𝑛, ∥E∥∞, ∥Ê∥∞ ≤ 3𝑛. and ∥E𝑖,𝑏∥∞, ∥Ê𝑖,𝑏∥∞ ≤
6𝑛𝑚2 for 𝑖 ∈ [3ℓ] and 𝑏 ∈ {0, 1}, ∥r∥∞ ≤

√
𝑛𝜏, ∥tx3 ∥∞ ≤

√
𝑛𝜏𝑡 , and ∥Ĥ𝐹,x∥∞ ≤

𝑚 · 2𝑂 (𝑑) , where the last inequality follows from Lemma 3.2. Thus, we have

𝑒′ = tx3 (eT
0 + êT

0 − (E + Ê)rT
1 − (Ex + Êx3)Ĥ𝐹,xrT

2)
≤ 𝑘

√
𝑛𝜏𝑡 (6𝑛 + 6𝑛1.5𝑚𝜏 + 24ℓ𝑚5𝑛1.5𝜏 · 2𝑂 (𝑑))

= 𝑂 (ℓ𝑚5𝑛2𝑘𝜏𝜏𝑡 · 2𝑂 (𝑑)) ≤ 𝐵

by our choice of 𝐵.

6. Bounding tx3mT:
When message bit 𝑏 = 0, then tx3mT=0. For 𝑏 = 1, ⌊𝑞/𝐾⌉ ≤ |tx3mT | ≤ 𝜏𝑡

√
𝑛𝑘 ·

⌊𝑞/𝐾⌉ (where 𝐾 = 2𝜏𝑡
√
𝑛 · 𝑘), unless tx3mT = 0. Thus, for 𝑏 = 0, 𝜂 ∈ [−𝐵, 𝐵] and

for (𝑏 = 1, and 𝐵 <
⌊ 𝑞

2𝐾
⌉
), 𝜂 ∈ [−𝐵−⌈𝑞/2⌉,−⌈𝑞/𝐾⌉+𝐵]∪[⌈𝑞/𝐾⌉−𝐵, 𝐵+⌈𝑞/2⌉],

unless tx3mT = 0. Observe that |tx3mT | ∈ {0, ⌈ 𝑞
𝐾
⌉, 2 · ⌈ 𝑞

𝐾
⌉, . . . , 𝜏𝑡

√
𝑛𝑘 · ⌈ 𝑞

𝐾
⌉}. Thus,

𝜂 can take only 2𝐵 + 4𝐵𝜏𝑡
√
𝑛𝑘 different values. Since, 𝐵, 𝑘, 𝜏𝑡 are polynomially

bounded, 𝜂 can be found by brute force search in polynomial steps.

The probability that tx3mT = 0 is non-negligible but bounded away from 1 and
hence this may be amplified as discussed below.

Amplifying Correctness. Above, we set m = 𝜇 · (𝑞/𝐾) (1, . . . , 1). Note that for

correctness, we require that tx3mT ≠ 0. However, since we are constrained to sample tx3

polynomially bounded (since the message must be recovered from the exponent), the

probability that tx3mT = 0 is non-negligible, leading to error in correctness. A simple

method to amplify correctness is to simply run the scheme in parallel 𝜆 times, and output

0 only if all instances output 0. This (standard) trick allows to make the correctness error

119

exponentially small, although with the disadvantage of reducing efficiency. We note that

we can do better by replacing the vector u with 𝜆 vectors u1, . . . , u𝜆 and providing 𝜆

secret keys r1, . . . , r𝜆 corresponding to each one. Similarly, we can provide 𝜆 encodings

of the message bit, decrypt each one of them and output 0 only if all instances output 0.

However, we choose not to clutter the (already complex) formal description with this

added complication for ease of exposition.

3.10.2 Discussion of Security

Compared to [BV22], we require slightly different security requirements for the encodings

(even though neither works formalize this). First, we need the encoding to retain security

even if some of the masks are stripped off, as long as only one encoding for the same

position is revealed. We expect this to be secure since these stripped off encodings are

fresh BGG + 18 encodings and should be secure by BGG + 18 security. Second, in their

case, only a single BGG + 18 secret key is generated per each instance of BGG + 18,

which is sampled afresh for each ciphertext, while in our case, we use the same BGG + 18

instance throughout the system and generate multiple secret keys for it. On the other

hand, in our case, the encodings all live in the exponent, unlike their case, where they live

“downstairs”. Hence, the attacker gets restricted to only linear attacks by GGM whereas

the attacker has more freedom in their construction.

3.11 TWO-INPUT ABE FOR POLYNOMIAL CIRCUITS USING BV22

In this section, we construct candidate two input ABE scheme using the structure of

[BV22] scheme. Unlike other schemes in this chapter, the construction below does

not employ pairings and thus is expected to be post-quantum secure. Besides, it can

support polynomial-size circuits with any depth. Formally, it supports attribute space

𝐴𝜆 = {0, 1}ℓ(𝜆) and any circuit class F = {F𝜆}𝜆 that is subclass of {C2ℓ(𝜆),𝑑 (𝜆)}𝜆 with

arbitrary ℓ(𝜆) ≤ poly(𝜆) and 𝑑 (𝜆) ≤ poly(𝜆), where C2ℓ(𝜆),𝑑 (𝜆) is a set of circuits with

input length 2ℓ(𝜆) and depth at most 𝑑 (𝜆).

120

3.11.1 Construction

The construction is defined as follows:

Setup(1𝜆) : On input 1𝜆, the setup algorithm defines the parameters 𝑛 = 𝑛(𝜆),

𝑚 = 𝑚(𝜆), 𝑘 = 𝑘 (𝜆), noise distribution 𝜒, �̂� over Z, 𝜏0 = 𝜏0(𝜆), 𝜏 = 𝜏(𝜆),

𝜏′0 = 𝜏′0(𝜆), 𝜏𝑡 = 𝜏𝑡 (𝜆) and 𝐵 = 𝐵(𝜆) as specified in Sec. 3.10.1. Let ℓ be the length

of the attributes and 𝑑 be the maximum depth of circuits. Then the setup algorithm

does the following.

1. Samples BGG + 18 master secret and public keys:

a) Samples (A,A−1
𝜏0
) ← TrapGen(1𝑛, 1𝑚, 𝑞) such that A ∈ Z𝑛×𝑚𝑞 .

b) Samples random matrices B = (B1, . . . ,B2ℓ) ← (Z𝑛×𝑚𝑞)2ℓ and a random
vector u← Z𝑛𝑞.

2. Samples (C,C−1
𝜏′0
) ← TrapGen(12𝑛(ℓ+1) , 1𝑘 , 𝑞), where

CT = (Cℓ+1,0∥Cℓ+1,1∥ . . . ∥C2ℓ,0∥C2ℓ,1∥C2ℓ+1∥C2ℓ+2) ∈ (Z𝑘×𝑛𝑞)2ℓ+2.

3. Outputs
pp = (A,B,C, u), msk = (A−1

𝜏0
,C−1

𝜏′0
).

Enc1(pp,msk, x1, 𝜇) : On input the public parameters pp, master secret msk, attribute

vector x1 and message bit 𝜇, encryption for slot 1 does the following:

1. Sets m =
⌊ 𝑞
𝐾

⌉
𝜇(1, . . . , 1) ∈ Z𝑘𝑞 . We define 𝐾 = 2𝜏𝑡

√
𝑛𝑘 .

2. Samples a random secret matrix S ← Z𝑘×𝑛𝑞 and error vectors/matrices as
e0 ← 𝜒𝑘 , E ← 𝜒𝑘×𝑚, E𝑖,𝑥1,𝑖 ← �̂�𝑘×𝑚 for 𝑖 ∈ [ℓ], and E𝑖,𝑏 ← �̂�𝑘×𝑚 for
𝑖 ∈ [ℓ + 1, 2ℓ] and 𝑏 ∈ {0, 1}.

3. Computes
𝜓𝑖,𝑥1,𝑖 = S(B𝑖 − 𝑥1,𝑖G) + E𝑖,𝑥1,𝑖 for 𝑖 ∈ [ℓ],

𝜓𝑖,𝑏 = S(B𝑖 − 𝑏G) + E𝑖,𝑏 for 𝑖 ∈ [ℓ + 1, 2ℓ], 𝑏 ∈ {0, 1},
𝜓2ℓ+1 = SA + E, 𝜓T

2ℓ+2 = SuT + eT
0 .

121

4. For 𝑖 ∈ [ℓ + 1, 2ℓ], 𝑏 ∈ {0, 1}, samples

Ŝ𝑖,𝑏 ← Z𝑛×𝑚𝑞 , Ŝ2ℓ+1 ← Z𝑛×𝑚𝑞 , ŝ2ℓ+2 ← Z𝑛𝑞,

Ê𝑖,𝑏 ← �̂�𝑘×𝑚, Ê← 𝜒𝑘×𝑚, ê0 ← 𝜒𝑘 .

5. Computes 𝜓𝑖,𝑏 = C𝑖,𝑏Ŝ𝑖,𝑏 + Ê𝑖,𝑏 + 𝜓𝑖,𝑏 for 𝑖 ∈ [ℓ + 1, 2ℓ], 𝑏 ∈ {0, 1},

𝜓2ℓ+1 = C2ℓ+1Ŝ2ℓ+1 + Ê + 𝜓2ℓ+1, 𝜓
T
2ℓ+2 = C2ℓ+2̂sT

2ℓ+2 + êT
0 + 𝜓

T
2ℓ+2 +mT.

6. Outputs ct1 = ({𝜓𝑖,𝑥1,𝑖 }𝑖∈[ℓ] , {𝜓𝑖,𝑏}𝑖∈[ℓ+1,2ℓ],𝑏∈{0,1}, 𝜓2ℓ+1, 𝜓2ℓ+2).

Enc2(pp,msk, x2): On input the public parameters pp, master secret key msk and an

attribute vector x2, encryption for slot 2 is defined as follows:

1. Computes [(C2ℓ+1∥C2ℓ+2∥Cℓ+1,𝑥2,1 ∥ . . . ∥C2ℓ,𝑥2,ℓ)T]−1
𝜏𝑡

from C−1
𝜏′0

and samples
a short vector tx2 such that

tx2 (C2ℓ+1∥C2ℓ+2∥Cℓ+1,𝑥2,1 ∥ . . . ∥C2ℓ,𝑥2,ℓ) = 0 mod 𝑞 as

tT
x2
← [(C2ℓ+1∥C2ℓ+2∥Cℓ+1,𝑥2,1 ∥ . . . ∥C2ℓ,𝑥2,ℓ)T]−1

𝜏𝑡
(0).

2. Returns ct2 = tx2 .

KeyGen(pp,msk, 𝐹) : On input the public parameters pp, master secret key msk and a

function 𝐹, the keygen algorithm does the following.

1. Generates BGG + 18 function key:

a) Computes H𝐹 = EvalF(B, 𝐹) and B𝐹 = BH𝐹 .

b) Computes [A∥B𝐹]−1
𝜏 from A−1

𝜏0
and samples r ∈ Z2𝑚

as rT ← [A∥B𝐹]−1
𝜏 (uT).

2. Returns sk𝐹 = r.

Dec(pp, sk𝐹 , ct1, ct2) : On input the public parameters pp, key sk𝐹 = r, and slot 1 and

slot 2 ciphertexts ct1, ct2, the decryption algorithm does the following.

122

1. Parses the public parameters pp as

(A,B,C, u)

and the ciphertexts for slot 1 and slot 2 as

ct1 = ({𝜓𝑖,𝑥1,𝑖 }𝑖∈[ℓ] , {𝜓𝑖,𝑏}𝑖∈[ℓ+1,2ℓ],𝑏∈{0,1}, 𝜓2ℓ+1, 𝜓2ℓ+2), ct2 = tx2 .

2. Computes

tx2V = tx2 (𝜓1,𝑥1,1 ∥ . . . ∥𝜓ℓ,𝑥1,ℓ ∥𝜓ℓ+1,𝑥2,1 ∥ . . . ∥𝜓2ℓ,𝑥2,ℓ ∥𝜓2ℓ+1∥𝜓T
2ℓ+2).

3. Expands tx2V to obtain

tx2V𝑖,𝑥1,𝑖 = tx2𝜓𝑖,𝑥1,𝑖 for 𝑖 ∈ [ℓ], tx2Vℓ+𝑖,𝑥2,𝑖 = tx2𝜓ℓ+𝑖,𝑥2,𝑖 for 𝑖 ∈ [ℓ],
tx2V2ℓ+1 = tx2𝜓2ℓ+1, tx2v

T
2ℓ+2 = tx2𝜓

T
2ℓ+2.

4. Forms r = (r1 ∈ Z𝑚𝑞 , r2 ∈ Z𝑚𝑞) and x = (x1, x2).

Let,
(V1,𝑥1 ∥ . . . ∥V2ℓ,𝑥2ℓ) = Vx.

5. Computes Ĥ𝐹,x = EvalFX(𝐹, x,B).

6. Computes
𝑣 = (tx2v

T
2ℓ+2 −

(
tx2V2ℓ+1rT

1 + tx2VxĤ𝐹,xrT
2)

)
.

7. Outputs 0 if 𝑣 ∈ [−𝐵, 𝐵] and 1, otherwise.

Correctness: To see correctness, we first make following observations:

1. Let x = (x1, x2).

On expanding tx2V, the decryptor obtains, for 𝑖 ∈ [ℓ],

tx2V𝑖,𝑥1,𝑖 = tx2𝜓𝑖,𝑥1,𝑖

= tx2S(B𝑖 − 𝑥1,𝑖G) + tx2E𝑖,𝑥1,𝑖 .

tx2Vℓ+𝑖,𝑥2,𝑖 = tx2𝜓ℓ+𝑖,𝑥2,𝑖

123

= tx2 (Cℓ+𝑖,x2,𝑖 Ŝℓ+𝑖,𝑥2,𝑖 + Êℓ+𝑖,𝑥2,𝑖 + 𝜓ℓ+𝑖,x2,𝑖)
= tx2S(Bℓ+𝑖 − 𝑥2,𝑖G) + tx2 (Eℓ+𝑖,𝑥2,𝑖 + Êℓ+𝑖,𝑥2,𝑖).

tx2V2ℓ+1 = tx2𝜓2ℓ+1

= tx2 (C2ℓ+1Ŝ2ℓ+1 + Ê + 𝜓2ℓ+1)
= tx2SA + tx2 (E + Ê).

tx2v
T
2ℓ+2 = tx2𝜓

T
2ℓ+2

= tx2 (C2ℓ+2̂sT
2ℓ+2 + êT

0 + 𝜓
T
2ℓ+2 +mT)

= tx2 (SuT +mT) + tx2 (eT
0 + êT

0).

2. Next, observe that:

tx2Vx = tx2 (V1, . . . ,Vℓ,Vℓ+1, . . . ,V2ℓ)
= tx2S(B − x ⊗ G) + tx2 (Ex + Êx2),

where Ex = (E1,𝑥1 , . . . ,E2ℓ,𝑥2ℓ) and Êx2 = (0𝑘×ℓ𝑚, Êℓ+1,𝑥ℓ+1 , . . . , Ê2ℓ,𝑥2ℓ).

3. Finally, we get,

𝑣 = tx2v
T
2ℓ+2 − (tx2V2ℓ+1rT

1 + tx2VxĤ𝐹,xrT
2)

= tx2 (SuT +mT − S(ArT
1 + (BH𝐹 − 𝐹 (x)G)rT

2))
+ tx2 (eT

0 + êT
0 − (E + Ê)rT

1 − (Ex + Êx2)Ĥ𝐹,xrT
2)

= tx2 (SuT +mT − S(A∥B𝐹)rT) + 𝑒′

= tx2 (SuT +mT − SuT) + 𝑒′

= tx2m
T + 𝑒′

where 𝑒′ = tx2 (eT
0 + êT

0 − (E + Ê)rT
1 − (Ex + Êx2)Ĥ𝐹,xrT

2).

4. As discussed in section 3.10.1, the error 𝑒′ is bounded by𝑂 (ℓ𝑚5𝑛2𝑘𝜏𝜏𝑡2𝑂 (𝑑)), and
txmT = 0 when 𝑏 = 0 and txmT ≤ 𝜏𝑡

√
𝑛𝑘 · ⌈ 𝑞

2𝜏𝑡
√
𝑛𝑘
⌉ for 𝑏 = 1. Thus, for 𝑏 = 0,

𝑣 ∈ [−𝐵, 𝐵] and for (𝑏 = 1, and 𝐵 < 𝑞

4𝑘
√
𝑛𝜏𝑡

), 𝑣 ∉ [−𝐵, 𝐵] unless txmT = 0. The
probability that txmT = 0 is non-negligible but bounded away from 1 and hence
this may be amplified as discussed in section 3.10.1.

124

CHAPTER 4

CONSTANT INPUT ATTRIBUTE BASED
ENCRYPTION FROM EVASIVE AND TENSOR LWE

4.1 INTRODUCTION

In this chapter, we extend the results of Chapter 3 from arity 2 (and heuristic construction

for arity 3) to any constant arity. Our constructions in this chapter are based on

recently introduced lattice based assumptions of evasive LWE [Wee22; Tsa22] and tensor

LWE [Wee22] and have the potential of being quantum secure.

Related Work.

As discussed in Chapter 3, there are very few studies on MIABE and MIPE. Here, we

compare the results in this chapter to those in Chapter 3 and the related work by Francati

et al. [FFMV23].

Comparison with the results in Chapter 3 and in [FFMV23]: The constructions in

Chapter 3 support only arity 2 for NC1 and uses LWE and pairings and are not secure

against quantum attacks. The security is proven in generic group model (GGM) or is

based on non-falsifiable KOALA assumption. The constructions in this chapter are based

only on lattice based assumptions and the security is proven in the standard model and

hence has the possibility of being secure against quantum attacks. The assumptions

are new and need more study to understand them better and build confidence in their

plausibility. Francati et al. [FFMV23] provided multi-input PE (hence also ABE)

schemes for the restricted functionality of conjunctions of (bounded) polynomial depth

from LWE. Notably, one of their constructions can support polynomial arity unlike our

results in Chapter 3 and this chapter, which is a plus. On the other hand, their security

model does not support collusions, which is typically the main technical challenge

in constructing ABE and PE even in the single input setting. As another plus, when

restricted to constant (though not polynomial) arity, their constructions can support user

corruption, which our constructions, in Chapter 3 and this chapter, cannot. However we

support a much more expressive function class which is not restricted to conjunctions.

We briefly mention the stronger notion of multi-input functional encryption (miFE)

[GGG+14], which, as discussed in the previous chapter, generalizes multi-input ABE

and PE. In contrast to MIABE and MIPE, miFE has been studied extensively, and admits

constructions for various functionalities from a variety of assumptions [GGG+14; AJ15;

AGRW17; DOT18; ACF+18; CDG+18a; Tom19; ABKW19; ABG19; LT19; AGT21b;

AGT21a; AGT22]. However, since multi-input FE for NC1 implies indistinguishability

obfuscation (iO) [BGI+01; GGH+13], it remains an important area of study to instantiate

weaker notions such as MIABE and MIPE from assumptions not known to imply

iO. This is particularly important in the post quantum regime, where constructions

of iO are still based on strong, ill-understood assumptions which are often broken

[Agr19; APM20; WW21; GP21; DQV+21; AJS23]. Several prior works therefore focus

on instantiating iO based constructions from weaker assumptions [AY20; AWY20;

Wee22; Tsa22; VWW23; AKYY23], a direction also followed by this work.

4.2 OUR RESULTS

As discussed, current known results for MIABE schemes are quite restricted. In this

chapter, we significantly extend the reach of multi-input ABE schemes by providing the

first construction of MIABE for the function class NC1 for any constant arity from the

recently introduced evasive LWE assumption [Wee22; Tsa22]. Our construction can be

extended to support the function class P by using evasive and a suitable strengthening of

tensor LWE. For the special case of arity 2, we need only the assumptions introduced by

Wee, i.e. evasive LWE for NC1 and evasive plus tensor LWE for P (i.e. we do not need

126

Paper Arity Functionality Corruption Collusion Assumption
[FFMV23] Poly Conjunctions in P No No LWE
[FFMV23] Constant Conjunctions in P Yes No LWE
Chapter 3 2 NC1 No Yes Koala and LWE
Chapter 3 2 P No Yes Heuristic

This Chapter 2 P No Yes Evasive and Tensor LWE
This Chapter Constant NC1 No Yes Evasive LWE

This Constant P No Yes
Evasive and

strong Tensor LWE

Table 4.1: Comparison with Related Work in MIPE. Note that KOALA is a non-standard
knowledge type assumption and “heuristic” means that there is no proof of
security.

to strengthen tensor LWE).1

In more detail, our construction supports 𝑘 encryptors, for any constant 𝑘 , where each

encryptor uses the master secret key msk to encode its input (x𝑖, 𝑚𝑖), the key generator

computes a key sk 𝑓 for a function 𝑓 ∈ NC1 (or P at the cost of a stronger assumption)

and the decryptor can recover (𝑚1, . . . , 𝑚𝑘) if and only if 𝑓 (x1, . . . , x𝑘) = 1. We

prove security in the standard indistinguishability game defined in Chapter 3 from the

aforementioned assumptions. Using the compiler from Chapter 3, the MIABE schemes

can be upgraded to multi-input predicate encryption schemes for the same arity and

function class. Along the way, we show that the tensor LWE assumption can be reduced

to standard LWE in a special case which was not known before. This adds confidence to

the plausibility of the assumption and may be of wider interest.

We defer details about our strengthening of tensor LWE for P as well as the new

implication discussed above to the technical overview (Section 4.3) since stating them

formally will require heavy notation which we do not want to introduce here. We provide

a comparison with known results in Table 4.1.

1Actually, our definition of evasive LWE is slightly different from that defined in [Wee22]. Please refer to
Assumption 4.6 and the related discussion.

127

Perspective: Connection to Witness Encryption. Witness encryption (WE) is defined

for some NP language 𝐿 with a corresponding witness relation 𝑅. In WE, an encryptor

encrypts a message 𝑚 to a particular problem instance 𝑥. The decryptor can recover

𝑚 if 𝑥 ∈ 𝐿 and it knows a witness 𝑤 such that 𝑅(𝑥, 𝑤) = 1. Security posits that a

ciphertext hides the message 𝑚 so long as 𝑥 ∉ 𝐿. Brakerski et al. [BJK+18] showed

that MIABE for polynomial arity implies witness encryption – this may explain in part

why constructions of MIABE have been so elusive. Even for smaller arity, there are

nontrivial implications – for instance, the arity 2 MIABE for NC1 in Chapter 3 implies a

compression factor of 1/3 for witness encryption, which may be considered surprising.

In the other direction, it is well known that in the single input setting, witness encryption

implies attribute based encryption [GGH+13]. It is completely unclear however, how to

generalize this implication to the multi-input setting – in the setting of single input, the

ABE ciphertext contains a WE ciphertext for an NP statement that embeds the attribute.

If the attributes are distributed amongst multiple parties, the above approach fails and

appears challenging to extend. Thus, MIABE implies new results in WE but not the

other way around – indeed, in MIABE, all encryptors must choose their randomness

independently to construct a ciphertext for their respective slot, whereas in WE, there

is only one encryptor who constructs the ciphertexts for all slots, making it possible to

choose correlated randomness across slots. As we will see, this creates a major technical

hurdle in designing MIABE, which is not present in WE. Also note that MIABE can

subsequently be strengthened to MIPE using lockable obfuscation, as discussed above.

We also note that single input ABE is the strongest application of the stated definition of

WE in [GGH+13]. Since the definition of WE given in [GGH+13] only hides the message

in the ciphertext when the statement is not in the language, the notion is insufficient to

give any meaningful security guarantee when the statement is actually believed to be true

but the witness is not known, such as solutions to some of the Clay Institute Millennium

Prize Problems, as discussed in [GGH+13]. Hence, we believe that the primitives of

MIABE and MIPE deserve to be studied even from assumptions that are already known

128

to imply WE, such as evasive LWE [Tsa22; VWW23].

4.3 TECHNICAL OVERVIEW

We first briefly recap the techniques used in Chapter 3 and discuss the difficulty in

extending the techniques in Chapter 3 to the construction of any constant arity.

Recap of Chapter 3. As we discussed before, the main difficulty in building an MIABE

scheme is simultaneously fulfilling two opposing requirements: (1) each encryptor

should be able to generate its own ciphertexts independently, (2) these independently

generated ciphertexts should permit some kind of “joining” that lets them be viewed as

multiple components of a single ABE ciphertext, such that decryption can proceed as in

the single input setting. To achieve joining of ciphertext components, existing single

input schemes generate multiple ciphertext components using common randomness.

However, evidently, two independent sources, each generating an unbounded number of

ciphertexts (say 𝑄1 and 𝑄2 respectively) cannot even store, much less embed, 𝑄1 · 𝑄2

random strings in the ciphertexts they compute (even if they share a common PRF key).

In the two-input setting, we solve this conundrum by using the beautiful synergy between

the algebraic structure offered by lattice based single input ABE schemes and pairing

based constructions. This synergy was first discovered and harnessed by Agrawal and

Yamada [AY20] in the context of broadcast encryption (a.k.a succinct single input

ciphertext policy ABE for NC1). We notice that the same synergy can be beneficial for

the two-input key policy ABE setting, albeit for different reasons.

In more detail, in Chapter 3, we achieve the joining of ciphertexts via common randomness

by letting each party embed fresh randomness in the exponent of a pairing based group

for each ciphertext it computes. Now, party 1 (respectively 2) has 𝑄1 (respectively 𝑄2)

random elements embedded in its 𝑄1 (respectively 𝑄2) ciphertexts. Using the pairing

129

operation, the dercryptor can compute 𝑄1 · 𝑄2 elements by pairwise multiplication in

the exponent. In more detail, for each input, party 1 samples randomness 𝑡1 and encodes

it in G1, party 2 samples randomness 𝑡2 and encodes it in G2, where G : G1 ×G2 → G𝑇

is a pairing group with prime order 𝑞. Now these ciphertexts may be combined to form

a new ciphertext with respect to the randomness 𝑡1𝑡2 on G𝑇 . This allows to uniquely

separate every pair of ciphertexts, since each pair (𝑖, 𝑗) where 𝑖 ∈ [𝑄1] and 𝑗 ∈ [𝑄2],

will have unique randomness 𝑡𝑖1𝑡
𝑗

2. We have by security of pairings that these 𝑄1 · 𝑄2

correlated terms are indistinguishable from random in the exponent. This allows for

generating the requisite randomness and solving the difficulty described above.

Fruitful interplay of pairings and lattices. However, generating joint randomness is

not the final goal – the ciphertexts generated using the above joining procedure must

behave like an ABE! Note that, having relied on a pairing, whatever we have obtained

must live in the exponent of a group. Also note that, pairing based ABE schemes have

been rendered unhelpful by this point, since the single multiplication afforded by the

pairing has been used up and can no longer participate in the design of the ABE. Here,

similarly to [AY20; AWY20], we are rescued by the serendipitously well-fitting structure

of a lattice based ABE scheme constructed by Boneh et al [BGG+14]. In [BGG+14]

(henceforth BGG + 18), decryption works as follows: (i) homomorphically compute the

circuit 𝑓 on ciphertext encodings – this step is linear even for 𝑓 ∈ P, (ii) perform a

product of the ciphertext matrix and secret key vector, (iii) round the recovered value

to recover the message. Hence, the first two steps can be performed “upstairs” in the

exponent and the last step may be performed “downstairs” by recovering the exponent

brute force.

Structure of BGG + 18. Let us recall the structure of the BGG + 18 scheme, since

this forms the starting point of our construction. As observed in multiple works,

in BGG + 18, the ciphertext for an attribute x ∈ [ℓ] in BGG + 18 is computed by

130

first generating LWE encodings for all possible values of the attribute x, namely,

{𝜓𝑖,𝑏}𝑖∈[ℓ],𝑏∈{0,1} and then choosing {𝜓𝑖,𝑥𝑖 }𝑖∈[ℓ] where 𝑥𝑖 is the 𝑖-th bit of attribute x. Here,

𝜓𝑖,𝑏 = s(A𝑖 − 𝑥𝑖,𝑏 · G) + noise where A𝑖 ∈ Z𝑛×𝑚𝑞 are public matrices, s ∈ Z𝑛𝑞 is freshly

chosen randomness, and G ∈ Z𝑛×𝑚𝑞 is the special “gadget” matrix which admits a public

trapdoor (details not important here). Here, and in the remainder of this overview, we use

noise to denote freshly and independently sampled noise terms of appropriate dimension,

for each sample. Choosing components based on x and concatenating the samples yields

s(A − x ⊗ G) + noise, where A ∈ Z𝑛×ℓ𝑚𝑞 denotes the concatenation of {A𝑖}𝑖∈[ℓ] .

To evaluate a circuit 𝑓 ∈ P, BGG + 18 observe that there exists an efficiently computable

low norm matrix, denoted by ĤA, 𝑓 ,x, so that the right multiplication of (A − x ⊗ G) by

ĤA, 𝑓 ,x yields a quantity of the form A 𝑓 − 𝑓 (x)G – since the matrix is low norm, this

can be right multiplied to s(A − x ⊗ G) + noise to obtain approximately s(A 𝑓 − 𝑓 (x)G)

without blowing up the noise. The decryption key for a function 𝑓 is a low norm vector

which, loosely speaking, is used in a matrix vector product that allows canceling the

masking term sA 𝑓 when 𝑓 (x) = 0, and this in turn allows to recover the message.

Circling back to the construction in Chapter 3, the first encryptor can (roughly speaking)

compute [𝑡1 · 𝜓x]1, [𝑡1]1, the second encryptor can compute [𝑡2 · 𝜓y]2, [𝑡2]2 and

the decryptor can compute [𝑡1𝑡2𝜓x∥y]𝑇 , [𝑡1𝑡2]𝑇 . Note that randomization by 𝑡1𝑡2 is

absolutely essential for security, else the adversary can potentially recover terms like

s(A − x ⊗G) + noise and s(A − x ⊗G) + noise in the exponent, which allows canceling

sA by subtraction and leads to a complete break of security. Next, the circuit 𝑓 can be

evaluated in the exponent as described above by right multiplication with a low norm

matrix and the secret key can be applied by the matrix vector product to obtain the

(scaled) message plus some noise in the exponent. The noise growth can be suitably

bounded for the circuit class NC1, and given [𝑡1𝑡2]𝑇 , one can recover the message using

brute force discrete log computation.

131

While the construction in Chapter 3 is an important first step towards constructing MIABE

schemes, it is evident that going beyond degree two is difficult while relying on pairings.

While we do consider arity 3, in Chapter 3, by additionally relying on ideas from a clever

lattice based scheme by Brakerski and Vaikuntanathan [BV22], this scheme is heuristic,

i.e. does not have a proof based on any clean assumption. Thus, it is completely unclear

how to go beyond arity 2 using the techniques developed in Chapter 3, even for NC1. A

natural idea to overcome the barrier of 2 is to rely on lattices in lieu of pairings.

Towards Lattice Based Constructions. Taking a step back, a promising direction

would be to consider the lattice adaptation of the Agrawal-Yamada broadcast encryption

scheme [AY20] recently proposed by Wee [Wee22]. This construction makes important

progress in identifying a clean assumption in the lattice regime that captures the

functionality provided by the pairing without relying on bilinear groups, and can be

used to construct advanced primitives like broadcast encryption and witness encryption

without relying on iO (or the messy assumptions needed to build iO in the post quantum

regime). In more detail, Wee [Wee22] suggested two new assumptions – the evasive

LWE and tensor LWE and used these to construct ciphertext polict ABE schemes with

optimal parameters. We describe his approach next.

Overview of Wee’s approach. The main idea of Wee is to cleverly replace the

randomization in the exponent by tensoring on the ground. In more detail, Wee observes

that the transformation of (A−x⊗G) to (A 𝑓 − 𝑓 (x)G) via right multiplication by ĤA, 𝑓 ,x

is preserved under tensoring with random low norm vectors r. To see this, note that

s(A ⊗ rT) + noise = s(I ⊗ rT)︸ ︷︷ ︸
Randomized secret

A + noise

where the latter quantity can be seen as BGG + 18 ciphertext with a tensored LWE

secret. This easily implies that homomorphism is preserved even with tensoring as

132

desired. Hence, one can homomorphically evaluate 𝑓 on (A − x ⊗ G) ⊗ r⊤ to obtain

(A 𝑓 − 𝑓 (x)G) ⊗ r⊤ via right multiplication by ĤA, 𝑓 ,x.

Importantly, Wee shows that a very natural adaptation of [AY20], obtained by replacing

randomization in the exponent by tensoring can be shown secure under a new and elegant

assumption, which he calls evasive LWE. To support NC1, he shows that evasive LWE

suffices, while to support P, one additionally needs another new assumption, which he

calls tensor LWE. The formulation of a relatively simple and general assumption in

the lattice regime that allows to give a proof for a very natural construction of succint

ciphertext policy ABE is a very important contribution which is likely to influence many

future lattice constructions, including ours. We describe these assumptions next.

Evasive LWE. The evasive LWE assumption, introduced by Wee [Wee22] (and

independently Tsabary [Tsa22]), is a strengthening of the LWE assumption which says

that certain extra information, namely Gaussian preimages to LWE public matrices, can

only be used in a “semi-honest” way. Recall that the LWE assumption says that

(B, sB + e) ≈𝑐 (B, c)

where B ← Z𝑛×𝑚𝑞 , s ← Z𝑛𝑞, e ← 𝜒𝑚 for some low norm “noise” distribution 𝜒 and

c← Z𝑚𝑞 . Intuitively, the evasive LWE assumption says that if the adversary is additionally

given some low norm matrix K such that BK = P, which we denote as B−1(P) (as in the

literature, see for instance [Wee22]), for some efficiently sampleable matrix P, then the

adversary can exploit this extra information only via the limited means of computing

the product (sB + e) · B−1(P) ≈ sP and trying to distinguish this from uniform. The

assumption says that this is the only additional capability that the adversary obtains,

besides its existing strategies for breaking LWE.

Evidently, the distribution of P here is of crucial importance – for instance, if P = 0, then

B−1(P) is a trapdoor for B and can be used to easily break LWE. On the other extreme,

133

if P is chosen uniformly, then this assumption reduces to standard LWE. The “playing

ground” of evasive LWE is in the middle – namely, when it holds that

(B,P, sB + e, sP + e′) ≈𝑐 (B,P, c, c′)

then

(B, sB + e,B−1(P)) ≈𝑐 (B, c,B−1(P)).

Here, the former condition is referred to as the PRE condition and the latter as POST. The

actual assumption used by the scheme is more complex and includes more LWE samples

that use the same secret s as well as some (carefully chosen) auxiliary information aux.

To formalize the PRE condition, the assumption must specify an efficient sampler Samp

which outputs the correlated LWE matrices. We defer the formalization to Section 4.5;

here we only remark that the assumption captures in the lattice setting, the guarantees

provided by the generic group model for pairings, namely the intuition that an adversary

can only use legitimate operations to learn anything. It is therefore very natural (in

hidsight) that this assumption should be able to replace the reliance on the generic group

model in the constructions of [AY20; AWY20].

Tensor LWE. The tensor LWE assumption states that correlated BGG + 18 samples

tensored with different random vectors remain pseudorandom. In more detail, for all

x1, · · · , x𝑄 ∈ {0, 1}ℓ , it posits that

A,
{
s(I𝑛 ⊗ rT

𝑖) (A − x𝑖 ⊗ G) + e𝑖, rT
𝑖

}
𝑖∈[𝑄] ≈𝑐 A,

{
c𝑖, rT

𝑖

}
𝑖∈[𝑄]

where A← Z𝑛×ℓ𝑚𝑞 , s← Z𝑚𝑛𝑞 , e𝑖 ← Dℓ𝑚
Z,𝜒, r𝑖 ← D

𝑚
Z,𝛾, c𝑖 ← Z

ℓ𝑚
𝑞 .

Note that there are no Gaussian preimages in the above assumption. In our work, we

show that for the special case where x𝑖 = 0 ∀𝑖 ∈ [𝑄], tensor LWE reduces to standard

LWE (Lemma 4.10). In more detail, let Adv be an attacker for Tensor LWE with x𝑖 = 0

134

for all 𝑖 ∈ [𝑄]. Adv is given either A,
{
s(I𝑛 ⊗ rT

𝑖
)A + e𝑖, rT

𝑖

}
𝑖∈[𝑄] or A,

{
c𝑖, rT

𝑖

}
𝑖∈[𝑄] . We

prove that under the LWE assumption, Adv has a negligible probability of distinguishing

the left hand side from the right hand side. This implication was not known before, and

increases our confidence in the assumption, which is new and not so well studied. Please

see Lemma 4.10 for details.

Generalizing Tensor LWE. While tensor LWE as stated by Wee suffices for our

construction of 2-ABE for P, for extending the arity to any constant 𝑘 , we require a

strengthening of this assumption. In more detail, we require that for all x 𝑗1,..., 𝑗𝑘 ∈ {0, 1}ℓ

indexed by 𝑗1, . . . , 𝑗𝑘 ∈ [𝑄], it holds that:

A,
{
s(I𝑛 ⊗ rT

1, 𝑗1 ⊗ · · · ⊗ rT
𝑘, 𝑗𝑘
) (A − x 𝑗1,..., 𝑗𝑘 ⊗ G) + e 𝑗1,..., 𝑗𝑘 , r𝑖, 𝑗𝑖

}
𝑖∈[𝑘], 𝑗1,..., 𝑗𝑘∈[𝑄]

≈𝑐 A,
{
c𝑖, 𝑗𝑖 , r𝑖, 𝑗𝑖

}
𝑖∈[𝑘], 𝑗1,..., 𝑗𝑘∈[𝑄]

where A← Z𝑛×ℓ𝑚𝑞 , s← Z𝑛𝑚𝑘𝑞 , e 𝑗1,..., 𝑗𝑘 ← Dℓ𝑚
Z,𝜒, r𝑖, 𝑗𝑖 ← D

𝑚
Z,𝛾, c𝑖, 𝑗𝑖 ← Z

ℓ𝑚
𝑞 .

It is easy to see that the generalized tensor LWE yields Wee’s version of tensor LWE for

𝑘 = 1.

Two Input ABE from evasive and tensor LWE. As a warmup, we first describe our

construction of MIABE for arity 2. For NC1, our construction can be proven secure

by relying solely on evasive LWE while for P, we additionally need tensor LWE. We

will show subsequently how to generalize this to any constant arity. In this chapter, we

consider a modified syntax of MIABE where there is only a single encryption slot which

is public key, and multiple key generation slots, which require the master secret key. This

syntax better fits our construction and easily implies the standard definition of MIABE

which has multiple encryptors that have as input the master secret key, and a single key

generator who also requires the master secret key – please see Section 4.4.1 for details.

Given the above discussion, a natural approach to construct MIABE schemes from lattices

135

is to try adapting the ideas in Chapter 3 by replacing the use of pairings with tensoring,

analogously to Wee’s approach of adapting the Agrawal-Yamada broadcast encryption

scheme to lattices in Wee. We show that in the end, this approach indeed can be made to

work, but via several failed attempts which require new techniques to overcome, and a

complex security proof, which requires proving several new lemmas. Below, we outline

the pathway to our final construction, detailing the hurdles we encounter and the ideas

towards their resolution.

Attempt 1. We attempt to design a scheme using tensor based randomization from

Wee to instantiate the template of Chapter 3. We sketch the construction at a high level

below. We suppress dimensions for ease of readability in this overview.

1. The master public key is (A0,A1,A2,B, u) where A1,A2,B are sampled uniformly
and u is sampled from the discrete Gaussian distribution. The master key is a
trapdoor for A0 and a trapdoor for B.

2. The encryptor, given input (x, 𝜇) where x is the attribute and 𝜇 is the message,
samples randomness s along with requisite noise terms and computes

sA0 + noise︸ ︷︷ ︸
c0

, s
(
(A1 − x ⊗ G) ⊗ I

)
+ noise︸ ︷︷ ︸

c1

, s(Gu⊤ ⊗ I) + noise︸ ︷︷ ︸
c2

, sB + noise︸ ︷︷ ︸
c3

if 𝜇 = 0 and else samples random elements of appropriate dimensions if 𝜇 = 1.
Note that the encryption procedure is public key.

3. The first key generator (to be interpreted as the second encryptor), given input msk
and attribute y samples Gaussian random vector r and computes

sky = B−1 ((A2 − y ⊗ G) ⊗ rT) , rT

It outputs this as the secret key for y. Note that the randomizer r is used to prevent
collusion attacks – in its absence, an attacker can obtain samples corresponding to
y and y (i.e. complement of y) and launch attack as discussed earlier.

4. The second key generator, given msk and function 𝑓 as input computes sk 𝑓 =
(A0∥A 𝑓)−1(Gu⊤) and outputs this as the secret key for 𝑓 .

5. The decryptor does the following:

136

a) Computing ciphertext component for second attribute: It combines the
ciphertext c3 with the first secret key sky to obtain s

(
(A2−y⊗G) ⊗rT)+noise.

b) Randomizing ciphertext component for first attribute: From c1 and sky, it
computes

(
s
(
(A1−x⊗G) ⊗ I

)
+noise

)
(I⊗rT) = s

(
(A1−x⊗G) ⊗rT) +noise

c) Producing a complete BGG + 18 ciphertext: Concatenating the results of the
previous two steps, we get

s
(
(A1∥A2) − (x∥y) ⊗ G) ⊗ rT) + noise

Note that this looks exactly like a BGG + 18 sample except for the tensoring
with rT. As discussed above, Wee shows that homomorphic computation is
preserved under right tensoring with rT.

d) BGG + 18 Homomorphic evaluation: Computing the circuit 𝑓

homomorphically on this BGG + 18 sample, we obtain

s
(
(A 𝑓 − 𝑓 (x, y)G) ⊗ rT) + noise

If 𝑓 (x, y) = 0, then we get s
(
A 𝑓 ⊗ rT) + noise. Concatenating with the

ciphertext component c0, we get

s
(
A0∥A 𝑓) ⊗ rT) + noise

e) Applying BGG + 18 secret key. By right multiplying the second slot secret
key (A0∥A 𝑓)−1(Gu⊤) ⊗ I to this, we get

s
(
Gu⊤ ⊗ rT) + noise

f) BGG + 18 decryption with tensoring. Multiplying c2 with I ⊗ rT, we get
s
(
Gu⊤ ⊗ rT) + noise. Subtracting from the output of the previous step, we

get a small value when 𝜇 = 0. Thus, we recover 𝜇 when 𝑓 (x, y) = 0.

The above scheme provides functionality and does not appear to have any immediate

attacks. However, we are unable to prove security of this scheme based on the

evasive/tensor LWE assumption. This is because the evasive LWE assumption

accommodates Gaussian preimages for fixed matrices, namely terms of the form B−1(P),

where B is a random matrix and P is structured, but does not know how to handle terms

such as (A0∥A 𝑓)−1(GuT). Since A 𝑓 is highly structured, this is incompatible with the

assumption.

137

Attempt 2. To handle this barrier, in our next attempt, we use an idea by Wee to

remove the problematic term (A0∥A 𝑓)−1(GuT). Note that the purpose of this term

is to create an LWE sample with secret s and matrix A 𝑓 . In more detail, as shown

in step 5e, the term s
(
A0∥A 𝑓) ⊗ rT) + noise obtained by homomorphic evaluation is

combined together with the secret key in the second slot (A0∥A 𝑓)−1(GuT) to obtain

s(Gu⊤ ⊗ rT) + noise. As shown in step 5f, this term is then used to unmask the

ramdomized c2, i.e. s
(
Gu⊤ ⊗ rT) + noise by subtraction to recover 𝜇.

So as to do away with the requirement of revealing (A0∥A 𝑓)−1(GuT), we provide an

alternate route to recover 𝜇. We change the second slot secret key sk 𝑓 to B−1(A 𝑓 u ⊗ I),

and use this together with the term sB + noise provided in the ciphertext to obtain

s(A 𝑓 u ⊗ I) + noise. This allows us to cancel the mask sA 𝑓 obtained via homomorphic

evaluation and brings us closer to relying only on evasive and tensor LWE.

Below, we detail only the modifications we make to our previous attempt:

1. The encryptor, given input (x, 𝜇) where x is the attribute and 𝜇 is the message,
samples randomness s along with requisite noise terms and computes

sA0 + noise︸ ︷︷ ︸
c0

, s
(
(A1 − x ⊗ G) ⊗ I

)
+ noise︸ ︷︷ ︸

c1

, s(Gu⊤ ⊗ I) + noise︸ ︷︷ ︸
c2

, sB + noise︸ ︷︷ ︸
c3

if 𝜇 = 0 else samples random elements of appropriate dimensions if 𝜇 = 1.

2. The second key generator, given msk and function 𝑓 computes sk 𝑓 = B−1(A 𝑓 u⊤ ⊗
I). At this junction, we let u be chosen independently by each user instead
of fixing it in the public parameters to prevent the adversary from requesting
keys for correlated functions and obtaining correlated LWE samples of the form
sA 𝑓 uT + noise with the same u and same s.

3. During decryption,

a) BGG + 18 homomorphic evaluation is simplified. We only compute the
circuit 𝑓 homomorphically on this BGG + 18 sample, to obtain

s
(
(A 𝑓 − 𝑓 (x, y)G) ⊗ rT) + noise

If 𝑓 (x, y) = 0, then we get s
(
A 𝑓 ⊗rT)+noise. There is no need to concatenate

with c0 (this is no longer even provided) but we must right multiply by (u⊤⊗I)

138

to obtain s
(
A 𝑓 u⊤ ⊗ rT) + noise. Recall that u is low norm, hence does not

blow up the noise.

b) The second slot key B−1(A 𝑓 u⊤ ⊗ I) is right multiplied to c3 to get
s(A 𝑓 u⊤ ⊗ I) + noise. By right multiplying with (I ⊗ rT), we now recover
the masking term s

(
A 𝑓 u ⊗ rT) + noise which can be subtracted from the

output of the previous step. If this is small, learn that 𝜇 = 0.

Importantly, at this point, we can hope to use evasive LWE to “get rid” of the preimages

B−1 ((A2 − y ⊗G) ⊗ rT) and B−1(A 𝑓 u⊤ ⊗ I) from the distribution seen by the adversary.

This essentially reduces the task of proving the security of the scheme to that of proving

the pseudorandomness of the terms

s((A1 − x ⊗ G) ⊗ I) + noise, s((A2 − y ⊗ G) ⊗ rT) + noise, s(A 𝑓 uT ⊗ I) + noise

Unfortunately, we are still not done, even by relying additionally on tensor LWE. This

is because tensor LWE only posits pseudorandomness of LWE samples with respect to

secret s(I ⊗ r). In particular, the presence of the terms s((A1 − x ⊗ G) ⊗ I) + noise and

s(A 𝑓 uT ⊗ I) + noise cannot be handled by invoking tensor LWE since they do not have

the right form (in particular no r term appears in these). Therefore, we must handle these

next.

Attempt 3. Let us first explain how to deal with the first term s((A1 − x ⊗ G) ⊗

I) + noise. As in Wee, the idea is to “mask" the problematic term, in this case,

s((A1 − x ⊗ G) ⊗ I) + noise, with a pseudorandom term s0(A0 ⊗ I) + noise such that

there is a way to provide an “unmasking” term using which, we can recover a simulatable

term s((A1 − x ⊗ G) ⊗ rT) + noise but nothing else is revealed 2.

In more detail, we make the following changes:

1. We replace s((A1−x⊗G)⊗I)+noise by c = s((A1−x⊗G)⊗I)+s0(A0⊗I)+noise.

2. Next, we put some terms so that the ciphertext along with the first slot of the secret

2The informed reader may notice the similarity with randomized encodings [AIK04] and pair/predicate
encodings [Att14; Wee14].

139

key jointly generates d := s0(A0 ⊗ rT) + noise, which is an “unmasking" term.

3. To obtain the desired term, we compute c(I⊗ rT) −d = s((A1−x⊗G) ⊗ r) +noise.

Furthermore, it is easy to show that s0(A0 ⊗ I) + noise is pseudorandom by LWE (since

s0 is a fresh randomness introduced only for this specific purpose), which implies that c

is also pseudorandom. This allows us to conclude that d does not reveal anything more

than the desired term, since c and the desired term determine d.

At this stage, the scheme looks like the following, where for brevity we again omit to

mention components that are unchanged.

1. The encryptor computes c1 = (s, s0)
(
(A1 − x ⊗ G) ⊗ I

A0 ⊗ I

)
+noise and c2 = (s, s0)B+

noise for 𝜇 = 0 (and random elements for 𝜇 = 1).

2. The first slot key is sky ← B−1

(
(A2 − y ⊗ G) ⊗ rT

A0 ⊗ rT

)

3. The second slot key is sk 𝑓 ← B−1

(
A 𝑓 uT ⊗ I

0

)
and u. This key is essentially

unchanged except padding the inner matrix with zeroes to account for the longer
secret.

4. Now, from the ciphertext component c2 and the first slot key, we get terms
s(A2 − y ⊗ G) ⊗ rT) + noise and d = s0(A0 ⊗ rT) + noise. The second term d is
the new term that we will make use of as described above.

5. Now, we compute c(I ⊗ rT) − d = s((A1 − x ⊗ G) ⊗ r) + noise. Using
pseudorandomness of c, we can argue that d did not reveal anything except
s((A1 − x ⊗ G) ⊗ r) + noise.

At this stage, we obtained a term that tensor LWE can handle, namely s((A1 − x ⊗ G) ⊗

r) + noise.

Attempt 4. Next, we must deal with the second problematic term s(A 𝑓 uT ⊗ I) + noise.

It is tempting to try the same strategy as above but unfortunately, this does not work. To

see why, let us try to replace s(A 𝑓 uT ⊗ I) + noise with s(A 𝑓 uT ⊗ I) + s1(D ⊗ I) + noise,

140

where D is some fixed matrix. We can then modify the scheme so that the ciphertext

along with the first slot secret key generate the unmasking term s1(D ⊗ rT) + noise.

Similarly to the above, this allows us to derive the desired term s(A 𝑓 uT ⊗ rT) + noise

which can be handled by tensor LWE. One may hope that this suffices to prove security.

However, we run into another problem, namely, that of collusion resistance. In particular,

an adversary may make multiple key queries for the second slot and use the same ciphertext

and first slot key for decryption. These allow her to recover s(A 𝑓 uT⊗I)+s1(D⊗rT)+noise

and s(A 𝑓 ′u′T ⊗ I) + s1(D ⊗ rT) + noise for different 𝑓 and 𝑓 ′. Even though we want

to hide two terms s(A 𝑓 uT ⊗ I) and s(A 𝑓 ′u′T ⊗ I), there is only a single masking term

s1(D ⊗ rT) + noise, since s1 would be chosen by the encryptor and r by the first slot key –

this is clearly problematic.

To fix this, we ensure that the masking term is randomized by a user specific randomness

corresponding to the second slot key. Namely, we replace s(A 𝑓 uT ⊗ I) + s1(D⊗ I) +noise

with s(A 𝑓 uT ⊗ I) + s1(D ⊗ tT) + noise, where t is user specific randomness. We then use

the ideas discussed previously to ensure that the ciphertext and second slot key generate

s1(D ⊗ tT) + noise. This mask is removed similarly to the previous case and we may

obtain s(A 𝑓 uT ⊗ I) + noise.

Attempt 5. Unfortunately, this still does not suffice. Recall that we wanted to generate

the term s(A 𝑓 uT ⊗ rT) + noise in order to invoke tensor LWE, which the above term

does not let us do. To achieve this, we replace s(A 𝑓 uT ⊗ I) + s1(D ⊗ t) + noise with

s(A 𝑓 uT ⊗ I) + s1(D ⊗ t ⊗ I) + noise, i.e., we added some space to further randomize the

masking term with rT. We then let the ciphertext and secret keys for both slots jointly

generate s1(D ⊗ tT ⊗ rT) + noise.

To do so, we do the following:

1. Include s1B + noise in the ciphertext and B−1(C ⊗ rT) in the first slot key.

141

Multiplying them yields s1(C ⊗ rT) + noise.

2. Include C−1(D ⊗ tT) in the second slot key.

Putting these together enables us to recover the masking term as:

(s1(C ⊗ rT) + noise) · C−1(D ⊗ tT) = s1(I ⊗ rT)C · C−1(D ⊗ tT) + noise

= s1(I ⊗ rT) (D ⊗ tT) + noise

= s1(D ⊗ tT ⊗ rT) + noise

The above term contains randomness s1 chosen by the encryptor, r chosen by the first

slot key and t chosen by the second slot key. Intuitively, this randomness triple separates

the triple of ciphertext, first key and second key, from any other triple even if some

components of the triple are reused. This allows to separate the “thread” of computation

corresponding to a given triple, from all other threads, and hopefully allows us to prove

security. This brings us to our final scheme.

We provide the complete construction below. The vector u above is now changed to a

matrix U for syntactic reasons.

1. Set mpk = (A0,A1,A2,B,C,D), and msk as trapdoors for B and C.

2. To encrypt a message 𝜇 against attribute x, do the following. If 𝜇 = 0, do:

a) Compute c1 = (s, s0)
(
(A1 − x ⊗ G) ⊗ I

A0 ⊗ I

)
+ noise

b) Compute c2 = (s, s0, s1)B + noise

c) Output ctx = (c1, c2)
If 𝜇 = 1, output random elements in the appropriate space.

3. To compute the first slot key for attribute y, sample

sky ← B−1 ©«
(A2 − y ⊗ G) ⊗ rT

A0 ⊗ rT

C ⊗ rT

ª®®¬
142

4. To compute the second slot key for function 𝑓 , sample U, t and compute

sk 𝑓 ← B−1 ©«
A 𝑓U ⊗ I

0
D ⊗ tT ⊗ I

ª®®¬ , C−1
(
D ⊗ tT

)
, U, t

To decrypt, first compute d1 = c1(I ⊗ rT), (d2, d3, d4) = c2 · sky, d5 = c2 · sk 𝑓 ,1, d6 =

d5(I⊗rT) and d7 = d4 ·sk 𝑓 ,2. Then compute d8 = d1−d3, d9 = (d8∥d2)Ĥ(A1∥A2), 𝑓 ,(x∥y)U,

d10 = d6 − d7. Finally, if d10 − d9 ≈ 0, then output 0, else 1. To see the correctness,

observe:

d1 = s((A1 − x ⊗ G) ⊗ rT) + s0 (A0 ⊗ rT) + noise,

d2 = s((A2 − y ⊗ G) ⊗ rT) + noise,

d3 = s0 (A0 ⊗ rT) + noise, d4 = s1 (C ⊗ rT) + noise,

d5 = s(A 𝑓U ⊗ I) + s1 (D ⊗ tT ⊗ I) + noise, d6 = s(A 𝑓U ⊗ rT) + s1 (D ⊗ tT ⊗ rT) + noise,

d7 = d4 · C−1 (D ⊗ tT) = s1 (D ⊗ tT ⊗ rT) + noise, d8 = s((A1 − x ⊗ G) ⊗ rT) + noise

d9 = s((A 𝑓 − 𝑓 (x, y)G) ⊗ rT)U + noise, d10 = s(A 𝑓U ⊗ rT) + noise

If 𝑓 (x, y) = 0, then d10 − d9 = noise when 𝜇 = 0, else it is large. Above, the underlined

terms d2, d8 mimic the ciphertext components of single input BGG + 18, computed as

if with shared randomness by a single party holding both x and y. Note that all the

machinery developed above was to be able to simulate the single party setting in the two

party setting, where the ciphertexts are produced using independent randomness.

Proof Sketch. For ease of exposition, we sketch the proof for the case where only

a single key is generated for both the slots. First, we observe that we need to invoke

evasive LWE twice, once to handle terms B−1(·) and once for C−1(·). Of these, the first

application is standard, following Wee while the second one requires more care as it uses

a structured LWE, as in [VWW23].

Having removed Gaussian preimages with respect to B and C, we are required to show

pseudorandomness of the following terms:

c1 = s((A1 − x ⊗ G) ⊗ I) + s0 (A0 ⊗ I) + noise, c2 = (s, s0, s1)B + noise,

143

c3 = s((A2 − y ⊗ G) ⊗ rT) + noise c4 = s0 (A0 ⊗ rT) + noise,

c5 = s1 (C ⊗ rT) + noise, c6 = s(A 𝑓U ⊗ I) + s1 (D ⊗ tT ⊗ I) + noise

c7 = s1 (D ⊗ tT ⊗ rT) + noise

Above, note that c3, c4, c5 are generated using the secret key for the first slot and the

ciphertext, c6 is generated using the ciphertext and secret key of the second slot, and c7 is

generated using evasive LWE with structured secret, namely by combining C−1(D ⊗ tT)

and c5 = s1(I ⊗ rT)C + noise. This yields s1(I ⊗ rT) (D ⊗ tT) + noise which is equal to

c7.

We now proceed to sketch the hybrid structure of the proof.

Game 0: This is the real game.

Game 1: Express c4 in terms of c1 and a term that tensor LWE can handle:

c4 = c1(I ⊗ rT) −
(
s((A1 − x ⊗ G) ⊗ rT) + noise

)︸ ︷︷ ︸
c4′

The only difference between Game 0 and Game 1 is the distribution of the noise term
which can be handled by noting that c1(I⊗rT) ≈ s((A1−x⊗G) ⊗rT) +s0(A0⊗rT)
and using the standard smudging lemma (Lemma 4.5).

Game 2: We now change c1 and c2 to random by using the power of LWE with
secret s0.

Game 3: Now, we express c7 in terms of c6 and a term which is friendly with
tensor LWE:

c7 = c6(I ⊗ rT) − s(A 𝑓U ⊗ rT) + noise︸ ︷︷ ︸
c′7

Again, the change follows using the smudging lemma.

Game 4: Change c5 and c6 to random. Note that c6(I ⊗ rT) ≈ s(A 𝑓U ⊗ rT) +
s1(D ⊗ tT ⊗ rT) + noise and c5 = s1(C ⊗ rT) + noise. Hence, it suffices to show
pseudorandomness of

s1(C ⊗ rT) + noise, s1(D ⊗ tT ⊗ I) + noise)

We argue this via a new lemma by using only (standard) LWE.

Game 5: At this point it remains to argue that c3, c′4 and c′7 are pseudorandom.

144

These constitute:

s(I ⊗ rT)
(
(A1∥A2) − (x∥y) ⊗ G

)
+ noise, s(I ⊗ rT) (A 𝑓U) + noise

and we can directly plug in the tensor LWE assumption to argue this.

Please see Section 4.6 for the detailed proof.

Extension to Constant Arity. Next, we outline how to extend the above idea to the

setting of constant arity. The basic idea is to let the secret key for slot 𝑖 ∈ [𝑘] generate

s((A − x𝑖 ⊗ G) ⊗ I ⊗ rT
𝑖 ⊗ I) + s𝑖 (D ⊗ I ⊗ rT

𝑖 ⊗ I) + noise︸ ︷︷ ︸
masking term

where r𝑖 is the user specific randomness associated with the secret key for the 𝑖-th slot.

In addition, we also prepare other terms so that the ciphertext and secret keys can

collaboratively generate the unmasking terms as:

s𝑖 (D ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘) + noise ∀𝑖 ∈ [𝑘]

Given the unmasking term, the decryptor can obtain

s((A𝑖 − x𝑖 ⊗ G) ⊗ r⊤1 ⊗ · · · ⊗ r⊤𝑘) + noise

A similar strategy also works for masking s(A 𝑓U⊗ I) and we can show that the adversary

can only obtain

s((A − x ⊗ G) ⊗ r⊤1 ⊗ · · · ⊗ r⊤𝑘) + noise, s(A 𝑓U ⊗ r⊤1 ⊗ · · · ⊗ r⊤𝑘) + noise

which are LWE samples w.r.t randomness s(I ⊗ r⊤1 ⊗ · · · ⊗ r⊤
𝑘
). We refer the reader to

Section 4.7 for the complete construction.

On Circuit Depth. As discussed above, for our MIABE for NC1, we rely only on

evasive LWE, even for constant arity. For our MIABE for P, we require evasive and tensor

145

LWE for arity 2, but for general 𝑘 , we need to generalize tensor LWE as discussed above.

To remove the need for (any) tensor LWE in the restricted case of NC1 circuits, we

use low norm A𝑖 and switch out G for I, as suggested by Wee. We also leverage the

observation by Wee, that a weaker version of homomorphic computation is still possible

in this setting. In addition, we show that when A𝑖 and G are changed as above, LWE

samples w.r.t x obtained by combining ciphertexts and secret keys are indistinguishable

from those that are computed using fresh randomness for all combinations of ciphertexts

and secret keys.

In more detail, let i = (𝑖1, . . . , 𝑖𝑘) denote the ciphertext queries in the 𝑘 slots which are

being combined for decryption. Then, we show that{
s
(
(A−xi⊗I)⊗r𝑖11

T⊗. . .⊗r𝑖𝑘1
T)+noise

}
𝑖1,...,𝑖𝑘∈[𝑄]

≈𝑐
{
s𝑖1,...,𝑖𝑘

(
A−xi⊗I

)
+noise

}
𝑖1,...,𝑖𝑘∈[𝑄]

where s𝑖1,...,𝑖𝑘 is a unique, freshly sampled secret for the combination i = (𝑖1, . . . , 𝑖𝑘).

Intuitively, the shortness of A and I is used to argue that:

s
(
(A−xi⊗I)⊗r𝑖11

T⊗. . .⊗r𝑖𝑘
𝑘

T)+noise ≈𝑐
(
s(I⊗r𝑖11

T⊗. . .⊗r𝑖𝑘
𝑘

T)+noise
) (

A−xi⊗I
)
+noise

which in turn allows to express s(I ⊗ r𝑖11
T ⊗ . . . ⊗ r𝑖𝑘

𝑘

T) + noise as s𝑖1,...,𝑖𝑘 by iteratively

separating out r𝑖 𝑗
𝑗

T
, and adding noise to obtain a fresh secret3. Please see Section 4.7 for

details.

Organisation of the chapter. The rest of the chapter is organised as follows. In

Section 4.4, we provide the preliminaries used in this chapter. In Section 4.5, we discuss

evasive and tensor LWE assumptions and define new implications of tensor LWE. We

construct 2ABE for P from evasive and tensor LWE in Section 4.6. In Section 4.7, we

provide the constructions for constant arity, where we construct MIABE for NC1 and for

P in Sections 4.7.1 and 4.7.3, respectively.

3The informed reader may be reminded of the Naor-Reingold argument [NR97] used to construct a PRF
from DDH or its lattice analogue [BPR12].

146

4.4 PRELIMINARIES

Notation used in this chapter. We begin by defining the notation used in this chapter.

We use the same notation as in Chapter 3, unless otherwise stated. By default, a vector is a

row vector in this chapter. In addition, we use the following notation. For any two vectors

x and y (resp. matrices X, Y), x∥y (resp. X∥Y) represents horizontal concatenation of

vectors x and y (resp. matrices X and Y). For any 𝑛 > 0, I𝑛 represents an identity matrix

of size 𝑛. When 𝑛 = 𝑚, we denote I𝑚 by only I and I⊗𝑖 denotes I𝑚𝑖 = I ⊗ · · · ⊗ I︸ ︷︷ ︸
𝑖 times

for any

integer 𝑖.

For two distributions D1, D2 the notation D1 ≈𝑐 D2 (resp. D1 ≈𝑠 D2) are defined in

the same way as in Chapter 3. In addition, we write D1 ≡ D2 when D1 and D2 are

perfectly indistinguishable.

4.4.1 Multi-Input Attribute Based Encryption

Following Chapter 3, we define multi-input Attribute Based Encryption (ABE) below. As

described in the introduction, we use a modified syntax in this chapter to better align with

the syntax in [Wee22]. A 𝑘-input ABE scheme is parametrized over an attribute space

{(𝐴𝜆)𝑘 }𝜆∈N and function space {F𝜆}𝜆∈N, where each function maps {(𝐴𝜆)𝑘 }𝜆∈N to {0, 1}.

Such a scheme is described by procedures (Setup,Enc,KeyGen1, . . . , KeyGen𝑘−1,

KeyGen𝑘 ,Dec) with the following syntax:

Setup(1𝜆) → (mpk,msk): The Setup algorithm takes as input a security parameter and

outputs a master public key mpk and a master secret key msk.

Enc(mpk, x0, 𝜇) → ctx0,𝜇: The encryption algorithm takes as input the master public

key mpk, an attribute x0 ∈ 𝐴𝜆, and message 𝜇 ∈ {0, 1}, and outputs a ciphertext

ctx0,𝜇. The attribute string x0 is also included as part of the ciphertext.

KeyGen𝑖 (msk, x𝑖) → sk𝑖,x𝑖 for 1 ≤ 𝑖 ≤ 𝑘 − 1: The KeyGen algorithm for the 𝑖𝑡ℎ slot

147

where 𝑖 ∈ [𝑘 − 1], takes as input the master secret key msk, and an attribute

x𝑖 ∈ 𝐴𝜆 and outputs a key for slot 𝑖, sk𝑖,x𝑖 . Again, we assume that the attribute

string x𝑖 is included as part of the secret key.

KeyGen𝑘 (msk, 𝑓) → sk𝑘, 𝑓 : The KeyGen algorithm for slot 𝑘 takes as input the master

secret key msk and a function 𝑓 ∈ F𝜆 and outputs a key sk𝑘, 𝑓 .

Dec(mpk, ctx0,𝜇, sk1,x1 , . . . , sk𝑘−1,x𝑘−1 , sk𝑘, 𝑓) → 𝜇′: The decryption algorithm takes as

input a ciphertext ctx0,𝜇, 𝑘 keys sk1,x1 , . . . , sk𝑘−1,x𝑘−1 , and sk𝑘, 𝑓 and outputs a

string 𝜇′.
Next, we define correctness and security. For ease of notation, we drop the subscript 𝜆 in

what follows.

Correctness: For every 𝜆 ∈ N, 𝜇 ∈ {0, 1}, x0, . . . , x𝑘−1 ∈ 𝐴, 𝑓 ∈ F , it holds that if

𝑓 (x0, . . . , x𝑘−1) = 0,4 then

Pr

Dec
©«

mpk, Enc(mpk, x0, 𝜇),

KeyGen(msk, x1), . . . ,KeyGen𝑘−1(msk, x𝑘−1),KeyGen𝑘 (msk, 𝑓)

ª®®®¬ = 𝜇

= 1 − negl(𝜆)

where the probability is over the choice of (mpk,msk) ← Setup(1𝜆) and over the

internal randomness of Enc and KeyGen1, . . . ,KeyGen𝑘 .

Definition 4.1 (Ada-IND security for k-ABE). For a k-ABE scheme

k-ABE = {Setup,Enc, KeyGen1, . . ., KeyGen𝑘−1, KeyGen𝑘 ,Dec}, for an attribute

space {(𝐴𝜆)𝑘 }𝜆∈N, function space {F𝜆}𝜆∈N and an adversary A, we define the Ada-IND

security game as follows.

1. Setup phase: On input 1𝜆, the challenger samples (mpk,msk) ← Setup(1𝜆) and
gives mpk to A.

4We follow the convention in lattice based cryptography where the decryption condition is reversed with
respect to the output of the function.

148

2. Query phase: During the game, A adaptively makes the following queries, in an
arbitrary order.

a) Key Queries: A makes polynomial number of key queries for each slot, say
𝑝 = 𝑝(𝜆). As a 𝑗-th query for slot 𝑖, A chooses{

x𝑖, 𝑗 if 𝑖 ∈ [𝑘 − 1]
𝑓 𝑗 if 𝑖 = 𝑘,

where x𝑖, 𝑗 ∈ 𝐴𝜆 and 𝑓 𝑗 ∈ F𝜆. The challenger computes{
sk𝑖,x𝑖, 𝑗 = KeyGen𝑖 (msk, x𝑖, 𝑗) if 𝑖 ∈ [𝑘 − 1]
sk 𝑓 𝑗 = KeyGen𝑘 (msk, 𝑓 𝑗) if 𝑖 = 𝑘

and returns it to A.

b) Challenge Query: A issues a challenge query for encryption. A declares
(x0, (𝜇0, 𝜇1)) to the challenger, where x0 ∈ 𝐴𝜆 is an attribute and (𝜇0, 𝜇1) ∈
{0, 1} × {0, 1} is the pair of messages. Then, the challenger samples
𝛽← {0, 1}, computes ct𝛽 = Enc(mpk, x0, 𝜇𝛽) and returns it to A.

3. Output phase: A outputs a guess bit 𝛽′ as the output of the experiment.

For the adversary to be admissible, we require that for every 𝑓1, . . . , 𝑓𝑝 ∈ F , it holds that

𝑓 𝑗𝑘 (x0, x1, 𝑗1 , . . . , x𝑘−1, 𝑗𝑘−1) = 1 for every 𝑗1, . . . , 𝑗𝑘 ∈ [𝑝].

We define the advantage AdvAda-IND
k-ABE,A (1𝜆) of A in the above game as

AdvAda-IND
k-ABE,A (1

𝜆) :=
��Pr[expk-ABE,A (1𝜆) = 1|𝛽 = 0] − Pr[expk-ABE,A (1𝜆) = 1|𝛽 = 1]

�� .
The k-ABE scheme k-ABE is said to satisfy Ada-IND security (or simply adaptive

security) if for any stateful PPT adversary A, there exists a negligible function negl(·)

such that AdvAda-IND
k-ABE,A (1𝜆) = negl(𝜆).

Definition 4.2 (VerSel-IND security for 𝑘-ABE). The definitions for VerSel-IND security

for k-ABE is the same as Ada-IND security above except that the adversary A is required

to submit the challenge query and key queries to the challenger before it samples the

public key.

149

Comparing with the MIABE Definition in Chapter 3: We note that the definition of

kABE in this chapter is equivalent to the one in Chapter 3, except that the encryption

algorithm that encrypts the message with an attribute is a public algorithm in this

chapter, while it is a secret algorithm in Chapter 3. In both definitions, the message

is associated with only a single attribute, which as shown in Chapter 3 is sufficient.

In more detail, Enc(mpk, x, 𝜇) above is same as Enc1(msk, x, 𝜇) in Chapter 3, except

that Enc1 is a secret algorithm while Enc is a public algorithm. KeyGen𝑖 (msk, x𝑖) is

same as Enc𝑖+1(msk, x𝑖) in Chapter 3, KeyGen𝑘 (msk, 𝑓) is same as KeyGen(msk, 𝑓)

in Chapter 3. Further, note that since the encryption algorithm in this chapter is a public

algorithm, it suffices to consider that the adversary issues only one challenge query of

the form (x0, (𝜇0, 𝜇1)), while it can issue polynomially many key queries for each slot

𝑖 ∈ [𝑘] similar to Chapter 3, where the adversary can issue polynomially many key

queries and encryption queries for each slot. Finally, note that since the challenge bit

𝛽 is encoded only in the ciphertext returned by the (public) encryption algorithm, the

distinction between the stronger and weaker security notions in Chapter 3 disappears in

this chapter. Thus, the security definition given above is same as the stronger security

defined in Chapter 3.

4.4.2 Lattice Preliminaries

We use the standard LWE assumption as defined in Chapter 2. We also use the low-norm

version of LWE defined as follows:

LWE with Low-Norm Samples. The following lemma states that the LWE problem is

hard even when the public matrix is chosen from a low norm Gaussian distribution.

Lemma 4.1 (BLMR13). Let 𝑘 = 𝑘 (𝜆), 𝑚 = 𝑚(𝜆) and 𝑞 = 𝑞(𝜆) > 2 be integers. Then

if LWE(𝑛, 𝑚, 𝑞, 𝛾) hardness assumption holds then for any PPT adversary A we have

| Pr[A(A, sA + x) → 1] − Pr[A(A, u) → 1] | ≤ negl(𝜆)

150

where A← D𝑘×𝑚
Z,𝜎 , s← Z𝑘𝑞 , x← D𝑚

Z,𝛾, u← Z𝑚𝑞 , 𝑘 ≥ 6𝑛 log 𝑞 and 𝜎 = Ω(
√︁
𝑛 log 𝑞).

Trapdoors. We recall the trapdoor sampling algorithms defined in Chapter 3. In this

chapter, we use a slightly different notation to be consistent with the notation used in

[Wee22].

Let us consider a matrix A ∈ Z𝑛×𝑚𝑞 . For all V ∈ Z𝑛×𝑚′𝑞 , we let A−1(V, 𝛾) be an output

distribution ofD𝑚×𝑚′
Z,𝛾 conditioned on A ·A−1(V, 𝛾) = V. A 𝛾-trapdoor for A is a trapdoor

that enables one to sample from the distribution A−1(V, 𝛾) in time poly(𝑛, 𝑚, 𝑚′, log 𝑞)

for any V. We denote a 𝛾-trapdoor for A by A−1
𝛾 . We also define the special gadget

matrix G ∈ Z𝑛×𝑚𝑞 as the matrix obtained by padding I𝑛 ⊗ (1, 2, 4, 8, . . . , 2⌈log 𝑞⌉) with

zero-columns. The following properties had been established in a long sequence of

works [GPV08; CHKP10; ABB10a; ABB10b; MP12; BLP+13].

Lemma 4.2 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given A−1
𝜏 , one can obtain A−1

𝜏′ for any 𝜏′ ≥ 𝜏.

2. Given A−1
𝜏 , one can obtain [A∥B]−1

𝜏 and [B∥A]−1
𝜏 for any B.

3. There exists an efficient procedure TrapGen(1𝑛, 1𝑚, 𝑞) that outputs (A,A−1
𝜏0
)

where A ∈ Z𝑛×𝑚𝑞 for some 𝑚 = 𝑂 (𝑛 log 𝑞) and is 2−𝑛-close to uniform, where
𝜏0 = 𝜔(

√︁
𝑛 log 𝑞 log𝑚).

Lattice Evaluation. In this chapter, we use the following abstraction of the evaluation

procedure in previous LWE based FHE and ABE schemes. We follow the presentation

by Tsabary [Tsa19].

Lemma 4.3 (Fully Homomorphic Computation [BGG+14). There exists a pair of

deterministic algorithms (EvalF,EvalFX) with the following properties.

• EvalF(B, 𝐹) → H𝐹 . Here, B ∈ Z𝑛×𝑚ℓ𝑞 and 𝐹 : {0, 1}ℓ → {0, 1} is a circuit.

• EvalFX(B, 𝐹, x) → ĤB,𝐹,x. Here, x ∈ {0, 1}ℓ is a binary string whose first bit is
0 and the second bit is 1 and 𝐹 : {0, 1}ℓ → {0, 1} is a circuit with depth 𝑑 that

151

ignores the first and the second bit of the input. Then, we have

[B − x ⊗ G]ĤB,𝐹,x = BH𝐹 − 𝐹 (x)G mod 𝑞,

where we denote [𝑥1G∥ · · · ∥𝑥𝑘G] by x ⊗ G. Furthermore, we have

∥H𝐹 ∥∞ ≤ 𝑚 · 2𝑂 (𝑑) , ∥ĤB,𝐹,x∥∞ ≤ 𝑚 · 2𝑂 (𝑑) .

Finally, we have that the topmost 𝑚 rows of ĤB,𝐹,x constitutes an identity matrix.

• The running time of (EvalF,EvalFX) is bounded by poly(𝑛, 𝑚, log 𝑞, 2𝑑).

The above algorithms are taken from [BGG+14], and are slightly different from those

described in Lemma 3.2, which are taken from [GV15]. Please refer to Chapter 3 for the

difference between them.

Remark 5. As pointed out in [KNYY20] (See also [BV15b]), we need some entry of

x to be 1 to support arbitrary 𝐹. We therefore assume that the second bit of x is 1.

Furthermore, we assume the first bit of x is 0. This assumption is introduced to make sure

that the topmost 𝑚 rows of ĤB,𝐹,x constitutes an identity matrix, which is not guaranteed

for the evaluation algorithms in [BGG+14]. As we explain below, this can be ensured

easily by modifying the evaluation algorithms in [BGG+14]. Suppose that we have

EvalF′ and EvalFX′ without this property. Denoting x = (0, x′) and B = [B0∥B′], we

have

[B′ − x′ ⊗ G]Ĥ′B′,𝐹′,x′ = B′H′𝐹′ − 𝐹 (x)G mod 𝑞,

where 𝐹′ is the same function as 𝐹 except that it ignores only the first bit,

Ĥ′B′,𝐹′,x′ = EvalFX(B′, 𝐹′, x′), and EvalF(B′, 𝐹′) → H′
𝐹′ . We then define the new

evaluation algorithms EvalF and EvalFX as EvalFX(B, 𝐹, x) = ĤB,𝐹,x =

I

Ĥ′
𝐹′,x′

 and

EvalF(B, 𝐹) = H𝐹 =

I

H′
𝐹′

 . It is easy to see that the new evaluation algorithms satisfy

all the desired properties. In our work, we implicitly assume that x input to the circuit 𝐹

always has 0∥1 as its prefix so that the above lemma holds and will not explicitly write

the leading bits for the sake of notational simplicity. In our context, this means that the

152

first two bits of an attribute x associated with a ciphertext should be 0∥1.

Low Norm Variant. We also consider the low norm variant of the lattice evaluation

algorithm defined in [Wee22], where B has low-norm and G is replaced with I.

Lemma 4.4. Fix parameters 𝑚, ℓ. Given a matrix B ∈ Z𝑚×𝑚ℓ and a circuit 𝐹 :

{0, 1}ℓ → {0, 1} of depth 𝑑, we can efficiently compute a matrix H𝐹 ∈ Z𝑚ℓ×𝑚 such that

∥H𝐹 ∥∞ = (∥B∥∞𝑚)𝑂 (2
𝑑) and for all x ∈ {0, 1}ℓ, there exists a matrix ĤB,𝐹,x ∈ Zℓ𝑚×𝑚

with ∥ĤB,𝐹,x∥∞ = (∥B∥∞𝑚)𝑂 (2
𝑑) such that

(B − x ⊗ I𝑚) · ĤB,𝐹,x = BH𝐹 − 𝐹 (x)I𝑚

Moreover, ĤB,𝐹,x is efficiently computable given B, 𝐹, x. We use EvalF(B, 𝐹),

EvalFX(B, 𝐹, x) to denote the algorithms computing H𝐹 , ĤB,𝐹,x respectively. Finally,

the topmost 𝑚 rows of ĤB,𝐹,x constitutes an identity matrix.

Remark 6. The condition that the top most 𝑚 rows of ĤB,𝐹,x constitutes an identity

matrix can be satisfied by adding suitable modifications to the evaluation algorithms

without this property. See Remark 5 for the detail.

Smudging Lemma. We will also require the standard smudging lemma.

Lemma 4.5 (Smudging Lemma [WWW22). Let 𝜆 be a security parameter. Take any

𝑎 ∈ Z where |𝑎 | ≤ 𝐵. Suppose 𝜒 ≥ 𝐵𝜆𝜔(1) . Then the statistical distance between the

distributions {𝑧 : 𝑧 ← DZ,𝜒} and {𝑧 + 𝑎 : 𝑧 ← DZ,𝜒} is negl(𝜆).

4.4.3 Tensors

In this work, similarly to [Wee22], we use the tensor product techniques. Let A = (𝑎𝑖, 𝑗) ∈

Z𝑚×𝑛𝑞 and B ∈ Z𝑠×𝑡𝑞 . The tensor product is defined as:

A ⊗ B :=

©«
𝑎1,1B · · · 𝑎1,𝑛B

...
...

𝑎𝑚,1B · · · 𝑎𝑚,𝑛B

ª®®®®®®®¬
∈ Z𝑚𝑠×𝑛𝑡𝑞 .

153

Throughout the chapter, we will heavily use the mixed-product equality, stated as follows.

Let A ∈ Z𝑚×𝑛𝑞 , B ∈ Z𝑠×𝑡𝑞 , C ∈ Z𝑛×𝑢𝑞 and D ∈ Z𝑡×𝑣𝑞 ,

(A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD) ∈ Z𝑚𝑠×𝑢𝑣𝑞 .

The mixed-product can be naturally generalized following

(A1 ⊗ · · · ⊗ A𝑘) · (B1 ⊗ · · · ⊗ B𝑘) = (A1B1) ⊗ · · · ⊗ (A𝑘B𝑘).

Note that we adopt the same convention as in [Wee22] where matrix multiplication takes

precedence over tensor products, i.e. A ⊗ BC = A ⊗ (BC).

4.5 ASSUMPTIONS AND NEW IMPLICATIONS

In this section, we discuss the evasive and tensor LWE assumptions. Our variants of these

assumptions differ slightly from the original formulation by [Wee22] as discussed below.

4.5.1 Evasive LWE

Below, we state a variant of the Evasive-LWE assumption which will be useful for our

constructions.

Assumption 4.6 (Evasive LWE). Let 𝑛, 𝑚, 𝑡, 𝑚′, 𝑞 ∈ N be parameters and 𝜆 be a security

parameter. Let 𝜒 and 𝜒′ be parameters for Gaussian distributions. Let Samp be a PPT

algorithm that outputs

S ∈ Z𝑚′×𝑛𝑞 ,P ∈ Z𝑛×𝑡𝑞 , aux ∈ {0, 1}∗

on input 1𝜆. For a PPT adversary Adv, we define the following advantage functions:

APRE
Adv (𝜆) := Pr[Adv0(B, SB + E, SP + E′, aux) = 1] − Pr[Adv0(B,C0,C′, aux) = 1]

APOST
Adv (𝜆) := Pr[Adv1(B, SB + E,K, aux) = 1] − Pr[Adv1(B,C0,K, aux) = 1]

154

where

(S,P, aux) ← Samp(1𝜆),

B← Z𝑛×𝑚𝑞 ,

C0 ← Z𝑚
′×𝑚

𝑞 ,C′← Z𝑚′×𝑡𝑞 ,

E← D𝑚′×𝑚
Z,𝜒 ,E′← D𝑚′×𝑡

Z,𝜒′

K← B−1(P) with standard deviation 𝑂 (
√︁
𝑚 log(𝑞)).

We say that the evasive LWE (EvLWE) assumption holds if for every PPT Samp and

Adv1, there exists another PPT Adv0 and a polynomial 𝑄(·) such that

APRE
Adv0
(𝜆) ≥ APOST

Adv1
(𝜆)/𝑄(𝜆) − negl(𝜆).

Remark 7. In the above definition, all the entries of E′ are chosen from the same

distribution 𝐷Z,𝜒′ . However, in our security proof, we often consider the case where

some entries of E′ are chosen from 𝐷Z,𝜒′ and others from 𝐷Z,𝜒′′ with different 𝜒′ ≫ 𝜒′′.

The evasive LWE assumption with such a mixed noise distribution for E′ is implied by

the evasive LWE assumption with all entries in E′ being chosen from 𝐷Z,𝜒′ as above

definition, since if the precondition is satisfied for the latter case, that for the former case

is also satisfied. To see this, it suffices to observe that we can convert the distribution

from 𝐷Z,𝜒′′ into that from 𝐷Z,𝜒′ by adding extra Gaussian noise.

Remark 8. In the above, we chose 𝜒′ to be smaller than 𝜒 following [VWW23]. This

makes the precondition stronger, which in turn makes evasive LWE weaker.

Our assumption is closely related to the evasive LWE assumption that appeared in Wee

[Wee22] with minor differences. In Wee, the secret S is chosen uniformly whereas in

our assumption, the secret can be structured and output by the sampler, subject to the

pre-condition being true. On the other hand, in [VWW23], S is the public matrix and

can be structured, while B is secret and is random. An additional difference is related

to the auxiliary input. In Wee, aux contains all the coin tosses used by the sampler

155

– this suffices to rule out obfuscation based counter-examples where aux may contain

information of the trapdoor for P in a hidden way. On the other hand, in [VWW23], the

coins of the sampler are private, and aux contains information including certain Gaussian

preimages. They argue that their assumption nevertheless avoids the obfuscation based

counter-examples, since their auxiliary input does not contain trapdoor for the matrix P.

In both their and our cases, aux is derived from the trapdoor for P or related information

that should be kept hidden, but it does not contain the trapdoor itself. We may therefore

expect that there is no space for embedding an obfuscation into our auxiliary input,

similarly to [VWW23]. We also note that as observed in [VWW23], Tsabary’s variant

of evasive LWE is less conservative than ours and theirs, since her definition allows aux

to depend on B.

In the security proof of our constructions, we sometimes want to include information

dependent on S into the auxiliary information. However, this makes the corresponding

evasive LWE assumption stronger and not desirable. The following lemma allows us to

do this without strengthening the assumption under certain conditions. In the lemma, we

separate the auxiliary information into two parts aux1 and aux2, where aux1 is typically

the part dependent on S. The lemma roughly says that if aux1 is pseudorandom, then we

can apply the evasive LWE with respect to a modified sampler whose aux1 is replaced

with a random string to derive the conclusion on postcondition distribution.

Lemma 4.7. Let 𝑛, 𝑚, 𝑡, 𝑚′, 𝑞 ∈ N be parameters and 𝜆 be a security parameter. Let 𝜒

and 𝜒′ be Gaussian parameters. Let Samp be a PPT algorithm that outputs

S ∈ Z𝑚′×𝑛𝑞 , aux = (aux1, aux2) ∈ S × {0, 1}∗ and P ∈ Z𝑛×𝑡𝑞

for some set S. Furthermore, we assume that there exists a public deterministic poly-time

algorithm Reconstruct that allows to derive P from aux2, i.e. P = Reconstruct(aux2).

156

We introduce the following advantage functions:

APRE′
Adv (𝜆) := Pr[Adv(B, SB+E, SP+E′, aux1, aux2) = 1]−Pr[Adv(B,C0,C′, c, aux2) = 1]

APOST′
Adv (𝜆) := Pr[Adv(B, SB+E,K, aux1, aux2) = 1] −Pr[Adv(B,C0,K, c, aux2) = 1]

where

(S, aux = (aux1, aux2),P) ← Samp(1𝜆),

B← Z𝑛×𝑚𝑞

C0 ← Z𝑚
′×𝑚

𝑞 ,C′← Z𝑚′×𝑡𝑞 , c← S

E← D𝑚′×𝑚
Z,𝜒 ,E′← D𝑚′×𝑡

Z,𝜒

K← B−1(P) with standard deviation 𝑂 (
√︁
𝑚 log(𝑞)).

Then, under the Evasive-LWE (cited above in Assumption 4.6) with respect to Samp′ that

outputs (S, (c, aux2),P) for random c, if APRE′
Adv (𝜆) is negligible for any PPT adversary

Adv, so is APRE′
Adv (𝜆) for any PPT adversary Adv.

Proof. By the assumption, we have

(B, SB + E, SP + E′, aux1, aux2) ≈𝑐 (B,C0,C′, c, aux2). This in particular implies

(B, SB + E, SP + E′, aux2) ≈𝑐 (B,C0,C′, aux2) since discarding the term making the

task of distinguishing the distributions harder. This further implies

(B, SB + E, SP + E′, c, aux2) ≈𝑐 (B,C0,C′, c, aux2)

since adding random term c chosen independently from the other terms does not make

the task of distinguishing the the distributions easier. Applying the evasive LWE with

respect to Samp′ defined in the statement, we have

(B, SB + E,K, c, aux2) ≈𝑐 (B,C0,K, c, aux2).

157

To complete the proof, it suffices to show

(B,C0,K, aux1, aux2) ≈𝑐 (B,C0,K, c, aux2).

To show this, we first observe that the precondition implies (aux1, aux2) ≈𝑐 (c, aux2),

since discarding the terms making the task of distinguishing the distributions harder.

We then observe that (B,C0,K) can be sampled publicly given aux2. This suffices to

complete the proof, since having extra terms that can be computed efficiently from the

given terms does not make the task of distinguishing the distributions easier. To sample

(B,C0,K), we first sample B with the trapdoor as (B,B−1
𝜏0
) ← TrapGen(1𝑛, 1𝑚, 𝑞)

where 𝜏0 = 𝜔(
√︁
𝑛 log 𝑞 log𝑚) ≤ 𝑂 (𝑚 log 𝑞), compute P by P = Reconstruct(aux2),

and finally sample K← B−1(P, 𝑂 (
√︁
𝑚 log(𝑞))). ■

4.5.2 Tensor LWE

In this section, we define the tensor LWE assumption introduced by Wee [Wee22. Then,

we provide new arguments supporting the assumption.

Assumption 4.8 (Tensor LWE). Let 𝑛, 𝑚, 𝑞, ℓ, 𝑄 ∈ N be parameters and 𝛾, 𝜒 > 0 be

Gaussian parameters. For all x1, · · · , x𝑄 ∈ {0, 1}ℓ , we have

A,
{
s(I𝑛 ⊗ rT

𝑖) (A − x𝑖 ⊗ G) + e𝑖, rT
𝑖

}
𝑖∈[𝑄] ≈𝑐 A,

{
c𝑖, rT

𝑖

}
𝑖∈[𝑄]

where A← Z𝑛×ℓ𝑚𝑞 , s← Z𝑚𝑛𝑞 , e𝑖 ← Dℓ𝑚
Z,𝜒, r

T
𝑖
← D𝑚

Z,𝛾, c𝑖 ← Z
ℓ𝑚
𝑞 .

To gain confidence in the tensor LWE assumption, we study conditions under which it

can be reduced to standard LWE. To begin, we recall the following lemma which is

implicit in [Wee22]. The lemma says that a variant of the tensor LWE assumption holds

under the standard LWE assumption if A matrices are chosen from Gaussian distribution

and G is replaced with I in certain parameter settings.

Lemma 4.9 (Implicitly proved in [Wee22). Let 𝑛, 𝑚, 𝑞, ℓ, 𝑄, 𝛽 ∈ N be parameters and 𝜒0,

𝜒, and 𝛾 be a Gaussian parameter satisfying 𝑚 = Ω(𝑛 log 𝑞), 𝛾 = 𝜆𝜔(1) , 𝜒 = 𝜒0𝛾𝜆
𝜔(1) .

158

For all x1, · · · , x𝑄 ∈ {0, 1}ℓ, LWE(𝑛, 𝑄 + 𝑚, 𝑞, 𝜒0) hardness assumption implies

A,
{
s(I𝑛 ⊗ rT

𝑖) (A − x𝑖 ⊗ I𝑚) + e𝑖, rT
𝑖

}
𝑖∈[𝑄] ≈𝑐 A,

{
c𝑖, rT

𝑖

}
𝑖∈[𝑄]

where A← D𝑛×ℓ𝑚
Z,𝛾 , s← Z𝑚𝑛𝑞 , e𝑖 ← Dℓ𝑚

Z,𝜒, r
T
𝑖
← D𝑚

Z,𝛾, c𝑖 ← Z
ℓ𝑚
𝑞 .

4.5.3 New Implications for Tensor LWE

We now introduce a new lemma that also proves the same implication between LWE and

Tensor LWE in another particular case. Notably, the lemma shows the hardness for the

case where A is chosen uniformly at random rather than from a Gaussian distribution,

albeit with the downside of assuming x𝑖 = 0 for all 𝑖.

Lemma 4.10 (Tensor LWE with {x𝑖 = 0}𝑖). Let 𝑛, 𝑚, 𝑞, ℓ, 𝑄, 𝛽 ∈ N be parameters and

𝜒0, 𝜒, and 𝛾 be a Gaussian parameter satisfying 𝑚 = Ω(𝑛 log 𝑞), 𝛾 = Ω(
√︁
𝑛 log 𝑞), and

𝜒 = 𝛾𝜒0𝜆
𝜔(1) . Then, LWE(𝑛, 𝑚, 𝑞, 𝜒0) hardness assumption implies

A,
{
s(I𝑛 ⊗ rT

𝑖)A + e𝑖, rT
𝑖

}
𝑖∈[𝑄] ≈𝑐 A,

{
c𝑖, rT

𝑖

}
𝑖∈[𝑄]

where A← Z𝑛×ℓ𝑚𝑞 , s← Z𝑚𝑛𝑞 , e𝑖 ← Dℓ𝑚
Z,𝜒, r

T
𝑖
← D𝑚

Z,𝛾, c𝑖 ← Z
ℓ𝑚
𝑞 .

Proof. Let Adv be an attacker for Tensor-LWE with x𝑖 = 0 for all 𝑖 ∈ [𝑄]. Adv is given

either A,
{
s(I𝑛 ⊗ rT

𝑖
)A + e𝑖, rT

𝑖

}
𝑖∈[𝑄] or A,

{
c𝑖, rT

𝑖

}
𝑖∈[𝑄] . We provide a proof to show that

under the LWE assumption, Adv has a negligible advantage of distinguishing the left

hand side from the right hand side.

G0 : Adv is given A,
{
s(I𝑛 ⊗ rT

𝑖
)A + e𝑖, rT

𝑖

}
𝑖∈[𝑄] .

G1 : We rewrite s(I𝑛 ⊗ rT
𝑖
)A + e𝑖 using the tensor decomposition of s ∈ Z𝑚𝑛𝑞 . In other

words,

s =
𝑚∑︁
𝑗=1

s 𝑗 ⊗ 𝝐 𝑗 ,

where 𝝐 𝑗 are the canonical vectors of Z𝑚𝑞 and s 𝑗 ∈ Z𝑛𝑞. Let us fix an index 1 ≤ 𝑖 ≤ 𝑄

159

and rewrite the 𝑖-th sample. We get

s(I𝑛 ⊗ rT
𝑖
)A + e𝑖 =

∑𝑚
𝑗=1(s 𝑗 ⊗ 𝝐 𝑗) · (I𝑛 ⊗ rT

𝑖
)A + e𝑖

=
∑𝑚
𝑗=1(s 𝑗 ⊗ 𝝐 𝑗rT

𝑖︸︷︷︸
:=r𝑖 [𝑗] scalar

)A + e𝑖

=
∑𝑚
𝑗=1 r𝑖 [𝑗] · s 𝑗 · A + e𝑖,

where r𝑖 [𝑗] is the 𝑗-th entry of the vector r𝑖. Hence, in this game, Adv is given

A,

𝑚∑︁
𝑗=1

r𝑖 [𝑗] · s 𝑗 · A + e𝑖, rT
𝑖

𝑖∈[𝑄] .
This is a conceptual change : G1 ≡ G2.

G2 : We now add some extra noise to the distribution to introduce an LWE instance.
Define e′

𝑗
← Dℓ𝑚

Z,𝜒0
for all 𝑗 ∈ [1, 𝑚]. In this game, the attacker is given

A,

𝑚∑︁
𝑗=1

r𝑖 [𝑗] · (s 𝑗 · A + e′𝑗) + e𝑖, rT
𝑖

𝑖∈[𝑄] .
Note that this game is different from the previous game only in the noise term. In
the previous game, the noise is e𝑖 for the 𝑖-th sample, while it is e𝑖 +

∑
𝑗 r𝑖 [𝑗] · e′𝑗

in this game. Since we have ∥∑ 𝑗 r𝑖 [𝑗] · e′𝑗 ∥∞ ≤ poly(𝜆)𝛾𝜒0 and 𝜒 = 𝜆𝜔(1) · 𝛾𝜒0,
we can apply Lemma 4.5 to conclude that this only introduces a statistical change:
G2 ≈𝑠 G1.

G3 : In this game, we replace each (s 𝑗 · A + e′
𝑗
) by a uniform vector c′

𝑗
← Zℓ𝑚𝑞 . The

attacker Adv thus gets

A,

𝑚∑︁
𝑗=1

r𝑖 [𝑗] · c′𝑗 + e𝑖, rT
𝑖

𝑖∈[𝑄] .
This game is computationally indistinguishable from G2 under the standard LWE
assumption: G3 ≈𝑐 G2.

160

G4 : Let us define C′ :=
©«
c′1
...

c′𝑚

ª®®®¬ and obtain

©«
∑𝑚
𝑗=1 r1 [𝑗] · c′𝑗 + e1

...∑𝑚
𝑗=1 r𝑄 [𝑗] · c′𝑗 + e𝑄

ª®®®¬ =

©«
r′1
...

r′
𝑄

ª®®®¬︸︷︷︸
public

· C′︸︷︷︸
secret

+
©«
e1
...

e𝑄

ª®®®¬︸︷︷︸
error

.

In this game, we replace r′
𝑖
C′ + e𝑖 by a uniform random vector c𝑖 ← Zℓ𝑚𝑞 . Hence

the adversary is given
A,

{
c𝑖, rT

𝑖

}
𝑖∈[𝑄] .

This game is computationally indistinguishable from G3: we use LWE with short
public matrix and large secret [BLMR13], which is implied by the standard LWE
(See Lemma 4.1). Hence, G4 ≈𝑐 G3.

In the last game, the distribution corresponds to the random case, which allows to

conclude the proof. ■

We can introduce a corollary that follows from Lemma 4.10 where A is replaced by

A − x ⊗ G.

Corollary 4.10.1 (Tensor LWE with the same x𝑖). Let 𝑛, 𝑚, 𝑞, ℓ, 𝑄 ∈ N, 𝜒0, 𝜒, and 𝛾 be

parameters defined as Lemma 4.10. Let x ∈ {0, 1}ℓ. Then, LWE(𝑛, 𝑚, 𝑞, 𝜒0) hardness

assumption implies

A,
{
s(I𝑛 ⊗ rT

𝑖) (A − x ⊗ G + e𝑖, rT
𝑖

}
𝑖∈[𝑄] ≈𝑐 A,

{
c𝑖, rT

𝑖

}
𝑖∈[𝑄]

where A← Z𝑚×ℓ𝑚𝑞 , s← Z𝑚𝑛𝑞 , e𝑖 ← Dℓ𝑚
Z,𝜒, r

T
𝑖
← D𝑚

Z,𝛾, c𝑖 ← Z
ℓ𝑚
𝑞 .

What prevents Lemma 4.10 to be proved in the general case? The proof of

Lemma 4.10 cannot be easily adapted for arbitrary x𝑖. Following the same proof strategy,

we have to prove the pseudorandomness of the following terms:

s(I𝑛 ⊗ r𝑖) (A − x𝑖 ⊗ G) + e𝑖 =
∑
𝑗 r𝑖 [𝑗] · (s 𝑗 · (A − x𝑖 ⊗ G) + e′

𝑗
) −∑

𝑗 r𝑖 [𝑗]e′𝑗 + e𝑖 .

161

However, it is not possible to replace s 𝑗 · (A − x𝑖 ⊗ G) + e′
𝑗

with random vectors as is

done in Section 4.5.2, if we are given the term for multiple 𝑖 with different x𝑖 and for the

same s 𝑗 . Thus, the approach cannot be directly transferred.

4.5.4 New Implications from LWE

In this section, we provide new lemmata under the LWE assumption which will be useful

for our constructions. We believe these may be of broader applicability.

Lemma 4.11. Let 𝑛 = 𝑛(𝜆), 𝑚 = 𝑚(𝜆), 𝑁 = 𝑁 (𝜆), 𝑞 = 𝑞(𝜆), 𝛾 = 𝛾(𝜆), 𝜒0 =

𝜒0(𝜆) ∈ 𝜆𝜔(1) , 𝜒 = 𝜒(𝜆), and 𝑘 = 𝑂 (1) be parameters satisfying 𝑚 = Ω(𝑛 log 𝑞),

𝜒(𝜆) ≥ (𝑚𝛾𝜒0)𝑘 . If LWE(𝑛, 𝑄, 𝑞, 𝜒0) holds, then the following distributions are

computationally indistinguishable:{
c 𝑗1,..., 𝑗𝑘 := s(I𝑁 ⊗ rT

1, 𝑗1 ⊗ · · · ⊗ rT
𝑘, 𝑗𝑘
) + e 𝑗1,..., 𝑗𝑘

}
𝑗1,..., 𝑗𝑘∈[𝑄]

≈𝑐
{
w 𝑗1,..., 𝑗𝑘

}
𝑗1,..., 𝑗𝑘∈[𝑄]

where s ← Z𝑁𝑚𝑘𝑞 , r𝑖, 𝑗𝑖 ← D𝑚
Z,𝛾, e 𝑗1,..., 𝑗𝑘 ← D𝑁

Z,𝜒, w 𝑗1,..., 𝑗𝑘 ← Z𝑁𝑞 for 𝑖 ∈ [𝑘] and

𝑗1, . . . , 𝑗𝑘 ∈ [𝑄].

Proof. We prove this by induction. The case of 𝑘 = 1 follows from LWE with short

public matrices [BLMR13] (Lemma 4.1). Here, we prove the statement for 𝑘 = 𝜏 + 1

assuming it is is true for 𝑘 = 𝜏. To show the indistinguishability, we start from the

distribution on the left hand side and gradually change it to that on the right hand side.

We first change the distribution of {c 𝑗1,..., 𝑗𝜏+1} 𝑗1,..., 𝑗𝜏+1 so that they are sampled as

c 𝑗1,..., 𝑗𝜏+1 =
(
s(I𝑁 ⊗ I𝑚 ⊗ rT

2, 𝑗2 ⊗ · · · ⊗ rT
𝜏+1, 𝑗𝜏+1) + e′𝑗2,..., 𝑗𝜏+1

)
︸ ︷︷ ︸

:=s′
𝑗2 ,..., 𝑗𝜏+1

(
I𝑁 ⊗ rT

1, 𝑗1

)
+ e 𝑗1,..., 𝑗𝜏+1 .

where e′
𝑗2,..., 𝑗𝜏+1

← D𝑁𝑚
Z,(𝑚𝛾𝜒0)𝜏 for 𝑗2, . . . , 𝑗𝜏+1 ∈ [𝑄]. We claim that this is statistically

indistinguishable from the original distribution. To see this, we observe that(
s(I𝑁 ⊗ I𝑚 ⊗ rT

2, 𝑗2 ⊗ · · · ⊗ rT
𝜏+1, 𝑗𝜏+1) + e′𝑗2,..., 𝑗𝜏+1

) (
I𝑁 ⊗ rT

1, 𝑗1

)
+ e 𝑗1,..., 𝑗𝜏+1

162

= s(I𝑁 ⊗ rT
1, 𝑗1 ⊗ rT

2, 𝑗2 ⊗ · · · ⊗ rT
𝜏+1, 𝑗𝜏+1) + e′𝑗2,..., 𝑗𝜏+1

(
I𝑁 ⊗ rT

1, 𝑗1

)
+ e 𝑗1,..., 𝑗𝜏+1︸ ︷︷ ︸

=error

and these distributions only differ in the error terms. We have

e 𝑗1,..., 𝑗𝜏+1 ≈𝑠 e′𝑗2,..., 𝑗𝜏+1
(
I𝑁 ⊗ rT

1, 𝑗1

)
+ e 𝑗1,..., 𝑗𝜏+1

by the smudging lemma, since we have 𝜒 ≥ (𝑚𝛾𝜒0)𝜏+1 and ∥e′
𝑗2,..., 𝑗𝜏+1

(
I𝑁 ⊗ rT

1, 𝑗1

)
∥∞ ≤

𝑚𝛾 · poly(𝜆) · ∥e′
𝑗2,..., 𝑗𝜏+1

∥∞ ≤ (𝑚𝛾)𝜏+1 · 𝜒𝜏0 · poly(𝜆)·.

In the next step, we replace each s′
𝑗2,..., 𝑗𝜏+1

with random vectors. Namely,

{c 𝑗1,..., 𝑗𝜏+1} 𝑗1,..., 𝑗𝜏+1 are sampled as

c 𝑗1,..., 𝑗𝜏+1 = s′𝑗2,..., 𝑗𝜏+1
(
I𝑁 ⊗ rT

1, 𝑗1

)
+ e 𝑗1,..., 𝑗𝜏+1 ,

where s′
𝑗2,..., 𝑗𝜏+1

← Z𝑁𝑚𝑞 . We can see that this change is computationally indistinguishable,

by applying the induction hypothesis for each combination of indices (𝑗2, . . . , 𝑗𝜏+1). We

then use the induction hypothesis for the case of 𝑘 = 1 to replace {c 𝑗1,..., 𝑗𝜏+1} 𝑗1 with

random vectors for each combination of 𝑗2, . . . , 𝑗𝜏+1 one by one. This brings us to the

distribution where all c 𝑗1,..., 𝑗𝜏+1 are random vectors. This completes the proof of the

lemma. ■

Lemma 4.12. Let 𝑛 = 𝑛(𝜆), 𝑚 = 𝑚(𝜆), 𝑁 = 𝑁 (𝜆), 𝑞 = 𝑞(𝜆), 𝜒 = 𝜒(𝜆), and 𝑘 = 𝑂 (1)

be parameters. If LWE(𝑛, (𝑚 + 1)𝑘𝑁, 𝑞, 𝜒) holds, then, the following distributions are

computationally indistinguishable:(
{B𝑖}𝑖∈[0,𝑘] , s(B0 ⊗ I⊗𝑘𝑚) + e0, . . . , s(B𝑖 ⊗ I⊗(𝑘−𝑖)𝑚) + e𝑖, . . . , sB𝑘 + e𝑘

)
≈𝑐

(
{B𝑖}𝑖∈[0,𝑘] , c0, c1, . . . , c𝑘

)
where B𝑖 ← Z𝑛𝑚

𝑖×𝑁𝑚𝑖
𝑞 , e𝑖 ← D𝑚𝑘𝑁

Z,𝜒 , and c0, c1, . . . , c𝑘 ← Z𝑚
𝑘𝑁

𝑞 for 𝑖 ∈ [0, 𝑘], s← Z𝑛𝑚𝑘𝑞 .

Proof. We prove the lemma by induction. First, the statement is trivially true when

𝑘 = 0. We then prove that the statement is true for 𝑘 = 𝜏 + 1 assuming it is true for 𝑘 = 𝜏.

163

To show this, we first observe that any x ∈ Z𝑛𝑚𝜏+1𝑞 can be written as x =
∑
𝑗∈[𝑚] x 𝑗 ⊗ 𝝐 𝑗

using x 𝑗 ∈ Z𝑛𝑚
𝜏

𝑞 where 𝝐 𝑗 is the 𝑗-th canonical unit vector of dimension 𝑚. We then have

s(B𝑖 ⊗ I⊗(𝜏+1−𝑖)𝑚) + e𝑖 =
∑︁
𝑗∈[𝑚]
(s 𝑗 ⊗ 𝝐 𝑗) ((B𝑖 ⊗ I⊗(𝜏−𝑖)𝑚) ⊗ I𝑚) +

∑︁
𝑗∈[𝑚]

e𝑖, 𝑗 ⊗ 𝝐 𝑗

=
∑︁
𝑗∈[𝑚]

(
s 𝑗 (B𝑖 ⊗ I⊗(𝜏−𝑖)𝑚) + e𝑖, 𝑗

)
⊗ 𝝐 𝑗

for 𝑖 ∈ [0, 𝜏] where we decompose s and e𝑖 as s =
∑
𝑗∈[𝑚] s 𝑗 ⊗ 𝝐 𝑗 and e𝑖 =

∑
𝑗∈[𝑚] e𝑖, 𝑗 ⊗ 𝝐 𝑗 .

We also have

sB𝜏+1 + e𝜏+1 =
∑︁
𝑗∈[𝑚]

s 𝑗 (I𝑛𝑚𝜏 ⊗ 𝝐 𝑗)B𝜏+1 + e𝜏+1.

Therefore, omitting {B𝑖}𝑖∈[0,𝜏+1] , the input to the adversary is({
s(B𝑖 ⊗ I⊗(𝜏+1−𝑖)𝑚) + e𝑖

}
𝑖∈[0,𝜏]

, sB𝜏+1 + e𝜏+1
)

=
©«

∑︁
𝑗∈[𝑚]

(
s 𝑗 (B𝑖 ⊗ I⊗(𝜏−𝑖)𝑚) + e𝑖, 𝑗

)
⊗ 𝝐 𝑗

𝑖∈[0,𝜏] ,
∑︁
𝑗∈[𝑚]

s 𝑗 (I𝑛𝑚𝜏 ⊗ 𝝐 𝑗)B𝜏+1 + e𝜏+1
ª®®¬

≈𝑐
©«
c𝑖,1 ⊗ 𝝐1 +

∑︁
𝑗∈[2,𝑚]

(
s 𝑗 (B𝑖 ⊗ I⊗(𝜏−𝑖)𝑚) + e𝑖, 𝑗

)
⊗ 𝝐 𝑗

𝑖∈[0,𝜏] ,
c𝜏+1 +

∑︁
𝑗∈[2,𝑚]

s 𝑗 (I𝑛𝑚𝜏 ⊗ 𝝐 𝑗)B𝜏+1
ª®¬

≡
©«
c𝑖,1 ⊗ 𝝐1 +

∑︁
𝑗∈[2,𝑚]

(
s 𝑗 (B𝑖 ⊗ I⊗(𝜏−𝑖)𝑚) + e𝑖, 𝑗

)
⊗ 𝝐 𝑗

𝑖∈[0,𝜏] , c𝜏+1
ª®®¬

≈𝑐
©«
c𝑖,1 ⊗ 𝝐1 +

∑︁
𝑗∈[2,𝑚]

c𝑖, 𝑗 ⊗ 𝝐 𝑗

𝑖∈[0,𝜏] , c𝜏+1
ª®®¬

≡
(
{c𝑖}𝑖∈[0,𝜏] , c𝜏+1

)
where c𝑖 ← Z𝑚

𝜏+1𝑁
𝑞 and c𝑖, 𝑗 ← Z𝑚

𝜏𝑁
𝑞 . In the third line, we used the induction hypothesis

164

for secret s′ := s1 and matrices

B′𝑖 :=

B𝑖 ∈ Z𝑛×𝑁𝑚

𝑖

𝑞 if 𝑖 ∈ [0, 𝜏 − 1]

(B𝜏∥(I𝑛𝑚𝜏 ⊗ 𝝐 𝑗)B𝜏+1) ∈ Z𝑛×𝑁 (𝑚+1)𝑚
𝜏

𝑞 if 𝑖 = 𝜏

and the parameter 𝑁′ = (𝑚 + 1)𝑁 . Note that the number of columns in each B′
𝑖
is at

most 𝑁′𝑚𝑖 and thus the indistinguishability follows from the induction hypothesis and

the assumption LWE(𝑛, (𝑚 + 1)𝜏+1𝑁, 𝑞, 𝜒). The indistinguishability of the fifth line

also holds from the induction hypothesis similarly to the third line. Here, we apply

the induction hypothesis for each 𝑗 ∈ [2, 𝑚] one by one, by setting secret s′ := s 𝑗 and

matrices B′
𝑖
= B𝑖 for all 𝑖 ∈ [0, 𝜏]. This completes the proof of the lemma.

4.6 TWO-INPUT ABE FROM EVASIVE AND TENSOR LWE

4.6.1 Construction

In this section, we define our construction of 2ABE for P using evasive LWE

(Assumption 4.6) and tensor LWE (Assumption 4.8). As discussed in Section 4.1, when

restricted to NC1, our construction can be modified to rely only on evasive LWE. We

defer the details of this modification to Section 4.7 and focus on circuit class P for this

section.

Let ℓ be the length of the attribute in each slot. The construction supports general circuits

with bounded depth 𝑑 and the decryption is possible when 𝑓 (x0∥x1) = 0, where x0 is the

attribute associated with a ciphertext, x1 is the attribute associated with the first slot key,

and 𝑓 is the function associated with the second slot key. Below I refers to I𝑚.

Setup(1𝜆): The setup algorithm takes as input the security parameter 𝜆 and does the

following:

• Sample A0,A1,A2 ← Z𝑛×𝑚ℓ𝑞 ; (B,B−1
𝜏𝐵
) ← TrapGen(1𝜆, 2𝑛𝑚 + 𝑛𝑚2, (2𝑛𝑚 +

𝑛𝑚2)𝑤); (C,C−1
𝜏𝐶
) ← TrapGen(1𝜆, 𝑛𝑚, 𝑛𝑚𝑤), where 𝑤 ∈ 𝑂 (log 𝑞); D ←

Z𝑛×𝑚𝑞 .

165

• Output mpk = (A0,A,B,C,D), where A = (A1∥A2), msk = (B−1
𝜏𝐵
,C−1

𝜏𝐶
).

Enc(mpk, x0, 𝜇): The encryption algorithm takes as input the master public key mpk,

an attribute x0 and message bit 𝜇 ∈ {0, 1} and does the following:

• If 𝜇 = 1, sample c1 ← Z𝑚
2ℓ

𝑞 , c2 ← Z(2𝑛𝑚+𝑛𝑚
2)𝑤

𝑞 .

• Else,

– Sample s, s0 ← Z𝑛𝑚𝑞 and s1 ← Z𝑛𝑚
2

𝑞 .

– Sample error vectors e1 ← D𝑚2ℓ
Z,𝜒1

, e2 ← D (2𝑛𝑚+𝑛𝑚
2)𝑤

Z,𝜒2
.

– Compute c1 = (s, s0)
(
(A1 − x0 ⊗ G) ⊗ I

A0 ⊗ I

)
+ e1.

– Compute c2 = (s, s0, s1)B + e2.

• Output ctx0 = (c1, c2).

KeyGen1(msk, x1): The keygen algorithm for slot 1 takes as input the master secret key

msk and the slot attribute x1 ∈ {0, 1}ℓ and does the following:

• Sample r← D𝑚
Z,𝛾.

• Sample Lx1 ← B−1
©«
©«
(A2 − x1 ⊗ G) ⊗ rT

A0 ⊗ rT

C ⊗ rT

ª®®¬ , 𝜏𝐵
ª®®¬.

• Output sk1,x1 =
(
r,Lx1

)
.

KeyGen2(msk, 𝑓) The keygen algorithm for slot 2 takes as input the master secret

key msk and slot function 𝑓 , which is a function represented as a binary circuit

𝑓 : {0, 1}2ℓ → {0, 1} and does the following:

• Sample t← D𝑚
Z,𝛾, U← D𝑚×𝑚

Z,𝛾 .

• Compute H 𝑓 = EvalF(A, 𝑓) and A 𝑓 = AH 𝑓 .

166

• Sample M 𝑓 ← B−1
©«
©«

A 𝑓U ⊗ I
0𝑛𝑚×𝑚2

D ⊗ tT ⊗ I

ª®®¬ , 𝜏𝐵
ª®®¬ and N 𝑓 ← C−1 (

(D ⊗ tT), 𝜏𝐶
)
.

• Output sk2, 𝑓 =
(
t,U,M 𝑓 ,N 𝑓

)
.

Dec(mpk, ctx0 , sk1,x1 , sk2, 𝑓) The decryption algorithm takes as input the ciphertext ctx0 ,

key sk1,x1 for slot 1, and key sk2, 𝑓 for slot 2 and does the following:

• Parse ctx0 as (c1, c2), sk1,x1 as (r,Lx1) and sk2, 𝑓 as (t,U,M 𝑓 ,N 𝑓).

• Compute ĤA, 𝑓 ,(x0∥x1) = EvalFX(A, 𝑓 , (x0∥x1)).

• Compute the following:
d1 = c1, (d2, d3, d4) = c2Lx1 , d5 = c2M 𝑓 ,
d6 = N 𝑓 , d′1 = d1(I𝑚ℓ ⊗ rT) − d3, d′5 = d5(I ⊗ rT) − d4d6,
d7 = (d′1∥d2)ĤA, 𝑓 ,(x0∥x1)U, d8 = d7 − d′5.
Note that d6 is a matrix of size 𝑛𝑚𝑤 × 𝑚 and d𝑖 for all 𝑖 ≠ 6 are vectors.

• If ∥d8∥∞ ≤ 𝛽0 (where 𝛽0 is as defined in the Sec. 4.6.1) then output 𝜇′ = 0,
else output 1.

Correctness. Here, we show correctness of the scheme.

When 𝜇 = 1: We first show the correctness for the case of 𝜇 = 1. For an honest run of

the protocol, d1 is distributed uniformly at random over its domain. Then, since r ≠ 0

with overwhelming probability and thus I𝑚ℓ ⊗ rT is a full-rank matrix, d′1 is distributed

uniformly at random over its domain. Then, since the topmost 𝑚 rows of ĤA, 𝑓 ,(x0∥x1)

constitutes an identity matrix by Lemma 3.2, (d′1∥d2)ĤA, 𝑓 ,(x0∥x1) is distributed uniformly

at random over its domain. Finally, since each column of U is chosen from D𝑚
Z,𝛾, with

overwhelming probability, there exists 𝑖 ∈ [𝑚] such that the 𝑖-th column of U is not a

zero vector. This in turn implies that that the 𝑖-th entry of d7 is distributed uniformly

at random over Z𝑞. Since we set 𝛽0/𝑞 = 𝜆−𝜔(1) , the probability that the decryption

algorithm falsely outputs 0 is negligible as desired.

167

When 𝜇 = 0: Next, we show the correctness for the case of 𝜇 = 0. For an honest run of

the protocol, we have

• d1 = c1 = s((A1 − x0 ⊗ G) ⊗ I) + s0(A0 ⊗ I) + e1.

Let (e′2, e′3, e′4) = e2 · Lx1

• d2 = s((A2 − x1 ⊗ G) ⊗ rT) + e′2,

• d3 = s0(A0 ⊗ rT) + e′3,

• d4 = s1(C ⊗ rT) + e′4,

• d5 = s(A 𝑓U ⊗ I) + s1(D ⊗ tT ⊗ I) + e′5, where e′5 = e2 ·M 𝑓

• d′1 is computed as

d′1 = d1(I𝑚ℓ ⊗ rT) − d3

= (s((A1 − x0 ⊗ G) ⊗ I) + s0(A0 ⊗ I) + e1) (I𝑚ℓ ⊗ rT) − s0(A0 ⊗ rT) − e′3
= s((A1 − x0 ⊗ G) ⊗ rT) + s0(A0 ⊗ rT) − s0(A0 ⊗ rT) + e′′1
= s((A1 − x0 ⊗ G) ⊗ rT) + e′′1

Here e′′1 = e1(I𝑚ℓ ⊗ rT) − e′3

• d′5 is computed as

d′5 = d5(I ⊗ rT) − d4d6

= (s(A 𝑓U ⊗ I) + s1(D ⊗ tT ⊗ I) + e′5) (I ⊗ rT) − (s1(C ⊗ rT) + e′4)N 𝑓

= s(A 𝑓U ⊗ rT) + s1(D ⊗ tT ⊗ rT) − s1(D ⊗ tT ⊗ rT) + e′′5 ,
= s(A 𝑓U ⊗ rT) + e′′5

where we use (C⊗rT)N 𝑓 = CN 𝑓 ⊗rT = D⊗tT⊗rT and define e′′5 := e′5(I⊗rT)−e′4N 𝑓

on the third line.

• d7 is computed as

d7 = (d′1∥d2) · (ĤA, 𝑓 ,(x0∥x1)U)
= ((s((A1 − x0 ⊗ G) ⊗ rT) + e′′1)∥(s((A2 − x1 ⊗ G) ⊗ rT) + e′2)) · (ĤA, 𝑓 ,(x0∥x1)U)
= (s((A1∥A2 − (x0∥x1) ⊗ G) ⊗ rT) + (e′′1 ∥e

′
2)) · (ĤA, 𝑓 ,(x0∥x1)U)

= s((A 𝑓 − 𝑓 (x0∥x1)G) ⊗ rT)U + e′7
= s((A 𝑓 − 𝑓 (x0∥x1)G)U ⊗ rT) + e′7
= s(A 𝑓U ⊗ rT) + e′7 if 𝑓 (x0∥x1) = 0

168

where we define e′7 := (e′′1 ∥e
′
2)ĤA, 𝑓 ,(x0∥x1)U on the fourth line.

• d8 = d7 − d′5 = s(A 𝑓U ⊗ rT) + e′7 − s(A 𝑓U ⊗ rT) − e′′5 = e′7 − e′′5 which is small
(≤ 𝛽0).

Therefore, the decryption algorithm outputs 0 as desired.

Error Bound: The error term is bounded as follows. Let 𝛽0 denote the error bound.

∥e′7∥∞ + ∥e
′′
5 ∥∞ = ∥(e′′1 ∥e

′
2)ĤA, 𝑓 ,(x0∥x1)U∥∞ + ∥e′5(I ⊗ rT) − e′4N 𝑓 ∥∞

= ∥(e1(I𝑚ℓ ⊗ rT) − e′3∥e
′
2)ĤA, 𝑓 ,(x0∥x1)U∥∞ + ∥e′5(I ⊗ rT) − e′4N 𝑓 ∥∞

≤ ((𝜒1𝛾 + 𝜒2𝜏𝐵)𝛽𝛾 + 𝜒2𝜏𝐵𝛾 + 𝜒2𝜏𝐵𝜏𝐶) poly(𝑚)

since (e′2, e′3, e′4) = e2Lx1 and e′5 = e2M 𝑓

≤ 𝛽0.

Parameters. We set the parameters as follows.

𝑛 = poly(𝜆, 𝑑), 𝑚 = 𝑂 (𝑛 log 𝑞), 𝜏𝐵 = 𝑂 (
√︁
(2𝑛𝑚 + 𝑛𝑚2) log 𝑞),

𝜏𝐶 = 𝑂 (
√︁
𝑛𝑚 log 𝑞), 𝛽 = (2𝑚)𝑑 , 𝛾 = 𝜒1 = 𝜆𝜔(1) ,

𝜒3 = 𝜒4 = 𝜒6 = 𝛾𝜒1𝜆
𝜔(1) , 𝜒7 = 𝜒3𝜒4𝛽𝛾𝜆

𝜔(1) , 𝜒5 = 𝜆𝜔(1)𝜒7,

𝜒2 = 𝜒5𝜆
𝜔(1) , 𝛽0 = 𝛽𝛾2𝜏𝐵𝜏𝐶𝜒1𝜒2𝜆

𝜔(1) , 𝑞 = 𝛽0𝜆
𝜔(1) .

In the above, 𝜒3, 𝜒4, 𝜒5, 𝜒6, and 𝜒7 are the parameters that only appear in the security

proof.

4.6.2 Security

Here, we prove the following theorem, which asserts the security of our scheme.

Theorem 4.13. Assuming evasive LWE (Assumption 4.6), tensor LWE (Assumption

4.8), and LWE, our construction for 2-input ABE for P satisfies very selective security

(Definition 4.2). Moreover, for the restricted class NC1, our construction for 2-input

ABE relies only on evasive LWE.

Proof. To prove the security, we need to prove the indistinguishability of the following

169

two distributions. Let 𝑄𝑐 and 𝑄𝑠 be the number of slot 1 and slot 2 key queries,

respectively. In the following, for simplicity, we let 𝑄𝑐 = 𝑄𝑠 = 𝑄, which can be assumed

without loss of generality.

Distribution 𝐷0:

©«
mpk, c1 = (s, s0)

©«
(A1 − x0 ⊗ G) ⊗ I

A0 ⊗ I

ª®®®¬ + e1, c2 = (s, s0, s1)B + e2

{
sk1,x1,𝑖 =

(
r𝑖,Lx1,𝑖

)}
𝑖∈[𝑄] ,

{
sk2, 𝑓 𝑗 =

(
t 𝑗 ,U 𝑗 ,M 𝑓 𝑗 ,N 𝑓 𝑗

)}
𝑗∈[𝑄]

ª®®®®®®®¬
Distribution 𝐷1:

©«
mpk, c1 ← Z𝑚

2ℓ
𝑞 , c2 ← Z(2𝑛𝑚+𝑛𝑚

2)𝑤
𝑞{

sk1,x1,𝑖 =
(
r𝑖,Lx1,𝑖

)}
𝑖∈[𝑄] ,

{
sk2, 𝑓 𝑗 =

(
t 𝑗 ,U 𝑗 ,M 𝑓 𝑗 ,N 𝑓 𝑗

)}
𝑗∈[𝑄]

ª®®®¬
where x0 is the attribute for the encryption, x1,1, . . . , x1,𝑄 are the key queries for slot 1,

𝑓1, . . . , 𝑓𝑄 are key queries for slot 2, and sk1,x1,𝑖 (resp., sk2, 𝑓 𝑗) is secret key for x1,𝑖 (resp.,

𝑓 𝑗) for slot 1 (resp., slot 2). In particular, we have

Lx1,𝑖 ← B−1

©«

©«
(A2 − x1,𝑖 ⊗ G) ⊗ rT

𝑖

A0 ⊗ rT
𝑖

C ⊗ rT
𝑖

ª®®®®®®®¬
, 𝜏𝐵

ª®®®®®®®¬
and

M 𝑓 𝑗 ← B−1

©«

©«
A 𝑓 𝑗U 𝑗 ⊗ I

0𝑛𝑚×𝑚2

D ⊗ tT
𝑗
⊗ I

ª®®®®®®®¬
, 𝜏𝐵

ª®®®®®®®¬
, N 𝑓 𝑗 ← C−1

(
(D ⊗ tT

𝑗), 𝜏𝐶
)
.

We note that we have 𝑓 𝑗 (x0∥x1,𝑖) = 1 for all 𝑖, 𝑗 ∈ [𝑄] by the definition of the security

game. We can see that 𝐷0 and 𝐷1 are the views of the adversary when 𝜇 = 0 and 𝜇 = 1

are encrypted, respectively. We then apply our variant of evasive LWE (Lemma 4.7)

170

assumption for matrix B with the sampler Samp that outputs (S,P, aux = (aux1, aux2))

defined as follows:5

S = (s, s0, s1)

aux1 = c1 = (s, s0)
©«
(A1 − x0 ⊗ G) ⊗ I

A0 ⊗ I

ª®®®¬ + e1,

aux2 = (x0, x1,1, . . . , x1,𝑄 , 𝑓1, . . . , 𝑓𝑄 , coinsA , r1, . . . , r𝑄 , t1, . . . , t𝑄 ,U1, . . . ,U𝑄 ,

N 𝑓1 , . . . ,N 𝑓𝑄 ,A0,A,C,D)

P0 =

(
(A2 − x1,1 ⊗ G) ⊗ rT

1 ∥ · · · ∥(A2 − x1,𝑄 ⊗ G) ⊗ rT
𝑄

)
P1 = (A0 ⊗ rT

1 ∥ · · · ∥A0 ⊗ rT
𝑄)

P2 =

(
C ⊗ rT

1 ∥ · · · ∥C ⊗ rT
𝑄

)

P3 =

©«

©«
A 𝑓1U1 ⊗ I

0𝑛𝑚×𝑚2

D ⊗ tT
1 ⊗ I

ª®®®®®®®¬

· · ·

©«
A 𝑓𝑄U𝑄 ⊗ I

0𝑛𝑚×𝑚2

D ⊗ tT
𝑄
⊗ I

ª®®®®®®®¬

ª®®®®®®®¬
P =

©«

©«
P0

P1

P2

ª®®®®®®®¬

P3

ª®®®®®®®¬
where coinsA is adversary’s coin. By Lemma 4.7, to prove that 𝐷0 and 𝐷1 are

computationally indistinguishable, it suffices to show the computational

indistinguishability of the following distributions:

Distribution 𝐷′0:

5By Lemma 4.7, it suffices to invoke the evasive LWE for a modified sampler that outputs random aux1,
instead of aux1 that is dependent on (s, s0). The same comments apply to other invocations of the
assumption.

171

©«
c1 = (s, s0)

©«
(A1 − x0 ⊗ G) ⊗ I

A0 ⊗ I

ª®®®¬ + e1, c2 = (s, s0, s1)B + e2, B

{
c3,𝑖, c4,𝑖, c5,𝑖

}
𝑖∈[𝑄] ,

{
c6, 𝑗

}
𝑗∈[𝑄] , aux′

ª®®®®®®®¬
Distribution 𝐷′1:

©«
w1, w2, B{

w3,𝑖,w4,𝑖,w5,𝑖
}
𝑖∈[𝑄] ,

{
w6, 𝑗

}
𝑗∈[𝑄] , aux′

ª®®®¬
In the above distributions,

(c3,𝑖, c4,𝑖, c5,𝑖, c6, 𝑗) =

(s , s0, s1)

©«

©«
(A2 − x1,𝑖 ⊗ G) ⊗ rT

𝑖

A0 ⊗ rT
𝑖

C ⊗ rT
𝑖

ª®®®®®®®¬

©«
A 𝑓 𝑗U 𝑗 ⊗ I

0𝑛𝑚×𝑚2

D ⊗ tT
𝑗
⊗ I

ª®®®®®®®¬

ª®®®®®®®¬
+ (e3,𝑖, e4,𝑖, e5,𝑖, e6, 𝑗)

where aux′ above is defined as aux2 in distribution 𝐷0, e3,𝑖 ← D𝑚ℓ
Z,𝜒3

, e4,𝑖 ← D𝑚ℓ
Z,𝜒4

,

e5,𝑖 ← D𝑛𝑚𝑤
Z,𝜒5

, and e6, 𝑗 ← D𝑚2

Z,𝜒6
and all the w vectors are of the same dimension as the

corresponding c vector and chosen randomly from their respective domains. Note that

we set 𝜒2 > 𝜒3, 𝜒4, 𝜒5, 𝜒6 so that we can rely on quantitatively weaker evasive LWE

assumption (See Remark 8). We also note that here, we have 𝜒5 ≠ 𝜒3 = 𝜒4 = 𝜒6, where

Gaussian distributions with different standard deviations are mixed. We refer to Remark

7 for details. We have

172

c3,𝑖 = s((A2 − x1,𝑖 ⊗ G) ⊗ rT
𝑖
) + e3,𝑖

c4,𝑖 = s0(A0 ⊗ rT
𝑖
) + e4,𝑖

c5,𝑖 = s1(C ⊗ rT
𝑖
) + e5,𝑖 which can be rewritten as s1(I𝑛𝑚 ⊗ rT

𝑖
)C + e5,𝑖

c6, 𝑗 = s(A 𝑓 𝑗U 𝑗 ⊗ I) + s1(D ⊗ tT
𝑗
⊗ I) + e6, 𝑗 .

We then apply the evasive LWE assumption once again, now for matrix C with sampler

Samp′ that outputs (S′,P′, aux′ = (aux′1, aux′2)) defined as follows:

S′ =

©«
s1(I𝑛𝑚 ⊗ rT

1)
...

s1(I𝑛𝑚 ⊗ rT
𝑄
)

ª®®®®®®®¬
aux′1 = (c1, c2, {c3,𝑖, c4,𝑖}𝑖∈[𝑄] , {c6, 𝑗 } 𝑗∈[𝑄])

aux′2 = (x0, x1,1, . . . , x1,𝑄 , 𝑓1, . . . , 𝑓𝑄 , coinsA , r1, . . . , r𝑄 , t1, . . . , t𝑄 ,U1, . . . ,U𝑄 ,

A0,A,B,D)

P′ = (D ⊗ tT
1 ∥ · · · ∥D ⊗ tT

𝑄)

where c1, c2, c3,𝑖, c4,𝑖, and c6, 𝑗 are chosen as in distribution 𝐷′0. By Lemma 4.7, it suffices

to prove the computational indistinguishability of the following distributions:

Distribution 𝐷′′0 :

©«
c1, c2, C,{

c3,𝑖, c4,𝑖, c5,𝑖
}
𝑖∈[𝑄] ,

{
c6, 𝑗

}
𝑗∈[𝑄] ,

{
c7,𝑖, 𝑗

}
𝑖, 𝑗∈[𝑄] , aux′′

ª®®®¬
Distribution 𝐷′′1 :

©«
w1, w2, C,{

w3,𝑖,w4,𝑖,w5,𝑖
}
𝑖∈[𝑄] ,

{
w6, 𝑗

}
𝑗∈[𝑄] ,

{
w7,𝑖, 𝑗

}
𝑖, 𝑗∈[𝑄] , aux′′

ª®®®¬
173

where aux′′ is defined as aux′2 in distribution 𝐷′0,

c7,𝑖, 𝑗 = s1(D ⊗ tT
𝑗 ⊗ rT

𝑖) + e7,𝑖, 𝑗 , where e7,𝑖, 𝑗 ← 𝐷𝑚
Z,𝜒7

and w7,𝑖, 𝑗 is a random vector with the same dimension as c7,𝑖, 𝑗 . Note that we set 𝜒5 > 𝜒7

so that we can rely on quantitatively weaker evasive LWE assumption (See Remark

8). The rest of the vectors are defined as in distribution 𝐷′0 and 𝐷′1. From the above

discussion, it suffices to prove Lemma 4.14 in the following to complete the proof of

Theorem 4.13. ■

Lemma 4.14. Distributions 𝐷′′0 and 𝐷′′1 are computationally indistinguishable under

the hardness assumption of LWE and tensor LWE.

Proof. We prove the lemma via the following hybrids.

G0 : This is same as 𝐷′′0 .

G1 : In this hybrid, the challenger computes c4,𝑖 as

c4,𝑖 = c1(I𝑚ℓ ⊗ rT
𝑖
) −

(
s((A1 − x0 ⊗ G) ⊗ rT

𝑖) + e4,𝑖

)
︸ ︷︷ ︸

:=c′4,𝑖

.

G2 : In this hybrid, the challenger samples c1 and c2 randomly as c1 ← Z𝑚
2ℓ

𝑞 ,

c2 ← Z(2𝑛𝑚+𝑛𝑚
2)𝑤

𝑞 .

G3: In this hybrid, c7,𝑖, 𝑗 is computed as c7,𝑖, 𝑗 = c6, 𝑗 (I ⊗ rT
𝑖
) −

(
s(A 𝑓 𝑗U 𝑗 ⊗ rT

𝑖) + e7,𝑖, 𝑗

)
︸ ︷︷ ︸

:=c′7,𝑖, 𝑗

.

G4 : In this hybrid, c5,𝑖 and c6, 𝑗 are chosen randomly as c5,𝑖 ← Z𝑛𝑚𝑤𝑞 and c6, 𝑗 ← Z𝑚
2

𝑞 .

174

G5: In this hybrid, c′7,𝑖, 𝑗 is computed differently as

c′7,𝑖, 𝑗 = [c
′
4,𝑖∥c3,𝑖]ĤA, 𝑓 ,(x0∥x1,𝑖)U 𝑗 + s(GU 𝑗 ⊗ rT

𝑖) + e7,𝑖, 𝑗︸ ︷︷ ︸
c′′7,𝑖, 𝑗

.

G6 : In this hybrid, c3,𝑖 ← Z𝑚ℓ𝑞 , c′4,𝑖 ← Z
𝑚ℓ
𝑞 and c′′7,𝑖, 𝑗 ← Z

𝑚
𝑞 .

G7 : In this hybrid, c4,𝑖 ← Z𝑚ℓ𝑞 , c7,𝑖, 𝑗 ← Z𝑚𝑞 .
It is easy to see that the distribution in G7 is the same as that of 𝐷′′1 .

Indistinguishability of hybrids:

We prove the indistinguishability between the hybrid distributions via the following

claims.

Claim 4.15. G0 ≈𝑠 G1.

Proof. The two hybrids differ only in the error term in c4,𝑖 and are indistinguishable due

to the smudging lemma.

In G0:

c4,𝑖 = s0(A0 ⊗ rT
𝑖) + e4,𝑖

In G1:

c4,𝑖 = c1(I𝑚ℓ ⊗ rT
𝑖) −

(
s((A1 − x0 ⊗ G) ⊗ rT

𝑖) + e4,𝑖

)
= (s((A1 − x0 ⊗ G) ⊗ I) + s0(A0 ⊗ I) + e1) (I𝑚ℓ ⊗ rT

𝑖) − s((A1 − x0 ⊗ G) ⊗ rT
𝑖) − e4,𝑖

= s((A1 − x0 ⊗ G) ⊗ rT
𝑖) + s0(A0 ⊗ rT

𝑖) − s((A1 − x0 ⊗ G) ⊗ rT
𝑖) + e1(I𝑚ℓ ⊗ rT

𝑖) − e4,𝑖

= s0(A0 ⊗ rT
𝑖) + e1(I𝑚ℓ ⊗ rT

𝑖) − e4,𝑖

Clearly, the two hybrids differ only in the error terms in c4,𝑖. Thus, the indistinguishability

175

follows due to the following:

e4,𝑖 ≈ −e4,𝑖 + e1(I𝑚ℓ ⊗ rT
𝑖)

which is true since the distribution of −e4,𝑖 is the same as that of e4,𝑖 by the symmetry of

the discrete Gaussian distribution and 𝜒4 ≥ 𝛾𝜒1𝜆
𝜔(1) . ■

Claim 4.16. G1 ≈𝑐 G2 due to LWE.

Proof. Let us write B as (BT
𝑈

BT
𝑀

BT
𝐿
)T. Then we can see that the indistinguishability

follows from LWE by applying Lemma 4.12 for 𝑘 = 1, which implies (A0,B𝑀 , s0(A0 ⊗

I) + e1, s0B𝑀 + e2) ≈𝑐 (A0,B𝑀 ,w′1,w
′
2), where w′1 ← Z

𝑚2ℓ
𝑞 ,w′2 ← Z

(2𝑛𝑚+𝑛𝑚2)𝑤
𝑞 .

In particular, let B = (BT
𝑈

BT
𝑀

BT
𝐿
)T. Then

In G1,

(c1, c2) = (s((A1 − x0 ⊗ G) ⊗ I) + s0(A0 ⊗ I) + e1, sB𝑈 + s0B𝑀 + s1B𝐿 + e2)

≈𝑐 (s((A1 − x0 ⊗ G) ⊗ I) + w′1, sB𝑈 + s1B𝐿 + w′2) (from LWE)

≈𝑠 (w1,w2) where w1 ← Z𝑚
2ℓ

𝑞 ,w2 ← Z(2𝑛𝑚+𝑛𝑚
2)𝑤

𝑞

■

Claim 4.17. G2 ≈𝑠 G3

Proof. The two hybrids differ only in the error terms in c7,𝑖, 𝑗 and are indistinguishable

due to the smudging lemma.

In G2:

c7,𝑖, 𝑗 = s1(I𝑛𝑚 ⊗ rT
𝑖) (D ⊗ tT

𝑗) + e7,𝑖, 𝑗

In G3:

c7,𝑖, 𝑗 = c6, 𝑗 (I ⊗ rT
𝑖) − s(A 𝑓 𝑗U 𝑗 ⊗ rT

𝑖) − e7,𝑖, 𝑗

176

= (s(A 𝑓 𝑗U 𝑗 ⊗ I) + s1(D ⊗ tT
𝑗 ⊗ I) + e6, 𝑗) (I ⊗ rT

𝑖) − s(A 𝑓 𝑗U 𝑗 ⊗ rT
𝑖) − e7,𝑖, 𝑗

= s(A 𝑓 𝑗U 𝑗 ⊗ rT
𝑖) + s1(D ⊗ tT

𝑗 ⊗ rT
𝑖) + e6, 𝑗 (I ⊗ rT

𝑖) − s(A 𝑓 𝑗U 𝑗 ⊗ rT
𝑖) − e7,𝑖, 𝑗

= s1(I𝑛𝑚 ⊗ rT
𝑖) (D ⊗ tT

𝑗) + e6, 𝑗 (I ⊗ rT
𝑖) − e7,𝑖, 𝑗

Clearly, the two hybrids differ only in the error terms in c7,𝑖, 𝑗 . Thus, the indistinguishability

follows due to the following:

e7,𝑖, 𝑗 ≈𝑠 −e7,𝑖, 𝑗 + e6, 𝑗 (I ⊗ rT
𝑖)

which is true since 𝜒7 ≥ 𝛾𝜒6𝜆
𝜔(1) and by the symmetry of the discrete Gaussian

distribution. ■

Claim 4.18. G3 ≈ G4

Proof. The indistinguishability follows from Lemma 4.22. ■

Claim 4.19. G4 ≈𝑠 G5.

Proof. The two hybrids differ only in the error terms in c7,𝑖, 𝑗 . The indistinguishability

follows from the smudging lemma.

In G4,

c′7,𝑖, 𝑗 = s(A 𝑓 𝑗U 𝑗 ⊗ rT
𝑖) + e7,𝑖, 𝑗 .

In G5,

c′7,𝑖, 𝑗 = (c
′
4,𝑖∥c3,𝑖)ĤA, 𝑓 𝑗 ,(x0∥x1,𝑖)U 𝑗 + s(GU 𝑗 ⊗ rT

𝑖) + e7,𝑖, 𝑗

=

(
s((A1 − x0 ⊗ G) ⊗ rT

𝑖) + e4,𝑖 |s((A2 − x1,𝑖 ⊗ G) ⊗ rT
𝑖) + e3,𝑖

)
ĤA, 𝑓 𝑗 ,(x0∥x1,𝑖)U 𝑗

+ s(GU 𝑗 ⊗ rT
𝑖) + e7,𝑖, 𝑗

= s((A1∥A2 − (x0∥x1,𝑖) ⊗ G) ⊗ rT
𝑖)ĤA, 𝑓 𝑗 ,(x0∥x1,𝑖)U 𝑗 + (e4,𝑖∥e3,𝑖)ĤA, 𝑓 𝑗 ,(x0∥x1,𝑖)U 𝑗

+ s(GU 𝑗 ⊗ rT
𝑖) + e7,𝑖, 𝑗

= s((A 𝑓 − 𝑓 𝑗 (x0∥x1,𝑖)G)U 𝑗 ⊗ rT
𝑖) + (e4,𝑖∥e3,𝑖)ĤA, 𝑓 𝑗 ,(x0∥x1,𝑖)U 𝑗 + s(GU 𝑗 ⊗ rT

𝑖) + e7,𝑖, 𝑗

177

= s(A 𝑓U 𝑗 ⊗ rT
𝑖) + (e4,𝑖∥e3,𝑖)ĤA, 𝑓 𝑗 ,(x0∥x1,𝑖)U 𝑗 + e7,𝑖, 𝑗 (since 𝑓 𝑗 (x0∥x1,𝑖) = 1)

Clearly, the two hybrids differ only in the error terms in c′7,𝑖, 𝑗 . Thus, the indistinguishability

follows due to the following:

e7,𝑖, 𝑗 ≈𝑠 e7,𝑖, 𝑗 + (e4,𝑖∥e3,𝑖)ĤA, 𝑓 𝑗 ,(x0∥x1,𝑖)U 𝑗

which is true when 𝜒7 ≥ 𝜒3𝜒4𝛽𝛾𝜆
𝜔(1) , where ∥ĤA, 𝑓 𝑗 ,(x0∥x1,𝑖) ∥∞ ≤ 𝛽 ■

Claim 4.20. G5 ≈𝑐 G6 under the tensor-LWE assumption.

Proof. The indistinguishability between the two hybrids follows from tensor-LWE which

implies

A1,A2, {U 𝑗 , rT
𝑖 , s(I𝑛 ⊗ rT

𝑖) (A1 − x0 ⊗ G) + e4,𝑖, s(I𝑛 ⊗ rT
𝑖) (A2 − x1,𝑖 ⊗ G) + e3,𝑖,

s(I𝑛 ⊗ rT
𝑖)GU 𝑗 + e7,𝑖, 𝑗 }𝑖, 𝑗 ≈𝑐 A1,A2, {U 𝑗 , rT

𝑖 , random, random}𝑖, 𝑗 .

■

Claim 4.21. G6 ≡ G7

Proof. This follows since in G6, c4,𝑖 and c7,𝑖, 𝑗 are masked by random vectors c′4,𝑖 and

c′7,𝑖, 𝑗 , respectively. ■

To complete the proof of Lemma 4.14, it remains to prove the following.

Lemma 4.22. Given {t 𝑗 } 𝑗∈[𝑄] , {r𝑖}𝑖∈[𝑄] , C,D,

({z𝐶,𝑖 := s1(I𝑛𝑚 ⊗ rT
𝑖)C + e5,𝑖}𝑖, {z𝐷, 𝑗 := s1(D ⊗ tT

𝑗 ⊗ I) + e6, 𝑗 } 𝑗) ≈𝑐 ({w′5,𝑖}𝑖, {w
′
𝑗 }6, 𝑗),

where w′5,𝑖 ← Z
𝑛𝑚𝑤
𝑞 and w′6, 𝑗 ← Z

𝑚2
𝑞 assuming LWE.

178

Proof. We prove the lemma by considering a sequence of games where we start from the

LHS and gradually change it to that of RHS in a way that is not noticed by the adversary.

G̃0 : This is the same distribution as in LHS.

G̃1 : In this hybrid, we change the distribution to bez𝐶,𝑖 = (s1(C ⊗ I) + e𝐶)︸ ︷︷ ︸
:=s𝐶

(I𝑛𝑚𝑤 ⊗ rT
𝑖) + e5,𝑖

𝑖 ,
z𝐷, 𝑗 =

(
s1(D ⊗ I⊗2) + e𝐷

)
︸ ︷︷ ︸

:=s𝐷

(I ⊗ tT
𝑗 ⊗ I) + e6, 𝑗

 𝑗
,

where e𝐶 ← D𝑛𝑚2𝑤
Z,𝜒1

, e𝐷 ← D𝑚3

Z,𝜒1
.

This hybrid differs from the previous one only in the error terms in z𝐶,𝑖 and z𝐷, 𝑗 .

The indistinguishability follows from the smudging lemma.

To see this, observe that we have

(s1(C ⊗ I) + e𝐶) (I𝑛𝑚𝑤 ⊗ rT
𝑖) + e5,𝑖 = s1(C ⊗ rT

𝑖) + e𝐶 (I𝑛𝑚𝑤 ⊗ rT
𝑖) + e5,𝑖︸ ︷︷ ︸

=error

and(
s1(D ⊗ I⊗2) + e𝐷

)
(I ⊗ tT

𝑗 ⊗ I) + e6, 𝑗 = s1(D ⊗ tT
𝑗 ⊗ I) + e𝐷 (I ⊗ tT

𝑗 ⊗ I) + e6, 𝑗︸ ︷︷ ︸
=error

.

Thus, the indistinguishability follows due to the following:

e5,𝑖 ≈𝑠 e𝐶 (I𝑛𝑚𝑤 ⊗ rT
𝑖) + e5,𝑖, e6, 𝑗 ≈𝑠 e𝐷 (I ⊗ tT

𝑗 ⊗ I) + e6, 𝑗 ,

which is true when 𝜒5, 𝜒6 > 𝛾𝜆
𝜔(1)𝜒1.

G̃2 : In this hybrid, we replace s𝐶 and s𝐷 with random vectors sampled as s𝐶 ← Z𝑛𝑚
2𝑤

𝑞 ,

179

s𝐷 ← Z𝑚
3

𝑞 . This hybrid is indistinguishable from the previous one by Lemma 4.12

with 𝑘 = 2 assuming LWE.

G̃3 : In this game, {z𝐶,𝑖}𝑖 and {z𝐷, 𝑗 } 𝑗 are replaced with random vectors sampled as

z𝐶,𝑖 ← Z𝑛𝑚𝑤𝑞 and z𝐷, 𝑗 ← Z𝑚
2

𝑞 for all 𝑖, 𝑗 ∈ [𝑄]. We can see that this hybrid is

indistinguishable from the previous one by LWE with low norm samples (Lemma

4.1) once with respect to secret s𝐶 , and then with respect to s𝐷 .
It is clear that the distribution in G̃3 is the same as that of RHS in the statement of the

lemma. ■

This completes the proof of Lemma 4.14. ■

4.7 MULTI-INPUT ABE FOR ANY CONSTANT ARITY

In this section, we extend the construction in Sec. 4.6 to construct 𝑘-ABE for any constant

𝑘 using evasive LWE. Our main construction supports functions in NC1 and proven

secure assuming evasive LWE. We also discuss a variant that supports any polynomial

size circuit of bounded depth, which can be proven secure assuming a strengthening of

tensor LWE in addition.

4.7.1 Construction for NC1 Circuits

Here, we show our construction. Let ℓ be the length of each of the 𝑘 attributes. Decryption

is possible when 𝑓 (x0, x1, . . . , x𝑘−1) = 0, where x0 ∈ {0, 1}ℓ is the attribute associated

with the public encryption, x𝑖 ∈ {0, 1}ℓ is the attribute associated with the slot 𝑖, and 𝑓 is

a binary circuit associated with the slot 𝑘 key. Below I refers to I𝑚. We require an upper

bound on the depth of the circuit and denote it by 𝑑. We require 𝑑 = 𝑂 (log𝜆).

In the construction, we will use the low-norm variant of the lattice evaluation algorithms

(EvalF,EvalFX) from Lemma 4.4.

180

Ta
bl

e
4.

2:
Su

m
m

ar
y

of
hy

br
id

si
n

th
e

pr
oo

fo
fs

ec
ur

ity
fo

r2
AB

E
co

ns
tru

ct
io

n.
A

ll
th

e
w

an
d

w
′
ve

ct
or

sa
re

sa
m

pl
ed

ra
nd

om
ly

.

To
pr

ov
e
𝐷
′′ 0
≈
𝐷
′′ 1

:G
iv

en
C

,a
ux
′′
=
(x
,
{y
𝑖,

r 𝑖
} 𝑖
,c

oi
ns
A
,
{𝑓
𝑗
,t
𝑗
,U

𝑗
} 𝑗

A
0,

A
,B
,D
),

to
pr

ov
e

ps
eu

do
ra

nd
om

ne
ss

of
c 1
,c

2,
c 3
,𝑖
,c

4,
𝑖,

c 5
,𝑖
,c

6,
𝑗
,c

7,
𝑖,
𝑗

c 1
c 2

c 3
,𝑖

c 4
,𝑖

c 5
,𝑖

c 6
,
𝑗

c 7
,𝑖
,
𝑗

Re
m

ar
k

G
0

s(
(A

1
−

x
⊗

G
)⊗

I)
+s

0(
A

0
⊗

I)
+e

1

(s
,s

0,
s 1
)B
+

e 2
s(
(A

2
−

y 𝑖
⊗

G
)⊗

rT 𝑖)
+

e 3
,𝑖

s 0
(A

0
⊗

rT 𝑖)
+

e 4
,𝑖

s 1
(I
𝑛
𝑚
⊗

rT 𝑖)
C
+

e 5
,𝑖

s(
A
𝑓
𝑗
U
𝑗
⊗

I)
+s

1(
D
⊗

tT 𝑗
⊗

I)
+

e 6
,
𝑗

s 1
(D
⊗

tT 𝑗
⊗

rT 𝑖)
+

e 7
,𝑖
,
𝑗

G
1
↓

↓
↓

c 1
(I
𝑚
ℓ
⊗

rT 𝑖)
−
(s
((

A
1
−

x
⊗

G
)⊗

rT 𝑖)
+

e 4
,𝑖
)

↓
↓

↓
sm

ud
gi

ng
le

m
m

a

G
1.

5
s(
(A

1
−

x
⊗

G
)⊗

I)
+

w
′ 1,

(s
,

0,
s 1
)B
+

w
′ 2,

↓
↓

↓
↓

↓
LW

E

G
2

w
1

w
2

↓
↓

↓
↓

↓
ra

nd
om

m
as

k

G
3
↓

↓
↓

↓
↓

↓
c 6
,
𝑗
(I

⊗
rT 𝑖)

−
(s(

A
𝑓
𝑗
U
𝑗
⊗

rT 𝑖)
+

e 7
,𝑖
,
𝑗

)
︸

 ︷
︷

 ︸
:=

c′ 7,
𝑖,
𝑗

sm
ud

gi
ng

G
3.

5
↓

↓
↓

↓
w

5,
𝑖

s(
A
𝑓
𝑗
U
𝑗
⊗

I)
+

w
′ 6,
𝑗
↓

LW
E

G
4
↓

↓
↓

↓
↓

w
6,
𝑗

ra
nd

om
m

as
k

G
5
↓

↓
↓

↓
↓

↓
c 6
,
𝑗
(I

⊗
rT 𝑖)

−
[c
′ 4,
𝑖
∥c

3,
𝑖]Ĥ

A
,
𝑓
𝑗
,(

x∥
y 𝑖
)U

𝑗
−

(s
(G

U
𝑗
⊗

rT 𝑖)
+

e 7
,𝑖
,
𝑗

︸
 ︷︷

 ︸

:=
c′
′ 7,
𝑖,
𝑗

)

sm
ud

gi
ng

G
6
↓

↓
w

3,
𝑖

c 1
(I
𝑚
ℓ
⊗

rT 𝑖)
−

w
′ 4,
𝑖

↓
↓

c 6
,
𝑗
(I

⊗
rT 𝑖)

−
[c
′ 4,
𝑖
∥c

3,
𝑖]Ĥ

A
,
𝑓
𝑗
,(

x∥
y 𝑖
)U

𝑗
−

w
′′ 7,
𝑖,
𝑗

te
ns

or
LW

E

G
7
↓

↓
↓

w
4,
𝑖

↓
↓

w
7,
𝑖,
𝑗

ra
nd

om
m

as
k

181

Setup(1𝜆): The setup algorithm takes as input the security parameter and does the

following:

• Sample A0, . . ., A𝑘−1 ← D𝑚×𝑚ℓ
Z,𝛾 ; D0, . . ., D𝑘−1 ← Z𝑛×𝑚ℓ𝑞 , D𝑘 ← Z𝑛×𝑚𝑞 ,

U← D𝑚×𝑚
Z,𝛾 ;

• Sample (B,B−1
𝜏𝐵
) ← TrapGen(1𝜆, 𝑚𝑘+1+(𝑘+1)𝑛𝑚𝑘 , (𝑚𝑘+1+(𝑘+1)𝑛𝑚𝑘)𝑤),

where 𝑤 ∈ 𝑂 (log 𝑞);
{(C𝑖,C−1

𝑖,𝜏𝐶
) ← TrapGen(1𝜆, (𝑘 + 1)𝑛𝑚𝑖−1, (𝑘 + 1)𝑛𝑚𝑖−1𝑤)}𝑖∈[2,𝑘]

• Set C1 =

©«
D0

D1
. . .

D𝑘

ª®®®®®¬
• Let A = (A0, . . . ,A𝑘−1).

Output mpk = (A,B,C1, . . . ,C𝑘 ,D0, . . . ,D𝑘 ,U),
msk = (B,B−1

𝜏𝐵
,C−1

2,𝜏𝐶 , . . . ,C
−1
𝑘,𝜏𝐶
).

Enc(mpk, x0, 𝜇): The Enc algorithm is a public encryption algorithm. It takes as input

the master public key mpk, attribute x0 and message bit 𝜇 ∈ {0, 1} and does the

following:

• Sample s← Z𝑚𝑘+1𝑞 , s0, . . . , s𝑘 ← Z𝑛𝑚
𝑘

𝑞 .

• If 𝜇 = 1, sample c1 ← Zℓ𝑚
𝑘+1

𝑞 , c2 ← Z(𝑚
𝑘+1+(𝑘+1)𝑛𝑚𝑘)𝑤

𝑞 .
Else, compute

– c1 = s((A0 − x0 ⊗ I) ⊗ I⊗𝑘) + s0(D0 ⊗ I⊗𝑘) + e1, where e1 ← Dℓ𝑚𝑘+1

Z,𝜒1
.

– c2 = (s, s0, · · · , s𝑘)B + e2, where e2 ← D (𝑚
𝑘+1+(𝑘+1)𝑛𝑚𝑘)𝑤

Z,𝜒2
.

• Output ctx0 = (c1, c2).

KeyGen𝑖 (msk, x𝑖) for 1 ≤ 𝑖 ≤ 𝑘 − 1: The keygen algorithm for slot 1 ≤ 𝑖 ≤ 𝑘 −1, takes

as input the master secret key msk and attribute x𝑖 and does the following:

• Samples r𝑖 ← D𝑚
Z,𝛾

182

• Samples X𝑖 ← B−1

©«
©«
(A𝑖 − x𝑖 ⊗ I) ⊗ I⊗(𝑖−1) ⊗ rT

𝑖
⊗ I⊗(𝑘−𝑖)

0𝑖𝑛𝑚𝑘×ℓ𝑚𝑘
D𝑖 ⊗ I⊗(𝑖−1) ⊗ rT

𝑖
⊗ I⊗(𝑘−𝑖)

0(𝑘−𝑖)𝑛𝑚𝑘×ℓ𝑚𝑘

ª®®®®®¬
, 𝜏𝐵

ª®®®®®¬
and

Y𝑖 ← C−1
𝑖+1

(
(C𝑖 ⊗ rT

𝑖
), 𝜏𝐶

)
• Returns sk𝑖,x𝑖 = (r𝑖,X𝑖,Y𝑖)

KeyGen𝑘 (msk, 𝑓): The keygen algorithm for slot 𝑘 takes as input the master secret key,

msk, and 𝑘-arity function 𝑓 and does the following:

• Samples r𝑘 ← D𝑚
Z,𝛾

• Computes H 𝑓 = EvalF(A, 𝑓) and A 𝑓 = AH 𝑓

• Computes M 𝑓 ← B−1
©«
©«
A 𝑓U ⊗ I⊗(𝑘−1) ⊗ rT

𝑘

0𝑘𝑛𝑚𝑘×𝑚𝑘
D𝑘 ⊗ I⊗(𝑘−1) ⊗ rT

𝑘

ª®®¬ , 𝜏𝐵
ª®®¬ and

N 𝑓 ← B−1

((
0𝑚𝑘+1×(𝑘+1)𝑛𝑚𝑘−1𝑤

C𝑘 ⊗ rT
𝑘

)
, 𝜏𝐵

)
• Returns sk𝑘, 𝑓 =

(
r𝑘 ,M 𝑓 ,N 𝑓

)
Dec(mpk, ctx0 , sk1,x1 , . . . , sk𝑘−1,x𝑘−1 , sk𝑘, 𝑓) The decryption algorithm takes a ciphertext

ctx0 , 𝑘 keys sk1,x1 , . . . , sk𝑘−1,x𝑘−1 and sk𝑘, 𝑓 and does the following:

• Parse ctx0 as (c1, c2), sk𝑖,x𝑖 as (r𝑖,X𝑖,Y𝑖) for 1 ≤ 𝑖 ≤ 𝑘 − 1 and sk𝑘, 𝑓 as
(r𝑘 ,M 𝑓 ,N 𝑓).

Let x = (x0, . . . , x𝑘−1).

• Compute ĤA, 𝑓 ,x = EvalFX(A, 𝑓 , x).

• Compute the following

* d′0 = c1(I𝑚ℓ ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
)

* d′
𝑖
= c2X𝑖 (I𝑚ℓ ⊗ rT

1 · · · ⊗ rT
𝑖−1 ⊗ rT

𝑖+1 ⊗ · · · ⊗ rT
𝑘
), for 1 ≤ 𝑖 ≤ 𝑘 − 1,

* d′
𝑓
= c2M 𝑓 (I𝑚 ⊗ rT

1 · · · ⊗ rT
𝑘−1)

183

* (d′′0 , · · · , d′′
𝑘−1, d′′

𝑓
) = c2N 𝑓Y𝑘−1 · · ·Y1

* d𝑖 = d′
𝑖
− d′′

𝑖
, for 𝑖 = 0 to 𝑘 − 1.

* d 𝑓 = d′
𝑓
− d′′

𝑓

* d = (d0 | · · · |d𝑘−1)ĤA, 𝑓 ,xU − d 𝑓

• If ∥d∥∞ ≤ 𝛽0, where 𝛽0 is as defined in section 4.7.1 then return 𝜇 = 0, else
return 𝜇 = 1.

Correctnes. Here, we show the correctness of the scheme.

When 𝜇 = 1: We first show the correctness for the case of 𝜇 = 1. For an honest run

of the protocol, c1 is distributed uniformly at random over its domain. Then, since

r𝑖 ≠ 0 for all 𝑖 ∈ [𝑘] with overwhelming probability and thus I𝑚ℓ ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
is a

full-rank matrix, d′0 and thus d0 are distributed uniformly at random over their domains.

Then, since the topmost 𝑚 rows of ĤA, 𝑓 ,x constitutes an identity matrix by Lemma 4.4,

(d0∥ · · · ∥d𝑘−1)ĤA, 𝑓 ,x is distributed uniformly at random over its domain. Finally, since

each column of U is chosen from D𝑚
Z,𝛾, with overwhelming probability, there exists

𝑖 ∈ [𝑚] such that the 𝑖-th column of U is not a zero vector. This in turn implies that that

the 𝑖-th entry of d is distributed uniformly at random over Z𝑞. Since we set 𝛽0/𝑞 = 𝜆−𝜔(1) ,

the probability that the decryption algorithm falsely outputs 0 is negligible as desired.

When 𝜇 = 0: We then show the correctness for the case of 𝜇 = 0.

* Let us first compute d′0.

d′0 = c1(I𝑚ℓ ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
)

=
(
s ·

(
(A0 − x0 ⊗ I𝑚) ⊗ I⊗𝑘

)
+ s0 · (D0 ⊗ I⊗𝑘)

)
·
(
I𝑚ℓ ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘

)
+ ed′0

= s ·
(
(A0 − x0 ⊗ I𝑚) ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘

)
+ s0 ·

(
D0 ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘

)
+ ed′0

where ed′0 := e1 · (I𝑚ℓ ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
).

184

* Let 1 ≤ 𝑖 ≤ 𝑘 − 1,

d′
𝑖

= c2 · X𝑖 ·
(
I𝑚ℓ ⊗ rT

1 · · · ⊗ rT
𝑖−1 ⊗ rT

𝑖+1 ⊗ · · · ⊗ rT
𝑘

)
= ((s, s0, · · · , s𝑘) B + e2)

·B−1

©«
©«
(A𝑖 − x𝑖 ⊗ I𝑚) ⊗ I⊗(𝑖−1) ⊗ rT

𝑖
⊗ I⊗(𝑘−𝑖)

0𝑖𝑛𝑚𝑘×ℓ𝑚𝑘
D𝑖 ⊗ I⊗(𝑖−1) ⊗ rT

𝑖
⊗ I⊗(𝑘−𝑖)

0(𝑘−𝑖)𝑛𝑚𝑘×ℓ𝑚𝑘

ª®®®®®¬
, 𝜏𝐵

ª®®®®®¬
·(I𝑚ℓ ⊗ rT

1 · · · ⊗ rT
𝑖−1 ⊗ 1 ⊗ rT

𝑖+1 ⊗ · · · ⊗ rT
𝑘
)

=

(
s((A𝑖 − x𝑖 ⊗ I𝑚) ⊗ I⊗(𝑖−1) ⊗ rT

𝑖
⊗ I⊗(𝑘−𝑖)) + s𝑖 · (D𝑖 ⊗ I⊗(𝑖−1) ⊗ rT

𝑖
⊗ I⊗(𝑘−𝑖))

)
·(I𝑚ℓ ⊗ rT

1 · · · ⊗ rT
𝑖−1 ⊗ 1 ⊗ rT

𝑖+1 ⊗ · · · ⊗ rT
𝑘
) + ed′

𝑖
.

= s · ((A𝑖 − x𝑖 ⊗ I𝑚) ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) + s𝑖 · (D𝑖 ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
) + ed′

𝑖

where ed′
𝑖

:= e2 · X𝑖 (I𝑚ℓ ⊗ rT
1 · · · ⊗ rT

𝑖−1 ⊗ rT
𝑖+1 ⊗ · · · ⊗ rT

𝑘
).

* Now we compute d′
𝑓
.

d′
𝑓

= c2M 𝑓 (I𝑚 ⊗ rT
1 · · · ⊗ rT

𝑘−1)

= ((s, s0, · · · , s𝑘)B + e2)B−1
©«
©«
A 𝑓U ⊗ I⊗(𝑘−1) ⊗ rT

𝑘

0𝑘𝑛𝑚𝑘×𝑚𝑘
D𝑘 ⊗ I⊗(𝑘−1) ⊗ rT

𝑘

ª®®¬ , 𝜏𝐵
ª®®¬

·(I𝑚 ⊗ rT
1 · · · ⊗ rT

𝑘−1 ⊗ 1)
=

(
s · (A 𝑓U ⊗ I⊗(𝑘−1) ⊗ rT

𝑘
) + s𝑘 · (D𝑘 ⊗ I⊗(𝑘−1) ⊗ rT

𝑘
)
)

·(I𝑚 ⊗ rT
1 · · · ⊗ rT

𝑘−1 ⊗ 1) + ed′
𝑓

= s · (A 𝑓U ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) + s𝑘 · (D𝑘 ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
) + ed′

𝑓

where ed′
𝑓

:= e2M 𝑓 (I ⊗ rT
1 · · · ⊗ rT

𝑘−1).

185

* Next, we compute:

(d′′0 , · · · , d′′
𝑘−1, d′′

𝑓
)

= c2N 𝑓Y𝑘−1 · · ·Y1

= ((s, s0, · · · , s𝑘)B + e2)B−1

((
0𝑚𝑘+1×(𝑘+1)𝑛𝑚𝑘−1𝑤

C𝑘 ⊗ rT
𝑘

)
, 𝜏𝐵

)
· Y𝑘−1 · · ·Y1

= (s0, · · · , s𝑘) · (C𝑘 ⊗ rT
𝑘
) · Y𝑘−1 · · ·Y1 + (ed′′0 , · · · , ed′′

𝑘
)

= (s0, · · · , s𝑘) · (C𝑘 ⊗ rT
𝑘
) · (C−1

𝑘

(
(C𝑘−1 ⊗ rT

𝑘−1), 𝜏𝐶
)
⊗ 1) · Y𝑘−2 · · ·Y1

+ (ed′′0 , · · · , ed′′
𝑘
)

= (s0, · · · , s𝑘) · (C𝑘 · C−1
𝑘

(
(C𝑘−1 ⊗ rT

𝑘−1), 𝜏𝐶
)
⊗ rT

𝑘
) · Y𝑘−2 · · ·Y1

+ (ed′′0 , · · · , ed′′
𝑘
)

= (s0, · · · , s𝑘) · (C𝑘−1 ⊗ rT
𝑘−1 ⊗ rT

𝑘
) · Y𝑘−2 · · ·Y1 + (ed′′0 , · · · , ed′′

𝑘
)

=
...

= (s0, · · · , s𝑘) · (C1 ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) + (ed′′0 , · · · , ed′′

𝑘
)

= (s0 · (D0 ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) + ed′′0 , · · · , s𝑘 · (D𝑘 ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
) + ed′′

𝑘
)

with (ed′′0 , · · · , ed′′
𝑘
) := e2N 𝑓Y𝑘−1 · · ·Y1.

* Let 0 ≤ 𝑖 ≤ 𝑘 − 1,

d𝑖 = d′
𝑖
− d′′

𝑖

= s((A𝑖 − x𝑖 ⊗ I𝑚) ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) + s𝑖 (D𝑖 ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
)

+ed′
𝑖
− s𝑖 (D𝑖 ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
) − ed′′

𝑖

= s((A𝑖 − x𝑖 ⊗ I𝑚) ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) + ed𝑖

with ed𝑖 := ed′
𝑖
− ed′′

𝑖
.

* Next, d 𝑓 = d′
𝑓
− d′′

𝑓
. So,

d 𝑓 = s(A 𝑓U ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) + s𝑘 (D𝑘 ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
) + ed′

𝑓

−s𝑘 (D𝑘 ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) − ed′′

𝑓

= s(A 𝑓U ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) + ed 𝑓

with ed 𝑓 := ed′
𝑓
− ed′′

𝑓
where ed′′

𝑓
:= ed′′

𝑘
.

186

* And finally, d = (d0∥ · · · ∥d𝑘−1) · ĤA, 𝑓 ,xU − d 𝑓 . First,

(d0∥ · · · ∥d𝑘−1)
= (s((A0 − x0 ⊗ I) ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
)∥ · · · ∥s((A𝑘−1 − x𝑘−1 ⊗ I) ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
))

+ (ed0 ∥ · · · ∥ed𝑘−1)
= (s(((A0∥A1∥ · · · ∥A𝑘−1) − (x0∥x1∥ · · · ∥x𝑘−1) ⊗ I) ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
))

+ (ed0 ∥ · · · ∥ed𝑘−1)
= (s((A − (x0∥x1∥ · · · ∥x𝑘−1)︸ ︷︷ ︸

=x

⊗I) ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
)) + (ed0 ∥ · · · ∥ed𝑘−1).

From Lemma 4.4, we deduce

(A − x ⊗ I)ĤA, 𝑓 ,x = A 𝑓 − 𝑓 (x)I mod 𝑞.

Hence,

(d0∥ · · · ∥d𝑘−1)ĤA, 𝑓 ,xU − d 𝑓

= s((A − x ⊗ I) ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) (ĤA, 𝑓 ,xU ⊗ 1 ⊗ 1 · · · ⊗ 1)

+ ed − s(A 𝑓U ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) − ed 𝑓

= s((A − x ⊗ I)ĤA, 𝑓 ,xU ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) − s(A 𝑓U ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
) + ed − ed 𝑓

= s((A 𝑓U − 𝑓 (x)U) ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) − s(A 𝑓U ⊗ rT

1 ⊗ · · · ⊗ rT
𝑘
) + ed − ed 𝑓

= −s(𝑓 (x)U ⊗ rT
1 ⊗ · · · ⊗ rT

𝑘
) + ed − ed 𝑓

= ed − ed 𝑓 if 𝑓 (x) = 0.

where ed := (ed0 ∥ · · · ∥ed𝑘−1)ĤA, 𝑓 ,xU. Thus, when 𝜇 = 0, ∥d∥∞ is small (≤ 𝛽0),
and hence, the decryption correctly outputs 0.

Error Bound: The error term is bounded as follows. Let 𝛽0 denote the error bound.

∥ed∥∞ + ∥ed 𝑓 ∥∞

= ∥(ed0 ∥ · · · ∥ed𝑘−1)ĤA, 𝑓 ,xU∥∞ + ∥ed′
𝑓
− ed′′

𝑓
∥∞

= ∥
(
(ed′0 ∥ · · · ∥ed′

𝑘−1
) − (ed′′0 ∥ · · · ∥ed′′

𝑘−1
)
)

ĤA, 𝑓 ,xU∥∞ + ∥ed′
𝑓
− ed′′

𝑓
∥∞

≤
((
𝜒1(𝑚𝛾)𝑂 (𝑘) + 𝑤𝜒2𝜏𝐵 (𝑚𝛾)𝑂 (𝑘) + 𝜒2𝜏𝐵 (𝑤𝜏𝐶)𝑂 (𝑘)𝑚𝑂 (𝑘

2)
)
· 𝑚𝛽𝛾

+ 𝑤𝜒2𝜏𝐵 (𝑚𝛾)𝑂 (𝑘) + 𝜒2𝜏𝐵 (𝑤𝜏𝐶)𝑂 (𝑘)𝑚𝑂 (𝑘
2)
)

poly(𝑚)

≤ (𝑚𝜒1𝜒2𝑤𝛾𝜏𝐵𝜏𝐶)𝑂 (𝑘
2)

≤ 𝛽0,

187

where we used ∥ed′0 ∥∞ ≤ 𝜒1(𝑚𝛾)𝑂 (𝑘) , ∥ed′
𝑖
∥∞, ∥ed′

𝑓
∥∞ ≤ 𝑤𝜒2𝜏𝐵 (𝑚𝛾)𝑂 (𝑘) , and

∥ed′′
𝑖
∥∞, ∥ed′′

𝑓
∥∞ ≤ 𝜒2𝜏𝐵 (𝑤𝜏𝐶)𝑂 (𝑘)𝑚𝑂 (𝑘

2) .

Parameters. We set the parameters as follows.

𝑛 = poly(𝜆, 2𝑑), 𝑚 = 𝑂 (𝑛 log 𝑞), 𝜏𝐵 = 𝑂 (
√︁

2𝑘𝑚𝑘+1 log 𝑞), 𝜏𝐶 = 𝑂 (
√︁

2𝑘𝑚𝑘 log 𝑞),

𝛽 = (𝑚𝛾)𝑂 (2𝑑) , 𝛾 = 𝜆𝜔 (1) , 𝜒1 = (𝑚𝛾)2𝑘 , 𝜒3 = 𝜒4 = (𝑚𝛾)4𝑘 ,

𝜒6 = (𝑚𝛾)6𝑘 , 𝜒7 = 𝑚𝛽ℓ𝜒6𝜆
𝜔 (1) , 𝜒5,𝑖 = 𝛾

𝑘−𝑖 · 𝜒7 for 𝑖 ∈ [0, 𝑘], 𝜒2 = 𝛾𝜒5

𝛽0 = (𝑚𝜒1𝜒2𝑤𝛾𝜏𝐵𝜏𝐶)𝑂 (𝑘
2) , 𝑞 = 𝛽0𝜆

𝜔 (1)

where we define 𝜒5 := 𝜒5,0. We note that in the above, 𝜒3, 𝜒4, 𝜒5,𝑖, 𝜒6, and 𝜒7 are the

parameters that only appear in the security proof.

4.7.2 Security

Here, we prove the following theorem, which asserts the security of our scheme.

Theorem 4.23. Assuming evasive LWE (Assumption 4.6) and LWE, our construction for

𝑘-input ABE for NC1 satisfies very selective security (Definition 4.2).

Proof. To prove the security, we need to prove the indistinguishability of the two

distributions given below. Let 𝑄𝑖 be the number of key queries to KeyGen𝑖 (msk, ·)

oracle for 𝑖 ∈ [𝑘]. In the following, for simplicity, we let 𝑄1 = · · · = 𝑄𝑘 = 𝑄. Note that

this can be assumed without loss of generality.

Note that compared to Section 4.6.2 where 𝑖 and 𝑗 are the indexes for the keys, in this

proof, 𝑖 ∈ [𝑘] is the index of the key generator, and we denote 𝑗1, · · · , 𝑗𝑘 ∈ [𝑄] the

indexes of the keys. In the sequel, for the ease of the reading, we often suppress the

subscript and simply write 𝑗 when differentiating the indexes is not necessary.

188

Distribution 𝐷0:©«
mpk, c1 = (s, s0)

©«
(A0 − x0 ⊗ I𝑚) ⊗ I⊗𝑘

D0 ⊗ I⊗𝑘

ª®®®¬ + e1, c2 = (s, s0, · · · , s𝑘)B + e2,

{sk𝑖,x𝑖, 𝑗 = (r𝑖, 𝑗 ,X𝑖, 𝑗 ,Y𝑖, 𝑗)}𝑖∈[𝑘−1], 𝑗∈[𝑄] , {sk𝑘, 𝑓 𝑗 = (r𝑘, 𝑗 ,M 𝑓 𝑗 ,N 𝑓 𝑗)} 𝑗∈[𝑄]

ª®®®®®®®¬
Distribution 𝐷1:©«
mpk, c1 ← Zℓ𝑚

𝑘+1
𝑞 , c2 ← Z(𝑚

𝑘+1+(𝑘+1)𝑛𝑚𝑘)𝑤
𝑞 ,

{sk𝑖,x𝑖, 𝑗 = (r𝑖, 𝑗 ,X𝑖, 𝑗 ,Y𝑖, 𝑗)}𝑖∈[𝑘−1], 𝑗∈[𝑄] , {sk𝑘, 𝑓 𝑗 = (r𝑘, 𝑗 ,M 𝑓 𝑗 ,N 𝑓 𝑗)} 𝑗∈[𝑄]

ª®®®¬,

where x0 is the attribute for public encryption, x𝑖, 𝑗 for 𝑖 ∈ [𝑘 − 1] is the 𝑗-th key query

for slot 𝑖, and 𝑓 𝑗 is the 𝑗-th key query to KeyGen𝑘 (msk, ·), sk𝑖,x𝑖, 𝑗 is the 𝑗-th key for slot

𝑖 and sk𝑘, 𝑓 𝑗 is the key for function 𝑓 𝑗 . In particular, we have

X𝑖, 𝑗 ← B−1

©«

©«

(A𝑖 − x𝑖, 𝑗 ⊗ I𝑚) ⊗ I⊗(𝑖−1) ⊗ rT
𝑖, 𝑗
⊗ I⊗(𝑘−𝑖)

0𝑖𝑛𝑚𝑘×ℓ𝑚𝑘

D𝑖 ⊗ I⊗(𝑖−1) ⊗ rT
𝑖, 𝑗
⊗ I⊗(𝑘−𝑖)

0(𝑘−𝑖)𝑛𝑚𝑘×ℓ𝑚𝑘

ª®®®®®®®®®®®¬
, 𝜏𝐵

ª®®®®®®®®®®®¬
Y𝑖, 𝑗 ← C−1

𝑖+1

(
(C𝑖 ⊗ rT

𝑖, 𝑗
), 𝜏𝐶

)

M 𝑓 𝑗 ← B−1

©«

©«
A 𝑓 𝑗U 𝑗 ⊗ I⊗(𝑘−1) ⊗ rT

𝑘, 𝑗

0𝑘𝑛𝑚𝑘×𝑚𝑘

D𝑘 ⊗ I⊗(𝑘−1) ⊗ rT
𝑘, 𝑗

ª®®®®®®®¬
, 𝜏𝐵

ª®®®®®®®¬
N 𝑓 𝑗 ← B−1

©«
©«
0𝑚𝑘+1×(𝑘+1)𝑛𝑚𝑘−1𝑤

C𝑘 ⊗ rT
𝑘, 𝑗

ª®®®¬ , 𝜏𝐵
ª®®®¬

e1 ← Dℓ𝑚𝑘+1

Z,𝜒1
, e2 ← D (𝑚

𝑘+1+(𝑘+1)𝑛𝑚𝑘)𝑤
Z,𝜒2

.

189

We can see that 𝐷0 and 𝐷1 are the views of the adversary when 𝜇 = 0 and 𝜇 = 1 are

encrypted, respectively. We then apply Evasive LWE (EvLWE) with respect to matrix B

with sampler Samp1 that outputs aux1 = (aux1
1, aux1

2),P
1, S1 as follows:6

S1 = (s, s0, . . . , s𝑘)

aux1
1 = s((A0 − x0 ⊗ I𝑚) ⊗ I⊗𝑘) + s0(D0 ⊗ I⊗𝑘) + e1

aux1
2 = (x0, {x𝑖, 𝑗 , r𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {Y𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , { 𝑓 𝑗 , r𝑘, 𝑗 } 𝑗∈[𝑄] ,A,C1, . . . ,C𝑘 ,U)

P𝑖, 𝑗 =

©«

(A𝑖 − x𝑖, 𝑗 ⊗ I) ⊗ I⊗(𝑖−1) ⊗ rT
𝑖, 𝑗
⊗ I⊗(𝑘−𝑖)

0𝑖𝑛𝑚𝑘×ℓ𝑚𝑘

D𝑖 ⊗ I⊗(𝑖−1) ⊗ rT
𝑖, 𝑗
⊗ I⊗(𝑘−𝑖)

0(𝑘−𝑖)𝑛𝑚𝑘×ℓ𝑚𝑘

ª®®®®®®®®®®®¬
, for 𝑖 ∈ [𝑘 − 1], 𝑗 ∈ [𝑄]

P𝑘, 𝑗 =

©«
A 𝑓 𝑗U ⊗ I⊗(𝑘−1) ⊗ rT

𝑘, 𝑗

0𝑘𝑛𝑚𝑘×𝑚𝑘

D𝑘 ⊗ I⊗(𝑘−1) ⊗ rT
𝑘, 𝑗

ª®®®®®®®¬
, for 𝑗 ∈ [𝑄]

P𝑘+1, 𝑗 =

©«
0𝑚𝑘+1×(𝑘+1)𝑛𝑚𝑘−1𝑤

C𝑘 ⊗ rT
𝑘, 𝑗

ª®®®¬ , for 𝑗 ∈ [𝑄]

P1 = (P1,1∥ · · · ∥P1,𝑄 ∥ · · · ∥P𝑘−1,1∥ · · · ∥P𝑘−1,𝑄 ∥P𝑘,1∥ · · · ∥P𝑘,𝑄 ∥P𝑘+1,1∥ · · · ∥P𝑘+1,𝑄)

Then from Lemma 4.7, to prove that 𝐷0 and 𝐷1 are computationally indistinguishable, it

suffices to prove the computational indistinguishability between the following

distributions:

Distribution 𝐷1
0:

©«
aux1

2, B, c1, c2,

{c𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {c𝑘, 𝑗 , d 𝑗 } 𝑗∈[𝑄]

ª®®®¬
6By Lemma 4.7, it suffices to invoke the evasive LWE for a modified sampler that outputs random aux1.

The same comments apply to other invocations of the assumption.

190

Distribution 𝐷1
1:

©«
aux1

2, B, v1, v2,

{v𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {v𝑘, 𝑗 ,w 𝑗 } 𝑗∈[𝑄]

ª®®®¬,

where v (resp., w) vectors above are sampled uniformly at random from the same

domain as the corresponding c (resp., d) vectors and

c𝑖, 𝑗 = S1P𝑖, 𝑗 + e𝑖, 𝑗

= s((A𝑖 − x𝑖, 𝑗 ⊗ I) ⊗ I⊗(𝑖−1) ⊗ rT
𝑖, 𝑗 ⊗ I⊗(𝑘−𝑖)) + s𝑖 (D𝑖 ⊗ I⊗(𝑖−1) ⊗ rT

𝑖, 𝑗 ⊗ I⊗(𝑘−𝑖))

+e𝑖, 𝑗

c𝑘, 𝑗 = S1P𝑘, 𝑗 + e𝑘, 𝑗

= s(A 𝑓 𝑗U 𝑗 ⊗ I⊗(𝑘−1) ⊗ rT
𝑘, 𝑗) + s𝑘 (D𝑘 ⊗ I⊗(𝑘−1) ⊗ rT

𝑘, 𝑗) + e𝑘, 𝑗

d 𝑗 = S1P𝑘+1, 𝑗 + e′𝑗

= (s0, . . . , s𝑘) (C𝑘 ⊗ rT
𝑘, 𝑗) + e′𝑗

= (s0, . . . , s𝑘) (I(𝑘+1)𝑛𝑚𝑘−1 ⊗ rT
𝑘, 𝑗)C𝑘 + e′𝑗

where e𝑖, 𝑗 ← Dℓ𝑚𝑘

Z,𝜒3
, e𝑘, 𝑗 ← D𝑚𝑘

Z,𝜒4
, e′

𝑗
← D (𝑘+1)𝑛𝑚

𝑘−1𝑤
Z,𝜒5

.

Note that we set 𝜒2 > 𝜒3, 𝜒4, 𝜒5 so that we can rely on quantitatively weaker evasive

LWE assumption (See Remark 8). We also note that here, we have 𝜒3 = 𝜒4 ≠ 𝜒5, where

Gaussian distributions with different standard deviations are mixed in the precondition

distribution. We refer to Remark 7 for the detail.

To show the indistinguishability between the two distributions 𝐷1
0 and 𝐷1

1, we again apply

Evasive LWE, this time with respect to matrix C𝑘 and a sampler Samp2 as described

191

below:

S2 =

©«
(s0, . . . , s𝑘) (I(𝑘+1)𝑛𝑚𝑘−1 ⊗ rT

𝑘,1)
...

(s0, . . . , s𝑘) (I(𝑘+1)𝑛𝑚𝑘−1 ⊗ rT
𝑘,𝑄
)

ª®®®®®®®¬
aux2

1 = c1, c2, {c𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {c𝑘, 𝑗 } 𝑗∈[𝑄]

aux2
2 = (x0, {x𝑖, 𝑗 , r𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {Y𝑖, 𝑗 }𝑖∈[𝑘−2], 𝑗∈[𝑄] , { 𝑓 𝑗 , r𝑘, 𝑗 } 𝑗∈[𝑄] ,

A,B,C1, . . . ,C𝑘−1,U)

P2 = (C𝑘−1 ⊗ rT
𝑘−1,1∥ · · · ∥C𝑘−1 ⊗ rT

𝑘−1,𝑄),

where c1, c2, c𝑖, 𝑗 , c𝑘, 𝑗 for 𝑖 ∈ [𝑘−1], 𝑗 ∈ [𝑄] are as defined in distribution 𝐷1
0. Then again

using Lemma 4.7, to prove that the two distributions are computationally indistinguishable,

it suffices to prove the computational indistinguishability between the following two

distributions:

Distribution 𝐷2
0:

©«
aux2

2, C𝑘 , c1, c2,

{c𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {d 𝑗1 , d 𝑗1, 𝑗2} 𝑗1, 𝑗2∈[𝑄] , {c𝑘, 𝑗 } 𝑗∈[𝑄]

ª®®®¬
Distribution 𝐷2

1:

©«
aux2

2, C𝑘 , v1, v2,

{v𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {w 𝑗1 ,w 𝑗1, 𝑗2} 𝑗1, 𝑗2∈[𝑄] , {v𝑘, 𝑗 } 𝑗∈[𝑄]

ª®®®¬,

where

(d 𝑗1, 𝑗2) 𝑗1, 𝑗2∈[𝑄] = S2P2 + (e′𝑗1, 𝑗2) 𝑗1, 𝑗2∈[𝑄] , e′𝑗1, 𝑗2 ← D
(𝑘+1)𝑛𝑚𝑘−2𝑤
Z,𝜒5,2

,

all the c vectors and {d 𝑗1} 𝑗1 are defined same as previously, and v (resp., w) vectors

are sampled uniformly at random from the same domain as their corresponding c

(resp., d) vectors. In the above, (a 𝑗1, 𝑗2) 𝑗1, 𝑗2∈[𝑄] denotes a matrix obtained by vertically

192

concatenating vectors {a 𝑗1, 𝑗2} 𝑗1, 𝑗2 of the same dimensions for all possible combinations

of 𝑗1, 𝑗2 ∈ [𝑄]. In particular, we have

d 𝑗1, 𝑗2 = (s0, s1, . . . , s𝑘) (I(𝑘+1)𝑛𝑚𝑘−1 ⊗ rT
𝑘, 𝑗1
) (I(𝑘+1)𝑛𝑚𝑘−2 ⊗ rT

𝑘−1, 𝑗2)C𝑘−1 + e′𝑗1, 𝑗2 .

To show that the two distributions - 𝐷2
0 and 𝐷2

1 - are computationally indistinguishable,

we again apply Evasive LWE, now with respect to matrix C𝑘−1. In general, we apply

evasive LWE 𝑘 times, where the sampler Samp𝑙 for 𝑙 ∈ [𝑘] for the 𝑙-th application of

the evasive LWE assumption is defined as follows: Samp1 is as defined before.

For 𝑙 ∈ [2, 𝑘], evasive LWE is applied with respect to the matrix C𝑘−(𝑙−2) and Samp𝑙

outputs the following:

S𝑙 =©«

...

(s0, . . . , s𝑘) (I(𝑘+1)𝑛𝑚𝑘−1 ⊗ rT
𝑘, 𝑗1
) (I(𝑘+1)𝑛𝑚𝑘−2 ⊗ rT

𝑘−1, 𝑗2) · · · (I(𝑘+1)𝑛𝑚𝑘−𝑙+1 ⊗ rT
𝑘−𝑙+2, 𝑗𝑙−1

)
...

ª®®®®®®®¬ 𝑗1,..., 𝑗𝑙−1∈[𝑄]

aux𝑙1 = c1, c2, {c𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {c𝑘, 𝑗 } 𝑗∈[𝑄] , {d 𝑗1 , d 𝑗1, 𝑗2 , . . . , d 𝑗1,..., 𝑗𝑙−2} 𝑗1,..., 𝑗𝑙−2∈[𝑄]

aux𝑙2 = (x0, {x𝑖, 𝑗 , r𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {Y𝑖, 𝑗 }𝑖∈[𝑘−𝑙], 𝑗∈[𝑄] , { 𝑓 𝑗 , r𝑘, 𝑗 } 𝑗∈[𝑄] ,

A,B, {C𝑖}𝑖∈[𝑘]\{𝑘−𝑙+2},U)

P𝑙 = (C𝑘−𝑙+1 ⊗ rT
𝑘−𝑙+1,1∥ · · · ∥C𝑘−𝑙+1 ⊗ rT

𝑘−𝑙+1,𝑄),

where

d 𝑗1, 𝑗2,..., 𝑗𝑡

= (s0, s1, . . . , s𝑘) (I(𝑘+1)𝑛𝑚𝑘−1 ⊗ rT
𝑘, 𝑗1
) · · · (I(𝑘+1)𝑛𝑚𝑘−𝑡 ⊗ rT

𝑘−𝑡+1, 𝑗𝑡)C𝑘−𝑡+1 + e′𝑗1,..., 𝑗𝑡

= (s0, s1, . . . , s𝑘) (I(𝑘+1)𝑛𝑚𝑘−𝑡 ⊗ rT
𝑘−𝑡+1, 𝑗𝑡 ⊗ rT

𝑘−𝑡+2, 𝑗𝑡−1
⊗ · · · ⊗ rT

𝑘, 𝑗1
)C𝑘−𝑡+1

+e′𝑗1,..., 𝑗𝑡 , for 𝑡 ∈ [𝑘]

where e′
𝑗1,..., 𝑗𝑡

← D (𝑘+1)𝑛𝑚
𝑘−𝑡

Z,𝜒5,𝑡
when 𝑡 ≤ 𝑘 − 1. When 𝑡 = 𝑘 , e′

𝑗1,..., 𝑗𝑘
is chosen

193

as e′
𝑗1,..., 𝑗𝑘

= (e′0, 𝑗1,..., 𝑗𝑘 , . . . , e
′
𝑘, 𝑗1,..., 𝑗𝑘

), where e′
𝑖, 𝑗1,..., 𝑗𝑘

← D𝑚ℓ
Z,𝜒6

for 𝑖 ∈ [0, 𝑘 − 1]

and e′
𝑘, 𝑗1,..., 𝑗𝑘

← D𝑚
Z,𝜒7

. Similarly to the first application of evasive LWE, we set

𝜒5 > 𝜒5,2 > · · · > 𝜒5,𝑘−1 > 𝜒6, 𝜒7 so that we can rely on quantitatively weaker evasive

LWE assumption (See Remark 8). We also note that here, we have 𝜒6 ≠ 𝜒7 for the final

usage of evasive LWE, which means that Gaussian distributions with different standard

deviations are mixed in the precondition distribution. We refer to Remark 7 for the

detail. Thus, after applying EvLWE 𝑙 times and using Lemma 4.7, it suffices to prove the

indistinguishability between the following two distributions.

Distribution 𝐷 𝑙
0:

©«
aux𝑙2, C𝑘−𝑙+2, c1, c2,

{c𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {d 𝑗1 , d 𝑗1, 𝑗2 , d 𝑗1, 𝑗2, 𝑗3 , . . . , d 𝑗1, 𝑗2,..., 𝑗𝑙 } 𝑗1,..., 𝑗𝑙∈[𝑄] , {c𝑘, 𝑗 } 𝑗∈[𝑄]

ª®®®¬
Distribution 𝐷 𝑙

1:

©«
aux𝑙2, C𝑘−𝑙+2, v1, v2,

{v𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {w 𝑗1 ,w 𝑗1, 𝑗2 ,w 𝑗1, 𝑗2, 𝑗3 , . . . ,w 𝑗1, 𝑗2,..., 𝑗𝑙 } 𝑗1,..., 𝑗𝑙∈[𝑄] , {v𝑘, 𝑗 } 𝑗∈[𝑄]

ª®®®¬,

where all the c and the d vectors are same as defined previously and v (resp., w) vectors

are sampled uniformly at random from the same domain as their corresponding c (resp.,

d) vectors.

In particular, we get that after applying EvLWE 𝑘 times, it suffices to prove the

indistinguishability between the following two distributions:

Distribution 𝐷′0 = 𝐷𝑘
0 :

©«
aux′2, C2, c1, c2,

{c𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {d 𝑗1 , d 𝑗1, 𝑗2 , d 𝑗1, 𝑗2, 𝑗3 , . . . , d 𝑗1, 𝑗2,..., 𝑗𝑘 } 𝑗1,..., 𝑗𝑘∈[𝑄] , {c𝑘, 𝑗 } 𝑗∈[𝑄]

ª®®®¬
Distribution 𝐷′1 = 𝐷𝑘

1 :

194

©«
aux′2, C2, v1, v2,

{v𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , {w 𝑗1 ,w 𝑗1, 𝑗2 ,w 𝑗1, 𝑗2, 𝑗3 , . . . ,w 𝑗1, 𝑗2,..., 𝑗𝑙 } 𝑗1,..., 𝑗𝑙∈[𝑄] , {v𝑘, 𝑗 } 𝑗∈[𝑄]

ª®®®¬,

where aux′2 = (x0, {x𝑖, 𝑗 , r𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , { 𝑓 𝑗 , r𝑘, 𝑗 } 𝑗∈[𝑄] ,A,B, {C𝑖}𝑖∈[𝑘]\{2},U). All the

c, d, v, and w vectors are same as defined before.

From the discussion above, to complete the proof of Theorem 4.23, it suffices to prove

Lemma 4.24 in the following. ■

Lemma 4.24. Distributions 𝐷′0 and 𝐷′1 are computationally indistinguishable under the

hardness assumption of LWE.

Proof. We prove the computational indistinguishability between the two hybrids - 𝐷′0

and 𝐷′1 via the following hybrids:

G0 : This is same as the distribution 𝐷′0. For ease of reading and setting up notations,

let us list what the adversary can see here. The adversary can see

aux : =
(
x0, {x𝑖, 𝑗 , r𝑖, 𝑗 }𝑖∈[𝑘−1], 𝑗∈[𝑄] , { 𝑓 𝑗 , r𝑘, 𝑗 } 𝑗∈[𝑄] ,A,B, {C𝑖}𝑖∈[𝑘] ,U

)
c1 = s((A0 − x0 ⊗ I) ⊗ I⊗𝑘) + s0(D0 ⊗ I⊗𝑘) + e1

c2 = (s, s0, · · · , s𝑘)B + e2

c𝑖, 𝑗 = s((A𝑖 − x𝑖, 𝑗 ⊗ I) ⊗ I⊗(𝑖−1) ⊗ rT
𝑖, 𝑗 ⊗ I⊗(𝑘−𝑖))

+s𝑖 (D𝑖 ⊗ I⊗(𝑖−1) ⊗ rT
𝑖, 𝑗 ⊗ I⊗(𝑘−𝑖)) + e𝑖, 𝑗

for 𝑖 ∈ [𝑘 − 1], 𝑗 ∈ [𝑄]

c𝑘, 𝑗 = s(A 𝑓 𝑗U ⊗ I⊗(𝑘−1) ⊗ rT
𝑘, 𝑗) + s𝑘 (D𝑘 ⊗ I⊗(𝑘−1) ⊗ rT

𝑘, 𝑗) + e𝑘, 𝑗

for 𝑗 ∈ [𝑄]

d 𝑗𝑡 , 𝑗𝑡+1,..., 𝑗𝑘 = (s0, s1, . . . , s𝑘) (I(𝑘+1)𝑛𝑚𝑡−1 ⊗ rT
𝑡, 𝑗𝑡
⊗ rT

𝑡+1, 𝑗𝑡+1 ⊗ · · · ⊗ rT
𝑘, 𝑗𝑘
)C𝑡 + e′𝑗𝑡 ,..., 𝑗𝑘 ,

for 𝑡 ∈ [𝑘], 𝑗𝑡 , . . . 𝑗𝑘 ∈ [𝑄]

195

where we have relabeled the subscripts 𝑗1, 𝑗2, . . ., for making the notation simpler.

Note that this can be done without loss of generality. We then observe that

d 𝑗1, 𝑗2,..., 𝑗𝑘

= (s0, s1, . . . , s𝑘) (I(𝑘+1)𝑛 ⊗ rT
1, 𝑗1 ⊗ · · · ⊗ rT

𝑘, 𝑗𝑘
)C1 + e′𝑗1,..., 𝑗𝑘

= (s0, s1, . . . , s𝑘)

©«
I𝑛 ⊗ rT

𝑗1,..., 𝑗𝑘

. . .

I𝑛 ⊗ rT
𝑗1,..., 𝑗𝑘

ª®®®®®®®¬

©«
D0

. . .

D𝑘

ª®®®®®®®¬
+ e′𝑗1,..., 𝑗𝑘

=

©«
s0(I𝑛 ⊗ rT

𝑗1,..., 𝑗𝑘
)D0 + e′0, 𝑗1,..., 𝑗𝑘︸ ︷︷ ︸

:=p0, 𝑗1 ,..., 𝑗𝑘

, . . . s𝑘 (I𝑛 ⊗ rT
𝑗1,..., 𝑗𝑘

)D𝑘 + e′𝑘, 𝑗1,..., 𝑗𝑘︸ ︷︷ ︸
:=p𝑘, 𝑗1 ,..., 𝑗𝑘

ª®®®®¬
where rT

𝑗1,..., 𝑗𝑘
= rT

1, 𝑗1 ⊗ · · · ⊗ rT
𝑘, 𝑗𝑘

and e′
𝑗1,..., 𝑗𝑘

= (e′0, 𝑗1,..., 𝑗𝑘 , . . . , e
′
𝑘, 𝑗1,..., 𝑗𝑘

).

G1 : In this hybrid, d 𝑗1, 𝑗2,..., 𝑗𝑘 = {p𝑖, 𝑗1,..., 𝑗𝑘 }𝑖∈[0,𝑘], 𝑗1,..., 𝑗𝑘∈[𝑄] is computed differently.

Namely, for 𝑗1, . . . , 𝑗𝑘 ∈ [𝑄], they are computed as

p0, 𝑗1,..., 𝑗𝑘 = c1(I𝑚ℓ ⊗ rT
𝑗1,..., 𝑗𝑘

) −
(
s((A0 − x0 ⊗ I𝑚) ⊗ rT

𝑗1,..., 𝑗𝑘
) + e′0, 𝑗1,..., 𝑗𝑘

)
︸ ︷︷ ︸

:=c′0, 𝑗1 ,,..., 𝑗𝑘

p𝑖, 𝑗1,..., 𝑗𝑘 = c𝑖, 𝑗𝑖 (I𝑚ℓ ⊗ rT
𝑗1,..., 𝑗𝑖−1, 𝑗𝑖+1,..., 𝑗𝑘) −

(
s((A𝑖 − x𝑖, 𝑗𝑖 ⊗ I𝑚) ⊗ rT

𝑗1,..., 𝑗𝑘
) + e′𝑖, 𝑗1,..., 𝑗𝑘

)
︸ ︷︷ ︸

:=c′
𝑖, 𝑗1 ,,..., 𝑗𝑘

for 𝑖 ∈ [𝑘 − 1],

p𝑘, 𝑗1,..., 𝑗𝑘 = c𝑘, 𝑗𝑘 (I𝑚 ⊗ rT
𝑗1,..., 𝑗𝑘−1

) −
(
s(A 𝑓 𝑗𝑘

⊗ rT
𝑗1,..., 𝑗𝑘

) + e′𝑘, 𝑗1,..., 𝑗𝑘
)

︸ ︷︷ ︸
:=c′

𝑘, 𝑗1 ,,..., 𝑗𝑘

G2 : In this hybrid, the challenger samples d 𝑗𝑡 , 𝑗𝑡+1,..., 𝑗𝑘 for 𝑡 ≥ 2 differently. Namely, for

𝑡 ∈ [2, 𝑘] and 𝑗𝑡 , . . . , 𝑗𝑘 ∈ [𝑄], they are computed as

d 𝑗𝑡 , 𝑗𝑡+1,..., 𝑗𝑘

196

=

(
(s0, s1, . . . , s𝑘) (C𝑡 ⊗ I⊗(𝑘−𝑡+1)) + e′′𝑡

)
︸ ︷︷ ︸

:=s′𝑡

(I(𝑘+1)𝑛𝑚𝑡−1𝑤 ⊗ rT
𝑡, 𝑗𝑡
⊗ · · · ⊗ rT

𝑘, 𝑗𝑘
) + e′𝑗𝑡 ,..., 𝑗𝑘

where e′′𝑡 for 𝑡 ∈ [2, 𝑘] are sampled as e′′𝑡 ← 𝐷
(𝑘+1)𝑛𝑚𝑘𝑤
Z,𝜒1

.

G3 : In this hybrid, c1, c2, and s′𝑡 for 𝑡 ∈ [2, 𝑘] are replaced with random vectors sampled

as c1 ← Zℓ𝑚
𝑘+1

𝑞 , c2 ← Z(𝑚
𝑘+1+(𝑘+1)𝑛𝑚𝑘)𝑤

𝑞 , and s′𝑡 ← Z
(𝑘+1)𝑛𝑚𝑘𝑤
𝑞 for 𝑡 ∈ [2, 𝑘].

G4 : In this hybrid, the challenger samples d 𝑗𝑡 , 𝑗𝑡+1,..., 𝑗𝑘 for 𝑡 ≥ 2 randomly as

d 𝑗𝑡 , 𝑗𝑡+1,..., 𝑗𝑘 ← Z
(𝑘+1)𝑛𝑚𝑡−1𝑤
𝑞 .

G5 : In this hybrid, the challenger samples c𝑖, 𝑗 for 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑄] randomly. Namely,

they are sampled as c𝑖, 𝑗 ← Zℓ𝑚
𝑘

𝑞 for 𝑖 ∈ [𝑘 − 1], 𝑗 ∈ [𝑄] and c𝑘, 𝑗 ← Z𝑚
𝑘

𝑞 for

𝑗 ∈ [𝑄]. Note that in this hybrid, all the vectors except for {d 𝑗1, 𝑗2,..., 𝑗𝑘 } 𝑗1,..., 𝑗𝑘∈[𝑄] =

{p𝑖, 𝑗1,..., 𝑗𝑘 }𝑖∈[0,𝑘], 𝑗1,..., 𝑗𝑘∈[𝑄] are random.

G6 : In this hybrid, c′
𝑖, 𝑗1,..., 𝑗𝑘

for 𝑖 ∈ [0, 𝑘], 𝑗1, . . . , 𝑗𝑘 ∈ [𝑄] are sampled differently.

Namely, they are sampled as

c′0, 𝑗1,..., 𝑗𝑘 =

(
s(I ⊗ rT

𝑗1,..., 𝑗𝑘
) + e′′𝑗1,..., 𝑗𝑘

)
︸ ︷︷ ︸

:=s′
𝑗1 ,..., 𝑗𝑘

(A0 − x0 ⊗ I) + e′0, 𝑗1,..., 𝑗𝑘

c′𝑖, 𝑗1,..., 𝑗𝑘 =

(
s(I ⊗ rT

𝑗1,..., 𝑗𝑘
) + e′′𝑗1,..., 𝑗𝑘

)
︸ ︷︷ ︸

=s′
𝑗1 ,..., 𝑗𝑘

(A𝑖 − x𝑖, 𝑗𝑖 ⊗ I) + e′𝑖, 𝑗1,..., 𝑗𝑘

c′𝑘, 𝑗1,..., 𝑗𝑘 =

(
s(I ⊗ rT

𝑗1,..., 𝑗𝑘
) + e′′𝑗1,..., 𝑗𝑘

)
︸ ︷︷ ︸

=s′
𝑗1 ,..., 𝑗𝑘

A 𝑓 𝑗𝑘
+ e′𝑘, 𝑗1,..., 𝑗𝑘

for 𝑖 ∈ [𝑘 − 1], 𝑗1, . . . , 𝑗𝑘 ∈ [𝑄], where e′′
𝑗1,..., 𝑗𝑘

← 𝐷𝑚
Z,𝜒1

.

G7 : In this hybrid, s′
𝑗1,..., 𝑗𝑘

for 𝑗1, . . . , 𝑗𝑘 ∈ [𝑄] are replaced with random vectors

197

sampled as s′
𝑗1,..., 𝑗𝑘

← Z𝑚𝑞 .

G8 : In this hybrid, c′
𝑘, 𝑗1,..., 𝑗𝑘

for 𝑗1, . . . , 𝑗𝑘 ∈ [𝑄] are computed differently as

c′𝑘, 𝑗1,..., 𝑗𝑘 = c′[0,𝑘−1], 𝑗1,... 𝑗𝑘ĤA, 𝑓 𝑗𝑘 ,x 𝑗1 ,... 𝑗𝑘−1
U +

(
s′𝑗1,..., 𝑗𝑘U + e′𝑘, 𝑗1,..., 𝑗𝑘

)
.

where c′[0,𝑘−1], 𝑗1,... 𝑗𝑘 := (c′0, 𝑗1,... 𝑗𝑘 | · · · |c
′
𝑘−1, 𝑗1,... 𝑗𝑘) and

x 𝑗1,... 𝑗𝑘−1 = (x0 |x1, 𝑗1 | · · · |x𝑘−1, 𝑗𝑘−1)

G9 : In this hybrid, c′
𝑖, 𝑗1,..., 𝑗𝑘

for 𝑖 ∈ [0, 𝑘], 𝑗1, . . . , 𝑗𝑘 ∈ [𝑄] are sampled randomly.

Namely, for 𝑗1, . . . , 𝑗𝑘 ∈ [𝑄], we have c′
𝑖, 𝑗1,..., 𝑗𝑘

← Z𝑚ℓ𝑞 for 𝑖 ∈ [0, 𝑘 − 1] and

c′
𝑘, 𝑗1,..., 𝑗𝑘

← Z𝑚𝑞 .

It is easy to see that the distribution in G9 is the same as that of 𝐷′1.

Indistinguishability of hybrids:

We prove the indistinguishability between the hybrid distributions via the following

claims.

Claim 4.25. G0 ≈𝑠 G1

Proof. The two hybrids differ only in the error terms in {p𝑖, 𝑗1,..., 𝑗𝑘 }𝑖∈[0,𝑘] and are

indistinguishable due to the smudging lemma 4.5. We show this for the case of 𝑖 ∈ [𝑘 −1]

here. The case of 𝑖 = 0 and 𝑖 = 𝑘 can be shown similarly.

In G0:

p𝑖, 𝑗1,..., 𝑗𝑘 = s𝑖 (I𝑛 ⊗ rT
𝑗1,..., 𝑗𝑘

)D𝑖 + e′𝑖, 𝑗1,..., 𝑗𝑘

In G1:

p𝑖, 𝑗1,..., 𝑗𝑘 = c𝑖, 𝑗𝑖 (I𝑚ℓ ⊗ rT
𝑗1,..., 𝑗𝑖−1, 𝑗𝑖+1,..., 𝑗𝑘) −

(
s((A𝑖 − x𝑖, 𝑗𝑖 ⊗ I𝑚) ⊗ rT

𝑗1,..., 𝑗𝑘
) + e′𝑖, 𝑗1,..., 𝑗𝑘

)
= s((A𝑖 − x𝑖, 𝑗𝑖 ⊗ I𝑚) ⊗ rT

𝑗1,..., 𝑗𝑘
) + s𝑖 (D𝑖 ⊗ rT

𝑗1,..., 𝑗𝑘
) + e𝑖, 𝑗 (I𝑚ℓ ⊗ rT

𝑗1,..., 𝑗𝑖−1, 𝑗𝑖+1,..., 𝑗𝑘)

−
(
s((A𝑖 − x𝑖, 𝑗𝑖 ⊗ I𝑚) ⊗ rT

𝑗1,..., 𝑗𝑘
) + e′𝑖, 𝑗1,..., 𝑗𝑘

)

198

= s𝑖 (D𝑖 ⊗ rT
𝑗1,..., 𝑗𝑘

) + e𝑖, 𝑗 (I𝑚ℓ ⊗ rT
𝑗1,..., 𝑗𝑖−1, 𝑗𝑖+1,..., 𝑗𝑘) − e′𝑖, 𝑗1,..., 𝑗𝑘︸ ︷︷ ︸

:=error

Clearly, the two hybrids differ only in the error terms. Thus, the indistinguishability

follows due to the following:

e′𝑖, 𝑗1,..., 𝑗𝑘 ≈𝑠 −e′𝑖, 𝑗1,..., 𝑗𝑘 + e𝑖, 𝑗 (I𝑚ℓ ⊗ rT
𝑗1,..., 𝑗𝑖−1, 𝑗𝑖+1,..., 𝑗𝑘).

The above is true since the distribution of −e𝑖, 𝑗1,..., 𝑗𝑘 is the same as that of e𝑖, 𝑗1,..., 𝑗𝑘 by

the symmetry of the discrete Gaussian distribution and by the sumdging lemma, which

is applicable since 𝜒6 ≥ (𝑚𝛾)𝑘𝜆𝜔(1)𝜒3 and we have ∥e𝑖, 𝑗 (I𝑚ℓ ⊗ rT
𝑗1,..., 𝑗𝑖−1, 𝑗𝑖+1,..., 𝑗𝑘

)∥∞ ≤

(𝑚𝛾 poly(𝜆))𝑘 𝜒3. The case of 𝑖 = 𝑘 is handled similarly, by using 𝜒7 ≥ (𝑚𝛾)𝑘𝜆𝜔(1)𝜒4.

■

Claim 4.26. G1 ≈𝑠 G2

Proof. The two hybrids differ only in the error term in {d 𝑗𝑡 , 𝑗𝑡+1,..., 𝑗𝑘 }𝑡≥2, 𝑗𝑡 ,..., 𝑗𝑘∈[𝑄] and

are indistinguishable due to the smudging lemma. In G1:

d 𝑗𝑡 , 𝑗𝑡+1,..., 𝑗𝑘 = (s0, s1, . . . , s𝑘) (I(𝑘+1)𝑛𝑚𝑡−1 ⊗ rT
𝑡, 𝑗𝑡
⊗ · · · ⊗ rT

𝑘, 𝑗𝑘
)C𝑡 + e′𝑗𝑡 ,..., 𝑗𝑘

In G2:

d 𝑗𝑡 , 𝑗𝑡+1,..., 𝑗𝑘

=

(
(s0, s1, . . . , s𝑘) (C𝑡 ⊗ I⊗(𝑘−𝑡+1)) + e′′𝑡

)
(I(𝑘+1)𝑛𝑚𝑡−1𝑤 ⊗ rT

𝑡, 𝑗𝑡
⊗ · · · ⊗ rT

𝑘, 𝑗𝑘
) + e′𝑗𝑡 ,..., 𝑗𝑘

= (s0, s1, . . . , s𝑘) (I(𝑘+1)𝑛𝑚𝑡−1 ⊗ rT
𝑡, 𝑗𝑡
⊗ · · · ⊗ rT

𝑘, 𝑗𝑘
)C𝑡

+ e′𝑗𝑡 ,..., 𝑗𝑘 + e′′𝑡 (I(𝑘+1)𝑛𝑚𝑡−1𝑤 ⊗ rT
𝑡, 𝑗𝑡
⊗ · · · ⊗ rT

𝑘, 𝑗𝑘
)︸ ︷︷ ︸

=error

Clearly, the two hybrids differ only in the error terms. Thus, the indistinguishability

follows due to the following:

e′𝑗𝑡 ,..., 𝑗𝑘 ≈𝑠 e′𝑗𝑡 ,..., 𝑗𝑘 + e′′𝑡 (I(𝑘+1)𝑛𝑚𝑡−1𝑤 ⊗ rT
𝑡, 𝑗𝑡
⊗ · · · ⊗ rT

𝑘, 𝑗𝑘
).

199

The above is true by the smudging lemma, since we have 𝜒5,𝑡 ≥ (𝑚𝛾)𝑘 𝜒1 · 𝜆𝜔(1) for

𝑡 ≥ 2 and ∥e′′𝑡 (I(𝑘+1)𝑛𝑚𝑡−1𝑤 ⊗ rT
𝑡, 𝑗𝑡
⊗ · · · ⊗ rT

𝑘, 𝑗𝑘
∥∞ ≤ (𝑚𝛾 poly(𝜆))𝑘 𝜒1. ■

Claim 4.27. G2 ≈𝑐 G3 due to LWE.

Proof. Let us write B as (BT
𝑈
|BT
𝑀
|BT
𝐿
)T so that

c2 = (s, s0, · · · , s𝑘)B + e2 = sB𝑈 + (s1, . . . , s𝑘)B𝐿 + (s0B𝑀 + e2).

We also write C𝑡 as C𝑡 = (CT
𝑡,𝑈
|CT
𝑡,𝐿
)T so that

s′𝑡 = (s0, s1, . . . , s𝑘) (C𝑡 ⊗ I⊗𝑘−𝑡+1) + e′′𝑡

= (s0, s1, . . . , s𝑘)
©«
C𝑡,𝑈 ⊗ I⊗𝑘−𝑡+1

C𝑡,𝐿 ⊗ I⊗𝑘−𝑡+1

ª®®®¬ + e′′𝑡

= (s1, . . . , s𝑘) (C𝑡,𝐿 ⊗ I⊗𝑘−𝑡+1) +
(
s0(C𝑡,𝑈 ⊗ I⊗𝑘−𝑡+1) + e′′𝑡

)
By Lemma 4.12, we have that s0(D ⊗ I⊗𝑘) + e1, s0B𝑀 + e2, and {s0(C𝑡,𝑈 ⊗ I⊗𝑘−𝑡+1) +

e′′𝑡 }𝑡∈[2,𝑘] are indistinguishable from random vectors. The claim follows since these terms

mask c1, c2, and {s′𝑡}𝑡∈[2,𝑘] , respectively. ■

Claim 4.28. G3 ≈𝑐 G4 due to LWE.

Proof. In G3, d 𝑗𝑡 , 𝑗𝑡+1,..., 𝑗𝑘 is chosen as s′𝑡 (I(𝑘+1)𝑛𝑚𝑡−1𝑤 ⊗ rT
𝑡, 𝑗𝑡
⊗ · · · ⊗ rT

𝑘, 𝑗𝑘
) + e′

𝑗𝑡 ,..., 𝑗𝑘
where

s′𝑡 is chosen uniformly at random for all 𝑡. The indistinguishability follows by applying

Lemma 4.11 for each 𝑡 ∈ [2, 𝑘], which is possible since we set 𝜒5,𝑡 ≥ (𝑚𝛾 · 𝜆𝜔(1))𝑘 . ■

Claim 4.29. G4 ≈𝑐 G5 due to LWE.

Proof. We observe that c𝑖, 𝑗 is masked by v𝑖, 𝑗 := s𝑖 (D𝑖 ⊗ I⊗(𝑖−1) ⊗ rT
𝑖, 𝑗
⊗ I⊗(𝑘−𝑖)) + e𝑖, 𝑗

for 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑄]. We show that {v𝑖, 𝑗 } 𝑗∈[𝑄] is pseudorandom for the case of 𝑖 = 𝑘 .

Other cases can be shown similarly. To show the indistinguishability, we first change the

200

distribution of {v𝑘, 𝑗 } 𝑗 so that they are sampled as

v𝑘, 𝑗 =
(
s𝑘 (D𝑘 ⊗ I⊗𝑘) + e′′𝑘

)
︸ ︷︷ ︸

:=s′
𝑘

(
I⊗𝑘 ⊗ r𝑘, 𝑗

)
+ e𝑘, 𝑗 .

where e′′
𝑘
← D𝑚+1

Z,𝜒1
. We claim that this is statistically indistinguishable from the original

distribution. To see this, we observe that

v𝑘, 𝑗 = s𝑘 (D𝑘 ⊗ r𝑘, 𝑗) + e′′𝑘
(
I⊗𝑘 ⊗ r𝑘, 𝑗

)
+ e𝑘, 𝑗︸ ︷︷ ︸

=error

and these distributions only differ in the error terms. We have

e𝑘, 𝑗 ≈𝑠 e′′𝑘
(
I⊗𝑘 ⊗ r𝑘, 𝑗

)
+ e𝑘, 𝑗

by the smudging lemma, since we have 𝜒3 ≥ (𝑚𝛾)𝑘𝜆𝜔(1)𝜒1 and ∥e′′
𝑘

(
I⊗𝑘 ⊗ r𝑘, 𝑗

)
∥∞ ≤

(𝑚𝛾 poly(𝜆))𝑘 𝜒1. The case of 𝑖 ≠ 𝑘 is shown similarly, using 𝜒4 ≥ (𝑚𝛾)𝑘𝜆𝜔(1)𝜒1. We

then observe that we can replace s′
𝑘

with a random vector by applying LWE with secret s𝑘 .

We then apply LWE once again, now the variant with short public matrix and with the

secret s′
𝑘
, we can conclude that {v𝑘, 𝑗 }𝑘, 𝑗 are indistinguishable from random vectors. ■

Claim 4.30. G5 ≈𝑠 G6

Proof. The two hybrids differ only in the error terms in {c′
𝑖, 𝑗1,..., 𝑗𝑘

}𝑖∈[0,𝑘], 𝑗1,..., 𝑗𝑘∈[𝑄] and

are indistinguishable due to the smudging lemma. We first show this for the case of

𝑖 ∈ [𝑘 − 1]. In G5:

c′𝑖, 𝑗1,,..., 𝑗𝑘 = s((A𝑖 − x𝑖, 𝑗𝑖 ⊗ I) ⊗ rT
𝑗1,..., 𝑗𝑘

) + e′𝑖, 𝑗1,..., 𝑗𝑘

In G6:

c′𝑖, 𝑗1,,..., 𝑗𝑘 =

(
s(I𝑚 ⊗ rT

𝑗1,..., 𝑗𝑘
) + e′′𝑗1,..., 𝑗𝑘

)
(A𝑖 − x𝑖, 𝑗𝑖 ⊗ I) + e′𝑖, 𝑗1,..., 𝑗𝑘

= s((A𝑖 − x𝑖, 𝑗𝑖 ⊗ I) ⊗ rT
𝑗1,..., 𝑗𝑘

) + e′′𝑗1,..., 𝑗𝑘 (A𝑖 − x𝑖, 𝑗𝑖 ⊗ I) + e′𝑖, 𝑗1,..., 𝑗𝑘︸ ︷︷ ︸
=error

201

Clearly, the two hybrids differ only in the error terms. Thus, the indistinguishability

follows due to the following:

e′𝑖, 𝑗1,..., 𝑗𝑘 ≈𝑠 e′𝑖, 𝑗1,..., 𝑗𝑘 + e′′𝑗1,..., 𝑗𝑘 (A𝑖 − x𝑖, 𝑗𝑖 ⊗ I)

The above is true by the smudging lemma, since we have 𝜒6 ≥ 𝑚𝛾𝜒1𝜆
𝜔(1) and

∥e′′
𝑗1,..., 𝑗𝑘

(A𝑖 − x𝑖, 𝑗𝑖 ⊗ I)∥∞ ≤ 𝑚𝛾 poly(𝜆). The case of 𝑖 = 0 is shown in the same manner.

The case of 𝑖 = 𝑘 is shown similarly, noting that

e′𝑘, 𝑗1,..., 𝑗𝑘 ≈𝑠 e′𝑘, 𝑗1,..., 𝑗𝑘 + e′′𝑗1,..., 𝑗𝑘A 𝑓 𝑗𝑘

holds since we have 𝜒7 ≥ 𝑚𝛽𝜒1 · 𝜆𝜔(1) and ∥e′′
𝑗1,..., 𝑗𝑘

A 𝑓 𝑗𝑘
∥∞ ≤ 𝑚𝜒1∥A 𝑓 𝑗𝑘

∥∞ · poly(𝜆) ≤

𝑚𝛽𝜒1 · poly(𝜆). ■

Claim 4.31. G6 ≈𝑐 G7

Proof. The indistinguishability follows from LWE by Lemma 4.11, which is applicable

since 𝜒1 ≥ (𝑚𝛾)𝑘𝜆𝜔(1) . ■

Claim 4.32. G7 ≈𝑠 G8

Proof. The two hybrids differ only in the error terms in c′
𝑘, 𝑗1,..., 𝑗𝑘

. The indistinguishability

follows from the smudging lemma. In G7,

c′𝑘, 𝑗1,..., 𝑗𝑘 = s′𝑗1,..., 𝑗𝑘A 𝑓 𝑗𝑘
U + e′𝑘, 𝑗1,..., 𝑗𝑘

In G8,

c′𝑘, 𝑗1,..., 𝑗𝑘 = c′[0,𝑘−1], 𝑗1,... 𝑗𝑘ĤA, 𝑓 𝑗𝑘 ,x 𝑗1 ,... 𝑗𝑘−1
U +

(
s′𝑗1,..., 𝑗𝑘U + e′𝑘, 𝑗1,..., 𝑗𝑘

)
=

(
s′𝑗1,..., 𝑗𝑘 (A − x 𝑗1,..., 𝑗𝑘−1 ⊗ I) + e′[0,𝑘−1], 𝑗1,..., 𝑗𝑘

)
ĤA, 𝑓 𝑗𝑘 ,x 𝑗1 ,... 𝑗𝑘−1

U

+
(
s′𝑗1,..., 𝑗𝑘U + e′𝑘, 𝑗1,..., 𝑗𝑘

)
= s′𝑗1,..., 𝑗𝑘 (A 𝑓 𝑗𝑘

− 𝑓 𝑗𝑘 (x 𝑗1,..., 𝑗𝑘−1) · I)U+

202

s′𝑗1,..., 𝑗𝑘U + e′𝑘, 𝑗1,..., 𝑗𝑘 + e′[0,𝑘−1], 𝑗1,..., 𝑗𝑘ĤA, 𝑓 𝑗𝑘 ,x 𝑗1 ,... 𝑗𝑘−1
U

= s′𝑗1,..., 𝑗𝑘A 𝑓 𝑗𝑘
U + e′𝑘, 𝑗1,..., 𝑗𝑘 + e′[0,𝑘−1], 𝑗1,..., 𝑗𝑘ĤA, 𝑓 𝑗𝑘 ,x 𝑗1 ,... 𝑗𝑘−1

U︸ ︷︷ ︸
=error

,

where we define e′[0,𝑘−1], 𝑗1,..., 𝑗𝑘 = (e
′
0, 𝑗1,..., 𝑗𝑘 , . . . , e

′
𝑘−1, 𝑗1,..., 𝑗𝑘) in the second line and we

use 𝑓 𝑗𝑘 (x 𝑗1,..., 𝑗𝑘−1) = 1 in the last line. Clearly, the two hybrids differ only in the error

terms. Thus, the indistinguishability follows due to the following:

e′𝑘, 𝑗1,..., 𝑗𝑘 + e′[0,𝑘−1], 𝑗1,..., 𝑗𝑘ĤA, 𝑓 𝑗𝑘 ,x 𝑗1 ,... 𝑗𝑘−1
≈𝑠 e′𝑘, 𝑗1,..., 𝑗𝑘

which is true when 𝜒7 ≥ 𝑚𝛽ℓ𝜒6 ·𝜆𝜔(1) , since we have ∥e′[0,𝑘−1], 𝑗1,..., 𝑗𝑘ĤA, 𝑓 𝑗𝑘 ,x 𝑗1 ,... 𝑗𝑘−1
∥∞ ≤

𝑚𝛽ℓ𝜒6 poly(𝜆), where ∥ĤA, 𝑓 𝑗𝑘 ,x 𝑗1 ,... 𝑗𝑘−1
∥∞ ≤ 𝛽. ■

Claim 4.33. G8 ≈𝑐 G9

Proof. The indistinguishability between the two hybrids follows from the fact that the

following distribution is indistinguishable from random:

A,U,
{
r𝑖, 𝑗𝑖 , s

′
𝑗1,..., 𝑗𝑘

(A − x 𝑗1,..., 𝑗𝑘 ⊗ I) + e′[0,𝑘−1], 𝑗1,..., 𝑗𝑘 , s
′
𝑗1,..., 𝑗𝑘

U + e′𝑘, 𝑗1,..., 𝑗𝑘
}
𝑖∈[𝑘], 𝑗1,..., 𝑗𝑘∈[𝑄]

This can be shown by LWE with short public matrix as follows. Here, we change the

LWE sample with respect to matrix (A − x 𝑗1,..., 𝑗𝑘 ⊗ I|U) into random vectors for each

combination of (𝑗1, . . . , 𝑗𝑘) one by one. To do so, we first use the smudging lemma

to see that the distribution of A and A − x 𝑗1,..., 𝑗𝑘 ⊗ I are statistically indistinguishable,

since each entry of x 𝑗1,..., 𝑗𝑘 ⊗ I is either 0 or 1, while that of A is chosen from DZ,𝛾 with

𝛾 = 𝜆𝜔(1) . We then apply the LWE with short public matrix to see that the LWE samples

with respect to the secret s 𝑗1,..., 𝑗𝑘 are indistinguishable from the random vectors. ■

This completes the proof of Lemma 4.24. ■

203

4.7.3 A Construction for P

Here, we discuss the variant of our scheme that can deal with circuits with arbitrary

(bounded) polynomial depth. Because the construction is very similar to our construction

for NC1 circuits, we only highlight the difference here.

• We sample the matrices A0, . . . ,A𝑘−1 uniformly at random from Z𝑛×𝑚ℓ𝑞 rather than
a Gaussian distribution over Z𝑚×𝑚ℓ.

• We replace A0−x0 ⊗ I in the encryption algorithm with A0−x0 ⊗G. Similarly, we
also replace A𝑖 − x𝑖 ⊗ I in X𝑖 with A𝑖 − x𝑖 ⊗G. Accordingly, s is chosen randomly
from Z𝑛𝑚𝑘−1

𝑞 rather than Z𝑚𝑘𝑞 .

• The low-norm variant of the lattice evaluation algorithms (EvalF,EvalFX) from
Lemma 4.4 used in KeyGen𝑘 and Dec are replaced with those of Lemma 3.2 (i.e.,
the regular one).

• We use the same parameters as Sec. 4.7.1 except that 𝛽 is set to be (2𝑚)𝑂 (𝑑)
reflecting the fact that we replace the homomorphic lattice evaluation algorithm.

The correctness of the scheme can be shown similarly to Sec. 4.7.1. The scheme can be

proven secure assuming the strengthening of the tensor LWE assumption defined below.

Assumption 4.34 (Extended Tensor LWE). Let 𝑛, 𝑚, 𝑞, ℓ, 𝑄 ∈ N be parameters, 𝜒 and

𝛾 be Gaussian distributions, and 𝑘 be a constant. For all x 𝑗1,..., 𝑗𝑘 ∈ {0, 1}ℓ indexed by

𝑗1, . . . , 𝑗𝑘 ∈ [𝑄], we have

A,
{
s(I𝑛 ⊗ rT

1, 𝑗1 ⊗ · · · ⊗ rT
𝑘, 𝑗𝑘
) (A − x 𝑗1,..., 𝑗𝑘 ⊗ G) + e 𝑗1,..., 𝑗𝑘 , r𝑖, 𝑗𝑖

}
𝑖∈[𝑘], 𝑗1,..., 𝑗𝑘∈[𝑄]

≈𝑐 A, {c 𝑗1,..., 𝑗𝑘 , r𝑖, 𝑗𝑖 }𝑖∈[𝑘], 𝑗1,..., 𝑗𝑘∈[𝑄]

where A ← Z𝑚×ℓ𝑚𝑞 , s ← Z𝑚
𝑘𝑛

𝑞 , e 𝑗1,..., 𝑗𝑘 ← Dℓ𝑚
Z,𝜒, r𝑖, 𝑗 ← D𝑚

Z,𝛾, c𝑖, 𝑗𝑖 ← Zℓ𝑚𝑞 for 𝑖 ∈

[𝑘], 𝑗1, . . . , 𝑗𝑘 ∈ [𝑄].

Theorem 4.35. Assuming evasive LWE (Assumption 4.6) and extended tensor LWE

(Assumption 4.34) our 𝑘 input MIABE for P satisfies very selective security (Definition

4.2).

Since the proof is very similar to that of Theorem 4.23 in Sec. 4.7.2, we only provide an

overview while highlighting the difference. The first step of the proof is the same as that

204

of Theorem 4.23, where we invoke the evasive LWE assumption 𝑘 times to conclude that

in order to prove the security of the scheme, it suffices to show the indistinguishability

of the two distributions 𝐷′0 and 𝐷′1. These distributions are defined similarly, except

that A0 − x0 ⊗ I and A𝑖 − x𝑖, 𝑗𝑖 ⊗ I are replaced with A0 − x0 ⊗ G and A𝑖 − x𝑖, 𝑗𝑖 ⊗ G.

Then, the indistinguishability is shown by similar sequence of hybrids with the following

difference.

• We skip G6 and G7 and directly argue that G5 ≈𝑐 G8, where c′
𝑘, 𝑗1,..., 𝑗𝑘

is replaced
with

c′𝑘, 𝑗1,..., 𝑗𝑘 = c′[0,𝑘−1], 𝑗1,... 𝑗𝑘ĤA, 𝑓 𝑗𝑘 ,x 𝑗1 ,... 𝑗𝑘−1
U +

(
s(I𝑛 ⊗ r 𝑗1,..., 𝑗𝑘)GU + e′𝑘, 𝑗1,..., 𝑗𝑘

)
.

in G8.

• G8 ≈𝑐 G9 is shown directly from the extension of the evasive LWE assumption
above.

■

205

CHAPTER 5

ATTRIBUTE-BASED MULTI-INPUT FE (AND MORE)
FOR ATTRIBUTE-WEIGHTED SUMS

5.1 INTRODUCTION

We continue with the theme of constructing advanced encryption schemes for distributed

data where we now focus on constructing functional encryption schemes in multi-party

settings. Functional encryption (FE) [SW05; BSW11] is a generalization of public key

encryption which enables learning specific functions of encrypted data via “functional”

keys and nothing else. In FE, a secret key sk 𝑓 is associated with a function 𝑓 , a ciphertext

ctx is associated with a message x and decryption allows to compute 𝑓 (x) and nothing

else.

In this chapter, we build attribute based multi-input functional encryption (AB-MIFE),

multi-client functional encryption (MCFE) and dynamic decentralized functional

encryption (DDFE) for attribute weighted sums (AWS). We describe these primitives

below.

The Attribute-Weighted Sums (AWS) Functionality: The AWS functionality, introduced

by Abdalla, Gong, and Wee [AGW20], supports the computation of aggregate statistics

on encrypted databases. Concretely, consider a database with 𝑁 attribute-value pairs

(x𝑖, z𝑖)𝑖∈[𝑁] where x𝑖 is a public attribute associated with user 𝑖, and z𝑖 is private. Given

a function 𝑓 , the AWS functionality on input (x𝑖, z𝑖)𝑖∈[𝑁] is defined as∑︁
𝑖∈[𝑁]

𝑓 (x𝑖)⊤z𝑖 .

Multi-Input FE (MIFE): In MIFE [GGG+14] the input to a function is distributed

among multiple (say 𝑛) parties. Thus, the 𝑖𝑡ℎ party encrypts its input z𝑖 to obtain ct𝑖

and a key authority holding a master secret generates a functional key sk 𝑓 and these

enable the decryptor to compute 𝑓 (z1, . . . , z𝑛) and nothing else. In attribute based MIFE

(AB-MIFE) [ACGU20], for some functionality 𝑓 , an attribute y𝑖 is associated with a

ciphertext for slot 𝑖, in addition to an input z𝑖. The secret key is associated with an

access control policy 𝑔 in addition to the function input c. Decryption first checks if

𝑔(y1, . . . , y𝑛) = 1, and if so, it computes the MIFE functionality 𝑓 ({z𝑖}, c).

Multi-Client FE (MCFE): MCFE [GGG+14; CDG+18a; CDG+18b] is a generalization

of MIFE, where the inputs z𝑖 are additionally associated with public “labels” 𝐿𝑖 and any

input can be combined with other inputs only if they share the same label.

Dynamic Decentralized FE (DDFE): DDFE [CDSG+20], as the name suggests, is a

decentralized variant of FE, where not only can ciphertexts be generated locally and

independently but so can the keys. Thus, DDFE works in a setting where both the data

and the authority are decentralized. In DDFE for some functionality 𝑓 , the setup step is

localized and run independently by users, letting them generate their private and public

keys individually. During encryption, the set of users with whom a given input or key

object should be combined can be chosen dynamically. In more detail, each party can

specify the set of parties with which its input may be combined, a label that controls

which values should be considered together and the input z𝑖 itself. Similarly, every user

can also generate a key object which specifies the set of parties with which the key may

be combined, and a key vector c𝑖. For decryption, the ciphertexts and keys from the

parties who mutually agree to combine their inputs and keys are put together to compute

𝑓 ({z𝑖}𝑖, {c 𝑗 } 𝑗).

208

Prior Work. We summarize the state of the art below.

The AWS Functionality. For the AWS functionality, even the weakest multi-input notion,

namely MIFE is not known to the best of our knowledge. We note Abdalla et al.[AGW20]

did propose a multi-party extension to their FE for AWS. However, this scheme is a much

weaker primitive than the standard notion of MCFE (or even MIFE), since this scheme

natively only supports a single ciphertext query per slot. To extend it to the setting of

multiple queries, the authors make use of non-interactive MPC to enable the parties to

obtain a random secret sharing of 0.

In more detail, while their scheme supports labels, the difference from standard MCFE

schemes is that in their scheme each party uses a one-time secret key for each encryption

instead of long-term encryption key, and the one-time keys are generated via non-

interactive MPC run between the parties. Specifically, their scheme consists of five

algorithms (Setup,OTSKGen,Enc,KeyGen,Dec), and Setup,KeyGen,Dec are the

same as those in standard MCFE. OTSKGen(1𝜆) is a non-interactive protocol where

party 𝑖 obtains one-time secret key otsk𝑖 as the output of the protocol. Enc(otsk𝑖, x𝑖)

takes otsk𝑖 and a message x𝑖 and outputs a ciphertext ct𝑖 for party 𝑖. Correctness holds,

i.e., decrypting a set {ct𝑖}𝑖∈[𝑛] of ciphertexts with a secret key for 𝑓 reveals 𝑓 (x1, . . . , x𝑛),

only when the set of ciphertexts are generated under the one-time secret keys {otsk𝑖}𝑖∈[𝑛]

derived from a single running of OTSKGen(1𝜆). The one-time secret-key can be used

only once for encryption, otherwise security does not hold any more. Thus, this notion is

even weaker than the variant of MCFE with one-time labeling restriction [CDG+18a]

and in particular, does not imply MIFE.

AB-MIFE, MCFE and DDFE. The best known attribute-based MIFE scheme is for the

inner product functionality is by Abdalla et al.[ACGU20]. Moreover, in the AB-MIFE

construction by Abdalla et al., the ABE attribute y𝑖1 associated with the 𝑖𝑡ℎ slot is fixed

1In their notation, the embedding of access control policy and attribute are swapped to the ciphertext-policy
setting – thus, for them y𝑖 is an access control policy.

209

in the setup phase and must remain the same for all ciphertexts, instead of being chosen

dynamically by the encryptor for each encryption. For MCFE [ABG19] as well as DDFE

[CDSG+20], the largest achievable function class is linear functions (or inner products),

albeit with function hiding [AGT21b].

Multi-Input Attribute Based Encryption. An attribute based MIFE scheme implies a

multi-input attribute based encryption scheme as a special case. We recall that in an

MIABE scheme, encryptor 𝑖 encodes a secret message 𝑚𝑖 together with an attribute

y𝑖. The function key encodes a circuit 𝑔 so that decryption outputs (𝑚1, . . . , 𝑚𝑛) if

𝑔(y1, . . . , y𝑛) = 1. The generalization to multi-input predicate encryption additionally

allows hiding the attributes y𝑖. In this setting, we gave constructions for circuits in

NC1 and P under various lattice-based assumptions as described in Chapters 3 and 4.

Additionally, as described before, Francati et al.[FFMV23] also provided a multi-input

predicate encryption scheme for a conjunction of predicates. Their construction supports

the class P and is based on the Learning With Errors problem. Moreover, if the arity of

the function is restricted to a constant, their security game also supports user corruption.

However, their construction does not support collusions, which is one of the most

important and technically challenging aspects of designing attribute based encryption

schemes.

5.2 OUR RESULTS

In this work, we significantly extend the reach of multi-input functional encryption

schemes by providing the first AB-MIFE, MCFE and DDFE schemes that support the

AWS functionality. Our constructions satisfy the standard (selective) indistinguishability

based security and rely on the matrix DDH assumption on bilinear groups. We discuss

each of these contributions below.

AB-MIFE for AWS: We provide the first attribute based MIFE for the AWS functionality.

In our AB-MIFE, each encryptor can choose an attribute y𝑖 specific to its AWS input

210

{x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖] , the key generator can choose an access control policy 𝑔𝑖 along with its

AWS function ℎ𝑖 for 𝑖 ∈ [𝑛] and decryption computes:

𝑓 ((y1, {x1, 𝑗 , z1, 𝑗 } 𝑗∈[𝑁1]), . . . , (y𝑛, {x𝑛, 𝑗 , z𝑛, 𝑗 } 𝑗∈[𝑁𝑛]))

=

∑
𝑖∈[𝑛]

∑
𝑗∈[𝑁𝑖] ⟨ℎ𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩ (𝑔1(y1) = · · · = 𝑔𝑛 (y𝑛) = 0)

⊥ (otherwise)

Here, y𝑖, x𝑖, 𝑗 are public while z𝑖, 𝑗 is private, and 𝑔𝑖, ℎ𝑖 belong to arithmetic branching

programs (ABP). We note that the number of slots 𝑁𝑖 for 𝑖 ∈ [𝑛] can be unbounded, and

chosen by the encryptor dynamically.

Connection with Multi-Input Attribute-Based Encryption We observe that this

functionality also implies the notion of multi-input attribute-based encryption (MIABE)

defined in Chapter 3 for a conjunction of predicates represented as ABP. Thus, MIABE

implied from MIFE for AWS supports the functionality 𝑔(y1, . . . , y𝑛) =
∧(𝑔𝑖 (y𝑖) = 0),

where each 𝑔𝑖 is an ABP.

In contrast, the constructions of MIABE in Chapters 3 and 4 support an arbitrary 𝑔 ∈ NC1

but only outputs a fixed message whereas construction in this chapter supports the AWS

functionality. Additionally, it also supports a stronger security model which allows user

corruption, while in our MIABE constructions this is not possible since each party shares

the same master secret key. Further, by applying our MIPE compiler to the results in this

chapter, we obtain a multi-input predicate encryption scheme for constant arity, albeit

without support for user corruptions, due to the design of the compiler.

Comparing with the work of Francati et al.[FFMV23]. As discussed before, their

MIABE construction supports no collusions and user corruptions only for constant

(not polynomial) arity. In contrast, our construction of AB-MIFE supports unbounded

211

Work Arity Corruption Collusion Function Class Assumption

[FFMV23] Poly No No Conjunctions in P LWE
[FFMV23] Constant Yes No Conjunctions in P LWE

Chapter 3 2 No Yes NC1
Koala

and LWE
Chapter 4 Constant No Yes NC1 evasive LWE

Chapter 4 Constant No Yes P
evasive and
tensor LWE

This Chapter
(MIABE)

Poly Yes Yes Conjunctions in NC1 Matrix DDH

This Chapter
(MIPE)

Constant No Yes Conjunctions in NC1
Matrix DDH

and LWE

Table 5.1: Comparison with related work in MIABE and MIPE.We consider CPA-1 sided
security for the comparison with [FFMV23].

collusions, as well as user corruptions for polynomial arity. However, our construction,

being based on pairings, only supports the function class NC1 while they support P.

Additionally our construction supports computation of the expressive AWS functionality

while theirs just recovers a fixed message (i.e. our scheme is an FE not an ABE). In the

setting of MIPE, our construction does not support corruption but does support collusions,

while theirs achieves the opposite. Please see Table 5.1 for a detailed comparison.

Multi-Client FE for AWS We construct the first MCFE for Attribute-Weighted Sums,

which generalizes MIFE described above. In more detail, each encryptor can choose input

{x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖] together with a label 𝐿𝑖, the key generator can choose ABPs { 𝑓𝑖}𝑖∈[𝑛]

and decryption computes:

𝑓 ({x1, 𝑗 , z1, 𝑗 } 𝑗∈[𝑁1] , . . . , {x𝑛, 𝑗 , z𝑛, 𝑗 } 𝑗∈[𝑁𝑛]) =
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑁𝑖]

⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩

as long as all the 𝐿𝑖 are equal. This is the first MCFE that supports a functionality beyond

inner products to the best of our knowledge. Moreover, the number of slots 𝑁𝑖 allowed to

each party 𝑖 are unbounded, though the number of parties 𝑛 is bounded – this feature was

212

not achieved by prior MCFE schemes for inner products as far as we are aware.

Dynamic Decentralized FE for AWS Next, we extend our MCFE to the much more

challenging setting of DDFE. For the setting of AWS, the 𝑖𝑡ℎ encryptor chooses a set of

usersU𝑀,𝑖 with whom its input may be combined, some label 𝐿𝑖 to constrain which values

should be considered together, aside from its AWS inputs {z𝑖, 𝑗 } 𝑗∈[𝑁𝑖] which are private

and {x𝑖, 𝑗 } 𝑗∈[𝑁𝑖] which are public. For key generation, the 𝑖𝑡ℎ user also chooses a set of

usersU𝐾,𝑖 and a set of ABPs 𝑓𝑖 = { 𝑓 𝑗 } 𝑗∈U𝐾,𝑖 . If all the setsU𝑀,𝑖 andU𝐾,𝑖 match up (to

someU′
𝐾

) and if the labels in all 𝑛 ciphertext slots are equal, then decryption computes the

AWS functionality. Formally, for 𝑘𝑖 = (𝑓𝑖,U𝐾,𝑖) and 𝑚𝑖 = ({x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖] ,U𝑀,𝑖, 𝐿𝑖),

the functionality computes:

𝑓 ′({𝑖, 𝑘𝑖}𝑖∈U′
𝐾
, {𝑖, 𝑚𝑖}𝑖∈U′

𝑀
) =

∑
𝑖∈U′

𝐾

∑
𝑗∈[𝑁𝑖] ⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩ if the conditions below are satisfied

⊥ otherwise

The conditions are:

1. U′
𝐾
= U′

𝑀
and ∀ 𝑖 ∈ U′

𝐾
,U𝐾,𝑖 = U𝑀,𝑖 = U′𝐾 .

2. ∀𝑖,𝑖′∈U′
𝐾
, 𝑓𝑖 = 𝑓𝑖′ and 𝐿𝑖 = 𝐿𝑖′ .

We summarize prior work in Table 5.2. Please see Appendix 5.A for a more detailed

summary. We explain our functionalities in the framework of multi-party FE [AGT21b]

in Appendix 5.B.

5.2.1 New Applications

Our attribute-based MIFE enables several new and exciting applications that were not

possible before. Let us begin with the example for AWS suggested by [AGW20], of

computing the average age of smokers who have lung cancer. In this case, the access

control layer on top of the MIFE can capture the willingness of a user to even participate

in such a study involving their medical data. For example, perhaps a user is willing to

213

Work
(Pub, Pri)

CT
Key Functionality

MIFE [AGT22] (⊥, z𝑖) c ⟨c, z ⊗ z⟩
AB-MIFE[ACGU20] (⊥, z𝑖) {𝑦𝑖, c𝑖}𝑖∈𝑆

∧
𝑖∈𝑆 𝑓𝑖 (𝑦𝑖) ·

∑
𝑖∈𝑆
⟨z𝑖, c𝑖⟩

AB-MIFE, Sec. 5.6 ((y𝑖, {x𝑖, 𝑗 } 𝑗), {z𝑖, 𝑗 } 𝑗) {𝑔𝑖, ℎ𝑖}𝑖∈[𝑛]
∧
𝑖 (𝑔𝑖 (y𝑖) = 0) · ∑

𝑖∈[𝑛]

∑
𝑗∈[𝑁𝑖]

ℎ𝑖 (x𝑖, 𝑗)⊤z𝑖, 𝑗

MCFE [CDG+18b; ABG19] (⊥, z𝑖) c ⟨c, z⟩
MCFE, Sec. 5.7 ({x𝑖, 𝑗 } 𝑗 , {z𝑖, 𝑗 } 𝑗) { 𝑓𝑖}𝑖∈[𝑛]

∑
𝑖∈[𝑛]

∑
𝑗∈[𝑁𝑖]

𝑓𝑖 (x𝑖, 𝑗)⊤z𝑖, 𝑗

DDFE, [CDSG+20; AGT21a] (⊥, z𝑖) c ⟨c, z⟩
DDFE, Sec. 5.8 ({x𝑖, 𝑗 } 𝑗 , {z𝑖, 𝑗 } 𝑗) { 𝑓𝑖}𝑖∈𝑆

∑
𝑖∈𝑆

∑
𝑗∈[𝑁𝑖]

𝑓𝑖 (x𝑖, 𝑗)⊤z𝑖, 𝑗

Table 5.2: Prior state of the art and our results. We do not consider function
hiding or MCFE schemes with only one time labels. Above, we denote
y = (y1, . . . , y𝑛), z = (z1, . . . , z𝑛) or z = (z𝑖)𝑖∈𝑆. 𝑆 is some subset of
authorized users for a given key. A function 𝑓𝑖 is a monotone span programs
fixed in setup. Functions 𝑓𝑖, 𝑔𝑖, ℎ𝑖 are arithmetic branching programs chosen
in key generation.

participate in this computation if certain criteria are satisfied, for instance if the study is

being performed by doctors with certain specializations. Moreover, these criteria can

be different for different users. This is exactly the kind of access control that an ABE

system is designed to enforce. The required criteria can be specified by each user using

its attribute y𝑖 while the key holder’s input 𝑔𝑖 must encode her privileges so that she

learns the AWS output only if 𝑔𝑖 (y𝑖) is satisfied for all 𝑖 ∈ [𝑛].

In the context of MIABE, we recall the example of the medical researcher from Chapter 3:

a doctor is treating Covid patients and desires to understand the relation between Covid

and other medical conditions such as asthma or cancer, each of which is treated at

different locations. The records of a given patient are encrypted independently and stored

in a central repository, and the doctor can be given a key that filters stored (encrypted)

records according to criteria such as condition = ‘Covid’ and condition = ‘asthma’ and

age group =‘60-80’ and enables decryption of these. Note that AB-MIFE can already

support the conjunction of predicates and suffices to enable the functionality of the above

example. Moreover, in addition to supporting decryption of messages as in MIABE,

AB-MIFE will even allow computing some aggregates on the private data, something

214

beyond the capability of MIABE.

For MCFE and DDFE, generalizing inner products to AWS is clearly meaningful – all

applications of AWS in the single input setting are meaningful in the setting with multiple

users, with the additional expressiveness offered by MCFE and DDFE. For instance, in

DDFE, the number of users who can participate in a computation is unbounded and

moreover, users can join dynamically – this is useful in real world applications such as

the examples involving patients in the lung cancer study or users in the minority group

discussed earlier.

5.3 TECHNICAL OVERVIEW

Recap of AGW Our starting point is the functional encryption scheme by Abdalla,

Gong, and Wee [AGW20], henceforth AGW, which provides the first construction

supporting the AWS functionality for ABP from standard assumptions on bilinear maps.

In more detail, the encryptor2 computes a ciphertext encoding {x 𝑗 , z 𝑗 } 𝑗∈[𝑁] where 𝑁 is

unbounded, x 𝑗 are public and z 𝑗 are private, the key generator computes a secret key

encoding an ABP 𝑓 and decryption recovers
∑
𝑗∈[𝑁] ⟨ 𝑓 (x 𝑗), z 𝑗 ⟩. At a high level, their

construction proceeds in two steps: (i) construct a single slot scheme, i.e. 𝑁 = 1, which

supports computation of ⟨ 𝑓 (x), z⟩, (ii) extend this to support unbounded 𝑁 by running

𝑁 instances of the single slot scheme, and cleverly handling leakage and size blowup

that occurs along the way. As discussed by AGW, step (i) can be achieved by adapting

a framework by Wee [Wee17], and the main conceptual and technical novelty lies in

achieving step (ii), especially in supporting unbounded 𝑁 .

We review step (ii) next, as the ideas herein form the basis of our multi-input constructions.

As discussed above, the first idea to handle 𝑁 > 1 is to simply run 𝑁 instances of the

single slot scheme but this evidently does not work, since it would allow the decryptor

to learn partial sums ⟨ 𝑓 (x 𝑗), z 𝑗 ⟩ which are not revealed by the ideal functionality. To

2Here we discuss the single input construction of AGW, the multi-input construction is discussed later.

215

address this leakage, the single slot scheme is extended to handle “randomization offsets”,

namely to add masking values 𝑤 𝑗𝑟 to the partial sums, where 𝑤 𝑗 are sampled randomly

by the encryptor such that
∑
𝑤 𝑗 = 0, and 𝑟 is sampled randomly by the key generator.

These masking values hide intermediate partial sums ⟨ 𝑓 (x 𝑗), z 𝑗 ⟩, but when the partial

sums are added, we recover
∑
𝑗∈[𝑁] ⟨ 𝑓 (x 𝑗), z 𝑗 ⟩ as desired.

To make the secret key size independent of 𝑁 , AGW construct a hybrid argument over

the 𝑁 slots, collecting “partial sums” along the way – the details of this technique are

not relevant for our purposes. They achieve selective simulation based security from the

standard 𝑘-linear assumption over bilinear groups.

They then extend this construction to a setting where the 𝑁 slots can be owned by 𝑁

independent parties – to enforce the constraint that
∑
𝑗∈[𝑁] 𝑤 𝑗 = 0, they make use of a

non-interactive MPC protocol where the parties communicate to generate these shares

prior to each encryption. While this construction provides a first feasibility result for FE

supporting the AWS functionality in the multi-party setting, it falls short of achieving the

standard notion of MCFE in many important ways:

1. The MPC step introduces an additional round of interaction prior to each encryption3

– this violates the primary demand of non-interaction that is placed on FE.

2. The ciphertexts constructed in different “iterations”, i.e. generated via different runs
of the MPC cannot talk to each other, thus failing to satisfy the main functionality
requirement of even an MIFE scheme, which explicitly requires supporting such
combinations. In more detail, consider a two slot MIFE scheme, where the first
slot ciphertexts encode x 𝑗 for 𝑗 ∈ [𝑄1], the second slot ciphertexts encode y𝑖
for 𝑖 ∈ [𝑄2] and the secret key encodes some function 𝑓 . Then MIFE explicitly
requires that 𝑓 (x 𝑗 , y𝑖) should be computable for any pair 𝑗 , 𝑖. Indeed, the standard
notion of MCFE generalizes MIFE by additionally supporting labels in each
ciphertext that dictate how ciphertexts may be combined. The multi-party scheme
of AGW does not imply an MIFE.

3. The security game of the multi-client AGW construction does not handle the
multi-challenge setting, which is the main technical challenge in any MIFE or
MCFE construction. Indeed, handling the multi-challenge setting would disallow

3This can done in a offline phase, but then places a bound on the number of ciphertexts which can be
computed.

216

the usage of simulation security due to an impossibility result by Boneh, Sahai and
Waters [BSW11] – since the AGW constructions satisfy simulation security, any
generalization to the multi-input setting must necessarily take a different route.

Thus, the question of even constructing an MIFE for AWS, let alone generalizations to

AB-MIFE, MCFE and DDFE, is completely open. We provide an outline of the AGW

construction in Figure 5.1.

One Slot FE for
AWS

(Sec 5)

One Slot FE for
AWS-IP
(Sec 6)

Unbounded Slot
FE for AWS

(Sec 7)

Multi-Party
(single CT)
FE for AWS

(Sec 8)

Figure 5.1: Construction Outline of AGW Multi-Client Scheme. All constructions satisfy
simulation security. The multi-client scheme only supports a single ciphertext
in each slot (and uses MPC to support many).

Building MIFE for AWS In an MIFE for AWS, we have 𝑛 parties, where the ciphertext

computed by the 𝑖𝑡ℎ party embeds inputs {x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖] where 𝑁𝑖 is unbounded, the

secret key embeds a set of ABPs { 𝑓𝑖}𝑖∈[𝑛] , and decryption computes

𝑓 ({x1, 𝑗 , z1, 𝑗 } 𝑗∈[𝑁1] , . . . , {x𝑛, 𝑗 , z𝑛, 𝑗 } 𝑗∈[𝑁𝑛]) =
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑁𝑖]

⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩

Recall that x𝑖 is public while z𝑖 is private, i.e., a ciphertext only hides z𝑖.

A natural idea would be to begin with the multi-party4 construction of AGW and try to

get rid of the MPC. In fact, removing the usage of MPC is not very difficult by using

PRFs to compute a secret sharing of 0 for any given label5, but this would still only

lead to a weak variant of MCFE which has the so called “one time label” restriction.

4Since the AGW construction does not satisfy the standard definition of MCFE in several important
ways as discussed above, we refer to their construction as a multi-party construction, in the sense of
[AGT21b].

5Consider the 3 party case. Let us say that parties have PRF keys (𝑘1, 𝑘2), (𝑘2, 𝑘3), and (𝑘3, 𝑘1)
respectively. Then we can use the fact for every label 𝐿, 𝐹 (𝑘1, 𝐿) + 𝐹 (𝑘2, 𝐿),−𝐹 (𝑘2, 𝐿) +
𝐹 (𝑘3, 𝐿),−𝐹 (𝑘3, 𝐿) − 𝐹 (𝑘1, 𝐿) are pseudorandom shares of 0 [KDK11; ABG19].

217

Intuitively, an MCFE with a one time label restriction, as the name suggests, allows

each label to be used only one time for each input; this primitive therefore no longer

implies MIFE. Handling combinations of multiple ciphertexts is the core functionality

of MIFE and forms the basis for most applications, so the one time label restriction is

quite a significant limitation. Indeed, in the inner product setting, early constructions of

MCFE suffered from the one time label restriction [CDG+18a] and were upgraded to

full-fledged MCFE by follow-up work using nontrivial ideas [CDG+18b; ABG19].

Another point to note is the handling of unbounded slots for each client. Concretely,

let us say there are 𝑛 clients, and the 𝑖𝑡ℎ one chooses 𝑁𝑖 (unbounded) internal slots for

their data. Now, the AGW multi-party construction can easily handle unbounded 𝑁 by

instantiating
∑
𝑖∈[𝑛] 𝑁𝑖 nominal clients and having each client internally handle 𝑁𝑖 of

these. This trick does not work out of the box anymore in the MIFE setting due to the

requirement of supporting combinations of all ciphertexts across slots.

Our Approach Taking a step back, a natural approach is to ask whether existing

transformations of FE from the single to multi-input setting for the inner product

functionality can help us overcome the challenges faced in designing this generalization

for AWS. Towards this approach, we observe that all IP-MIFE (or IP-MCFE) schemes

in the literature are constructed by (explicitly or implicitly) running an IPFE scheme

in parallel for each input and handling leakage issues along the way. At a high

level, these works can be classified into two categories based on which property of

the underlying IPFE is required in the security proof: 1) ciphertext homomorphism,

e.g., [AGRW17; CDG+18b; ACF+18; ABG19] or 2) function-hiding security, e.g.,

[DOT18; Tom19; AGT21b].

While IPFE schemes have ciphertext homomorphism (a ciphertext is a group element,

and adding ciphertexts of x1 and x2 results in a ciphertext of x1 + x2), this is not the case

in FE for AWS due to public inputs for ABPs. Since ABPs are not linear functions, it is

218

hopeless to equip an FE scheme for AWS with ciphertext homomorphism. It is worth

noting that the reason that the AB-MIFE scheme in [ACGU20] can handle only a limited

form of access control, i.e., only secret keys are associated with attributes, and access

control is done between the attributes and the public fixed policy, comes from the fact

that their scheme relies on the former approach and cannot associate ciphertexts with

attributes or a policy as the case of the single input AB-FE schemes.

Fortunately, the latter approach is not ruled out, and indeed, we show that it can be made

to work even for the AWS functionality. We observe that works in the latter category

use function-hiding security of the underlying scheme to obtain function-hiding in the

resultant IP-MIFE scheme. In this work, however, we will use function-hiding for a

completely different purpose – to transform a singe-input scheme into a multi-input

scheme without relying on ciphertext homomorphism of the underlying scheme. In

particular, we will not achieve function-hiding security in our final MIFE for AWS

scheme.

Recap: Construction of IP-MIFE from IPFE Our starting point is therefore the FE to

MIFE transformation for inner products by Datta, Okamoto and Tomida [DOT18]

(henceforth DOT), which we describe next. Recall that IP-MIFE supports functions

𝑓 : (Z𝑑𝑝)𝑛 → 𝐺𝑇 specified by (c1, . . . , c𝑛) ∈ (Z𝑑𝑝)𝑛 and defined as 𝑓 (x1, . . . , x𝑛) =

[∑𝑖∈[𝑛] ⟨x𝑖, c𝑖⟩]𝑇 . While the DOT IP-MIFE scheme is a direct construction based on

pairings, it can be viewed as a generic construction from a function-hiding FE scheme for

inner product (IPFE) as described in the next paragraph. Recall that in an IPFE scheme,

the ciphertext and secret key are associated with x ∈ Z𝑑𝑝 and c ∈ Z𝑑𝑝 respectively, and

decryption reveals [⟨x, c⟩]𝑇 . The function-hiding property guarantees that the secret key

hides c along with hiding x in the ciphertext.

Let iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme. Then the

IP-MIFE scheme is constructed as follows. Setup generates master secret keys

219

iMSK1, . . . , iMSK𝑛 ← iSetup(1𝜆) and sets ek𝑖 = iMSK𝑖,msk = {iMSK𝑖}𝑖∈[𝑛] .

Encryption of x𝑖 for slot 𝑖 computes iCT𝑖 ← iEnc(iMSK𝑖, (x𝑖, 1)) and outputs ct𝑖 = iCT𝑖.

Key generation, given input (c1, . . . , c𝑛), randomly chooses 𝑟1, . . . , 𝑟𝑛 ← Z𝑝 such that∑
𝑖∈[𝑛] 𝑟𝑖 = 0, computes iSK𝑖 ← iKeyGen(iMSK𝑖, (c𝑖, 𝑟𝑖)) for 𝑖 ∈ [𝑛], and outputs

sk = {iSK𝑖}𝑖∈[𝑛] . Decryption outputs
∑
𝑖∈[𝑛] iDec(iCT𝑖, iSK𝑖) = [

∑⟨x𝑖, c𝑖⟩]𝑇 , since∑
𝑟𝑖 = 0. Here, the random element 𝑟𝑖 is used to hide partial decryption values ⟨x𝑖, c𝑖⟩.

Let us now turn our attention to the security proof. Since we need neither function

hiding nor adaptive security for the multi-input scheme in our purpose, we can make

the proof much simpler than that by DOT as follows. We will denote iEnc(iMSK𝑖, v)

and iKeyGen(iMSK𝑖, v) by iCT𝑖 [v] and iSK𝑖 [v], respectively. Now, in the original game,

the adversary is given iCT𝑖 [(x 𝑗 ,𝛽𝑖 , 1)] for the 𝑗-th challenge message (x 𝑗 ,0
𝑖
, x 𝑗 ,1
𝑖
) and

{iSK𝑖 [(cℓ𝑖 , 𝑟ℓ𝑖)]}𝑖∈[𝑛] for the ℓ-th secret key of (cℓ1, . . . , c
ℓ
𝑛), where 𝛽 is the challenge bit.

Thus, the goal of the proof is to delete the information of 𝛽 from the ciphertexts in an

indistinguishable manner. In what follows, we omit index ℓ for conciseness since all

secret keys can be handled in the same manner.

The security proof uses two hybrids. In the first hybrid, the 𝑗-th ciphertext for slot 𝑖 is

changed to iCT𝑖 [(x 𝑗 ,0𝑖 , 1)] while all secret keys are changed to {iSK𝑖 [(c𝑖, 𝑟𝑖 + ⟨x1,𝛽
𝑖
, c𝑖⟩ −

⟨x1,0
𝑖
, c𝑖⟩)]}𝑖∈[𝑛] for all 𝑖, 𝑗 . The indistinguishability of the original game and the first

hybrid follows from the security of the function-hiding IPFE scheme and the following

constraint:

⟨x 𝑗 ,𝛽
𝑖
, c𝑖⟩ − ⟨x 𝑗 ,0𝑖 , c𝑖⟩ = ⟨x1,𝛽

𝑖
, c𝑖⟩ − ⟨x1,0

𝑖
, c𝑖⟩ for all 𝑖, 𝑗 (5.1)

which follows from the fact that the adversary can inherently learn ⟨x 𝑗 ,𝛽
𝑖
, c𝑖⟩ − ⟨x1,𝛽

𝑖
, c𝑖⟩

from challenge queries (originally observed in [AGRW17, page 4]). In the second hybrid,

all secret keys are changed to {iSK𝑖 [(c𝑖, 𝑟𝑖)]}𝑖∈[𝑛] for all 𝑖, which readily follows from

220

the fact that the two distributions are equivalent:

{(𝑟1, . . . , 𝑟𝑛) : 𝑟′1, . . . , 𝑟
′
𝑛 ← Z𝑝 s.t.

∑︁
𝑟′𝑖 = 0, 𝑟𝑖 = 𝑟′𝑖 + ⟨x

1,𝛽
𝑖
, c𝑖⟩ − ⟨x1,0

𝑖
, c𝑖⟩}

{(𝑟1, . . . , 𝑟𝑛) : 𝑟1, . . . , 𝑟𝑛 ← Z𝑝 s.t.
∑︁

𝑟𝑖 = 0}

This is because we have that
∑
𝑖∈[𝑛] (⟨x

1,𝛽
𝑖
, c𝑖⟩ − ⟨x1,0

𝑖
, c𝑖⟩) = 0 due to the admissibility

condition on the queries. At this point, the advantage of the adversary is 0 since its view

contains no information about 𝛽.

Generalizing the FE to MIFE to support AWS Next, we show how to generalize the

FE to MIFE compiler of DOT to handle the AWS functionality. In this step, we make use

of an insight developed by AGW to handle unbounded slots, namely, to leverage a (single

input) FE scheme that supports unbounded-slot AWS together with randomization offsets.

In more detail, a ciphertext is associated with (v, p) ∈ X × Z𝑚𝑝 , a secret key is associated

with (𝐹, q) ∈ F ×Z𝑚𝑝 , and decryption reveals [𝐹 (v) + ⟨p, q⟩]𝑇 . Here, we assume that F

is a set of functions belong to unbounded-slot AWS and X is its input space, but observe

that the argument below can be applied to any function classes. For security, we require

that both p, q are hidden. In what follows, we call this functionality AWS with inner

product (AWSw/IP).

We emphasize that while this is also the functionality achieved by AGW [AGW20[Sec 6]],

the security achieved by these is quite different: our construction must satisfy partially

function hiding indistinguishability based security, while theirs satisfies simulation

based security without function hiding. Additionally, our construction will support the

additional inner product functionality with respect to unbounded-slot AWS, while AGW

support it for only single-slot AWS.

Suppose we have a partially function-hiding FE scheme for the AWSw/IP functionality,

denoted as aFE = (aSetup, aEnc, aKeyGen, aDec). Then, we can construct MIFE

221

that supports functions 𝐹 : (X)𝑛 → 𝐺𝑇 specified by (𝐹1, . . . , 𝐹𝑛) ∈ F 𝑛 and defined

as 𝐹 (v1, . . . , v𝑛) = [
∑
𝑖∈[𝑛] 𝐹𝑖 (v𝑖)]𝑇 from aFE by following the template of DOT, as

described next. Looking ahead, 𝐹 can be instantiated to capture either AWS or attribute

based AWS to obtain MIFE for AWS or AB-MIFE for AWS respectively. For instance,

for MIFE, we set v𝑖 = {x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖] , 𝐹 = (𝑓1, . . . , 𝑓𝑛) where 𝑓𝑖 are ABPs, and

𝐹 (v1, . . . , v𝑛) =
∑
𝑖∈[𝑛]

∑
𝑗∈[𝑁𝑖]

⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩.

Construction 5.1 (MIFE for AWS). Setup(1𝜆) It outputs

ek𝑖 = aMSK𝑖 ← aSetup(1𝜆) for 𝑖 ∈ [𝑛] and msk = {aMSK𝑖}𝑖.

Enc(ek𝑖, v𝑖) It outputs ct𝑖 = aCT𝑖 ← aEnc(aMSK𝑖, (v𝑖, 1)).

KeyGen(msk, (𝐹1, . . . , 𝐹𝑛)) It outputs sk = {aSK𝑖}𝑖∈[𝑛] where 𝑟1, . . . , 𝑟𝑛 ← Z𝑝 s.t.∑
𝑟𝑖 = 0 and aSK𝑖 ← aKeyGen(aMSK𝑖, (𝐹𝑖, 𝑟𝑖)).

Dec(ct1, . . . , ct𝑛, sk) It outputs
∑
𝑖∈[𝑛] aDec(aCT𝑖, aSK𝑖) = [

∑
𝐹𝑖 (v𝑖)]𝑇 .

The security proof is essentially the same as in the case of IP-MIFE, discussed above.

We use the following two hybrids: in the first hybrid, the 𝑗-th ciphertext for slot 𝑖

is changed from aCT𝑖 [(v 𝑗 ,𝛽, 1)] to aCT𝑖 [(v 𝑗 ,0, 1)] while all secret keys are changed

from {aSK𝑖 [(𝐹𝑖, 𝑟𝑖)]}𝑖∈[𝑛] to {aSK𝑖 [(𝐹𝑖, 𝑟𝑖 + 𝐹𝑖 (v1,𝛽
𝑖
) − 𝐹𝑖 (v1,0

𝑖
))]}𝑖∈[𝑛] . In this step, we

leverage the important observation that a constraint similar to Eq.(5.1) holds in MIFE for

the function class we consider, where the final output is the summation of the output

of each slot. Specifically, we have 𝐹𝑖 (v 𝑗 ,𝛽𝑖) − 𝐹𝑖 (v
𝑗 ,0
𝑖
) = 𝐹𝑖 (v1,𝛽

𝑖
) − 𝐹𝑖 (v1,0

𝑖
) for all 𝑖, 𝑗 .

Hence we can use the function-hiding security of aFE to change the second element of

the function in secret keys from 𝑟𝑖 to 𝑟𝑖 +𝐹𝑖 (v1,𝛽
𝑖
) −𝐹𝑖 (v1,0

𝑖
) in a indistinguishable manner.

In the second hybrid, we bring back all secret keys to the form {aSK𝑖 [(𝐹𝑖, 𝑟𝑖)]}𝑖∈[𝑛] . This

transition is possible as the case of IP-MIFE, that is, we use the fact that the following

distributions are equivalent:

{(𝑟1, . . . , 𝑟𝑛) : 𝑟′1, . . . , 𝑟
′
𝑛 ← Z𝑝 s.t.

∑︁
𝑟′𝑖 = 0, 𝑟𝑖 = 𝑟′𝑖 + 𝐹𝑖 (v

1,𝛽
𝑖
) − 𝐹𝑖 (v1,0

𝑖
)}

222

{(𝑟1, . . . , 𝑟𝑛) : 𝑟1, . . . , 𝑟𝑛 ← Z𝑝 s.t.
∑︁

𝑟𝑖 = 0}

which follows from the query condition
∑
𝑖∈[𝑛] (𝐹𝑖 (v

1,𝛽
𝑖
) − 𝐹𝑖 (v1,0

𝑖
)) = 0. At this point,

the advantage of the adversary is 0.

Partial Function Hiding FE for AWS with Inner Product It remains to construct the

single input, unbounded slot FE scheme for the AWSw/IP functionality which satisfies

partial function hiding. As discussed, the AGW scheme achieves simulation-based

security but not function hiding. Our idea of extending AGW to function-hiding to

the multi-challenge setting is to design AGW using a function-hiding IPFE scheme,

which is inspired by the constructions of ABE for ABP and FE for AWS from (slotted)

function-hiding IPFE in [LL20a; DP21].

Recall that AGW first constructs a one-slot scheme that can handle randomization

offsets, the construction of which basically follows the ABE scheme by [Wee17], and

then converts it to an unbounded-slot scheme in a modular manner. The spirit of our

construction follows their blueprint, that is, we first construct a function-hiding one-slot

scheme that can handle randomization offsets using a function-hiding IPFE scheme,

and then convert it to a unbounded-slot scheme. However, we present the unbounded

construction directly since later we will need to extend this to attribute based FE for

AWSw/IP, and the modular construction does not apply to that setting. To see this,

note that in an attribute-based FE for AWSw/IP, an attribute is associated with an

unbounded-slot message and how to deconstruct the attribute for a one-slot message is

unclear.

The key building block of [LL20a; DP21] is the arithmetic key garbling scheme (AKGS),

which is specialized for constructing attribute-based encryption schemes. In our work,

however, we use the (extended) partially-garbling scheme (PGS) for ABP [IW14; AGW20]

together with function-hiding IPFE since PGS is more suitable for FE that computes

223

ABPs and AWSs directly. Informally, it uses an algorithm pgb(𝑓 , x, z, 𝛿; t) that takes an

ABP 𝑓 : Z𝑛0
𝑝 → Z𝑛1

𝑝 , a public string x ∈ Z𝑛0
𝑝 , private strings z ∈ Z𝑛1

𝑝 and 𝛿 ∈ Z𝑝, and a

random tape t ∈ Z𝑡−1
𝑝 , and outputs

L = (⟨L1t, x′⟩ + 𝛿, ⟨L2t, x′⟩, . . . , , ⟨L𝑠t, x′⟩, z[1] + ⟨L𝑠+1t, x′⟩, . . . , z[𝑛1] + ⟨L𝑡t, x′⟩)

where x′ = (x, 1), and 𝑠, 𝑡 ∈ N,L𝑖 ∈ Z(𝑛0+1)×(𝑡−1)
𝑝 are deterministically computed from 𝑓 .

The algorithm pgb satisfies:

Corrrectness we can efficiently compute a vector b 𝑓 ,x ∈ Z𝑡𝑝 from 𝑓 , x such that

⟨L, b 𝑓 ,x⟩ = ⟨ 𝑓 (x), z⟩ + 𝛿;

Security we can efficiently simulate the distribution of L over t ← Z𝑡−1
𝑝 from

(𝑓 , x, ⟨ 𝑓 (x), z⟩ + 𝛿).
Then, we can construct FE for AWSw/IP as follows. Let iFE be a function-hiding IPFE

scheme as above.

Construction 5.2 (FE for AWSw/IP). Setup(1𝜆) It outputs

(pp,msk) = (iPP, iMSK) ← iSetup(1𝜆).

Enc(msk, ({x 𝑗 , z 𝑗 } 𝑗∈[𝑁] , p)) It chooses 𝑢1, . . . , 𝑢𝑁 , 𝑤1, . . . , 𝑤𝑁 ← Z𝑝 s.t.
∑
𝑗∈[𝑁] 𝑤 𝑗 =

0. It defines

X 𝑗 =

(𝑢 𝑗x′𝑗 , z 𝑗 , 𝑤 𝑗 , p, 0𝜌) (𝑗 = 1)

(𝑢 𝑗x′𝑗 , z 𝑗 , 𝑤 𝑗 , 0𝑚, 0𝜌) (𝑗 > 1)

and computes iCT 𝑗 ← iEnc(iMSK,X 𝑗) for 𝑗 ∈ [𝑁]. It outputs ct = ({x 𝑗 , iCT 𝑗 } 𝑗).

Note that the last 𝜌 entries are used only for the security proof.

KeyGen(msk, (𝑓 , q)) It chooses 𝑟 ← Z𝑝, t ← Z𝑡−1
𝑝 and computes L1, . . . ,L𝑡 from 𝑓 .

224

It defines

Y 𝑗 =

(L 𝑗 t, 0𝑛1 , 𝑟, q, 0𝜌) (𝑗 = 1)

(L 𝑗 t, 0𝑛1 , 0, 0𝑚, 0𝜌) (1 < 𝑗 ≤ 𝑠)

(L 𝑗 t, e 𝑗−𝑠, 0, 0𝑚, 0𝜌) (𝑠 < 𝑗 ≤ 𝑡)

. (5.2)

where e𝑖 is one-hot vector with the 𝑖-th element being 1. Finally it computes

iSK 𝑗 ← iKeyGen(iMSK,Y 𝑗) for 𝑗 ∈ [𝑡] and outputs sk = (𝑓 , {iSK 𝑗 } 𝑗).

Dec(ct, sk) It computes [𝑑 𝑗 ,ℓ]𝑇 = iDec(iCT 𝑗 , iSKℓ) for all 𝑗 ∈ [𝑁], ℓ ∈ [𝑡] and b 𝑓 ,x

describe above. It outputs
∑
𝑗∈[𝑁]

∑
ℓ∈[𝑡] [b 𝑓 ,x [ℓ] · 𝑑 𝑗 ,ℓ]𝑇 .

In decryption, it follows that

(𝑑 𝑗 ,1, . . . , 𝑑 𝑗 ,𝑡) =

pgb(𝑓 , x 𝑗 , z 𝑗 , 𝑟𝑤 𝑗 + ⟨p, q⟩; 𝑢 𝑗 t) (𝑗 = 1)

pgb(𝑓 , x 𝑗 , z 𝑗 , 𝑟𝑤 𝑗 ; 𝑢 𝑗 t) (𝑗 > 1)

and thus
∑
𝑗∈[𝑁]

∑
ℓ∈[𝑡] b 𝑓 ,x [ℓ] · 𝑑 𝑗 ,ℓ =

∑
𝑗∈[𝑁] (⟨ 𝑓 (x 𝑗), z 𝑗 ⟩ + 𝑟𝑤 𝑗 + (𝑗 = 1)⟨p, q⟩) =∑

𝑗∈[𝑁] ⟨ 𝑓 (x 𝑗), z 𝑗 ⟩ + ⟨p, q⟩. Roughly speaking, the partially function-hiding security of

this scheme follows from the following observations:

• Thanks to the function-hiding property of iFE, what the adversary can learn from
ct and sk is {[(𝑑 𝑗 ,1, . . . , 𝑑 𝑗 ,𝑡)]𝑇 } 𝑗∈[𝑁] .

• The random tape {[𝑢 𝑗 t]𝑇 } 𝑗∈[𝑁] used to compute {𝑑 𝑗 ,ℓ} looks random under the
SXDH assumption, and (𝑑 𝑗 ,1, . . . , 𝑑 𝑗 ,𝑡) for each 𝑗 appear to be generated by a
fresh random tape.

• Thanks to the security of the PGS, the only information about ({z 𝑗 }, p, q) contained
in (𝑑 𝑗 ,1, . . . , 𝑑 𝑗 ,𝑡) is ⟨ 𝑓 (x 𝑗), z 𝑗 ⟩ + 𝑟𝑤 𝑗 + (𝑗 = 1)⟨p, q⟩.

• Under the SXDH assumption, {[𝑟𝑤 𝑗]𝑇 } 𝑗∈[𝑁] looks random with the constraint
that the summation of these is [0]𝑇 . Thus, the only information about ({z 𝑗 }, p, q)
in {[(𝑑 𝑗 ,1, . . . , 𝑑 𝑗 ,𝑡)]𝑇 } 𝑗∈[𝑁] is

∑⟨ 𝑓 (x 𝑗), z 𝑗 ⟩ + ⟨p, q⟩.
We remark that we can easily modify the scheme such that Enc and KeyGen take vectors

p and q as a vector of group elements. We will use this property later in the overview for

DDFE for AWS.

225

Attribute-Based MIFE for AWS Next, we explain how to make the above MIFE for

AWS construction attribute-based. At a high level, we do the following: (i) Make FE for

AWSw/IP Attribute-Based, (ii) Use the FE to MIFE compiler discussed above to “lift”

this to AB-MIFE for AWS. We expand on these below.

Step 1: Make FE for AWSw/IP Attribute-Based We extend FE for AWSw/IP such that

it incorporates an ABP predicate which controls decryption, similarly to attribute-based

encryption. Specifically, we add a public vector y to the message in the ciphertext and a

public ABP 𝑔 to the function in the secret key, and allow decryption only when 𝑔(y) = 0.

A naive idea is to define x′
𝑗
= (y, x 𝑗), z′𝑗 = (𝑣, z 𝑗) and 𝑓 ′(x′) = (𝑎 · 𝑔(y), 𝑓 (x)) where

𝑎, 𝑣 ← Z𝑝 and use {x′
𝑗
, z′
𝑗
} and 𝑓 ′ as inputs for encryption and key generation of FE

for AWSw/IP, respectively. Note that 𝑓 ′ is an ABP if 𝑓 , 𝑔 in turn are ABPs. Then,

decryption outputs [∑ 𝑗∈[𝑁] (𝑎𝑣 · 𝑔(y) + ⟨ 𝑓 (x 𝑗), z 𝑗 ⟩) + ⟨p, q⟩]𝑇 . Since [𝑎𝑣 · 𝑔(y)]𝑇

looks random if 𝑔(y) ≠ 0 under the SXDH assumption, the decryptor can learn

[∑ 𝑗∈[𝑁] ⟨ 𝑓 (x 𝑗), z 𝑗 ⟩ + ⟨p, q⟩]𝑇 only when 𝑔(y) = 0.

However, this idea does not work since 𝑎 needs to be provided in the clear in the secret

key for decryption, and this disallows the reliance on the SXDH assumption (recall that

we need 𝑓 and x to compute b 𝑓 ,x in the decryption of the FE for AWSw/IP). To avoid this,

we directly embed 𝑎 in Y𝑠+1 so that we can perform decryption without the knowledge of

𝑎. Concretely, we define 𝑓 ′ as 𝑓 ′(x′) = (𝑔(y), 𝑓 (x)) instead of 𝑓 ′(x′) = (𝑎 · 𝑔(y), 𝑓 (x))

and define Y𝑠+1 = (L𝑠+1, 𝑎e1, 0, 0𝑚, 0𝜌) in Eq.(5.2). Then, the decryption result is the

same as the naive construction, which follows from the correctness of the PGS, but 𝑓 ′

does not contain information about 𝑎 in this construction.

The proof of function-hiding security of this scheme is inspired from the proof in

AGW [AGW20, Section 7], but with the following key differences: 1) we need to prove

IND-based function-hiding security in the secret-key multi-challenge setting while AGW

226

proves SIM-based security in the public-key setting (thus not function-hiding); 2) Our

scheme is attribute-based while AGW is not. Hence we need to handle secret key queries

that cannot decrypt some challenge ciphertexts, and for such ciphertexts the function

values in 𝛽 = 0 and 𝛽 = 1 can be different (𝛽 is the challenge bit). Please see Section 5.5.2

for details.

Step 2: AB-MIFE for AWS Suppose we have an FE scheme aFE where a ciphertext is

associated with (𝑐, v, p) while a secret key is associated with (𝑘, 𝐹, q), and decryption

reveals [𝐹 (v) + ⟨p, q⟩]𝑇 if P(𝑐, 𝑘) = 1 for some predicate P and ⊥ otherwise. We also

assume that aFE is partially function-hiding, so that the ciphertext hides (a part of) v

and p, and the secret key hides q.

At first glance, it seems that we can construct AB-MIFE for F ′ from aFE by using

Construction 5.1, where F ′ consists of functions 𝐹′ : (C × X)𝑛 → 𝐺𝑇 specified by

((𝑘1, 𝐹1), . . . , (𝑘𝑛, 𝐹𝑛)) ∈ (K × F)𝑛 and defined as

𝐹′((𝑐1, v1), . . . , (𝑐𝑛, v𝑛)) =

[∑𝑖∈[𝑛] 𝐹𝑖 (v𝑖)]𝑇 P(𝑐𝑖, 𝑘𝑖) = 1 for all 𝑖

⊥ otherwise

Note that AB-MIFE for AWS corresponds to the case where 𝑐 = y, v = {x 𝑗 , z 𝑗 } 𝑗∈[𝑁] ,

𝑘 = 𝑔 where 𝑔 is an ABP, P(𝑐, 𝑘) = 1 iff 𝑔(y) = 0, and 𝐹 is specified by an ABP 𝑓 and

defined as 𝐹 (v) = ∑⟨ 𝑓 (x 𝑗), z 𝑗 ⟩. We can also observe that aFE for the above setting

corresponds to attribute-based FE for AWSw/IP.

However the above construction is insufficient due to the following reason. Let us consider

a two-input scheme where an adversary obtains ciphertexts of (𝑐1
1, v

1
1) and (𝑐2

1, v
2
1) for

slot 1 (denoted by ct11, ct21), a ciphertext of (𝑐1
2, v

1
2) for slot 2 (denoted by ct12), and a secret

key for ((𝑘1, 𝐹1), (𝑘2, 𝐹2)) (denoted by sk) such that P(𝑐 𝑗1, 𝑘1) = 1 for both 𝑗 ∈ {1, 2}

while P(𝑐1
2, 𝑘2) = 0. Note that ct 𝑗

𝑖
denotes the 𝑗-th ciphertext for slot 𝑖. In this case, the

adversary should not obtain any information about private inputs, since the predicate

227

of slot 2 is never satisfied. However, the adversary can learn [𝐹1(v2
1) − 𝐹1(v1

1)]𝑇 in this

construction (recall that it can learn [𝐹1(v1
1) + 𝑟1]𝑇 and [𝐹1(v2

1) + 𝑟1]𝑇 by decryption of

aFE in slot 1). This is leakage which we need to avoid.

An important fact is that this leakage is inherent if the adversary additionally obtains a

ciphertext of (𝑐2
2, v

2
2) for slot 2 (denoted by ct22) such that P(𝑐2

2, 𝑘2) = 1. This is because

it can learn [𝐹1(v2
1) − 𝐹1(v1

1)]𝑇 by Dec(ct21, ct22, sk) −Dec(ct11, ct22, sk). By generalizing

this observation, it turns out that such leakage appears only when the adversary obtains

an illegitimate secret key, which cannot decrypt any combinations of ciphertexts that

the adversary has. More formally, we say a secret key for ((𝑘1, 𝐹1), . . . , (𝑘𝑛, 𝐹𝑛)) is

illegitimate if there exists slot 𝑖 and the adversary does not have a ciphertext of (𝑐𝑖, ∗)

for slot 𝑖 such that P(𝑐𝑖, 𝑘𝑖) = 1. In other words, the above construction is secure in the

model where the adversary never asks for illegitimate secret keys – we refer to this notion

as security against legitimate keys.

Achieving Security against Any Keys We next show how to remove this restriction and

achieve security against any keys starting with a scheme secure against legitimate keys.

Our idea is to encrypt all secret keys and allow the adversary to decrypt only legitimate

secret keys. We achieve such a construction by leveraging an 𝑛-out-of-𝑛 secret sharing

scheme and an attribute-based encryption scheme ABE for the dual predicate of P,

denoted by P. Note that P : K × C → {0, 1} is defined as P(𝑘, 𝑐) = 1⇔ P(𝑐, 𝑘) = 1.

We describe this conversion next.

Let wmFE = (wmSetup,wmEnc,wmKeyGen,wmDec) be an AB-MIFE scheme for F ′

secure against legitimate keys. The setup algorithm generates 𝑛 master secret keys

abMSK1, . . . , abMSK𝑛 of ABE and sets (abMSK𝑖,wmEK𝑖) as an encryption key for

slot 𝑖. Encryption of (𝑐𝑖, v𝑖) for slot 𝑖 is the same as wmEnc except that it appends

a secret key of ABE for 𝑐𝑖 to wmCT𝑖. Key generation of {𝑘𝑖, 𝐹𝑖} runs wmSK ←

wmKeyGen(wmMSK, {𝑘𝑖, 𝐹𝑖}), secret shares wmSK to 𝜎1, . . . , 𝜎𝑛, encrypts 𝜎𝑖 with

228

attribute 𝑘𝑖 to abCT𝑖 by ABE, and outputs {abCT𝑖}. In this construction, observe that

the adversary cannot obtain illegitimate secret keys. Recall that in AB-MIFE for AWS, an

ABE scheme for P corresponds to ciphertext-policy ABE (CP-ABE) for ABPs, which

was recently proposed by Lin and Luo [LL20b].

We observe that this security against legitimate vs. any keys in the context of AB-MIFE

can be seen as generalization of security against complete vs. incomplete (or zero vs.

multiple) queries in the context of MIFE [AGRW17]. Recall that incomplete queries

refers to the case where an adversary does not make a ciphertext query for some inputs.

Therefore, in the context of plain MIFE, all secret keys become illegitimate if the adversary

makes incomplete queries and legitimate otherwise. On the other hand, in the context of

AB-MIFE, whether each secret key become legitimate or illegitimate crucially depends

on which attributes are queried in both ciphertext and secret-key queries, and thus the

situation is much more complex. This is why we need an advanced primitive, namely,

ABE to upgrade the security of AB-MIFE while MIFE secure against complete queries

can be upgraded to that secure against incomplete queries using only symmetric key

encryption.

Security under Corruptions The above transformation works only in the secret-key

setting where the adversary cannot corrupt encryption keys. Intuitively, this comes from

the fact that there exist ABPs that never evaluates to 0 (we call such ABPs null ABPs). For

the transformation to work in the corruption model, we require the underlying CP-ABE

scheme to have the property that the adversary cannot decrypt ciphertexts for null ABPs

even if it obtains the master secret key. However, in the only known CP-ABE scheme

by [LL20b], the master secret key has the ability to decrypt ciphertexts for null ABPs.

Actually, such a CP-ABE scheme implies witness encryption for NP relations verifiable

in NC1, and it seems quite challenging to obtain one from standard assumptions.

To circumvent this problem, we introduce wildcards for access-controlling functionality

229

similarly to [FFMV23]. That is, for the wildcard input ★ and all ABPs (including null

ABPs) 𝑔, we always have 𝑔(★) = 0. In this functionality, the adversary that corrupts 𝑖-th

input can admissibly generate a ciphertext for slot 𝑖 that satisfies the 𝑖-th predicate for

all secret keys, and the leakage of the master secret key of the CP-ABE scheme due to

corruption does not cause the problem. As observed in [FFMV23], multi-input ABE

with corruptions implies witness encryption, but their constructions does not imply it

due to the use of wildcards. Ours also does not imply it for the same reason.

To allow our AB-MIFE scheme to support wildcards, the underlying AB-FE scheme for

AWSw/IP also needs to have the wildcard functionality. This modification is quite simple:

just setting 𝑣 = 0 (see step 1 above) in encryption with the wildcard attribute suffices.

Comparison with [NPP22] Very recently, Nguyen, Phan and Pointcheval proposed an

attribute-based MCFE scheme for inner product (see Table 5.3 for precise functionality).

Their scheme is in the weaker MCFE model where each label can be used only once per

input, and does not imply standard MIFE for the same function class. In [NPP22, Remark

16], they informally state that we can apply 1) the technique in [CDG+18b] to convert

their scheme into the MCFE in the stronger notion and 2) All-or-Nothing Encapsulation

[CDSG+20] to achieve security against incomplete queries. We believe that both claims

are false.

Regarding item 1, as we discussed previously, the technique in [CDG+18b] to remove

the one-time restriction requires ciphertext homomorphism of the underlying scheme.

However, their underlying single client scheme is not ciphertext homomorphic, and thus

how to use the technique in [CDG+18b] is unclear. Regarding item 2, as discussed above,

in the context of the attribute-based setting, All-or-Nothing Encapsulation would be

insufficient to achieve full-fledged security in the AB-MIFE setting, which can handle

only the issue of complete vs. incomplete queries in the non-attribute-based setting.

Hence, their result does not appear to imply AB-MIFE scheme as claimed.

230

Multi-Client FE for AWS To construct MCFE for AWS, we follow the blueprint by

[AGT21b] where they construct an MCFE scheme for inner products from a function-

hiding IPFE scheme. Roughly speaking, we replace the function-hiding IPFE scheme in

their scheme with our FE scheme for AWSw/IP. However, following this approach leads

to obstacles in the security proof, to handle which, we need to modify their blueprint. To

see this, first consider the MCFE construction for AWS that is obtained by applying their

blueprint straightforwardly to our setting. Let 𝐻 : {0, 1}∗ → 𝐺1 be a hash function and

aFE be a FE scheme for AWSw/IP. The scheme is given as follows:

Construction 5.3 (Candidate MCFE for AWS). Setup(1𝜆) It outputs ek𝑖 = aMSK𝑖 ←

aSetup(1𝜆) for 𝑖 ∈ [𝑛] and msk = {aMSK𝑖}𝑖.

Enc(ek𝑖, v𝑖, 𝐿) It outputs ct𝑖 = aCT𝑖 ← aEnc(aMSK𝑖, (v𝑖, [(𝑣𝐿 , 0)]1)) where [𝑣𝐿]1 =

𝐻 (𝐿).

KeyGen(msk, (𝐹1, . . . , 𝐹𝑛)) It outputs sk = {aSK𝑖}𝑖∈[𝑛] where 𝑟1, . . . , 𝑟𝑛 ← Z𝑝 s.t.∑
𝑟𝑖 = 0 and aSK𝑖 ← aKeyGen(aMSK𝑖, (𝐹𝑖, [(𝑟𝑖, 0)]2)).

Dec(ct1, . . . , ct𝑛, sk) It outputs
∑
𝑖∈[𝑛] aDec(aCT𝑖, aSK𝑖) = [

∑
𝐹𝑖 (v𝑖)]𝑇 .

Let us try to prove the security of this MCFE candidate similarly to Construction 5.1. In

what follows, we denote aEnc(aMSK𝑖, (v, [p]1)) and aKeyGen(aMSK𝑖, (𝐹, [q]2)) by

aCT𝑖 [v, p] and aSK𝑖 [𝐹, q], respectively. To see why the security proof does not work in

this construction, considering the simple case suffices where an adversary queries only

one challenge ciphertext for each slot after which it makes secret-key queries adaptively.

In the original game, the adversary is given aCT𝑖 [v𝛽𝑖 , (𝑣𝐿 , 0)] for a challenge message

(v0
𝑖
, v1
𝑖
, 𝐿) and {aSK𝑖 [𝐹𝑖, (𝑟𝑖, 0)]}𝑖∈[𝑛] for a secret key of (𝐹1, . . . , 𝐹𝑛). In the first hybrid,

the ciphertext for slot 𝑖 is changed to aCT𝑖 [v0, (0, 1)] while all secret keys are changed

to {aSK𝑖 [𝐹𝑖, (𝑟𝑖, 𝑣𝐿𝑟𝑖 + 𝐹𝑖 (v𝛽𝑖) − 𝐹𝑖 (v0
𝑖
))]}𝑖∈[𝑛] . The indistinguishability of the original

game and the hybrid follows from the partially function-hiding security of aFE. The

231

next step will be to change [𝑣𝐿𝑟𝑖]2 to [�̃�𝑖]2 where �̃�𝑖 is a random element in Z𝑝 such that∑
�̃�𝑖 = 0. If we can show this indistinguishability, �̃�𝑖 absorbs the term 𝐹𝑖 (v𝛽𝑖) − 𝐹𝑖 (v0

𝑖
)

and we can conclude the proof, but this is not the case. This is because the adversary can

compute [𝑣𝐿]1 by the hash function, and thus we cannot use the SXDH assumption in

𝐺2.

We solve this by modifying Construction 5.3 as follows: Let PRF : {0, 1}∗ → Z𝑝 be a

pseudorandom function with a key space K.

Construction 5.4 (MCFE for AWS). Setup(1𝜆) It chooses K𝑖, 𝑗 ← K for 𝑖, 𝑗 ∈ [𝑛], 𝑖 <

𝑗 , and sets K𝑖, 𝑗 = K 𝑗 ,𝑖 for 𝑗 < 𝑖. It outputs ek𝑖 = (aMSK𝑖 ← aSetup(1𝜆), {K𝑖, 𝑗 }𝑖≠ 𝑗)

for 𝑖 ∈ [𝑛] and msk = {aMSK𝑖}𝑖.

Enc(ek𝑖, 𝑥𝑖, 𝐿) It outputs ct𝑖 = aCT𝑖 ← aEnc(aMSK𝑖, (𝑥, [(𝑣𝐿,𝑖, 0)]1)) where 𝑣𝐿,𝑖 =∑
𝑗∈[𝑛]\{𝑖} (−1) 𝑗<𝑖PRFK𝑖, 𝑗 (𝐿).

KeyGen(msk, (𝑓1, . . . , 𝑓𝑛)) It outputs sk = {aSK𝑖}𝑖∈[𝑛] where 𝑟 ← Z𝑝 and aSK𝑖 ←

aKeyGen(aMSK𝑖, (𝑓𝑖, [(𝑟, 0)]2)).

Dec(ct1, . . . , ct𝑛, sk) It outputs
∑
𝑖∈[𝑛] aDec(aCT𝑖, aSK𝑖) = [

∑
𝑓𝑖 (𝑥𝑖)]𝑇 .

This construction is inspired by the MIFE scheme in [AGRW17], in which the randomizing

term 𝑣𝑖 in ciphertexts are generated in the setup phase (not by a PRF). Note that this is

enough for MIFE, but in our case we extend the technique to generate the term 𝑣𝐿,𝑖 for

each label on the fly via PRF to handle an exponentially large number of labels. Observe

that
∑
𝑖∈[𝑛] 𝑣𝐿,𝑖 = 0 for all 𝐿 and correctness holds. Such a usage of PRF in MCFE was

first introduced by [ABG19], but again their MCFE construction requires ciphertext

homomorphism and is not applicable to AWS functionality. This is why we devise a new

construction based on DOT combining ideas from [AGRW17; ABG19].

In this construction, the above proof strategy works. At a high level, this is due to the

232

following reasons:

• {𝑣𝐿,𝑖} looks random with the constraint
∑
𝑣𝐿,𝑖 = 0 for each label if the PRF is

secure.

• In contrast to Construction 5.3, the adversary cannot compute 𝑣𝐿,𝑖 publicly.

In fact, Construction 5.4 is a secure MCFE scheme for AWS. For a detailed description,

we refer the reader to Section 5.7.

Dynamic Decentralized FE for AWS Given an MCFE scheme for AWS, we now

convert it to DDFE using the template provided by [AGT21b]. The high-level idea

of the blueprint is to allow parties in the system to generate an independent MCFE

instance in Construction 5.4 for each user setU by using a PRF on the fly. First, each

party joins the system dynamically by generating a key K𝑖 of a pseudorandom function

(PRF) as a master secret key. In encryption and key generation for party setU, party

𝑖 ∈ U generates aMSK𝑖,U = aSetup(1𝜆; PRFK𝑖 (U)), which is unique to (𝑖,U). For key

generation of ({ 𝑓𝑖},U), party 𝑖 computes a common random element 𝑟𝑖,U = 𝐻 ({ 𝑓𝑖},U)

by a hash function and outputs aSK𝑖,U as KeyGen in Construction 5.4. In encryption of

(𝑥𝑖,U, 𝐿), party 𝑖 generates K𝑖, 𝑗 via non-interactive key exchange, and outputs aCT𝑖,U

in the same manner as Enc in Construction 5.4. Observe that aCT𝑖,U /{aSK𝑖,U}𝑖∈U is a

valid ciphertext/secret key of the MCFE scheme in Construction 5.4 with respect toU.

For more details, please see Section 5.8.

We provide an overview of our constructions in Figure 5.2.

Organisation of the chapter. The rest of the chapter is organised as follows. We provide

the necessary preliminaries in Section 5.4. In Section 5.5, we provide construction for

attribute based FE for AWS with IP, which is used as a building block in our other

constructions. In Section 5.6, we provide our construction for AB-MIFE for AWS. We

construct MCFE for AWS in Section 5.7. In Section 5.8, we provide our construction for

DDFE for AWS. In Appendix 5.B, we define different primitives studied in this chapter

233

Figure 5.2: Outline of our constructions. For the implication to MCFE and DDFE, the
underlying construction for AWSw/IP need not be attribute based.

in terms of multi-party FE.

5.4 PRELIMINARIES

Notation used in this chapter Any vector v is by default a column vector and vT

is a row vector. For vectors v1, . . . , v𝑛, (v1, . . . , v𝑛) denotes the vector concatenation

as row vectors regardless of whether each v𝑖 is a row or column vector. For a matrix

A = (𝑎 𝑗 ,ℓ) 𝑗 ,ℓ over Z𝑝, [A]𝑖 denotes a matrix over𝐺𝑖 whose (𝑗 , ℓ)-th entry is 𝑔𝑎 𝑗 ,ℓ
𝑖

, and we

use this notation for vectors and scalars similarly. We use addition for the group operation

in every group in bilinear groups. For vectors a ∈ Z𝑛𝑝 and b ∈ 𝐺𝑛 where 𝐺 is a cyclic

group of order 𝑝, we abuse the notation of inner product and denote
∑
𝑖∈[𝑛] a[𝑖] [b[𝑖]]

by ⟨a, [b]⟩. For a matrix M ∈ Z𝑎×𝑏𝑝 and vectors a ∈ Z𝑎𝑝, b ∈ Z𝑏𝑝, we denote a vector

m such that ⟨a ⊗ b,m⟩ = a⊤Mb by t(M). By 0𝑛, for 𝑛 ∈ N, we represent the vector

(0, . . . , 0) ∈ Z𝑛.

5.4.1 Computation Models

Definition 5.1 (Arithmetic Branching Programs (ABPs)). An arithmetic branching

program 𝑓 : Z𝑛0
𝑝 → Z𝑝 is defined by a prime 𝑝, a directed acyclic graph (𝑉, 𝐸), two

special vertices 𝑣0, 𝑣1 ∈ 𝑉 , and a labeling function 𝜎 : 𝐸 → F Affine, where F Affine

234

consists of all affine functions 𝑔 : Z𝑛0
𝑝 → Z𝑝. The size of 𝑓 is the number of vertices |𝑉 |.

Given an input x ∈ Z𝑛0
𝑝 to the ABP, we can assign a Z𝑝 element to edge 𝑒 ∈ 𝐸 by 𝜎(𝑒) (x).

Let 𝑃 be the set of all paths from 𝑣0 to 𝑣1. Each element in 𝑃 can be represented by a

subset of 𝐸 . The output of the ABP on input x is defined as
∑
𝐸 ′∈𝑃

∏
𝑒∈𝐸 ′ 𝜎(𝑒) (x). We

can extend the definition of ABPs for functions 𝑓 : Z𝑛0
𝑝 → Z𝑛1

𝑝 by evaluating each output

in a coordinate-wise manner and denote such a function class by F ABP
𝑛0,𝑛1

.

Note that we can convert any boolean formula, boolean branching program or arithmetic

formula to an arithmetic branching program with a constant blow-up in the representation

size. Thus, ABPs are a stronger computational model than all of the above.

5.4.2 Basic Cryptographic Notions

Definition 5.2 (Bilinear Groups). Let {G𝜆}𝜆∈N be a family of bilinear groups. Bilinear

groupsG𝜆=(𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑔1, 𝑔2, 𝑒) are specified by a prime 𝑝, cyclic groups𝐺1, 𝐺2, 𝐺𝑇

of order 𝑝, generators 𝑔1 and 𝑔2 of 𝐺1 and 𝐺2 respectively, and a bilinear map

𝑒 : 𝐺1 × 𝐺2 → 𝐺𝑇 , which has two properties.

• (Bilinearity): ∀ℎ1 ∈ 𝐺1, ℎ2 ∈ 𝐺2, 𝑎, 𝑏 ∈ Z𝑝, 𝑒(ℎ𝑎1 , ℎ
𝑏
2) = 𝑒(ℎ1, ℎ2)𝑎𝑏.

• (Non-degeneracy): For 𝑔1 and 𝑔2, 𝑔𝑇 = 𝑒(𝑔1, 𝑔2) is a generator of 𝐺𝑇 .

In what follows, we omit the index 𝜆 from G𝜆 and abuse notation by denoting a family of

bilinear groups {G𝜆}𝜆∈N also by G if it is clear in the context.

Definition 5.3 (D 𝑗 ,𝑘-MDDH Assumption [EHK+17]). Let {G} be a family of bilinear

groups. For 𝑗 > 𝑘 , letD 𝑗 ,𝑘 be a matrix distribution over matrices in Z 𝑗×𝑘𝑝 , which outputs

a full-rank matrix with overwhelming probability. We can assume that, wlog, the first 𝑘

rows of a matrix chosen from D 𝑗 ,𝑘 form an invertible matrix. We consider the following

distribution: A ← D 𝑗 ,𝑘 , m ← Z𝑘𝑝, k0 = Am, k1 ← Z 𝑗𝑝, 𝑃𝑖,𝛽 = (G, [A]𝑖, [k𝛽]𝑖). We

say that theD 𝑗 ,𝑘 -MDDH assumption holds with respect to {G} if, for any PPT adversary

A,

AdvD 𝑗 ,𝑘-MDDH
A = max

𝑖∈{1,2}
| Pr[1← A(𝑃𝑖,0)] − Pr[1← A(𝑃𝑖,1)] | ≤ negl .

In what follows, we denote D𝑘+1,𝑘 by D𝑘 . Note that the well-known 𝑘-Lin assumption

235

can be captured as the D𝑘 -MDDH assumption.

Uniform Distribution. Let U𝑗 ,𝑘 be a uniform distribution over Z 𝑗×𝑘𝑝 . Then, the

following holds with tight reductions: D𝑘 -MDDH⇒U𝑘 -MDDH⇒U𝑗 ,𝑘 -MDDH. We

denote D𝑘 -MDDH by MDDH𝑘 .

Random Self-Reducibility. We can obtain arbitrarily many instances of the D 𝑗 ,𝑘-

MDDH problem from a single instance. For any 𝑛 ∈ N, we define the following

distribution: A← D 𝑗 ,𝑘 , M← Z𝑘×𝑛𝑝 , K0 = AM, K1 ← Z 𝑗×𝑛𝑝 , 𝑃𝑖,𝛽 = (G, [A]𝑖, [K𝛽]𝑖).

The 𝑛-fold D 𝑗 ,𝑘 -MDDH assumption is similarly defined to the D 𝑗 ,𝑘 -MDDH assumption.

Then, the 𝑛-fold D 𝑗 ,𝑘-MDDH assumption is implied by the D 𝑗 ,𝑘-MDDH assumption

with security loss of min{𝑛, 𝑗 − 𝑘}.

Definition 5.4 (Secret Sharing Scheme). A (𝑛 out of 𝑛) secret sharing scheme consists

of Share and Rec.

Share(𝑠, 𝑛) It takes a secret 𝑠 ∈ {0, 1}𝑚 and a number of shares 𝑛 and outputs shares

𝜎1, . . . , 𝜎𝑛 ∈ {0, 1}𝑚.

Rec(𝜎1, . . . , 𝜎𝑛) It takes shares 𝜎1, . . . , 𝜎𝑛 ∈ {0, 1}𝑚 and outputs a bit string 𝑠′.
A secret sharing scheme has two properties.

Correctness For all 𝑛, 𝑚 ∈ N, 𝑠 ∈ {0, 1}𝑚,

Pr[Rec(𝜎1, . . . , 𝜎𝑛) = 𝑠 : 𝜎1, . . . , 𝜎𝑛 ← Share(𝑠, 𝑛)] = 1.

Security For all 𝑛, 𝑚 ∈ N, 𝑠 ∈ {0, 1}𝑚, 𝑆 ⊊ [𝑛], the following distributions are identical:

{{𝜎𝑖}𝑖∈𝑆 : 𝜎1, . . . , 𝜎𝑛 ← Share(𝑠, 𝑛)} and {{𝜎𝑖}𝑖∈𝑆 : 𝜎1, . . . , 𝜎𝑛 ← {0, 1}𝑚}

Definition 5.5 (Non-interactive key exchange (NIKE)). A NIKE scheme for shared key

space K consists of the three algorithms.

236

Setup(1𝜆) → pp It takes a security parameter 1𝜆 and outputs a public parameter pp.

KeyGen(pp) → (pk, sk) It takes pp and outputs a public key pk and the corresponding

secret key sk.

SharedKey(pk, sk) → K It takes pk and sk and deterministically outputs a shared key

K ∈ K.
Correctness. A NIKE scheme is correct if, for all 𝜆 ∈ N, we have

Pr

K𝑖, 𝑗 = K 𝑗 ,𝑖 :

pp← Setup(1𝜆)

(pk𝑖, sk𝑖), (pk 𝑗 , sk 𝑗) ← KeyGen(pp)

K𝑖, 𝑗 = SharedKey(pk𝑖, sk 𝑗)

K 𝑗 ,𝑖 = SharedKey(pk 𝑗 , sk𝑖)

= 1.

Security. We say a NIKE scheme is IND-secure if, for all stateful PPT adversaries A,

we have

Pr

𝛽 = 𝛽′ :

𝛽← {0, 1}, pp← Setup(1𝜆)

S ← A(pp)

(pk𝑖, sk𝑖) ← KeyGen(pp)

CS, (𝑖′, 𝑗 ′) ← A({pk𝑖}𝑖∈S) where 𝑖′, 𝑗 ′ ∈ S\CS and 𝑖′ ≠ 𝑗 ′

K0
𝑖′, 𝑗 ′ = SharedKey(pk𝑖′ , sk 𝑗 ′), K1

𝑖′, 𝑗 ′ ← K

𝛽′← A({sk𝑖}𝑖∈CS ,K𝛽

𝑖′, 𝑗 ′)

≤ 1/2 + negl .

Definition 5.6 (Partial Garbling Scheme for F ABP
𝑛0,𝑛1

). We use the following partial garbling

scheme for F ABP
𝑛0,𝑛1

[IW14] (please see Definition 5.1) for the construction of our FE

schemes. A partial garbling scheme for F ABP
𝑛0,𝑛1

consists of the four algorithms. Note

that lgen and rec are deterministic algorithms while pgb and pgb∗ are probabilistic

algorithms.

237

lgen(𝑓) It takes 𝑓 ∈ F ABP
𝑛0,𝑛1

and outputs L1, . . . ,L𝑡 ∈ Z(𝑛0+1)×(𝑡−1)
𝑝 where 𝑡 depends on

𝑓 .

pgb(𝑓 , x, z; t) Let x′⊤ = (x, 1). It takes 𝑓 ∈ F ABP
𝑛0,𝑛1

, x ∈ Z𝑛0
𝑝 , z ∈ Z𝑛1

𝑝 , and a random tape

t ∈ Z𝑡−1
𝑝 . It then outputs

(x′⊤L1t, . . . , x′⊤L𝑠t, z[1] + x′⊤L𝑠+1t, . . . , z[𝑛1] + x′⊤L𝑡t) ∈ Z𝑡𝑝

where 𝑠 = 𝑡 − 𝑛1 and (L1, . . . ,L𝑡) = lgen(𝑓).

pgb∗(𝑓 , x, 𝜇; t) It takes 𝜇 ∈ Z𝑝 and 𝑓 , x, t as above and outputs

(x′⊤L1t + 𝜇, x′⊤L2t, . . . , x′⊤L𝑡t) ∈ Z𝑡𝑝

where (L1, . . . ,L𝑡) = lgen(𝑓).

rec(𝑓 , x) It takes 𝑓 , x ∈ Z𝑛0
𝑝 and outputs d 𝑓 ,x ∈ Z𝑡𝑝.

The concrete description of lgen, rec that satisfy the following properties is found in

[AGW20, Appendix A]. We slightly modify the format of the output of lgen from

[AGW20] for convenience in our construction, but note that they are essentially the same.

Correctness. The garbling scheme is correct if for all 𝑓 ∈ F ABP
𝑛0,𝑛1

, x ∈ Z𝑛0
𝑝 , z ∈ Z𝑛1

𝑝 , t ∈

Z𝑡−1
𝑝 , we have

⟨pgb(𝑓 , x, z; t), rec(𝑓 , x)⟩ = ⟨ 𝑓 (x), z⟩.

Security. The garbling scheme is secure if for all 𝑓 ∈ F ABP
𝑛0,𝑛1

, x ∈ Z𝑛0
𝑝 , z ∈ Z𝑛1

𝑝 , the

following distributions are statistically close:

pgb(𝑓 , x, z; t) and pgb∗(𝑓 , x, ⟨ 𝑓 (x), z⟩; t)

where the random tape is chosen over t← Z𝑡−1
𝑝 .

238

Extension of Partial Garbling Scheme. We can construct an additional partial garbling

algorithm pgb+ with the following properties [AGW20, Appendix A.

pgb+(𝑓 , x, z, 𝛿; t) Let x′⊤ = (x⊤, 1). It takes 𝑓 ∈ F ABP
𝑛0,𝑛1

, x ∈ Z𝑛0
𝑝 , z ∈ Z𝑛1

𝑝 , 𝛿 ∈ Z𝑝, and a

random tape t ∈ Z𝑡−1
𝑝 . It then outputs

(x′⊤L1t + 𝛿 , x′⊤L2t, . . . , x′⊤L𝑠t, z[1] + x′⊤L𝑠+1t, . . . , z[𝑛1] + x′⊤L𝑡t) ∈ Z𝑡𝑝

where 𝑠 = 𝑡 − 𝑛1 and (L1, . . . ,L𝑡) = lgen(𝑓).
Correctness. For all 𝑓 ∈ F ABP

𝑛0,𝑛1
, x ∈ Z𝑛0

𝑝 , z ∈ Z𝑛1
𝑝 , t ∈ Z𝑡−1

𝑝 , we have

⟨pgb+(𝑓 , x, z, 𝛿; t), rec(𝑓 , x)⟩ = ⟨ 𝑓 (x), z⟩ + 𝛿.

Security. For all 𝑓 ∈ F ABP
𝑛0,𝑛1

, x ∈ Z𝑛0
𝑝 , z ∈ Z𝑛1

𝑝 , the following distributions are statistically

close:

pgb+(𝑓 , x, z, 𝛿; t) and pgb∗(𝑓 , x, ⟨ 𝑓 (x), z⟩ + 𝛿; t)

where the random tape is chosen over t← Z𝑡−1
𝑝 .

Linearlity. Observe that pgb+ is affine in z[1], t, 𝛿, and pgb∗ is affine in 𝜇.

5.4.3 Variants of Functional Encryption

Definition 5.7 (Attribute-Based Encryption (ABE)). Let P : X × Y → {0, 1} be a

predicate where X and Y denote ciphertext-attribute and key-attribute spaces. An

attribute-based encryption (ABE) scheme for a predicate family P consists of four

algorithms:

Setup(1𝜆) It takes a security parameter 1𝜆, and outputs a public key pk and a master

secret key msk. The other algorithms implicitly take pk.

Enc(𝑥, 𝑀) It takes pk, an attribute 𝑥 ∈ X and a message 𝑀 ∈ M as inputs, and outputs

a ciphertext ct. (Note that we letM be specified in pk.)

239

KeyGen(msk, 𝑦) It takes pk,msk, and an attribute 𝑦 ∈ Y as inputs, and outputs a secret

key sk.

Dec(ct𝑥 , sk𝑦) It takes pk, ct and sk as inputs, and outputs a message 𝑀′ or a symbol ⊥.
Correctness. An ABE scheme is correct if it satisfies the following condition. For all

𝜆 ∈ N, 𝑥 ∈ X, 𝑦 ∈ Y such that P(𝑥, 𝑦) = 1, and 𝑀 ∈ M, we have

Pr

𝑀 = 𝑀′ :

(pk,msk) ← Setup(1𝜆, 𝜅)

ct← Enc(𝑥, 𝑀)

sk← KeyGen(msk, 𝑦)

𝑀′ = Dec(ct, sk)

= 1.

Security. An ABE scheme is selectively secure in the multi-challenge setting if it

satisfies the following condition. That is, the advantage of A defined as follows is

negligible in 𝜆 for all stateful PPT adversary A:

AdvABE
A (𝜆) = Pr

𝛽 = 𝛽′ :

𝛽← {0, 1}

(pk,msk) ← Setup(1𝜆, 𝜅)

{𝑥 𝑗
𝑗
, 𝑀 𝑘

0 , 𝑀
𝑗

1 } 𝑗∈[𝑞𝑐] ← A(pk)

ct 𝑗 ← Enc(𝑥 𝑗 , 𝑀 𝑗

𝛽
) for 𝑗 ∈ [𝑞𝑐]

𝛽′← AKeyGen(msk,·) ({ct 𝑗 } 𝑗∈[𝑞𝑐])

− 1
2

where all {𝑦ℓ}ℓ∈[𝑞𝑘] on which A queries KeyGen must satisfy P(𝑥 𝑗 , 𝑦ℓ) = 0.

Definition 5.8 (Secret-Key Functional Encryption). Let F be a function family such

that, for all 𝑓 ∈ F , 𝑓 : X → Z. A secret-key functional encryption (SK-FE) scheme for

F consists of four algorithms.

Setup(1𝜆) It takes a security parameter 1𝜆 and outputs a public parameter pp, and a

master secret key msk. The other algorithms implicitly take pp.

240

Enc(msk, 𝑥) It takes msk and 𝑥 ∈ X and outputs a ciphertext ct.

KeyGen(msk, 𝑓) It takes msk and 𝑓 ∈ F , and outputs a secret key sk.

Dec(ct, sk) It takes ct and sk, and outputs a decryption value 𝑑 ∈ Z or a symbol ⊥.
Correctness. An SK-FE scheme is correct if it satisfies the following condition. For all

𝜆 ∈ N, 𝑥 ∈ X, 𝑓 ∈ F , we have

Pr

𝑓 (𝑥) = Dec(ct, sk) :

(pp,msk) ← Setup(1𝜆)

ct← Enc(msk, 𝑥)

sk← KeyGen(msk, 𝑓)

= 1.

Security. We consider the case where each 𝑥 ∈ X consists of a public part 𝑥pub and

a private part 𝑥priv, i.e., 𝑥 = (𝑥pub, 𝑥priv), and each 𝑓 ∈ F consists of a public part 𝑓pub

and a private part 𝑓priv, i.e., 𝑓 = (𝑓pub, 𝑓priv). An SK-FE scheme is selectively partially

function-hiding if for every stateful PPT adversary A, there exists a negligible function

negl such that for all 𝜆 ∈ N, the following holds

Pr

𝛽 = 𝛽′ :

𝛽← {0, 1}

(pp,msk) ← Setup(1𝜆)

𝛽′← AQEnc𝛽 (),QKeyGen𝛽 () (pp)

≤ 1

2
+ negl

where 𝑥 𝑗 ,𝛽 = (𝑥 𝑗pub, 𝑥
𝑗 ,𝛽

priv), 𝑓
𝛽 = (𝑓pub, 𝑓

𝛽

priv), QEnc𝛽 (𝑥0, 𝑥1) returns Enc(msk, 𝑥𝛽), and

QKeyGen𝛽 (𝑓 0, 𝑓 1) returns KeyGen(msk, 𝑓 𝛽). The admissible adversary’s queries must

satisfy the following condition:

1. A cannot query QEnc𝛽 after querying QKeyGen𝛽 even once.

2. If (𝑥0, 𝑥1) is included in the query to QEnc𝛽 and (𝑓 0, 𝑓 1) is queried to QKeyGen𝛽,
then 𝑓 0(𝑥0) = 𝑓 1(𝑥1).

241

5.5 ATTRIBUTE-BASED FE FOR ATTRIBUTE-WEIGHTED SUMS WITH

INNER PRODUCT

In this section, we present an attribute-based FE for attribute-weighted sums with inner

product (AB-FE for AWSw/IP). In Appendix 5.B, we show how it can be captured using

the notation of MPFE. We will need the following definitions.

Definition 5.9 (Inner Product Functional Encryption). Inner product functional

encryption (IPFE) is a class of secret-key functional encryption (SK-FE) that supports

the following functionality. Let G be bilinear groups. Let X = 𝐺𝑚
1 be a message space.

Let F = 𝐺𝑚
2 be a family of functions, where 𝑓 = [c]2 ∈ F represents the function

𝑓 : X → 𝐺𝑇 defined as 𝑓 ([x]1) = [⟨x, c⟩]𝑇 where x, c ∈ Z𝑚𝑝 are both private inputs.

A function-hiding IPFE scheme can be constructed from the MDDH assumption [Tom19,

Appendix A].

Definition 5.10 (FE for AWSw/IP). An FE scheme for attribute-weighted sums with

inner product (AWSw/IP) is a class of SK-FE that supports the following functionality.

Let G be bilinear groups of order 𝑝. Let X =
⋃
𝑖∈N(Z𝑛0

𝑝 × Z𝑛1
𝑝)𝑖 × 𝐺𝑚

1 be a message

space. Let F = F ABP
𝑛0,𝑛1
×𝐺𝑚

2 (see Definition 5.1 for F ABP
𝑛0,𝑛1

) be a family of functions, where

𝑓 ′ = (𝑓 , [q]2) ∈ F represents the function 𝑓 ′ : X → 𝐺𝑇 defined as

𝑓 ′(({x𝑖, z𝑖}𝑖∈[𝑁] , [p]1)) = [
∑︁
𝑖∈[𝑁]
⟨ 𝑓 (x𝑖), z𝑖⟩ + ⟨p, q⟩]𝑇

where {x𝑖}, 𝑓 are public elements while {z𝑖}, [p]1, [q]2 are private elements.

Definition 5.11 (AB-FE for AWSw/IP). An attribute-based FE scheme for attribute-

weighted sums with inner product (AB-FE for AWSw/IP) is a class of SK-FE that supports

the following functionality. Let G be bilinear groups. Let X = (Z𝑛
′
0
𝑝 ∪ {★}) ×

⋃
𝑖∈N(Z𝑛0

𝑝 ×

Z𝑛1
𝑝)𝑖 × 𝐺𝑚

1 be a message space. Let F = F ABP
𝑛′0,1
× F ABP

𝑛0,𝑛1
× 𝐺𝑚

2 be a family of functions,

where 𝑓 = (𝑔, ℎ, [q]2) ∈ F represents the function 𝑓 : X → 𝐺𝑇 defined as

𝑓 ((y, {x 𝑗 , z 𝑗 } 𝑗∈[𝑁] , [p]1)) =

[∑ 𝑗∈[𝑁] ⟨ℎ(x 𝑗), z 𝑗 ⟩ + ⟨p, q⟩]𝑇 𝑔(y) = 0 ∨ y = ★

⊥ 𝑔(y) ≠ 0

242

where y, {x𝑖}, 𝑔, ℎ are public elements while {z𝑖}, [p]1, [q]2 are private elements. For

notational convenience, we define 𝑔(★) = 0 for all ABPs 𝑔 (even for ABPs 𝑔 such that

𝑔(y) ≠ 0 for all y ∈ Z𝑛
′
0
𝑝).

Remark 9. As explained in the introduction, we need the wildcard functionality to

make our AB-MIFE scheme secure in the corruption model. This is why we define the

functionality of AB-FE for AWS such that it also supports wildcards, which we will use

to construct our our AB-MIFE scheme as a building block.

5.5.1 Construction

Let 𝑘 be the parameter for the MDDH𝑘 assumption. Let iFE = (iSetup, iEnc,

iKeyGen, iDec) be a function-hiding IPFE scheme with the vector length being

𝑘 (𝑛′0 + 𝑛0 + 3) + 𝑛1 + 2𝑚 + 2. The last 𝑚 + 2 elements are used for only the security

proof. Let (lgen, pgb, pgb+, pgb∗, rec) be a partially garbling scheme for ABPs

(Definition 5.6). Then our AB-FE scheme for AWSw/IP is described below.

Setup(1𝜆) It runs iPP, iMSK← iSetup(1𝜆) and outputs (pp,msk) = (iPP, iMSK).

Enc(msk, (y′, {x 𝑗 , z 𝑗 } 𝑗∈[𝑁] , [p]1)) It samples u1, . . . , u𝑁 ,w1, . . . ,w𝑁−1 ← Z𝑘𝑝 and sets

w𝑁 = −∑
𝑗∈[𝑁−1] w 𝑗 . If y′ = ★, it sets y = 0𝑛

′
0 and v = 0𝑘 , otherwise it sets y = y′

and v← Z𝑘𝑝. Then, it defines

𝝌⊤𝑗 = (y, x 𝑗 , 1), X 𝑗 =

(𝝌 𝑗 ⊗ u 𝑗 , z 𝑗 ,w 𝑗 , v, p, 0𝑚+2) (𝑗 = 1)

(𝝌 𝑗 ⊗ u 𝑗 , z 𝑗 ,w 𝑗 , 0𝑘 , 0𝑚, 0𝑚+2) (𝑗 > 1)

and computes iCT 𝑗 ← iEnc(iMSK, [X 𝑗]1) for all 𝑗 ∈ [𝑁]. It outputs ct =

(y, {x 𝑗 , iCT 𝑗 } 𝑗∈[𝑁]).

KeyGen(msk, (𝑔, ℎ, [q]2)) It samples r, s← Z𝑘𝑝 and defines an ABP 𝜙 : Z𝑛
′
0+𝑛0
𝑝 → Z1+𝑛1

𝑝

as 𝜙((y, x)) = (𝑔(y), ℎ(x)) for y ∈ Z𝑛
′
0
𝑝 , x ∈ Z𝑛0

𝑝 . It computes L1, . . . ,L𝑡 ←

243

lgen(𝜙) and T← Z(𝑡−1)×𝑘
𝑝 and defines

Y 𝑗 =

(vec(L 𝑗T), 0𝑛1 , r, 0𝑘 , q, 0𝑚+2) (𝑗 = 1)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚+2) (1 < 𝑗 ≤ 𝑠)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , s, 0𝑚, 0𝑚+2) (𝑗 = 𝑠 + 1)

(vec(L 𝑗T), e 𝑗−𝑠−1, 0𝑘 , 0𝑘 , 0𝑚, 0𝑚+2) (𝑠 + 1 < 𝑗)

where 𝑠 is the parameter of the partial garbling scheme defined in Definition 5.6.

It computes iSK 𝑗 ← iKeyGen(iMSK, [Y 𝑗]2) for all 𝑗 ∈ [𝑡] and outputs sk =

(𝜙, {iSK 𝑗 } 𝑗∈[𝑡]).

Dec(ct, sk) It parse ct, sk as (y, {x 𝑗 , iCT 𝑗 } 𝑗∈[𝑁]) and (𝜙, {iSK 𝑗 } 𝑗∈[𝑡]), respectively. It

outputs ⊥ if 𝑔(y′) ≠ 0. Otherwise, it computes [𝑑 𝑗 ,ℓ]𝑇 = iDec(iCT 𝑗 , iSKℓ) for

𝑗 ∈ [𝑁], ℓ ∈ [𝑡] and outputs

[𝑑]𝑇 =
∑︁
𝑗∈[𝑁]
⟨[d 𝑗]𝑇 , rec(𝜙, (y, x 𝑗))⟩.

where d 𝑗 = (𝑑 𝑗 ,1, . . . , 𝑑 𝑗 ,𝑡).

Correctness. In decryption, due to the correctness of iFE, we have

d 𝑗 =

pgb+(𝜙, (y, x 𝑗), (⟨s, v⟩, z 𝑗), ⟨r,w 𝑗 ⟩ + ⟨p, q⟩; Tu 𝑗) (𝑗 = 1)

pgb+(𝜙, (y, x 𝑗), (0, z 𝑗), ⟨r,w 𝑗 ⟩ ; Tu 𝑗) (𝑗 > 1)

where v = 0 if y′ = ★. Thanks to the correctness of the partial garbling scheme, we have

⟨d 𝑗 , rec(𝜙, (y, x 𝑗))⟩ =

⟨s, v⟩𝑔(y) + ⟨ℎ(x 𝑗), z 𝑗 ⟩ + ⟨r,w 𝑗 ⟩ + ⟨p, q⟩ (𝑗 = 1)

⟨ℎ(x 𝑗), z 𝑗 ⟩ + ⟨r,w 𝑗 ⟩ (𝑗 > 1)

In the above, we use the fact that 𝜙((y, x 𝑗)) = (𝑔(y), ℎ(x 𝑗)) ∈ Z1+𝑛1
𝑝 . Hence 𝑑 =∑

𝑗∈[𝑁] ⟨ℎ(x 𝑗), z 𝑗 ⟩ + ⟨p, q⟩ if 𝑔(y′) = 0, since
∑
𝑗∈[𝑁] ⟨r,w 𝑗 ⟩ = 0.

244

Remark 10. A partially-hiding FE scheme for AWSw/IP can be obtained from a partially-

hiding AB-FE scheme for AWSw/IP by setting 𝑛′0 = 0 and 𝑔 as the constant function that

outputs 0.

5.5.2 Security

We argue security via the following theorem.

Theorem 5.5. If iFE is function-hiding, the partial garbling scheme is secure, and

the MDDH𝑘 assumption holds in G, then the proposed AB-FE scheme for AWSw/IP is

partially function-hiding as per Definition 5.8.

Proof. We prove the theorem via a series of hybrid games H𝛽

ℓ
for ℓ ∈ [𝑞𝑐] where 𝑞𝑐 is

the number of ciphertext queries by the adversary. We show that H𝛽
𝑠 ≈𝑐 H𝛽

1 ≈𝑐 · · · ≈𝑐

H𝛽
𝑞𝑐 ≈𝑐 H𝛽

𝑓
, where H𝛽

𝑠 for 𝛽 ∈ {0, 1} is the original security game. Intuitively, in H𝛽

ℓ
, we

program the vectors X 𝑗 and Y 𝑗 in the ciphertexts and secret keys queried by the adversary

such that the challenge ciphertexts in the first ℓ queries decrypt to
∑⟨ℎ(x 𝑗), z0

𝑗
⟩ + ⟨p0, q0⟩

while the rest of ciphertexts decrypts to
∑⟨ℎ(x 𝑗), z𝛽𝑗 ⟩ + ⟨p𝛽, q𝛽⟩. Then, in the last hybrid,

the adversary obtains no information about 𝛽, and we can conclude the proof.

Recall that in H𝛽
𝑠 the challenger replies

Enc(msk, (y′, {x 𝑗 , z𝛽𝑗 } 𝑗∈[𝑁] , [p
𝛽]1)) for QEnc𝛽 (y′, {x 𝑗 , z0

𝑗 , z
1
𝑗 } 𝑗∈[𝑁] , [p0]1, [p1]1)

KeyGen(msk, (𝑔, ℎ, [q𝛽]2)) for QKeyGen𝛽 (𝑔, ℎ, [q0]2, [q1]2)

where Enc and KeyGen work as specified in Section 5.5.1. The hybrid H𝛽

ℓ
is the same as

H𝛽
𝑠 except the way of defining X 𝑗 in Enc and Y 𝑗 in KeyGen in the replies for ciphertext

245

and secret-key queries. Specifically, X 𝑗 in the ℓ′-th ciphertext query is defined as

Xℓ′
𝑗
=

(𝝌 𝑗 ⊗ u 𝑗 , z0

𝑗
,w 𝑗 , v, 0𝑚, p0, 02) (𝑗 = 1)

(𝝌 𝑗 ⊗ u 𝑗 , z0
𝑗
,w 𝑗 , 0𝑘 , 0𝑚, 0𝑚+2) (𝑗 > 1)

(ℓ′ ≤ ℓ)

Xℓ′
𝑗
=

(𝝌 𝑗 ⊗ u 𝑗 , z𝛽𝑗 ,w 𝑗 , v, p𝛽, 0𝑚+2) (𝑗 = 1)

(𝝌 𝑗 ⊗ u 𝑗 , z𝛽𝑗 ,w 𝑗 , 0𝑘 , 0𝑚, 0𝑚+2) (𝑗 > 1)
(ℓ′ > ℓ)

and Y 𝑗 for all queries are defined as

Y 𝑗 =

(vec(L 𝑗T), 0𝑛1 , r, 0𝑘 , q𝛽, q0, 02) (𝑗 = 1)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚+2) (1 < 𝑗 ≤ 𝑠)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , s, 0𝑚, 0𝑚+2) (𝑗 = 𝑠 + 1)

(vec(L 𝑗T), e 𝑗−𝑠−1, 0𝑘 , 0𝑘 , 0𝑚, 0𝑚+2) (𝑠 + 1 < 𝑗)

The hybrid H𝛽

𝑓
is the same as H𝛽

𝑞𝑐 except that Y1 for all queries are defined as

Y1 = (vec(L1T), 0𝑛1 , r, 0𝑘 , 0𝑚, q0, 02)

Note that the advantage of the adversary is 0 in H𝛽

𝑓
since it does not obtain the information

of 𝛽. Hence, the theorem holds from Lemmas 5.6 and 5.7. ■

Lemma 5.6. H𝛽
𝑞𝑐 ≈𝑐 H𝛽

𝑓
if iFE is function-hiding.

Proof. Observe that in H𝛽
𝑞𝑐 , X 𝑗 is defined as

X 𝑗 =

(𝝌 𝑗 ⊗ u 𝑗 , z0

𝑗
,w 𝑗 , v, 0𝑚, p0, 02) (𝑗 = 1)

(𝝌 𝑗 ⊗ u 𝑗 , z0
𝑗
,w 𝑗 , 0𝑘 , 0𝑚, 0𝑚+2) (𝑗 > 1)

for all queries to QEnc. Therefore, for all queries to QEnc and QKeyGen, we have

⟨X 𝑗 ,Y1⟩ = 𝝌⊤𝑗 L1Tu 𝑗 + ⟨w 𝑗 , r⟩ + ⟨p0, q0⟩

in both H𝛽
𝑞𝑐 and H𝛽

𝑓
. Hence, the indistinguishability of H𝛽

𝑞𝑐 and H𝛽

𝑓
readily follows from

246

the function-hiding security of iFE. ■

Lemma 5.7. Let H𝛽

0 = H𝛽
𝑠 . For all ℓ ∈ [𝑞𝑐], we have H𝛽

ℓ−1 ≈𝑐 H𝛽

ℓ
.

Proof. What this lemma asserts is that for the ℓ-th ciphertext ctℓ and any secret key sk,

the cases where decryption of these reveals 𝛾𝛽 =
∑⟨ℎ(xℓ), zℓ,𝛽⟩ + ⟨pℓ,𝛽, q𝛽⟩ or ⊥ and

where it reveals 𝛾0 =
∑⟨ℎ(xℓ), zℓ,0⟩ + ⟨pℓ,0, q0⟩ or ⊥ are indistinguishable. Note that

𝛾𝛽 = 𝛾0 = 𝛾 due to the query condition. As in [AGW20], our goal is the hybrid where

ctℓ is simulatable without z𝛽, pℓ,𝛽, and sk is simulatable from 𝛾. At this point, we can

use the equality 𝛾𝛽 = 𝛾0 to switch the 𝛽-system to the 0-system through the following

two equivalent hybrids.

H𝛽

ℓ,1 This hybrid is the same as H𝛽

ℓ−1 except that X 𝑗 in the ℓ-th ciphertext query is defined

as

Xℓ
𝑗 =

(0𝑛0𝑘 , 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 1, 0) (𝑗 = 1)

(𝝌 𝑗 ⊗ u 𝑗 , 0𝑛1 ,w 𝑗 , 0𝑘 , 0𝑚, 0𝑚, 0, 0) (𝑗 > 1)

and Y 𝑗 for all queries are defined as

Y 𝑗 =

(vec(L 𝑗T), 0𝑛1 , r, 0𝑘 , q𝛽, q0, 𝑑 𝑗 , 0) (𝑗 = 1)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (1 < 𝑗 ≤ 𝑠)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , s, 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (𝑗 = 𝑠 + 1)

(vec(L 𝑗T), e 𝑗−𝑠−1, 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (𝑠 + 1 < 𝑗)

where t̃← Z𝑡−1
𝑝 , �̃� ← Z𝑝 (if y′ℓ ≠ ★), �̃� = 0 (if y′ℓ = ★) and

(𝑑1, . . . , 𝑑𝑡) = pgb∗(𝜙, (yℓ, xℓ1), �̃�𝑔(y
ℓ) +

∑︁
𝑗∈[𝑁 (ℓ)]

⟨ℎ(xℓ𝑗), z
ℓ,𝛽

𝑗
⟩

+ ⟨pℓ,𝛽, q𝛽⟩ + ⟨wℓ
1, r⟩; t̃). (5.3)

247

H𝛽

ℓ,2 This hybrid is the same as H𝛽

ℓ,1 except that (𝑑1, . . . , 𝑑𝑡) in Eq.(5.3) is defined as

(𝑑1, . . . , 𝑑𝑡) = pgb∗(𝜙, (yℓ, xℓ1), �̃�𝑔(y
ℓ) +

∑︁
𝑗∈[𝑁 (ℓ)]

⟨ℎ(xℓ𝑗), z
ℓ,0
𝑗
⟩

+ ⟨pℓ,0, q0⟩ + ⟨wℓ
1, r⟩; t̃).

We prove that H𝛽

ℓ−1 ≈𝑐 H𝛽

ℓ,1 = H𝛽

ℓ,2 ≈𝑐 H𝛽

ℓ
. We can see that H𝛽

ℓ,1 = H𝛽

ℓ,2 by considering the

two cases. If 𝑔(y′ℓ) = 0 (that is, 𝑔(yℓ) = 0 or �̃� = 0), we have
∑
𝑗∈[𝑁 (ℓ)] ⟨ℎ(xℓ𝑗), z

ℓ,𝛽

𝑗
⟩ +

⟨pℓ,𝛽, q𝛽⟩ = ∑
𝑗∈[𝑁 (ℓ)] ⟨ℎ(xℓ𝑗), z

ℓ,0
𝑗
⟩ + ⟨pℓ,0, q0⟩ due to the admissibility of the adversary.

Otherwise, the term �̃�𝑔(yℓ) is uniformly distributed in Z𝑝 and works as a one-time pad.

Proving H𝛽

ℓ−1 ≈𝑐 H𝛽

ℓ,1 and H𝛽

ℓ,2 ≈𝑐 H𝛽

ℓ
are similar, and we prove only the former. To this

end, we introduce further intermediate hybrids Ĥ𝛽

ℓ,𝜈,1, . . . , Ĥ
𝛽

ℓ,𝜈,5 for 𝜈 ∈ [𝑁 (ℓ)] and show

that H𝛽

ℓ−1 ≈𝑐 Ĥ𝛽

ℓ,1,1 ≈𝑐 · · · ≈𝑐 Ĥ𝛽

ℓ,1,5 ≈𝑐 Ĥ𝛽

ℓ,2,1 ≈𝑐 · · · ≈𝑐 Ĥ𝛽

ℓ,𝑁 (ℓ) ,5 = H𝛽

ℓ,1. Intuitively, what

we are doing in these steps is to move the information of zℓ,𝛽𝜈 from Xℓ
𝜈 to {Y 𝑗 } 𝑗∈[𝑡] step

by step for 𝜈 ∈ [𝑁ℓ]. Each hybrid is defined as follows.

Ĥ𝛽

ℓ,𝜈,1 This hybrid is the same as H𝛽

ℓ−1 except that X 𝑗 in the ℓ-th ciphertext query is

defined as

Xℓ
𝑗 =

(0𝑛0𝑘 , 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 1, 0) (𝑗 = 1)

(𝝌 𝑗 ⊗ u 𝑗 , 0𝑛1 ,w 𝑗 , 0𝑘 , 0𝑚, 0𝑚, 0, 0) (1 < 𝑗 < 𝜈)

(0𝑛0𝑘 , 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 0, 1) (1 < 𝑗 = 𝜈)

(𝝌 𝑗 ⊗ u 𝑗 , z𝛽𝑗 , w 𝑗 , 0𝑘 , 0𝑚, 0𝑚, 0, 0) (𝜈 < 𝑗)

and Y 𝑗 for all queries are defined as

Y 𝑗 =

(vec(L 𝑗T), 0𝑛1 , r, 0𝑘 , q𝛽, q0, 𝑑 𝑗 , 𝑑
′
𝑗
) (𝑗 = 1)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 𝑑′𝑗) (1 < 𝑗 ≤ 𝑠)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , s, 0𝑚, 0𝑚, 𝑑 𝑗 , 𝑑′𝑗) (𝑗 = 𝑠 + 1)

(vec(L 𝑗T), e 𝑗−𝑠−1, 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 𝑑′𝑗) (𝑠 + 1 < 𝑗)

248

where t̃← Z𝑡−1
𝑝 , �̃� ← Z𝑝 (if y′ℓ ≠ ★), �̃� = 0 (if y′ℓ = ★) and

(𝑑1, . . . , 𝑑𝑡) =

pgb+(𝜙, (yℓ, xℓ1), (⟨s, v
ℓ⟩, zℓ,𝛽1), ⟨p

ℓ,𝛽, q𝛽⟩

+ ⟨wℓ
1, r⟩; Tuℓ1) (𝜈 = 1)

pgb∗(𝜙, (yℓ, xℓ1), �̃�𝑔(y
ℓ) +∑

𝑗∈[𝜈−1] ⟨ℎ(xℓ𝑗), z
ℓ,𝛽

𝑗
⟩

+ ⟨pℓ,𝛽, q𝛽⟩ + ⟨wℓ
1, r⟩; t̃) (𝜈 > 1)

(𝑑′1, . . . , 𝑑
′
𝑡) =

0 (𝜈 = 1)

pgb+(𝜙, (yℓ, xℓ𝜈), (0, z
ℓ,𝛽
𝜈), ⟨wℓ

𝜈, r⟩; Tuℓ𝜈) (𝜈 > 1)

Ĥ𝛽

ℓ,𝜈,2 This hybrid is the same as Ĥ𝛽

ℓ,𝜈,1 except that 𝑑𝑖, 𝑑′𝑖 for 𝑖 ∈ [𝑡] is defined as

(𝑑1, . . . , 𝑑𝑡) =

pgb+(𝜙, (yℓ, xℓ1), (�̃�, z
ℓ,𝛽

1), ⟨p
ℓ,𝛽, q𝛽⟩ + ⟨wℓ

1, r⟩; t̃) (𝜈 = 1)

pgb∗(𝜙, (yℓ, xℓ1), �̃�𝑔(y
ℓ) +∑

𝑗∈[𝜈−1] ⟨ℎ(xℓ𝑗), z
ℓ,𝛽

𝑗
⟩

+⟨pℓ,𝛽, q𝛽⟩ + �̃�1; t̃) (𝜈 > 1)

(𝑑′1, . . . , 𝑑
′
𝑡) = pgb+(𝜙, (yℓ, xℓ𝜈), (0, z

ℓ,𝛽
𝜈), �̃�𝜈; t̃′) (𝜈 > 1)

where t̃, t̃′← Z𝑡−1
𝑝 , �̃�1,← Z𝑝 and �̃�𝜈 = −�̃�1 −

∑
𝑖∈[𝑁ℓ]\{1,𝜈}⟨wℓ

𝑖
, r⟩.

Ĥ𝛽

ℓ,𝜈,3 This hybrid is the same as Ĥ𝛽

ℓ,𝜈,2 except that 𝑑𝑖, 𝑑′𝑖 for 𝑖 ∈ [𝑡] is defined as

(𝑑1, . . . , 𝑑𝑡) = pgb∗(𝜙, (yℓ, xℓ1), �̃�𝑔(y
ℓ) + ⟨ℎ(xℓ1), z

ℓ,𝛽

1 ⟩ + ⟨p
ℓ,𝛽, q𝛽⟩ + ⟨wℓ

1, r⟩; t̃) (𝜈 = 1)

(𝑑′1, . . . , 𝑑
′
𝑡) = pgb∗(𝜙, (yℓ, xℓ𝜈), ⟨ℎ(xℓ𝜈), z

ℓ,𝛽
𝜈 ⟩ + �̃�𝜈; t̃′) (𝜈 > 1)

Ĥ𝛽

ℓ,𝜈,4 For 𝜈 = 1, this hybrid is the same as Ĥ𝛽

ℓ,1,3. Otherwise, this hybrid is the same as

Ĥ𝛽

ℓ,𝜈,3 except that 𝑑𝑖, 𝑑′𝑖 for 𝑖 ∈ [𝑡] is defined as

(𝑑1, . . . , 𝑑𝑡) = pgb∗(𝜙, (yℓ, xℓ1), �̃�𝑔(y
ℓ) +

∑︁
𝑗∈[𝜈]
⟨ℎ(xℓ𝑗), z

ℓ,𝛽

𝑗
⟩ + ⟨pℓ,𝛽, q𝛽⟩ + �̃�1; t̃) (𝜈 > 1)

249

(𝑑′1, . . . , 𝑑
′
𝑡) = pgb∗(𝜙, (yℓ, xℓ𝜈),�������

⟨ℎ(xℓ𝜈), z
ℓ,𝛽
𝜈 ⟩ + �̃�𝜈; t̃′) (𝜈 > 1)

Ĥ𝛽

ℓ,𝜈,5 For 𝜈 = 1, this hybrid is the same as Ĥ𝛽

ℓ,1,4. Otherwise, this hybrid is the same as

Ĥ𝛽

ℓ,𝜈,4 except that X 𝑗 in the ℓ-th ciphertext query is defined as

Xℓ
𝑗 =

(0𝑛0𝑘 , 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 1, 0) (𝑗 = 1)

(𝝌 𝑗 ⊗ u 𝑗 , 0𝑛1 ,w 𝑗 , 0𝑘 , 0𝑚, 0𝑚, 0, 0) (1 < 𝑗≤𝜈)

(𝝌 𝑗 ⊗ u 𝑗 , z𝛽𝑗 , w 𝑗 , 0𝑘 , 0𝑚, 0𝑚, 0, 0) (𝜈 < 𝑗)

and Y 𝑗 for all queries are defined as

Y 𝑗 =

(vec(L 𝑗T), 0𝑛1 , r, 0𝑘 , q𝛽, q0, 𝑑 𝑗 , 0) (𝑗 = 1)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (1 < 𝑗 ≤ 𝑠)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , s, 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (𝑗 = 𝑠 + 1)

(vec(L 𝑗T), e 𝑗−𝑠−1, 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (𝑠 + 1 < 𝑗)

where t̃← Z𝑡−1
𝑝 and

(𝑑1, . . . , 𝑑𝑡) = pgb∗(𝜙, (yℓ, xℓ1), �̃�𝑔(y
ℓ) +

∑︁
𝑗∈[𝜈]
⟨ℎ(xℓ𝑗), z

ℓ,𝛽

𝑗
⟩ + ⟨pℓ,𝛽, q𝛽⟩ + ⟨wℓ

1, r⟩; t̃)

Thanks to Theorems 5.8 to 5.12, Theorem 5.7 holds. ■

Lemma 5.8. Let Ĥ𝛽

ℓ,0,5 = H𝛽

ℓ−1. For all 𝜈 ∈ [𝑁 (ℓ)], we have Ĥ𝛽

ℓ,𝜈−1,5 ≈𝑐 Ĥ𝛽

ℓ,𝜈,1 if iFE is

function-hiding.

Proof. Observe that the difference of Ĥ𝛽

ℓ,𝜈−1,5 and Ĥ𝛽

ℓ,𝜈,1 is described as the two cases:

𝜈 = 1 In this case, Xℓ
1 in the ℓ-th ciphertext and Y 𝑗 in all the secret keys in Ĥ𝛽

ℓ,0,5 = H𝛽

ℓ−1

are defined as follows:

Xℓ
1 = (𝝌1 ⊗ u1, z𝛽1 , w1, v, p𝛽, 0𝑚+2)

250

Y 𝑗 =

(vec(L 𝑗T), 0𝑛1 , r, 0𝑘 , q𝛽, 0𝑚+2) (𝑗 = 1, ℓ = 1)

(vec(L 𝑗T), 0𝑛1 , r, 0𝑘 , q𝛽, q0, 02) (𝑗 = 1, ℓ > 1)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚+2) (1 < 𝑗 ≤ 𝑠)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , s, 0𝑚, 0𝑚+2) (𝑗 = 𝑠 + 1)

(vec(L 𝑗T), e 𝑗−𝑠−1, 0𝑘 , 0𝑘 , 0𝑚, 0𝑚+2) (𝑠 + 1 < 𝑗)

while the corresponding vectors in Ĥ𝛽

ℓ,1,1 are defined as

Xℓ
1 = (0𝑛0𝑘 , 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 1, 0)

Y 𝑗 =

(vec(L 𝑗T), 0𝑛1 , r, 0𝑘 , q𝛽, q0, 𝑑 𝑗 , 0) (𝑗 = 1)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (1 < 𝑗 ≤ 𝑠)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , s, 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (𝑗 = 𝑠 + 1)

(vec(L 𝑗T), e 𝑗−𝑠−1, 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (𝑠 + 1 < 𝑗)

where (𝑑1, . . . , 𝑑𝑡) = pgb+(𝜙, (yℓ, xℓ1), (⟨s, v
ℓ⟩, zℓ,𝛽1), ⟨p

ℓ,𝛽, q𝛽⟩ + ⟨wℓ
1, r⟩; Tuℓ1). It

is not hard to see that for all secret keys and 𝑗 , ⟨Xℓ
1,Y 𝑗 ⟩ in H𝛽

ℓ−1 and that in Ĥ𝛽

ℓ,1,1

are both equal to 𝑑 𝑗 . Hence, thanks to the function-hiding security of iFE, the two

hybrids are indistinguishable. Note that the second to last entry of X 𝑗 other than

Xℓ
1 is 0, and thus the change of Y 𝑗 does not affect the other vectors.

𝜈 > 1 In this case, Xℓ
𝜈 in the ℓ-th ciphertext and Y 𝑗 in all the secret keys in Ĥ𝛽

ℓ,𝜈−1,5 are

defined as follows:

Xℓ
𝜈 = (𝝌𝜈 ⊗ u𝜈, z𝛽𝜈 , w𝜈, 0𝑘 , 0𝑚, 0𝑚, 0, 0)

251

Y 𝑗 =

(vec(L 𝑗T), 0𝑛1 , r, 0𝑘 , q𝛽, q0, 𝑑 𝑗 , 0) (𝑗 = 1)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (1 < 𝑗 ≤ 𝑠)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , s, 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (𝑗 = 𝑠 + 1)

(vec(L 𝑗T), e 𝑗−𝑠−1, 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 0) (𝑠 + 1 < 𝑗)

while the corresponding vectors in Ĥ𝛽

ℓ,𝜈,1 are defined as

Xℓ
𝜈 = (0𝑛0𝑘 , 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 0, 1)

Y 𝑗 =

(vec(L 𝑗T), 0𝑛1 , r, 0𝑘 , q𝛽, q0, 𝑑 𝑗 , 𝑑
′
𝑗
) (𝑗 = 1)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 𝑑′𝑗) (1 < 𝑗 ≤ 𝑠)

(vec(L 𝑗T), 0𝑛1 , 0𝑘 , s, 0𝑚, 0𝑚, 𝑑 𝑗 , 𝑑′𝑗) (𝑗 = 𝑠 + 1)

(vec(L 𝑗T), e 𝑗−𝑠−1, 0𝑘 , 0𝑘 , 0𝑚, 0𝑚, 𝑑 𝑗 , 𝑑′𝑗) (𝑠 + 1 < 𝑗)

where (𝑑′1, . . . , 𝑑
′
𝑡) = pgb+(𝜙, (yℓ, xℓ𝜈), (0, z

ℓ,𝛽
𝜈), ⟨wℓ

𝜈, r⟩; Tuℓ𝜈). It is not hard to see

that for all secret keys and 𝑗 , ⟨Xℓ
𝜈,Y 𝑗 ⟩ in Ĥ𝛽

ℓ,𝜈−1,5 and that in Ĥ𝛽

ℓ,𝜈,1 are both equal

to 𝑑′
𝑗
. Hence, thanks to the function-hiding security of iFE, the two hybrids are

indistinguishable. Note that the last entry of X 𝑗 other than Xℓ
𝜈 is 0, and thus the

change of Y 𝑗 does not affect the other vectors.
■

Lemma 5.9. For all 𝜈 ∈ [𝑁 (ℓ)], we have Ĥ𝛽

ℓ,𝜈,1 ≈𝑐 Ĥ𝛽

ℓ,𝜈,2 if the MDDH𝑘 assumption

holds in G.

Proof. Observe that the difference of Ĥ𝛽

ℓ,𝜈,1 and Ĥ𝛽

ℓ,𝜈,2 is described as the two cases:

𝜈 = 1 In this case, 𝑑 𝑗 in Y 𝑗 in Ĥ𝛽

ℓ,1,1 is generated as

(𝑑1, . . . , 𝑑𝑡) = pgb+(𝜙, (yℓ, xℓ1), (⟨s, v
ℓ⟩, zℓ,𝛽1), ⟨p

ℓ,𝛽, q𝛽⟩ + ⟨wℓ
1, r⟩; Tuℓ1)

252

while the corresponding terms in Ĥ𝛽

ℓ,1,2 is generated as

(𝑑1, . . . , 𝑑𝑡) = pgb+(𝜙, (yℓ, xℓ1), (�̃�, z
ℓ,𝛽

1), ⟨p
ℓ,𝛽, q𝛽⟩ + ⟨wℓ

1, r⟩; t̃).

Observe that Ĥ𝛽

ℓ,1,1 = Ĥ𝛽

ℓ,1,2 if y′ℓ = ★. Hence, we focus on the case y′ℓ ≠ ★. Recall

that pgb+ is efficiently computable if the random tape is given as group elements

due to its linearity. Hence, Ĥ𝛽

ℓ,1,1 ≈𝑐 Ĥ𝛽

ℓ,1,2 is reduced to

[{T𝜅, s𝜅,T𝜅u1, ⟨s𝜅, vℓ⟩}𝜅∈[𝑞𝑘]]2 ≈𝑐 [{T𝜅, s𝜅, t̃𝜅, �̃�𝜅}𝜅∈[𝑞𝑘]]2

where 𝑞𝑘 is the number of queries to QKeyGen𝛽, which are essentially what the

MDDH𝑘 assumption asserts. Thanks to the linearity of pgb+, this reduction is

efficient.

𝜈 > 1 In this case, 𝑑 𝑗 and 𝑑′
𝑗

in Y 𝑗 in Ĥ𝛽

ℓ,𝜈,1 are generated as

(𝑑1, . . . , 𝑑𝑡) =pgb∗(𝜙, (yℓ, xℓ1), �̃�𝑔(y
ℓ) +

∑︁
𝑗∈[𝜈−1]

⟨ℎ(xℓ𝑗), z
ℓ,𝛽

𝑗
⟩ + ⟨pℓ,𝛽, q𝛽⟩ + ⟨wℓ

1, r⟩; t̃)

(𝑑′1, . . . , 𝑑
′
𝑡) =pgb+(𝜙, (yℓ, xℓ𝜈), (0, z

ℓ,𝛽
𝜈), ⟨wℓ

𝜈, r⟩; Tuℓ𝜈)

while the corresponding term in Ĥ𝛽

ℓ,𝜈,2 are generated as

(𝑑1, . . . , 𝑑𝑡) =pgb∗(𝜙, (yℓ, xℓ1), �̃�𝑔(y
ℓ) +

∑︁
𝑗∈[𝜈−1]

⟨ℎ(xℓ𝑗), z
ℓ,𝛽

𝑗
⟩ + ⟨pℓ,𝛽, q𝛽⟩ + �̃�1; t̃)

(𝑑′1, . . . , 𝑑
′
𝑡) =pgb+(𝜙, (yℓ, xℓ𝜈), (0, z

ℓ,𝛽
𝜈), �̃�𝜈; t̃′)

The indistinguishability between Ĥ𝛽

ℓ,𝜈,1 and Ĥ𝛽

ℓ,𝜈,2 can be shown by two steps. The

first step changes the random tape in pgb+ from Tu𝜈 to t̃′. This can be proven in

the same way as the case 𝜈 = 1. The second step changes ⟨wℓ
1, r⟩ and ⟨wℓ

𝜈, r⟩ to �̃�1

and �̃�𝜈. In this step, we would like to prove that

({[r𝜅]2, [⟨wℓ
1, r

𝜅⟩]2, [⟨wℓ
𝜈, r𝜅⟩]2}𝜅∈[𝑞𝑘] , {wℓ

𝑗 } 𝑗∈[𝑁ℓ]\{1,𝜈})

≈𝑐 ({[r𝜅]2, [�̃� (𝜅)1]2, [�̃�
(𝜅)
𝜈]2}𝜅∈[𝑞𝑘] , {wℓ

𝑗 } 𝑗∈[𝑁ℓ]\{1,𝜈})

253

where r𝜅 ← Z𝑘𝑝, wℓ
1, . . . ,w

ℓ

𝑁 (ℓ)
← Z𝑘𝑝 s.t.

∑
𝑗∈[𝑁 (ℓ)] wℓ

𝑗
= 0, and �̃� (𝜅)1 , �̃�

(𝜅)
𝜈 ← Z𝑝

s.t. �̃� (𝜅)1 + �̃�
(𝜅)
𝜈 +

∑
𝑗∈[𝑁 (ℓ)]\{1,𝜈}⟨wℓ

𝑗
, r𝜅⟩ = 0. It is not hard to see that the following

indistinguishability suffices to prove the above indistinguishability:

([A]2, [Am1]2, [Am2]2,m3, . . . ,m𝑑) ≈𝑐 ([A]2, [s1]2, [s2]2,m3, . . . ,m𝑑)

where 𝑑 > 1, 𝑛 are any natural numbers, A ← Z𝑛×𝑘𝑝 , m1, . . . ,m𝑑 ← Z𝑘𝑝 s.t.∑
𝑖∈[𝑑] m𝑖 = 0, and s1, s2 ← Z𝑛𝑝 s.t. s1 + s2 +

∑
𝑖∈{3,𝑑} Am𝑖 = 0. It is easy to see

that they are distributed the same if 𝑛 ≤ 𝑘 , so we consider the case 𝑛 > 𝑘 . The

above relation can be rewritten as

([A]2, [Am1]2, [−Am1 − b]2,m3, . . . ,m𝑑)

≈𝑐 ([A]2, [s1]2, [−s1 − b]2,m3, . . . ,m𝑑)

where b =
∑
𝑖∈{3,𝑑} Am𝑖. Hence, this is implied by the MDDH𝑘 assumption, which

assert that ([A]2, [Am1]2) ≈𝑐 ([A]2, [s1]2). Thanks to the linearity of pgb+ and

pgb∗, this reduction is efficient.
■

Lemma 5.10. For all 𝜈 ∈ [𝑁 (ℓ)], we have Ĥ𝛽

ℓ,𝜈,2 ≈𝑠 Ĥ𝛽

ℓ,𝜈,3 if the partial garbling scheme

is secure.

Proof. The lemma readily follows from the security of the extension of the partial

garbling scheme. ■

Lemma 5.11. For all 𝜈 ∈ [𝑁 (ℓ)], we have Ĥ𝛽

ℓ,𝜈,3 = Ĥ𝛽

ℓ,𝜈,4.

Proof. Recall that �̃�1 and �̃�𝜈 are randomly distributed such that

�̃�1 + �̃�𝜈 = −∑
𝑖∈[𝑁ℓ]\{1,𝜈}⟨wℓ

𝑖
, r⟩. Therefore, �̃�′1 = �̃�1 + ⟨ℎ(xℓ𝜈), z

ℓ,𝛽
𝜈 ⟩ and

�̃�′𝜈 = �̃�𝜈 − ⟨ℎ(xℓ𝜈), z
ℓ,𝛽
𝜈 ⟩ are also randomly distributed such that

�̃�′1 + �̃�
′
𝜈 = −∑

𝑖∈[𝑁ℓ]\{1,𝜈}⟨wℓ
𝑖
, r⟩. By applying this replacement, we can see that both

hybrids are identical. ■

254

Lemma 5.12. For all 𝜈 ∈ [𝑁 (ℓ)], we have Ĥ𝛽

ℓ,𝜈,4 ≈𝑐 Ĥ𝛽

ℓ,𝜈,5 if iFE is function-hiding, the

partial garbling scheme is secure, and the MDDH𝑘 assumption holds in G.

Proof. The proof of this lemma is similar to that of Ĥ𝛽

ℓ,𝜈−1,5 ≈𝑐 Ĥ𝛽

ℓ,𝜈,3. ■

5.6 ATTRIBUTE-BASED MIFE FOR ATTRIBUTE-WEIGHTED SUMS

In this section, we present our AB-MIFE for AWS in two steps as discussed in Section

5.1. In Appendix 5.B, we show how it can be captured in the context of MPFE.

Definition 5.12 (Multi-Input Functional Encryption). Let F be a function family such

that, for all 𝑓 ∈ F , 𝑓 : X𝑛 →Z.6 An MIFE scheme for F consists of four algorithms.

Setup(1𝜆, 1𝑛) It takes a security parameter 1𝜆 and a number 1𝑛 of slots, and outputs a

public parameter pp, encryption keys {ek𝑖}𝑖∈[𝑛] , a master secret key msk. The

other algorithms implicitly take pp.

Enc(ek𝑖, 𝑥𝑖) It takes ek𝑖 and 𝑥𝑖 ∈ X and outputs a ciphertext ct𝑖.

KeyGen(msk, 𝑓) It takes msk and 𝑓 ∈ F , and outputs a secret key sk.

Dec(ct1, . . . , ct𝑛, sk) It takes ct1, . . . , ct𝑛 and sk, and outputs a decryption value 𝑑 ∈ Z

or a symbol ⊥.
Correctness. An MIFE scheme is correct if it satisfies the following condition. For all

6In general, the domain of each slot can be different, i.e., 𝑓 can be defined as 𝑓 : X1 · · · × X𝑛 →Z. In
this work, however, we only handle the case where X𝑖 = X for all 𝑖 ∈ [𝑛].

255

𝜆, 𝑛 ∈ N, (𝑥1, . . . , 𝑥𝑛) ∈ X𝑛, 𝑓 ∈ F , we have

Pr

𝑑 = 𝑓 (𝑥1, . . . , 𝑥𝑛) :

(pp, {ek𝑖},msk) ← Setup(1𝜆, 1𝑛)

ct𝑖 ← Enc(ek𝑖, 𝑥𝑖) for 𝑖 ∈ [𝑛]

sk← KeyGen(msk, 𝑓)

𝑑 = Dec(ct1, . . . , ct𝑛, sk)

= 1.

Security. We consider the case where each 𝑥𝑖 ∈ X consists of a public part 𝑥𝑖,pub and a

private part 𝑥𝑖,priv, i.e., 𝑥𝑖 = (𝑥𝑖,pub, 𝑥𝑖,priv). An MIFE scheme is selectively partially-hiding

if for every stateful PPT adversary A, there exists a negligible function negl such that

for all 𝜆, 𝑛 ∈ N, the following holds

Pr

𝛽 = 𝛽′ :

𝛽← {0, 1}

(pp, {ek𝑖},msk) ← Setup(1𝜆, 1𝑛)

𝛽′← AQCor(),QEnc𝛽 (),KeyGen(msk,·) (pp)

≤ 1

2
+ negl

where QCor(𝑖) outputs ek𝑖, and QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
) outputs Enc(ek𝑖, 𝑥𝛽𝑖). Let 𝑞𝑐,𝑖 be the

numbers of queries of the forms of QEnc𝛽 (𝑖, ∗, ∗). LetHS be the set of parties on which

the adversary has not queried QCor at the end of the game, and CS = [𝑛]\HS. Then,

the admissible adversary’s queries must satisfy the following conditions.

• For 𝑖 ∈ CS, the queries QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
) must satisfy 𝑥0

𝑖
= 𝑥1

𝑖
.

• For 𝑖 ∈ HS, the queries QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
) must satisfy 𝑥0

𝑖,pub = 𝑥1
𝑖,pub.

• 𝑓 (𝑥0
1, . . . , 𝑥

0
𝑛) = 𝑓 (𝑥1

1, . . . , 𝑥
1
𝑛) for all sequences (𝑥0

1, . . . , 𝑥
0
𝑛, 𝑥

1
1, . . . , 𝑥

1
𝑛, 𝑓) that

satisfy the two conditions:

– For all 𝑖 ∈ [𝑛], [QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
) is queried and 𝑖 ∈ HS] or [𝑥0

𝑖
= 𝑥1

𝑖
∈ X𝑖

and 𝑖 ∈ CS].

– KeyGen(msk, 𝑓) is queried.

• The adversary must make all queries to QCor and QEnc in one shot. That is, first
it outputs (CS, {𝑖, 𝑥0

𝑖
, 𝑥1
𝑖
}) and obtains the response: ({ek𝑖}𝑖∈CS , {Enc(ek𝑖, 𝑥𝛽𝑖)}).

256

Only after the one-shot query, the adversary can query KeyGen adaptively.

We formally define attribute-based MIFE scheme for attribute-weighted sums and its

security.

Definition 5.13 (AB-MIFE for AWS). Attribute-based MIFE for Attribute-Weighted

Sums (AB-MIFE for AWS) is a class of MIFE (Definition 5.12) that supports the following

functionality. Let G be bilinear groups. Let X = (Z𝑛
′
0
𝑝 ∪ {★}) ×

⋃
𝑖∈N(Z𝑛0

𝑝 × Z𝑛1
𝑝)𝑖

be a message space. Let F = (F ABP
𝑛′0,1
× F ABP

𝑛0,𝑛1
)𝑛 be a family of functions, where

((𝑔1, ℎ1), . . . , (𝑔𝑛, ℎ𝑛)) ∈ F represents the function 𝑓 : X𝑛 → 𝐺𝑇 defined as

𝑓 ((y1, {x1, 𝑗 , z1, 𝑗 } 𝑗∈[𝑁1]), . . . , (y𝑛, {x𝑛, 𝑗 , z𝑛, 𝑗 } 𝑗∈[𝑁𝑛]))

=

[∑𝑖∈[𝑛]

∑
𝑗∈[𝑁𝑖] ⟨ℎ𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩]𝑇 (𝑔𝑖 (y𝑖) = 0 for all 𝑖 ∈ [𝑛])

⊥ (otherwise)

where y𝑖, x𝑖, 𝑗 are public inputs while z𝑖, 𝑗 is a private input, and we always have 𝑔𝑖 (★) = 0.

Definition 5.14 (Security of AB-MIFE for AWS). We say that an AB-FE scheme for AWS

satisfies security against legitimate keys if the scheme is secure against adversaries that

follows the condition defined below in addition to the conditions defined in Definition 5.12.

Let (CS, {𝑖, 𝑥ℓ,0
𝑖
, 𝑥
ℓ,1
𝑖
}𝑖∈[𝑛],ℓ∈[𝑞𝑐,𝑖] , { 𝑓 𝜂}𝜂∈[𝑞𝑘]) be the query of the adversary, where 𝑞𝑘 is

the number of queries to KeyGen, 𝑥ℓ,𝛽
𝑖

= (yℓ
𝑖
, {xℓ

𝑖, 𝑗
, zℓ,𝛽
𝑖, 𝑗
} 𝑗∈[𝑁ℓ

𝑖
]) and 𝑓 𝜂 = {𝑔𝜂

𝑖
, ℎ

𝜂

𝑖
}𝑖∈[𝑛] .

We say that 𝑓 𝜂 is legitimate if for all 𝑖 ∈ HS, there exists ℓ′
𝑖
∈ [𝑞𝑐,𝑖] such that 𝑔𝜂

𝑖
(yℓ

′
𝑖

𝑖
) = 0.

In security against legitimate keys, 𝑓 𝜂 must be legitimate for all 𝜂 ∈ [𝑞𝑘]. In contrast,

we say that an AB-FE scheme for AWS satisfies security against any keys if the scheme is

secure against adversaries that follows just the condition defined in Definition 5.12.

5.6.1 Construction

Let aFE = (aSetup, aEnc, aKeyGen, aDec) be an FE scheme for AB-FE for AWSw/IP.

Then our AB-MIFE scheme for AWS is described as follows.

257

Setup(1𝜆, 1𝑛) It runs aPP𝑖, aMSK𝑖 ← aSetup(1𝜆) for 𝑖 ∈ [𝑛] and outputs

pp = {aPP𝑖}𝑖∈[𝑛] , ek𝑖 = aMSK𝑖 for 𝑖 ∈ [𝑛], msk = {ek𝑖}𝑖∈[𝑛] .

Enc(ek𝑖, (y𝑖, {x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖])) It outputs

ct𝑖 = aCT𝑖 ← aEnc(aMSK𝑖, (y𝑖, {x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖] , [1]1)).

KeyGen(msk, {𝑔𝑖, ℎ𝑖}𝑖∈[𝑛]) It samples 𝑟1, . . . , 𝑟𝑛−1 ← Z𝑝, sets 𝑟𝑛 = −
∑
𝑖∈[𝑛−1] 𝑟𝑖, and

outputs sk = {aSK𝑖}𝑖∈[𝑛] where

aSK𝑖 ← aKeyGen(aMSK𝑖, (𝑔𝑖, ℎ𝑖, [𝑟𝑖]2)).

Dec(ct1, . . . , ct𝑛, sk) It parse ct𝑖, sk as aCT𝑖, {aSK𝑖}𝑖∈[𝑛] , respectively. If there exists 𝑖

such that 𝑔𝑖 (y𝑖) ≠ 0, it outputs ⊥. Otherwise, it computes

[𝑑𝑖]𝑇 = aDec(aCT𝑖, aSK𝑖) for 𝑖 ∈ [𝑛], and outputs [𝑑]𝑇 =
∑
𝑖∈[𝑛] [𝑑𝑖]𝑇 .

Correctness. Due to the correctness of aFE, we have

𝑑𝑖 =
∑︁
𝑗∈[𝑁𝑖]

⟨ 𝑓 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩ + 𝑟𝑖

Hence 𝑑 =
∑
𝑖∈[𝑛]

∑
𝑗∈[𝑁𝑖] ⟨ 𝑓 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩ since

∑
𝑖∈[𝑛] 𝑟𝑖 = 0.

5.6.2 Security

The proposed scheme is secure against legitimate keys as stated by the following theorem.

Theorem 5.13. If aFE is partially function-hiding, then the proposed AB-MIFE scheme

for AWS satisfies security against legitimate keys as per Definition 5.14.

Proof. We prove the theorem via two hybrids H𝛽

1 and H𝛽

2 . We show that H𝛽
𝑠 ≈𝑐 H𝛽

1 = H𝛽

2 ,

258

where H𝛽
𝑠 for 𝛽 ∈ {0, 1} is the original security game. Recall that in H𝛽

𝑠 the challenger

replies

aEnc(aMSK𝑖, (y𝑖, {x𝑖, 𝑗 , z𝛽𝑖, 𝑗 } 𝑗∈[𝑁𝑖] , [1]1)) and {aKeyGen(aMSK𝑖, (𝑔𝑖, ℎ𝑖, [𝑟𝑖]2))}𝑖∈[𝑛]

for the queries QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
) and KeyGen(msk, 𝑓), respectively, where

𝑥
𝛽

𝑖
= (y𝑖, {x𝑖, 𝑗 , z𝛽𝑖, 𝑗 } 𝑗∈[𝑁𝑖]) and 𝑓 = {𝑔𝑖, ℎ𝑖}𝑖∈[𝑛] .

The hybrid H𝛽

1 is the same as H𝛽
𝑠 except that for all 𝑖 ∈ HS, the challenger replies

aEnc(aMSK𝑖, (y𝑖, {x𝑖, 𝑗 , z0
𝑖, 𝑗 } 𝑗∈[𝑁𝑖] , [1]1)) and

{aKeyGen(aMSK𝑖, (𝑔𝑖, ℎ𝑖, [𝑟𝑖 +
∑︁
𝑗∈[𝑁ℓ𝑖

𝑖
]

⟨ℎ𝑖 (xℓ𝑖𝑖, 𝑗), z
ℓ𝑖 ,𝛽

𝑖, 𝑗
⟩ −

∑︁
𝑗∈[𝑁ℓ𝑖

𝑖
]

⟨ℎ𝑖 (xℓ𝑖𝑖, 𝑗), z
ℓ𝑖 ,0
𝑖, 𝑗
⟩]2))}𝑖∈[𝑛]

for the queries QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
) and KeyGen(msk, 𝑓), respectively, where {xℓ𝑖

𝑖, 𝑗
,

zℓ𝑖 ,0
𝑖, 𝑗
, zℓ𝑖 ,1
𝑖, 𝑗
}
𝑗∈[𝑁ℓ𝑖

𝑖
] are the components of the ℓ𝑖-th challenge message, and

ℓ𝑖 = min{ℓ′ ∈ [𝑞𝑐,𝑖] | 𝑔𝑖 (yℓ
′
𝑖
) = 0} for 𝑖 ∈ HS. Since all secret keys are legitimate, such

ℓ𝑖 always exists for each key query.

The hybrid H𝛽

2 is the same as H𝛽

1 except that for all 𝑖 ∈ HS, the challenger replies

aEnc(aMSK𝑖, (y𝑖, {x𝑖, 𝑗 , z0
𝑖, 𝑗 } 𝑗∈[𝑁𝑖] , [1]1)) and

{aKeyGen(aMSK𝑖, (𝑔𝑖, ℎ𝑖, [𝑟𝑖 +

((((((((((((((((((((((∑︁
𝑗∈[𝑁ℓ𝑖

𝑖
]

⟨ℎ𝑖 (xℓ𝑖𝑖, 𝑗), z
ℓ𝑖 ,𝛽

𝑖, 𝑗
⟩ −

∑︁
𝑗∈[𝑁ℓ𝑖

𝑖
]

⟨ℎ𝑖 (xℓ𝑖𝑖, 𝑗), z
ℓ𝑖 ,0
𝑖, 𝑗
⟩]2))}𝑖∈[𝑛]

for the queries QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
) and KeyGen(msk, 𝑓), respectively. Note that the

advantage of the adversary is 0 in H𝛽

2 since it does not obtain the information of 𝛽. Hence

the theorem follows from Theorems 5.14 and 5.15. ■

Lemma 5.14. We have H𝛽
𝑠 ≈𝑐 H𝛽

1 if aFE is partially function-hiding.

Proof. Let 𝑞𝑐.𝑖 be the number of the ciphertext queries for slot 𝑖, and 𝑞𝑘 be the number

259

of the secret key queries. For 𝜇 ∈ [𝑞𝑐,𝑖] and 𝜈 ∈ [𝑞𝑘], let aCT𝜇
𝑖

be the 𝜇-th challenge

ciphertext for slot 𝑖, and aSK𝜈𝑖 be the 𝑖-th element of the 𝜈-th secret key. For 𝑗 ∈ {𝑠, 1},

let 𝛿𝜇,𝜈
𝑗 ,𝑖

= aDec(aCT𝜇
𝑖
, aSK𝜈𝑖) be the decryption value in H𝛽

𝑗
. Then, what we need to

prove is 𝛿𝜇,𝜈
𝑠,𝑖

= 𝛿
𝜇,𝜈

1,𝑖 for all 𝑖 ∈ HS, 𝜇 ∈ [𝑞𝑐,𝑖], 𝜈 ∈ [𝑞𝑘].

This can be proven by the three cases.

• If 𝑔𝜈
𝑖
(y𝜇
𝑖
) ≠ 0, we have 𝛿𝜇,𝜈

𝑠,𝑖
= 𝛿

𝜇,𝜈

1,𝑖 = ⊥ for all 𝑖 ∈ HS, 𝜇 ∈ [𝑞𝑐,𝑖], 𝜈 ∈ [𝑞𝑘].

• If 𝜇 = ℓ𝑖, we have 𝛿𝜇,𝜈
𝑠,𝑖

= 𝛿
𝜇,𝜈

1,𝑖 =
∑
𝑗∈[𝑁ℓ𝑖

𝑖
] ⟨ℎ

𝜈
𝑖
(xℓ𝑖
𝑖, 𝑗
), zℓ𝑖 ,𝛽

𝑖, 𝑗
⟩ for all 𝑖 ∈ HS, 𝜈 ∈ [𝑞𝑘].

• If 𝜇 > ℓ𝑖 and 𝑔𝜈
𝑖
(y𝜇
𝑖
) = 0, we have 𝛿𝜇,𝜈

𝑠,𝑖
=

∑
𝑗∈[𝑁ℓ𝑖

𝑖
] ⟨ℎ

𝜈
𝑖
(x𝜇
𝑖, 𝑗
), z𝜇,𝛽

𝑖, 𝑗
⟩ and

𝛿
𝜇,𝜈

1,𝑖 =
∑︁
𝑗∈[𝑁ℓ𝑖

𝑖
]

(⟨ℎ𝜈𝑖 (x
𝜇

𝑖, 𝑗
), z𝜇,0

𝑖, 𝑗
⟩ + ⟨ℎ𝜈𝑖 (x

ℓ𝑖
𝑖, 𝑗
), zℓ𝑖 ,𝛽

𝑖, 𝑗
⟩ − ⟨ℎ𝜈𝑖 (x

ℓ𝑖
𝑖, 𝑗
), zℓ𝑖 ,0

𝑖, 𝑗
⟩)

for all 𝑖 ∈ HS, 𝜈 ∈ [𝑞𝑘]. We can prove 𝛿𝜇,𝜈
𝑠,𝑖

= 𝛿
𝜇,𝜈

1,𝑖 as follows. Due to the
admissibility of the adversary, we have∑︁

𝑘∈HS

∑︁
𝑗∈[𝑁ℓ𝑘

𝑘
]

⟨ℎ𝜈𝑘 (x
ℓ𝑘
𝑘, 𝑗
), zℓ𝑘 ,0

𝑘, 𝑗
⟩ =

∑︁
𝑘∈HS

∑︁
𝑗∈[𝑁ℓ𝑘

𝑘
]

⟨ℎ𝜈𝑘 (x
ℓ𝑘
𝑘, 𝑗
), zℓ𝑘 ,1

𝑘, 𝑗
⟩ (5.4)∑︁

𝑗∈[𝑁ℓ𝑖
𝑖
]

⟨ℎ𝜈𝑖 (x
𝜇

𝑖, 𝑗
), z𝜇,0

𝑖, 𝑗
⟩ +

∑︁
𝑘∈HS\{𝑖}

∑︁
𝑗∈[𝑁ℓ𝑘

𝑘
]

⟨ℎ𝜈𝑘 (x
ℓ𝑘
𝑘, 𝑗
), zℓ𝑘 ,0

𝑘, 𝑗
⟩

=
∑︁
𝑗∈[𝑁ℓ𝑖

𝑖
]

⟨ℎ𝜈𝑖 (x
𝜇

𝑖, 𝑗
), z𝜇,1

𝑖, 𝑗
⟩ +

∑︁
𝑘∈HS\{𝑖}

∑︁
𝑗∈[𝑁ℓ𝑘

𝑘
]

⟨ℎ𝜈𝑘 (x
ℓ𝑘
𝑘, 𝑗
), zℓ𝑘 ,1

𝑘, 𝑗
⟩

(5.5)

We can readily obtain 𝛿𝜇,𝜈
𝑠,𝑖

= 𝛿
𝜇,𝜈

1,𝑖 by subtracting Eq.(5.4) from Eq.(5.5) in the third
case.

■

Lemma 5.15. H𝛽

1 = H𝛽

2 .

Proof. From Eq.(5.4), the following distributions are identical:(𝑟1, . . . , 𝑟𝑛) : 𝑟1, . . . , 𝑟𝑛−1 ← Z𝑝, 𝑟𝑛 = −
∑︁

𝑖∈[𝑛−1]
𝑟𝑖

 and

260

(𝑟1, . . . , 𝑟𝑛) :

𝑟′1, . . . , 𝑟
′
𝑛−1 ← Z𝑝, 𝑟

′
𝑛 = −

∑︁
𝑖∈[𝑛−1]

𝑟′𝑖

𝑟𝑖 =

𝑟′
𝑖
+∑

𝑗∈[𝑁ℓ𝑖
𝑖
] (⟨ℎ

𝜈
𝑖
(xℓ𝑖
𝑖, 𝑗
), zℓ𝑖 ,𝛽

𝑖, 𝑗
⟩ − ⟨ℎ𝜈

𝑖
(xℓ𝑖
𝑖, 𝑗
), zℓ𝑖 ,0

𝑖, 𝑗
⟩) (𝑖 ∈ HS)

𝑟′
𝑖

(𝑖 ∈ CS)

Hence H𝛽

1 and H𝛽

2 are identically distributed. ■

5.6.3 Amplifying security against Any Keys

In this section, we present how to convert an AB-MIFE scheme for AWS with security

against legitimate keys to one with security against any keys. In the conversion, we use

a ciphertext-policy ABE (CP-ABE) scheme for ABP and a (𝑛-out-of-𝑛) secret sharing

scheme. A CP-ABE scheme for ABP with wildcards is an ABE scheme (Definition 5.7)

that supports predicate P : X ×Y → {0, 1} where X = F ABP
𝑛0,1 , Y = Z𝑛0

𝑝 ∪ {★}, and for

𝑔 ∈ X, y ∈ Y, P is defined as

P(𝑔, y) =

1 𝑔(y) = 0

0 𝑔(y) ≠ 0

A CP-ABE scheme for ABP with wildcards is easily obtained from the CP-ABE scheme

for ABP in [LL20b] just by setting the master secret key as the secret key for the wildcard.

Construction Let wmFE = (wmSetup,wmEnc,wmKeyGen,wmDec) be an

AB-MIFE scheme for AWS with security against legitimate keys, ABE = (abSetup,

abEnc, abKeyGen, abDec) be an CP-ABE scheme for ABP, and (Share,Rec) be a

secret sharing scheme. Then, an AB-MIFE scheme for AWS can be constructed as shown

below.

Setup(1𝜆, 1𝑛) It runs wmPP, {wmEK𝑖}𝑖∈[𝑛,wmMSK ← wmSetup(1𝜆) and abPK𝑖,

261

abMSK𝑖 ← abSetup(1𝜆) for 𝑖 ∈ [𝑛]. It outputs pp, {ek𝑖}𝑖∈[𝑛] ,msk as follows:

pp = (wmPP, {abPK𝑖}𝑖∈[𝑛]), ek𝑖 = (wmEK𝑖, abMSK𝑖), msk = wmMSK

Enc(ek𝑖, (y𝑖, {x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖])) It outputs ct𝑖 = (wmCT𝑖, abSK𝑖) where

wmCT𝑖 ← wmEnc(wmEK𝑖, (y𝑖, {x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖])), abSK𝑖 ← abKeyGen(abMSK𝑖, y𝑖)

KeyGen(msk, {𝑔𝑖, ℎ𝑖}𝑖∈[𝑛]) It outputs sk as follows:

wmSK← wmKeyGen(wmMSK𝑖, {𝑔𝑖, ℎ𝑖}𝑖∈[𝑛]), (𝜎1, . . . , 𝜎𝑛) ← Share(wmSK, 𝑛)

abCT𝑖 ← abEnc(𝑔𝑖, 𝜎𝑖) for 𝑖 ∈ [𝑛], sk = {abCT𝑖}𝑖∈[𝑛]

Dec(ct1, . . . , ct𝑛, sk) It parse ct𝑖, sk as (wmCT𝑖, abSK𝑖), {abCT𝑖}𝑖∈[𝑛] , respectively. If

there exists 𝑖 such that 𝑔𝑖 (y𝑖) ≠ 0, it outputs ⊥. Otherwise, it outputs [𝑑]𝑇 as

follows:

𝜎′𝑖 = abDec(abCT𝑖, abSK𝑖) for 𝑖 ∈ [𝑛], wmSK′ = Rec(𝜎′1, . . . , 𝜎
′
𝑛)

[𝑑]𝑇 = wmDec(wmCT1, . . . ,wmCT𝑛,wmSK′)

Correctness and Security. Due to the correctness of ABE, 𝜎′1, . . . , 𝜎
′
𝑛 are valid

shares of wmSK for {𝑔𝑖, ℎ𝑖}𝑖∈[𝑛] . Thus, thanks to the correctness of wmFE, we have

𝑑 =
∑
𝑖∈[𝑛]

∑
𝑗∈[𝑁𝑖] ⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩.

We argue security via the following theorem.

Theorem 5.16. If wmFE has security against legitimate keys, ABE is selectively secure,

and the secret sharing scheme is secure, then the proposed scheme satisfies security

against any keys, i.e., selectively partially-hiding security in Definition 5.12.

262

Proof. We prove the theorem via three hybrids H𝛽

1 ,H
𝛽

2 ,H
𝛽

3 . We show that H𝛽
𝑠 ≈𝑐 H𝛽

1 =

H𝛽

2 ≈𝑐 H𝛽

3 , where H𝛽
𝑠 for 𝛽 ∈ {0, 1} is the original security game. Let us call a secret key

with which all the combinations of challenge ciphertexts decrypt to ⊥ a illegitimate key.

For each illegitimate key for {𝑔𝑖, ℎ𝑖}𝑖∈[𝑛] , there exists 𝑖′ ∈ HS such that 𝑔𝑖′ (yℓ𝑖′) ≠ 0 for

all ℓ ∈ [𝑞𝑐,𝑖′].

In H𝛽

1 , we change the replies to the illegitimate-secret-key queries. Specifically, abCT𝑖′

in sk is generated as abCT𝑖′ ← abEnc(𝑔𝑖′ , 0𝑚) instead of abCT𝑖′ ← abEnc(𝑔𝑖′ , 𝜎𝑖′),

where 𝑚 is the bit-length of a share. We can easily observe that H𝑠 ≈𝑐 H1 due to the

security of the CP-ABE scheme for ABP.

In H𝛽

2 , we change the replies to the illegitimate-secret-key queries. Specifically,𝜎1, . . . , 𝜎𝑛

is generated as 𝜎𝑖 ← {0, 1}𝑚 for 𝑖 ∈ [𝑛] instead of being generated by the sharing

algorithm. H1 = H2 directly follows from the security of the secret sharing scheme.

In H𝛽

3 , we change the challenge ciphertexts. Instead of replying Enc(ek𝑖, (y𝑖,

{x𝑖, 𝑗 , z𝛽𝑖, 𝑗 } 𝑗∈[𝑁𝑖])) to ciphertext queries, the challenger replies Enc(ek𝑖, (y𝑖, {x𝑖, 𝑗 ,

z0
𝑖, 𝑗
} 𝑗∈[𝑁𝑖])) for all the queries. H2 ≈𝑐 H3 directly follows from the security of wmFE.

Note that the advantage of the adversary is 0 in H𝛽

3 since it does not obtain the

information of 𝛽. ■

5.7 MULTI-CLIENT FE FOR ATTRIBUTE-WEIGHTED SUMS

We define multi-client functional encryption, which basically follows the definition in

[ABG19]. The essential difference from the definition in [ABG19] is that we add the

definition of selective security.

Definition 5.15 (Multi-Client Functional Encryption). Let F be a function family such

that, for all 𝑓 ∈ F , 𝑓 : X𝑛 →Z. Let L be a label space. An MCFE scheme for F and

L consists of four algorithms.

263

Setup(1𝜆, 1𝑛) It takes a security parameter 1𝜆 and a number 1𝑛 of slots, and outputs a

public parameter pp, encryption keys {ek𝑖}𝑖∈[𝑛] , a master secret key msk. The

other algorithms implicitly take pp.

Enc(ek𝑖, 𝑥𝑖, 𝐿) It takes ek𝑖, an index 𝑖 ∈ [𝑛], 𝑥𝑖 ∈ X, and a label 𝐿 and outputs a

ciphertext ct𝑖.

KeyGen(msk, 𝑓) It takes msk and 𝑓 ∈ F , and outputs a secret key sk.

Dec(ct1, . . . , ct𝑛, sk) It takes ct1, . . . , ct𝑛 and sk, and outputs a decryption value 𝑑 ∈ Z

or a symbol ⊥.
Correctness. An MCFE scheme is correct if it satisfies the following condition. For all

𝜆, 𝑛 ∈ N, (𝑥1, . . . , 𝑥𝑛) ∈ X𝑛, 𝑓 ∈ F , 𝐿 ∈ L, we have

Pr

𝑑 = 𝑓 (𝑥1, . . . , 𝑥𝑛) :

(pp, {ek𝑖},msk) ← Setup(1𝜆, 1𝑛)

ct𝑖 ← Enc(ek𝑖, 𝑥𝑖, 𝐿) for 𝑖 ∈ [𝑛]

sk← KeyGen(msk, 𝑓)

𝑑 = Dec(ct1, . . . , , ct𝑛, sk)

= 1.

Security. We consider the case where each 𝑥𝑖 ∈ X consists of a public part 𝑥𝑖,pub and a

private part 𝑥𝑖,priv, i.e., 𝑥𝑖 = (𝑥𝑖,pub, 𝑥𝑖,priv). An MCFE scheme is xx-yy-partially-hiding

(xx ∈ {sel, sta, adt}, yy ∈ {any, pos}) if for every stateful PPT adversary A, there exists

a negligible function negl such that for all 𝜆, 𝑛 ∈ N, the following holds

Pr

𝛽 = 𝛽′ :

𝛽← {0, 1}

(pp, {ek𝑖},msk) ← Setup(1𝜆, 1𝑛)

𝛽′← AQCor(),QEnc𝛽 (),KeyGen(msk,·) (pp)

≤ 1

2
+ negl

where QCor(𝑖) outputs ek𝑖, and QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
, 𝐿) outputs Enc(ek𝑖, 𝑥𝛽𝑖 , 𝐿). Let 𝑞𝑐,𝑖,𝐿

264

be the numbers of queries of the forms of QEnc𝛽 (𝑖, ∗, ∗, 𝐿). LetHS be the set of parties

on which the adversary has not queried QCor at the end of the game, and CS = [𝑛]\HS.

Then, the admissible adversary’s queries must satisfy the following conditions.

• For 𝑖 ∈ CS, the queries QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
, 𝐿) must satisfy 𝑥0

𝑖
= 𝑥1

𝑖
.

• For 𝑖 ∈ HS, the queries QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
, 𝐿) must satisfy 𝑥0

𝑖,pub = 𝑥1
𝑖,pub.

• 𝑓 (𝑥0
1, . . . , 𝑥

0
𝑛) = 𝑓 (𝑥1

1, . . . , 𝑥
1
𝑛) for all sequences (𝑥0

1, . . . , 𝑥
0
𝑛, 𝑥

1
1, . . . , 𝑥

1
𝑛, 𝑓 , 𝐿) that

satisfy the two conditions:

– For all 𝑖 ∈ [𝑛], [QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
, 𝐿) is queried and 𝑖 ∈ HS] or [𝑥0

𝑖
= 𝑥1

𝑖
∈ X𝑖

and 𝑖 ∈ CS].

– KeyGen(msk, 𝑓) is queried.

• When xx = sta: the adversary cannot query QCor after querying QEnc or KeyGen
even once.

• When xx = sel: the adversary must make all queries to QCor and QEnc in
one shot. That is, first it outputs (CS, {𝑖, 𝑥0

𝑖
, 𝑥1
𝑖
, 𝐿}) and obtains the response:

({ek𝑖}𝑖∈CS , {Enc(ek𝑖, 𝑥𝛽𝑖 , 𝐿)}). Only after the one-shot query, the adversary can
query KeyGen adaptively.

• When yy = pos: for each 𝐿 ∈ L, either 𝑞𝑐,𝑖,𝐿 > 0 for all 𝑖 ∈ HS or 𝑞𝑐,𝑖,𝐿 = 0 for
all 𝑖 ∈ HS7.

First, we formally define MCFE for AWS.

Definition 5.16 (MCFE for Attribute-Weighted Sums). MCFE for Attribute-Weighted

Sums (AWS) is a class of MCFE (Definition 5.15) that supports the following functionality.

Let G = (𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑔1, 𝑔2, 𝑒) be bilinear groups. Let X =
⋃
𝑖∈N(Z𝑛0

𝑝 × Z𝑛1
𝑝)𝑖 be a

message space. Let F = (F ABP
𝑛0,𝑛1
)𝑛 be a family of functions, where (𝑓1, . . . , 𝑓𝑛) ∈ F

represents the function 𝑓 ′ : X𝑛 → 𝐺𝑇 defined as

𝑓 ′({x1, 𝑗 , z1, 𝑗 } 𝑗∈[𝑁1] , . . . , {x𝑛, 𝑗 , z𝑛, 𝑗 } 𝑗∈[𝑁𝑛]) = [
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑁𝑖]

⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩]𝑇 .

7We can covert a xx-pos-partially-hiding scheme to xx-any-partially-hiding scheme generically [ABG19].

265

5.7.1 Construction

Let aFE = (aSetup, aEnc, aKeyGen, aDec) be an FE scheme for AWSw/IP. Let PRFK :

L → Z𝑘𝑝 be a PRF with key spaceK . Let 𝑘 be the parameter for the MDDH𝑘 assumption.

Then construction of our MCFE scheme for AWS is described as follows.

Setup(1𝜆, 1𝑛) It runs aPP𝑖, aMSK𝑖 ← aSetup(1𝜆) for 𝑖 ∈ [𝑛], chooses K𝑖, 𝑗 ← K for

𝑖, 𝑗 ∈ [𝑛], 𝑖 < 𝑗 , and sets K𝑖, 𝑗 = K 𝑗 ,𝑖 for 𝑗 < 𝑖. It outputs

pp = {aPP𝑖}𝑖∈[𝑛] , ek𝑖 = (aMSK𝑖, {K𝑖, 𝑗 } 𝑗∈[𝑛]\{𝑖}) for 𝑖 ∈ [𝑛], msk = {ek𝑖}𝑖∈[𝑛] .

Enc(ek𝑖, 𝐿, 𝑥𝑖 = {x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖]) It computes v𝐿,𝑖 =
∑
𝑗∈[𝑛]\{𝑖} (−1) 𝑗<𝑖PRFK𝑖, 𝑗 (𝐿) and

outputs

ct𝑖 = aCT𝑖 ← aEnc(aMSK𝑖, 𝑥𝑖, [(v𝐿,𝑖, 0)]1).

KeyGen(msk, { 𝑓𝑖}𝑖∈[𝑛]) It samples s← Z𝑘𝑝 and outputs sk = {aSK𝑖}𝑖∈[𝑛] where

aSK𝑖 ← aKeyGen(aMSK𝑖, 𝑓𝑖, [(s, 0)]2).

Dec(ct1, . . . , ct𝑛, sk) It parse ct𝑖, sk as aCT𝑖, {aSK𝑖}𝑖∈[𝑛] , respectively. It computes

[𝑑𝑖]𝑇 = aDec(aCT𝑖, aSK𝑖) for 𝑖 ∈ [𝑛], and outputs [𝑑]𝑇 =
∑
𝑖∈[𝑛] [𝑑𝑖]𝑇 .

Correctness. Due to the correctness of aFE, we have

𝑑𝑖 =
∑︁
𝑗∈[𝑁𝑖]

⟨ 𝑓 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩ + ⟨v𝐿,𝑖, s⟩

Hence 𝑑 =
∑
𝑖∈[𝑛]

∑
𝑗∈[𝑁𝑖] ⟨ 𝑓 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩ since

∑
𝑖∈[𝑛] ⟨v𝐿,𝑖, s⟩ = 0.

5.7.2 Security

We argue security via the following theorem.

266

Theorem 5.17. If aFE is partially function-hiding, and the MDDH𝑘 assumption holds

in G, then the proposed MCFE scheme for AWS is sel-pos-partially-hiding as per

Definition 5.15.

Proof. We prove the theorem via a series of hybrid games H𝛽

ℓ
for ℓ ∈ {0} ∪ [𝑞𝐿] where

𝑞𝐿 = |{𝐿 | 𝑞𝑐,𝑖,𝐿 > 0}| for 𝑖 ∈ HS is the maximum number of labels queried by the

adversary. We show that H𝛽
𝑠 ≈𝑐 H𝛽

0 ≈𝑐 H𝛽

1 ≈𝑐 · · · ≈𝑐 H𝛽
𝑞𝐿 , where H𝛽

𝑠 for 𝛽 ∈ {0, 1} is the

original security game. Recall that in H𝛽
𝑠 the challenger replies aEnc(aMSK𝑖, 𝑥𝛽𝑖 , [p𝑖]1)

and {aKeyGen(aMSK𝑖, 𝑓𝑖, [q𝑖]2)}𝑖∈[𝑛] for the queries QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
, 𝐿) and

KeyGen(msk, 𝑓), respectively, where

𝑥
𝛽

𝑖
= {x𝑖, 𝑗 , z𝛽𝑖, 𝑗 } 𝑗∈[𝑁𝑖] , p𝑖 = (v𝐿,𝑖, 0), q𝑖 = (s, 0).

Let QL = {𝐿1, . . . , 𝐿𝑞𝐿 } be the labels that are queried by the adversary. H𝛽

0 is the same

as H𝛽
𝑠 except that the challenger randomly chooses v𝐿,𝑖 ∈ Z𝑘𝑝 for 𝑖 ∈ HS, 𝐿 ∈ QL such

that
∑
𝑖∈HS v𝐿,𝑖 +

∑
𝑖∈CS

∑
𝑗∈[𝑛]\{𝑖} (−1) 𝑗<𝑖PRFK𝑖, 𝑗 (𝐿) = 0. The hybrid H𝛽

ℓ
is the same

as H𝛽

0 except that for the queries QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
, 𝐿) such that 𝐿 ∈ {𝐿1, . . . , 𝐿ℓ}, the

challenger replies aEnc(aMSK𝑖, 𝑥0
𝑖
, p𝑖). Note that the advantage of the adversary is 0 in

H𝛽
𝑞𝐿 since it does not obtain the information of 𝛽. It is not hard to see that H𝛽

𝑠 ≈𝑐 H𝛽

0

follows from the security of the PRF. Hence, the theorem holds from Theorem 5.18. ■

Lemma 5.18. Let H𝛽

0 = H𝛽
𝑠 . For all ℓ ∈ [𝑞𝐿], we have H𝛽

ℓ−1 ≈𝑐 H𝛽

ℓ
.

Proof. To prove the lemma we introduce intermediate hybrids H𝛽

ℓ,1,H
𝛽

ℓ,2,H
𝛽

ℓ,3, which are

defined as follows:

H𝛽

ℓ,1 This hybrid is the same as H𝛽

ℓ−1 except that the challenger replies aEnc

(aMSK𝑖, 𝑥0
𝑖
, [p𝑖]1) and {aKeyGen(aMSK𝑖, 𝑓𝑖, [q𝑖]2)}𝑖∈[𝑛] for the queries QEnc𝛽

(𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
, 𝐿ℓ) and KeyGen(msk, 𝑓), respectively, where

p𝑖 = (0𝑘 , 1), q𝑖 = (s, ⟨s, v𝐿ℓ ,𝑖⟩ + 𝑓𝑖 (𝑥
1,𝛽
𝑖,𝐿ℓ
) − 𝑓𝑖 (𝑥1,0

𝑖,𝐿ℓ
)) for 𝑖 ∈ HS.

267

where (𝑥𝜅,𝛽
𝑖,𝐿ℓ
, 𝑥
𝜅,0
𝑖,𝐿ℓ
) is the pair of challenge messages in the 𝜅-th query to QEnc of

the form (𝑖, ∗, ∗, 𝐿ℓ).

H𝛽

ℓ,2 This hybrid is the same as H𝛽

ℓ,1 except that in the replies for the queries QEnc𝛽

(𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
, 𝐿ℓ) and KeyGen(msk, 𝑓), p𝑖 and q𝑖 is defined as

𝑣𝐿ℓ ,𝑖 ← Z𝑝 for 𝑖 ∈ HS s.t.
∑︁
𝑖∈HS

𝑣𝐿ℓ ,𝑖 +
∑︁
𝑖∈CS
⟨s, v𝐿ℓ ,𝑖⟩ = 0

p𝑖 = (0𝑘 , 1), q𝑖 = (s, 𝑣𝐿ℓ ,𝑖 + 𝑓𝑖 (𝑥
1,𝛽
𝑖,𝐿ℓ
) − 𝑓𝑖 (𝑥1,0

𝑖,𝐿ℓ
)) for 𝑖 ∈ HS.

H𝛽

ℓ,3 This hybrid is the same as H𝛽

ℓ,2 except that in the replies for the queries QEnc𝛽

(𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
, 𝐿ℓ) and KeyGen(msk, 𝑓), p𝑖 and q𝑖 is defined as

𝑣𝐿ℓ ,𝑖 ← Z𝑝 for 𝑖 ∈ HS s.t.
∑︁
𝑖∈HS

𝑣𝐿ℓ ,𝑖 +
∑︁
𝑖∈CS
⟨s, v𝐿ℓ ,𝑖⟩ = 0

p𝑖 = (0𝑘 , 1), q𝑖 = (s, 𝑣𝐿ℓ ,𝑖 +((((((((((
𝑓𝑖 (𝑥1,𝛽

𝑖,𝐿ℓ
) − 𝑓𝑖 (𝑥1,0

𝑖,𝐿ℓ
)) for 𝑖 ∈ HS.

Thanks to Theorems 5.19 to 5.22, Theorem 5.18 holds. ■

Lemma 5.19. Let H𝛽

0 = H𝛽
𝑠 . For all ℓ ∈ [𝑞𝐿], we have H𝛽

ℓ−1 ≈𝑐 H𝛽

ℓ,1 if aFE is partially

function-hiding.

Proof. Observe that for all aCT𝑖s that the adversary obtains as a reply to the query of

the form QEnc𝛽 (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
, 𝐿) and all aSK𝑖s that it obtains as a reply to the query of the

form KeyGen(msk, 𝑓 = { 𝑓𝑖}𝑖∈HS), the output of aDec(aCT𝑖, aSK𝑖) in H𝛽

ℓ−1 and that in

H𝛽

ℓ,1 are equal for all 𝑖 ∈ HS. Here, we use the fact that for all 𝑖 ∈ HS and 𝜅 ∈ [𝑞𝑐,𝑖,𝐿ℓ],

we have

𝑓𝑖 (𝑥1,𝛽
𝑖,𝐿ℓ
) − 𝑓𝑖 (𝑥1,0

𝑖,𝐿ℓ
) = 𝑓𝑖 (𝑥𝜅,𝛽𝑖,𝐿ℓ) − 𝑓𝑖 (𝑥

𝜅,0
𝑖,𝐿ℓ
).

This is basically obtained by Eq.(5.6) − Eq.(5.7):∑︁
𝑖∈HS

𝑓𝑖 (𝑥1,𝛽
𝑖,𝐿ℓ
) =

∑︁
𝑖∈HS

𝑓𝑖 (𝑥1,0
𝑖,𝐿ℓ
) (5.6)

268

𝑓𝑖′ (𝑥𝜅,𝛽𝑖′,𝐿ℓ) +
∑︁

𝑖∈HS\{𝑖′}
𝑓𝑖 (𝑥1,𝛽

𝑖,𝐿ℓ
) = 𝑓𝑖′ (𝑥𝜅,0𝑖′,𝐿ℓ) +

∑︁
𝑖∈HS\{𝑖′}

𝑓𝑖 (𝑥1,0
𝑖,𝐿ℓ
) (5.7)

which follows from the query condition in Definition 5.15. Hence, thanks to the partially

function-hiding security of aFE, these hybrids are indistinguishable. ■

Lemma 5.20. For all ℓ ∈ [𝑞𝐿], we have H𝛽

ℓ,1 ≈𝑐 H𝛽

ℓ,2 if the MDDH𝑘 holds in G.

Proof. We would like to prove that

{[s𝜅]2, {[⟨s𝜅, v𝐿ℓ ,𝑖⟩]2}𝑖∈HS}𝜅∈[𝑞𝑘] ≈𝑐 {[s𝜅]2, {[𝑣𝜅𝐿ℓ ,𝑖]2}𝑖∈HS}𝜅∈[𝑞𝑘]

where 𝑞𝑘 is the number of queries to QKeyGen, s𝜅 ← Z𝑘𝑝, v𝐿ℓ ,𝑖 ← Z𝑘𝑝 for 𝑖 ∈ HS s.t.∑
𝑖∈HS v𝐿ℓ ,𝑖 +

∑
𝑖∈CS

∑
𝑗∈[𝑛]\{𝑖} (−1) 𝑗<𝑖PRFK𝑖, 𝑗 (𝐿) = 0, and 𝑣𝜅

𝐿ℓ ,𝑖
← Z𝑝 for 𝑖 ∈ HS and

𝜅 ∈ [𝑞𝑘] s.t.
∑
𝑖∈HS 𝑣𝐿ℓ ,𝑖 +

∑
𝑖∈CS ⟨s𝜅, v𝐿ℓ ,𝑖⟩ = 0. It is not hard to see that the following

indistinguishability suffices to prove the above indistinguishability:

([A]2, [Am1]2, . . . , [Am𝑑]2) ≈𝑐 ([A]2, [r1]2, . . . , [r𝑑]2)

where 𝑑 > 1, 𝑛 are any natural numbers, c is any vectors inZ𝑘𝑝, A← Z𝑛×𝑘𝑝 , m1, . . . ,m𝑑 ←

Z𝑘𝑝 s.t.
∑
𝑖∈[𝑑] m𝑖 = c, and r1, . . . , r𝑑 ← Z𝑛𝑝 s.t.

∑
𝑖∈[𝑑] r𝑖 = Ac. It is easy to see that they

are distributed the same if 𝑛 ≤ 𝑘 , so we consider the case 𝑛 > 𝑘 . The above relation can

be rewritten as

([A]2, [Am1]2, . . . , [Am𝑑−1]2, [Ac −
∑︁

𝑖∈[𝑑−1]
Am𝑖]2)

≈𝑐 ([A]2, [r1]2, . . . , [r𝑑−1]2, [Ac −
∑︁

𝑖∈[𝑑−1]
r𝑖]2)

This is implied by the 𝑑 − 1-fold MDDH𝑘 assumption, which asserts that

[(A,Am1, . . . ,Am𝑑−1)]2 ≈𝑐 [(A, r1, . . . , r𝑑−1)]2.

■

Lemma 5.21. For all ℓ ∈ [𝑞𝐿], we have H𝛽

ℓ,2 = H𝛽

ℓ,3

269

Proof. As we see above, Eq.(5.6) holds due to the query condition in Definition 5.15.

Thus, {𝑣𝐿ℓ ,𝑖}𝑖∈[HS] and {𝑣𝐿ℓ ,𝑖 + 𝑓𝑖 (𝑥
1,𝛽
𝑖,𝐿ℓ
) − 𝑓𝑖 (𝑥1,0

𝑖,𝐿ℓ
)}𝑖∈[HS] are both randomly distributed

in Z𝑝 such that the summation of these is equal to −∑
𝑖∈CS ⟨s, v𝐿ℓ ,𝑖⟩. ■

Lemma 5.22. For all ℓ ∈ [𝑞𝐿], we have H𝛽

ℓ,3 ≈𝑐 H𝛽

ℓ
if aFE is partially function-hiding

and the MDDH𝑘 holds in G.

Proof. This lemma can be proven in the same way as H𝛽

ℓ−1 ≈𝑐 H𝛽

ℓ,2. ■

5.8 DYNAMIC DECENTRALIZED FE FOR ATTRIBUTE WEIGHTED SUMS

In this section, we present a dynamic decentralized FE scheme for attribute weighted

sums (DDFE for AWS). In Appendix 5.B, we show how it can be captured in the context

of dynamic MPFE.

5.8.1 Definition

Definition 5.17 (Dynamic Decentralized Functional Encryption). Let ID,K,M be an

ID space, a key space, and a message space, respectively. M consists of a public part

Mpub and a private partMpriv. Let 𝑓 be a function such that 𝑓 :
⋃
𝑖∈N(ID × K)𝑖 ×⋃

𝑖∈N(ID ×M)𝑖 →Z. A DDFE scheme for 𝑓 consists of five algorithms.

Setup(1𝜆) It takes a security parameter 1𝜆 and outputs a public parameter pp. The other

algorithms implicitly take pp.

LSetup(pp) It takes pp and outputs local public parameter pk𝑖 and a master secret key

msk𝑖. The following three algorithms implicitly take pk𝑖.

Enc(msk𝑖, 𝑚) It takes msk𝑖 and 𝑚 ∈ M, and outputs a ciphertext ct𝑖.

KeyGen(msk𝑖, 𝑘) It takes msk𝑖 and 𝑘 ∈ K, and outputs a secret key sk𝑖.

270

Dec({sk𝑖}𝑖∈U𝐾 , {ct𝑖}𝑖∈U𝑀) It takes {sk𝑖}𝑖∈U𝐾 , {ct𝑖}𝑖∈U𝑀 and outputs a decryption value

𝑑 ∈ Z or a symbol ⊥ whereU𝐾 ⊆ ID andU𝑀 ⊆ ID are any sets.
Correctness. A DDFE scheme for 𝑓 is correct if it satisfies the following condition.

For all 𝜆 ∈ N, U𝐾 ⊆ ID, U𝑀 ⊆ ID, {𝑖, 𝑘𝑖}𝑖∈U𝐾 ∈
⋃
𝑖∈N(ID × K)𝑖, {𝑖, 𝑚𝑖}𝑖∈U𝑀 ∈⋃

𝑖∈N(ID ×M)𝑖, we have

Pr

𝑑 = 𝑓 ({𝑖, 𝑘𝑖}𝑖∈U𝐾 , {𝑖, 𝑚𝑖}𝑖∈U𝑀) :

pp← Setup(1𝜆)

pk𝑖,msk𝑖 ← LSetup(pp)

ct𝑖 ← Enc(msk𝑖, 𝑚𝑖)

sk𝑖 ← KeyGen(msk𝑖, 𝑘𝑖)

𝑑 = Dec({sk𝑖}𝑖∈U𝐾 , {ct𝑖}𝑖∈U𝑀)

= 1.

Note that we can consider the case whereU𝐾 andU𝑀 are multisets as in the original

definition in [CDSG+20]. However, we do not consider the case here since it induces

ambiguity that can be also found in [CDSG+20]8. We assume that N contains 0 here

and (ID × K)0 = {𝑖, 𝑘𝑖}𝑖∈∅ = ∅. That is, U𝐾 and U𝑀 can be an empty set, which

corresponds to the case where Dec does not take secret keys/ciphertexts as input.

Security. We define the security of DDFE as follows. A DDFE scheme is xx-yy-

partially hiding (xx ∈ {sel, adt}, yy ∈ {sym, asym}) if for every stateful PPT adversary

A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, the following holds

Pr

𝛽← A
QHonestGen(),QCor(),QEnc𝛽 (),QKeyGen() (pp) :

𝛽← {0, 1}

pp← Setup(1𝜆)

 ≤
1
2
+ negl(𝜆).

Each oracle works as follows. For 𝑖 ∈ ID, QHonestGen(𝑖) runs (pk𝑖,msk𝑖) ←

LSetup(pp) and returns pk𝑖. For 𝑖 such that QHonestGen(𝑖) was queried, the adversary

can make the following queries: QCor(𝑖) outputs msk𝑖, QEnc𝛽 (𝑖, 𝑚0, 𝑚1) outputs

Enc(msk𝑖, 𝑚𝛽), and QKeyGen(𝑖, 𝑘) outputs KeyGen(msk𝑖, 𝑘). Note that 𝑚𝛽 consists

8Concretely, when U𝐾 is a multiset, and 𝑖′ ∈ U𝐾 has multiplicity 2, how to treat 𝑘𝑖′ ∈ {𝑘𝑖}𝑖∈U𝐾 is
unclear.

271

of the private elements 𝑚𝛽

priv and the public elements 𝑚pub, respectively (we always

require that 𝑚0
pub = 𝑚1

pub = 𝑚pub as the public elements are not hidden in ct). Let S

be the set of parties on which QHonestGen(𝑖) is queried,HS be the set of parties on

which the adversary has not queried QCor at the end of the game, and CS = S\CS.

Then, the adversary’s queries must satisfy the following conditions.

• There are no sequences ({𝑖, 𝑘𝑖}𝑖∈U𝐾 , {𝑖, 𝑚0
𝑖
}𝑖∈U𝑀), {𝑖, 𝑚1

𝑖
}𝑖∈U𝑀) that satisfy all the

conditions:

– For all 𝑖 ∈ U𝐾 , [QKeyGen(𝑖, 𝑘𝑖) is queried] or [𝑖 ∈ CS].

– For all 𝑖 ∈ U𝑀 , [QEnc𝛽 (𝑖, 𝑚0
𝑖
, 𝑚1

𝑖
) is queried] or [𝑚0

𝑖
= 𝑚1

𝑖
∈ M and

𝑖 ∈ CS].

– 𝑓 ({𝑖, 𝑘𝑖}𝑖∈U𝐾 , {𝑖, 𝑚0
𝑖
}𝑖∈U𝑀) ≠ 𝑓 ({𝑖, 𝑘𝑖}𝑖∈U𝐾 , {𝑖, 𝑚1

𝑖
}𝑖∈U𝑀).

• When xx = sel: the adversary first generates a set S of honest users in one shot.
After that it makes the corruption, key generation, encryption queries in one shot
to obtain {msk𝑖}, {KeyGen(msk𝑖, 𝑘)}, {Enc(ek𝑖, 𝑚𝛽)}.

• When yy = sym: for 𝑖 ∈ CS, the queries QEnc𝛽 (𝑖, 𝑚0, 𝑚1) must satisfy 𝑚0 = 𝑚19.

We formally define DDFE for AWS as follows.

Definition 5.18 (DDFE for Attribute Weighted Sum). DDFE for AWS is a class of DDFE

(Definition 5.17) where ID ⊆ {0, 1}∗, K =
⋃
𝑆⊆ID (F ABP

𝑛0,𝑛1
)𝑆 × 𝑆10,M = X × 2ID × L,

where X =
⋃
𝑖∈N(Z𝑛0

𝑝 × Z𝑛1
𝑝)𝑖, and supports the following functionality: Let G =

(𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑔1, 𝑔2, 𝑒) be bilinear groups. The function 𝑓 ′ is defined as follows: for

𝑘𝑖 = (𝑓𝑖,U𝐾,𝑖) ∈ K, where 𝑓𝑖 = { 𝑓 𝑗 } 𝑗∈U𝐾,𝑖 and 𝑚𝑖 = ({x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈[𝑁𝑖] ,U𝑀,𝑖, 𝐿𝑖) ∈ M

(here {z𝑖, 𝑗 } 𝑗∈[𝑁𝑖] is the private part and {x𝑖, 𝑗 } 𝑗∈[𝑁𝑖] ,U𝑀,𝑖, 𝐿𝑖 are the public parts of 𝑚𝑖),

𝑓 ′({𝑖, 𝑘𝑖}𝑖∈U′
𝐾
, {𝑖, 𝑚𝑖}𝑖∈U′

𝑀
) =

9The symmetric setting captures the case where msk𝑖 can be used to not only encrypt/key generation but
also decryption/decoding of ct𝑖/sk𝑖 .

10An element in (F ABP
𝑛0 ,𝑛1
)𝑆 × 𝑆 is of the form ({ 𝑓𝑖}𝑖∈𝑆 , 𝑆). We note that in more precise notation, (F ABP

𝑛0 ,𝑛1
)𝑆

contains elements of the form {𝑖, 𝑓𝑖}𝑖∈𝑆 , which itself carries information about 𝑆, but we explicitly add
×𝑆, to keep the notation more intuitive.

272

[∑𝑖∈U′

𝐾

∑
𝑗∈[𝑁𝑖] ⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩]𝑇 the condition below is satisfied

⊥ otherwise

1. U′
𝐾
= U′

𝑀
and ∀ 𝑖 ∈ U′

𝐾
,U𝐾,𝑖 = U𝑀,𝑖 = U′𝐾 .

2. ∀𝑖,𝑖′∈U′
𝐾
, 𝑓𝑖 = 𝑓𝑖′ and 𝐿𝑖 = 𝐿𝑖′ .

For a building block of DDFE for AWS, we use a class of DDFE called all-or-nothing

encryption. Chotard et al. showed that sel-sym-IND-secure AoNE can be generically

constructed from identity-based encryption [CDSG+20].

Definition 5.19 (All-or-nothing encryption (AoNE)). AoNE is a class of DDFE

(Definition 5.17) where ID = {0, 1}∗, Mpriv = {0, 1}𝐿 for some 𝐿 ∈ N,

Mpub = 2ID × L, K = ∅,Z = {0, 1}∗. The function 𝑓 is defined as, forU′
𝐾
∈ 2ID and

{𝑚𝑖 = (𝑥𝑖,U𝑀,𝑖, 𝐿𝑀,𝑖)}𝑖∈U′
𝑀

,

𝑓 ({𝑖}𝑖∈U′
𝐾
, {𝑖, 𝑚𝑖}𝑖∈U′

𝑀
) =

{𝑥𝑖}𝑖∈U′

𝑀
the condition below is satisfied

⊥ otherwise

• ∀𝑖 ∈ U′
𝑀
,U′

𝑀
= U𝑀,𝑖.

• ∃𝐿𝑀 ∈ L,∀𝑖 ∈ U′𝑀 , 𝐿𝑀,𝑖 = 𝐿𝑀 .

This means that KeyGen is unnecessary, and Dec works without taking secret keys as

input in AoNE (recall thatU′
𝐾

can be an empty set).

5.8.2 Construction

Let aFE = (aSetup, aEnc, aKeyGen, aDec) be an FE scheme for AWSw/IP with

the length of the random tape for aSetup being ℓ𝑎, AoNE = (anGSetup, anLSetup,

anEnc, anDec) be an all-or-nothing encryption scheme11, NIKE = (nSetup, nKeyGen,

nSharedKey) be a non-interactive key exchange scheme, {PRFK
1 } : 2ID × L → Z𝑘𝑝,

11We use AoNE to encrypt messages from two different spaces. So, either we can use two AoNE schemes
with appropriate message spaces or can use padding to make the message spaces same. For simplicity,
we present our construction with same AoNE scheme.

273

{PRFK
2 } : 2ID → {0, 1}ℓ𝑠 be families of pseudorandom functions, with key space

K1,K2, respectively and ID denotes an identity space and 𝐻 : {0, 1}∗ → 𝐺𝑘
2 is a hash

function modeled as a random oracle. Our construction of DDFE for AWS is given

below.

GSetup(1𝜆) On input the security parameter 1𝜆, the setup algorithm outputs pp as

follows.

anPP← anGSetup(1𝜆), nPP← nSetup(1𝜆), pp = (anPP, nPP).

LSetup(pp) On input pp, user 𝑖 ∈ ID generates (pk𝑖,msk𝑖) via the setup algorithm as

follows.

(nPK𝑖, nSK𝑖) ← nKeyGen(nPP), (anPK𝑖, anMSK𝑖) ← anLSetup(anPP), K𝑖,2 ← K2

pk𝑖 = (nPK𝑖, anPK𝑖), msk𝑖 = (nSK𝑖, anMSK𝑖,K𝑖,2).

Enc(msk𝑖, 𝑚) The encryption algorithm takes as input the public parameters pp, the

master secret key msk𝑖, and an input 𝑚 = ({x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈𝑁𝑖U𝑀,𝑖, 𝐿𝑖) such that

𝑖 ∈ U𝑀,𝑖 and outputs ct𝑖 as follows.

rt𝑖 = PRFK𝑖,2
2 (U𝑀,𝑖), aMSK𝑖 = aSetup(1𝜆; rt𝑖), K𝑖, 𝑗 ,1 ← nSharedKey(nSK𝑖, nPK 𝑗)

v𝑖 =
∑︁
𝑗∈U𝐾,𝑖
𝑖≠ 𝑗

(−1) 𝑗<𝑖PRFK𝑖, 𝑗 ,1
1 (U𝑀,𝑖, 𝐿𝑖), 𝑥𝑖 = ({x𝑖, 𝑗 , z𝑖, 𝑗 } 𝑗∈𝑁𝑖 , [v𝑖, 0]1),

aCT𝑖 ← aEnc(aMSK𝑖, 𝑥𝑖) (5.8)

anCT𝑖 ← anEnc(anMSK𝑖, (aCT𝑖,U𝑀,𝑖, 𝐿𝑖)), ct𝑖 = (anCT𝑖,U𝑀,𝑖, 𝐿𝑖). (5.9)

KeyGen(msk𝑖, 𝑘) The key generation algorithm takes the master secret key msk𝑖, and

274

an input 𝑘 = ({ 𝑓 𝑗 } 𝑗∈U𝐾,𝑖 ,U𝐾,𝑖) such that 𝑖 ∈ U𝐾,𝑖 and outputs sk𝑖 as follows.

rt𝑖 = PRFK𝑖,2
2 (U𝐾,𝑖), aMSK𝑖 = aSetup(1𝜆; rt𝑖)

[s]2 = 𝐻 ({ 𝑓𝑖}𝑖∈U𝐾,𝑖 ,U𝐾,𝑖), 𝑓𝑖 = (𝑓𝑖, [(s, 0)]2), aSK𝑖 ← aKeyGen(aMSK𝑖, 𝑓𝑖)

(5.10)

anCT𝑖 ← anEnc(anMSK𝑖, (aSK𝑖,U𝐾,𝑖, { 𝑓 𝑗 } 𝑗∈U𝐾,𝑖)), sk𝑖 = (anCT𝑖,U𝐾,𝑖, { 𝑓 𝑗 } 𝑗∈U𝐾,𝑖).

(5.11)

Dec({sk𝑖}𝑖∈U𝐾 , {ct𝑖}𝑖∈U𝑀) The decryption algorithm takes as input the public

parameters pp, secret keys {sk𝑖}𝑖∈U𝐾 , ciphertexts {ct𝑖}𝑖∈U𝑀 such that

U = U𝐾 = U𝑀 and outputs 𝑑 as follows. Parse sk𝑖 = (anCT𝑖,U𝐾,𝑖, { 𝑓 𝑗 } 𝑗∈U𝐾,𝑖)

and ct𝑖 = (anCT′𝑖,U𝑀,𝑖, 𝐿𝑖). Compute

{�aSK𝑖}𝑖∈U = anDec({anCT𝑖}𝑖∈U), {�aCT𝑖}𝑖∈U = anDec({anCT′𝑖}𝑖∈U),

[𝑑]𝑇 =
∏
𝑖∈U

aDec(�aSK𝑖,�aCT𝑖).

Correctness. Firstly, we observe that ifU𝐾 = U𝑀 = U, 𝐿𝑖 = 𝐿𝑀 for all 𝑖 ∈ U, where

𝐿𝑀 is any label in L2 and { 𝑓 𝑗 } 𝑗∈U𝐾,𝑖 is same in all the ciphertexts input to the decryption

algorithm, then

• we have from the correctness of AoNE, ãSK𝑖 = aSK𝑖 and ãCT𝑖 = aCT𝑖.

• vector s computed by every user 𝑖 ∈ U is same.

Then from the correctness of NIKE, K𝑖, 𝑗 ,1 = K 𝑗 ,𝑖,1 and hence,
∑
𝑖∈U v𝑖 = 0. Hence, from

the correctness of aFE,∏
𝑖∈U

aDec(ãSK𝑖, ãCT𝑖) =
∏
𝑖∈U

aDec(aSK𝑖, aCT𝑖) =
∏
𝑖∈U
[

∑︁
𝑗∈[𝑁𝑖]

⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩ + ⟨s, v𝑖⟩]𝑇

= [
∑︁
𝑖∈U

∑︁
𝑗∈[𝑁𝑖]

⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩ +
∑︁
𝑖∈U
⟨s, v𝑖⟩]𝑇 = [

∑︁
𝑖∈U

∑︁
𝑗∈[𝑁𝑖]

⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖. 𝑗 ⟩]𝑇 .

275

5.8.3 Security

We argue security via the following theorem.

Theorem 5.23. If {PRFK
1 }, {PRFK

2 } are families of pseudorandom functions, NIKE is

IND-secure, AoNE is sel-sym-IND-secure, the MDDH𝑘 assumption holds in G, and

aFE is function-hiding, then our AWS-DDFE scheme is sel-sym-partially-hiding in the

random oracle model as per Definition 5.17.

Proof. Let S be the set of parties generated by QHonestGen queries. LetHS ⊆ S be

the set of uncorrupted parties and CS = S\HS. We prove the theorem via a series of

hybrids, which are defined as follows.

H𝛽
𝑠 This is the original game. In particular, in response to QEnc𝛽 (𝑖, 𝑥0

𝑖
, 𝑥1
𝑖
,U𝑀 , 𝐿𝑀)

and QKeyGen(𝑖, { 𝑓 𝑗 } 𝑗∈U𝐾 ,U𝐾), where 𝑥𝑏
𝑖
= {x𝑖, 𝑗 , z𝑏𝑖, 𝑗 } 𝑗∈[𝑁𝑖] for 𝑏 ∈ {0, 1}, the

challenger sets

𝑥𝑖 = (𝑥𝛽𝑖 , [v𝑖, 0]1), 𝑓𝑖 = (𝑓𝑖, [s, 0]2),

(in eqs. (5.8) and (5.10), respectively). Vectors v𝑖 and s are computed as desribed

in the construction.

H𝛽

1 In this hybrid, the challenger samples rt𝑖 randomly instead of computing using PRF2.

Indistinguishability between H𝛽
𝑠 and H𝛽

1 follows from the security of PRF2.

H𝛽

2 We say an encryption query on (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
,U𝑀 , 𝐿𝑀) is incomplete, if there exists

𝑖′ ∈ U𝑀 such that 𝑖′ ∈ HS and no encryption query of the form (𝑖′, ★,★,U𝑀 , 𝐿𝑀)

is made. In this hybrid, in response to all the incomplete encryption queries, anCT𝑖

is computed as anEnc.(0,U𝑀 , 𝐿𝑀) (eq. (5.9)). The indistinguishability between

H𝛽

1 and H𝛽

2 follows from the security of AoNE.

H𝛽

3 We say a key query on (𝑖, 𝑓 = { 𝑓 𝑗 } 𝑗∈U𝐾 ,U𝐾) is incomplete if there exist 𝑖′ ∈ U𝐾

276

such that 𝑖′ ∈ HS and there is no key query of the form (𝑖′, 𝑓 ,U𝐾). In this

hybrid, for all the incomplete key queries anCT𝑖 encrypts 0 (eq. (5.11)). The

indistinguishability between H𝛽

2 and H𝛽

3 follows from the security of AoNE.

H𝛽

𝑓
In this hybrid, for all the complete encryption queries of the form (𝑖, 𝑥0

𝑖
, 𝑥1
𝑖
,U𝑀 , 𝐿𝑀)

with 𝑖 ∈ HS, the challenger sets 𝑥𝑖 = (𝑥0
𝑖
, [v𝑖, 0]1). We note that the adversary has

zero advantage in this hybrid because its view is independent of 𝛽 (recall that for

𝑖 ∈ CS, 𝑥0
𝑖
= 𝑥1

𝑖
.). We show that H𝛽

𝑓
is indistinguishable from H𝛽

3 in Lemma 5.24

Lemma 5.24. If {PRFK
1 } is a family of pseudorandom functions, NIKE is IND-secure,

the MDDH𝑘 assumption holds in G, and aFE is partially function-hiding, then H𝛽

3 ≈ H𝛽

𝑓

in the random oracle model.

Proof. To prove the lemma, we consider the following sub hybrids between H𝛽

3 and

H𝛽

𝑓
. Let 𝑞𝑢 be the total number of ID sets with complete encryption queries. Let

{U1, . . . ,U𝑞𝑢} be some fixed ordering on the ID sets from complete encryption queries

and let 𝑞′𝑢 be the upper bound on 𝑞𝑢. Then define sub hybrid Ĥ𝛽

𝑗
as follows

Ĥ𝛽

𝑗
(for 𝑗 ∈ {0} ∪ [𝑞′𝑢]). This hybrid is same as H𝛽

3 except that for every complete

encryption query of the form (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
,U𝑀 , 𝐿𝑀) such that 𝑖 ∈ HS, the challenger

sets

𝑥𝑖 =

(𝑥0
𝑖
, [v𝑖, 0]1) ifU𝑀 ∈ {U1, . . . ,U𝑗 }

(𝑥𝛽
𝑖
, [v𝑖, 0]1) ifU𝑀 ∈ {U𝑗+1, . . . ,U𝑞𝑢},

whereU𝑗 = {⊥} for 𝑗 > 𝑞𝑢. We observe that Ĥ𝛽

0 = H𝛽

3 and Ĥ𝛽

𝑞′𝑢
= H𝛽

𝑓
. So, now we

need to show that for all 𝑗 ∈ [𝑞′𝑢], Ĥ𝛽

𝑗−1 ≈ Ĥ𝛽

𝑗
.

To show this, we let {𝐿1
U 𝑗
, . . . , 𝐿𝑣U 𝑗

} be the set of labels used in complete encryption

queries of the form (★,★,★,U𝑗 , ★). Let 𝑣 ≤ 𝑞𝐿 . Then define the following sub hybrids:

Ĥ𝛽

𝑗−1,0 Same as Ĥ𝛽

𝑗−1.

277

Ĥ𝛽

𝑗−1,𝜅 (for 𝜅 ∈ [𝑞𝐿]). Same as Ĥ𝛽

𝑗−1 except that for every complete encryption query of

the form (𝑖, 𝑥0
𝑖
, 𝑥1
𝑖
,U 𝑗 , 𝐿), for 𝑖 ∈ HS,

𝑥𝑖 =

(𝑥0
𝑖
, [v𝑖, 0]1) if 𝐿 ∈ {𝐿1

U 𝑗
, . . . , 𝐿𝜅U 𝑗

}

(𝑥𝛽
𝑖
, [v𝑖, 0]1) if 𝐿 ∈ {𝐿𝜅+1U 𝑗

, . . . , 𝐿𝑣U 𝑗
}

We observe that Ĥ𝛽

𝑗−1,𝑞𝐿 = Ĥ𝛽

𝑗
. So now, we need to show that Ĥ𝛽

𝑗−1,𝜅−1 ≈ Ĥ𝛽

𝑗−1,𝜅, for all

𝜅 ∈ [𝑞𝐿]. For this, we further define following sub hybrids between Ĥ𝛽

𝑗−1,𝜅−1 and Ĥ𝛽

𝑗−1,𝜅:

LetUHS
𝑗

= U𝑗 ∩HS = {𝑢1, . . . , 𝑢𝑤} and 𝑤′ be an upper bound on 𝑤. Define

H̄𝛽
𝜂 (for 𝜂 ∈ [𝑤′]). Same as Ĥ𝛽

𝑗−1,𝜅−1, except that for each complete encryption query

QEnc𝛽 (𝑢𝑖, 𝑥0
𝑢𝑖
, 𝑥1
𝑢𝑖
,U𝑗 , 𝐿

𝜅
U 𝑗
) and complete key query QKeyGen(𝑢𝑖, { 𝑓 𝑗 } 𝑗∈U 𝑗

,U𝑗),

𝑥𝑢𝑖 and 𝑓𝑢𝑖 , respectively, are set as follows:

𝑥𝑢𝑖 =

(𝑥0
𝑢𝑖
, [v𝑢𝑖 , 0]1) if 𝑖 ≤ 𝜂

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖 , 0]1) if 𝜂 < 𝑖 < 𝑤

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖 , 1]1) if 𝑖 = 𝑤

𝑓𝑢𝑖 =

(𝑓𝑢𝑖 , [s, 0]2) if 𝑖 < 𝑤

(𝑓𝑢𝑖 , [s,
∑
𝑙∈[𝜂] Δ

𝛽

𝑢𝑙 ,𝐿
𝜅
U 𝑗
]2) if 𝑖 = 𝑤

Here, Δ𝛽
𝑢𝑙 ,𝐿

𝜅
U 𝑗

= 𝑓𝑢𝑙 (𝑥
1,𝛽
𝑢𝑙) − 𝑓𝑢𝑙 (𝑥

1,0
𝑢𝑙), where 1 in the superscript indicates the first

QEnc𝛽 query of the form (𝑢𝑙 , ★,★,U𝑗 , 𝐿
𝜅
U 𝑗
). We have, from the admissibility

conditions,

• Let 𝑞𝑐,𝑢𝑙 ,U 𝑗 ,𝐿
𝜅
U 𝑗

be the number of encryption queries of the form

(𝑢𝑙 , ★,★,U𝑗 , 𝐿
𝜅
U 𝑗
), then 𝑓𝑢𝑙 (𝑥

𝜏,𝛽
𝑢𝑙) − 𝑓𝑢𝑙 (𝑥

𝜏,0
𝑢𝑙) = Δ

𝛽

𝑢𝑙 ,𝐿
𝜅
U 𝑗

for all

𝜏 ∈ [𝑞𝑐,𝑢𝑙 ,U 𝑗 ,𝐿
𝜅
U 𝑗
], where 𝜏 denotes the sequence number of the query of this

form (see proof of Lemma 5.19).

•
∑
𝑢𝑙∈(HS∩U 𝑗) Δ

𝛽

𝑢𝑙 ,𝐿
𝜅
U 𝑗

= 0.

Now we argue the indistinguishability of the sub hybrids. Firstly, we observe the

278

following:

1. Ĥ𝛽

𝑗−1,𝜅−1 ≈ H̄𝛽

0 : The only difference between the two hybrids is that for encryption
query of the form QEnc𝛽 (𝑢𝑤, 𝑥0

𝑢𝑤
, 𝑥1
𝑢𝑤
,U𝑗 , 𝐿

𝜅
U 𝑗
), 𝑥𝑢𝑤 = (𝑥𝛽𝑢𝑤 , [v𝑢𝑤 , 0]1) in the

former and 𝑥𝑢𝑤 = (𝑥𝛽𝑢𝑤 , [v𝑢𝑤 , 1]1) in the latter hybrid. Note that 𝑓𝑢𝑤 for any key
queries of the form (𝑢𝑤, { 𝑓 𝑗 } 𝑗∈[U 𝑗] ,U𝑗) is of the form (𝑓𝑢𝑤 , [s, 0]2) (notice the
last bit being 0) in both the hybrids. Hence, the two hybrids are indistinguishable
due to partially function-hiding security of aFE.

2. Similarly, H̄𝛽

𝑤′ ≈ Ĥ𝛽

𝑗−1,𝜅 from aFE security.

So, all that is left is to show that H̄𝛽

𝜂−1 ≈ H̄𝛽
𝜂 . For this, we first note that the two hybrids

differ only in the values of 𝑥𝑢𝜂 and 𝑓𝑢𝑤 as follows:

In H̄𝛽

𝜂−1 :

𝑥𝑢𝑖 =

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖 , 0]1) if 𝑖 = 𝜂

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖 , 1]1) if 𝑖 = 𝑤
, 𝑓𝑢𝑖 =

(𝑓𝑢𝑖 , [s, 0]2) if 𝑖 = 𝜂

(𝑓𝑢𝑖 , [s,
∑
𝑙∈[𝜂−1] Δ

𝛽

𝑢𝑙 ,𝐿
𝜅
U 𝑗
]2) if 𝑖 = 𝑤

In H̄𝛽
𝜂 :

𝑥𝑢𝑖 =

(𝑥0
𝑢𝑖
, [v𝑢𝑖 , 0]1) if 𝑖 = 𝜂

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖 , 1]1) if 𝑖 = 𝑤
, 𝑓𝑢𝑖 =

(𝑓𝑢𝑖 , [s, 0]2) if 𝑖 = 𝜂

(𝑓𝑢𝑖 , [s,
∑
𝑙∈[𝜂] Δ

𝛽

𝑢𝑙 ,𝐿
𝜅
U 𝑗
]2) if 𝑖 = 𝑤

To show indistinguishability, we consider sub hybrids with the following sequence of

changes in 𝑥𝑢𝑖 and 𝑓𝑢𝑖 for 𝑢𝑖 ∈ UHS𝑗 .

H̄𝛽

𝜂−1,1 For every complete QEnc𝛽 query, sample 𝐾𝑢𝜂 ,𝑢𝑤 ,1(= 𝐾𝑢𝑤 ,𝑢𝜂 ,1) randomly instead

of computing from nSharedKey12. Indistinguishability from H̄𝛽

𝜂−1 follows from

the security of NIKE.

H̄𝛽

𝜂−1,2 For any complete encryption query of the form (𝑢𝑖, ★,★,U𝑗 , 𝐿
𝜅
U 𝑗
), the

12this change will happen for all the ID sets, since 𝐾𝑢𝜂 ,𝑢𝑤 ,1 does not depend on the ID set or the label.

279

computation of v𝑢𝜂 and v𝑢𝑤 use random value in place of PRF
𝐾𝑢𝜂 ,𝑢𝑤 ,1 (U 𝑗 ,𝐿

𝜅
U 𝑗
)

1 .

Thus, vectors v𝑢𝜂 and v𝑢𝑤 changes from

v𝑢𝜂 =
∑︁

𝑖∈U 𝑗 ,𝑖≠𝑢𝜂

(−1)𝑖<𝑢𝜂PRF𝐾𝑢𝜂 ,𝑖,1 (U 𝑗 ,𝐿
𝜅
U 𝑗
)
, to

v𝑢𝜂 =
∑︁

𝑖∈U 𝑗 ,𝑖∉{𝑢𝜂 ,𝑢𝑤}
(−1)𝑖<𝑢𝜂PRF𝐾𝑢𝜂 ,𝑖,1 (U 𝑗 ,𝐿

𝜅
U 𝑗
)+t𝑢𝜂 ,𝑢𝑤

v𝑢𝑤 =
∑︁

𝑖∈U 𝑗 ,𝑖≠𝑢𝑤

(−1)𝑖<𝑤PRF𝐾𝑢𝑤,𝑖,1 (Uℓ ,𝐿
𝜅
U 𝑗
)
, to

v𝑢𝑤 =
∑︁

𝑖∈U 𝑗 ,𝑖∉{𝑢𝜂 ,𝑢𝑤}
(−1)𝑖<𝑢𝑤PRF𝐾𝑢𝑤,𝑖,1 (Uℓ ,𝐿

𝜅
U 𝑗
)−t𝑢𝜂 ,𝑢𝑤

where t𝑢𝜂 ,𝑢𝑤 is chosen randomly. Indistinguishability from the previous sub hybrid

follows from the security of PRF1.

H̄𝛽

𝜂−1,3 Change 𝑥𝑢𝜂 , 𝑥𝑢𝑤 , 𝑓𝑢𝜂 and 𝑓𝑢𝑤 as:

𝑥𝑢𝑖 =

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖+t𝑢𝜂 ,𝑢𝑤 , 1]1) if 𝑖 = 𝜂

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖−t𝑢𝜂 ,𝑢𝑤 , 1]1) if 𝑖 = 𝑤

𝑓𝑢𝑖 =

(𝑓𝑢𝑖 , [s,−⟨s, t𝑢𝜂 ,𝑢𝑤⟩]2) if 𝑖 = 𝜂

(𝑓𝑢𝑖 , [s,
∑
𝑙∈[𝜂−1] Δ

𝛽

𝑢𝑙 ,𝐿
𝜅
U 𝑗
+⟨s, t𝑢𝜂 ,𝑢𝑤⟩]2) if 𝑖 = 𝑤

The indistinguishability follows from the partially function-hiding property of

aFE.

H̄𝛽

𝜂−1,4 Replace ⟨s, t𝑢𝜂 ,𝑢𝑤⟩ with random 𝑡𝑢𝜂 ,𝑢𝑤 .

x̂𝑢𝑖 =

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖 + t𝑢𝜂 ,𝑢𝑤 , 1]1) if 𝑖 = 𝜂

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖 − t𝑢𝜂 ,𝑢𝑤 , 1]1) if 𝑖 = 𝑤

280

𝑓𝑢𝑖 =

(𝑓𝑢𝑖 , [s,−𝑡𝑢𝜂 ,𝑢𝑤]2) if 𝑖 = 𝜂

(𝑓𝑢𝑖 , [s,
∑
𝑙∈[𝜂−1] Δ

𝛽

𝑢𝑙 ,𝐿
𝜅
U 𝑗
+ 𝑡𝑢𝜂 ,𝑢𝑤]2) if 𝑖 = 𝑤

Indistinguishability between H̄𝛽

𝜂−1,3 and H̄𝛽

𝜂−1,4 follows from the MDDH𝑘

assumption. In more detail, let 𝑓 1, . . . , 𝑓 𝑞𝑘 be the functions for which the

adversary issues complete key queries of the form (★,★,U𝑗) queries and let

s1, . . . , s𝑞𝑘 be the corresponding s vectors (recall that these are computed from the

hash function modeled as a random oracle). Then, to argue indistinguishability

between the two hybrids, we need to show

{s𝜏, ⟨s𝜏, t𝑢𝜂 ,𝑢𝑤⟩}𝜏∈[𝑞𝑘] ≈ {𝑡𝜏𝑢𝜂 ,𝑢𝑤 }𝜏∈[𝑞𝑘] ,

which follows directly from the MDDH𝑘 assumption.

H̄𝛽

𝜂−1,5 Implicitly set 𝑡𝑢𝜂 ,𝑢𝑤 = 𝑡′𝑢𝜂 ,𝑢𝑤 + Δ𝑢𝜂 ,𝐿𝜅U 𝑗 . That is,

x̂𝑢𝑖 =

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖 + t𝑢𝜂 ,𝑢𝑤 , 1]1) if 𝑖 = 𝜂

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖 − t𝑢𝜂 ,𝑢𝑤 , 1]1) if 𝑖 = 𝑤

𝑓𝑢𝑖 =

(𝑓𝑢𝑖 , [s,−𝑡′𝑢𝜂 ,𝑢𝑤 − Δ𝑢𝜂 ,𝐿𝜅U 𝑗]2) if 𝑖 = 𝜂

(𝑓𝑢𝑤 , [s,
∑
𝑙∈[𝜂] Δ

𝛽

𝑢𝑙 ,𝐿
𝜅
U 𝑗
+ 𝑡′𝑢𝜂 ,𝑢𝑤]2) if 𝑖 = 𝑤

H̄𝛽

𝜂−1,6 Change 𝑥𝑢𝜂 and 𝑓𝜂 as

x̂𝑢𝑖 =

(𝑥0
𝑢𝑖
, [v𝑢𝑖 + t𝑢𝜂 ,𝑢𝑤 , 1]1) if 𝑖 = 𝜂

(𝑥𝛽𝑢𝑖 , [v𝑢𝑖 − t𝑢𝜂 ,𝑢𝑤 , 1]1) if 𝑖 = 𝑤

𝑓𝑢𝑖 =

(𝑓𝑢𝑖 , [s,−𝑡′𝑢𝜂 ,𝑢𝑤]2) if 𝑖 = 𝜂

(𝑓𝑢𝑖 , [s,
∑
𝑙∈[𝜂] Δ

𝛽

𝑢𝑙 ,𝐿
𝜅
U 𝑗
+ 𝑡′𝑢𝜂 ,𝑢𝑤]2) if 𝑖 = 𝑤

281

Work Parties
EK
Cor.

Label
(Pub, Pri)

CT
Key Functionality

Function classes of
𝑓 , 𝑔, ℎ

AB-FE ACGU20 1 ✓ N/A (𝑥, z) (𝑓 , c) 𝑓 (𝑥) · ⟨z, c⟩ 𝑓 ∈ MSPs
FE for AWS AGW20 1 ✓ N/A ({x 𝑗 } 𝑗 , {z 𝑗 } 𝑗) 𝑓

∑
𝑗∈[𝑁]

𝑓 (x 𝑗)⊤z 𝑗 𝑓 ∈ ABPs

MIFE AGT22 𝑛 ✓ × (⊥, z𝑖) c ⟨c, z ⊗ z⟩ N/A
MIFE AGT22 𝑛 × ✓ (⊥, z𝑖) c ⟨c, z ⊗ z⟩ N/A

AB-MIFEACGU20 𝑛 ✓ × (⊥, z𝑖) {𝑦𝑖, c𝑖}𝑖∈𝑆 𝑓 ({𝑦𝑖}𝑖∈𝑆) ·
∑
𝑖∈𝑆
⟨z𝑖, c𝑖⟩

𝑓 ({𝑦𝑖}) =
∧
𝑖∈𝑆 𝑔𝑖 (𝑦𝑖)

fixed 𝑔𝑖 ∈ MSPs

AB-MIFE, Sec. 5.6,5.6.3 𝑛 ✓ × ((y𝑖, {x𝑖, 𝑗 } 𝑗), {z𝑖, 𝑗 } 𝑗) {𝑔𝑖, ℎ𝑖}𝑖∈[𝑛] 𝑓 (y) ·
∑
𝑖∈[𝑛]

∑
𝑗∈[𝑁𝑖]

ℎ𝑖 (x𝑖, 𝑗)⊤z𝑖, 𝑗
𝑓 (y) = ∧

𝑖 (𝑔𝑖 (y𝑖) = 0)
𝑔𝑖, ℎ𝑖 ∈ ABPs

MCFE CDG+18b; ABG19 𝑛 ✓ ✓ (⊥, z𝑖) c ⟨c, z⟩ N/A

AB-MCFE NPP22 𝑛 ✓ OT (𝑥𝑖, z𝑖) {𝑔𝑖, c𝑖} 𝑓 ({𝑥𝑖}) · ⟨c, z⟩ 𝑓 ({𝑥𝑖}) =
∧
𝑖 𝑔𝑖 (𝑥𝑖)

𝑔𝑖 ∈ LSS
MCFE, Sec. 5.7 𝑛 ✓ ✓ ({x𝑖, 𝑗 } 𝑗 , {z𝑖, 𝑗 } 𝑗) { 𝑓𝑖}𝑖∈[𝑛]

∑
𝑖∈[𝑛]

∑
𝑗∈[𝑁𝑖]

𝑓𝑖 (x𝑖, 𝑗)⊤z𝑖, 𝑗 𝑓𝑖 ∈ ABPs

DDFE, CDSG+20; AGT21b Unbdd 𝑛 ✓ ✓ (⊥, z𝑖) c ⟨c, z⟩ N/A
DDFE, Sec. 5.8 Unbdd 𝑛 ✓ ✓ ({x𝑖, 𝑗 } 𝑗 , {z𝑖, 𝑗 } 𝑗) { 𝑓𝑖}𝑖∈𝑆

∑
𝑖∈𝑆

∑
𝑗∈[𝑁𝑖]

𝑓𝑖 (x𝑖, 𝑗)⊤z𝑖, 𝑗 𝑓𝑖 ∈ ABPs

Table 5.3: Prior state of the art and our results. We do not consider function hiding here.
Above, we denote y = (y1, . . . , y𝑛), z = (z1, . . . , z𝑛) or z = (z𝑖)𝑖∈𝑆. 𝑆 ⊆ [𝑛]
is some subset of authorized users for a given key. EK Cor. refers to whether
an adversary is allowed to obtain encryption keys in the security game. Label
refers to the capability of labeling functionality that restricts decryption such
that it is allowed only when all labels are equal. OT in label means that
each label can be used only one time per input. MSPs/ABPs/LSS stand for
monotone span programs/arithmetic branching programs/linear secret sharing.
MCFE in a stronger (resp. weaker) notion corresponds to MIFE that satisfies
EK Cor. and Label (resp. One-time label).

Indistinguishability follows from the partially function hiding property of aFE.
Now, undo the changes in previous steps to get H̄𝛽

𝜂 . ■

■

APPENDIX

5.A DETAILED COMPARISON WITH PRIOR WORK

Here we provide a detailed summary of the related prior work in multi-party FE schemes.

282

5.B MULTI-PARTY FUNCTIONAL ENCRYPTION

In this chapter, we use many classes of functional encryption (FE) such as attribute-based

encryption, secret-key functional encryption, multi-input encryption, etc. To capture

various notions of FE, Agrawal, Goyal, and Tomida proposed a notion called multi-party

functional encryption (MPFE) [AGT21b]. The following definition is verbatim from

[AGT21b].

Definition 5.20 (Multi-Party Functional Encryption). Let 𝑛𝑥 be the number of ciphertext

inputs and 𝑛𝑦 be the number of key inputs. LetX = Xpub×Xpriv be the space of ciphertext

inputs and Y = Ypub × Ypriv be the space of key inputs. We define two aggregation

functions as Agg𝑥 : X𝑛𝑥 → X∗, and Agg𝑦 : Y𝑛𝑦 → Y∗.

An MPFE scheme is defined as a tuple of 4 algorithms/protocols (Setup,

KeyGen,Enc,Dec). To suitably capture existing primitives, we define our Setup

algorithm/protocol to run in three modes, described next.

Setup modes. The Setup algorithm/protocol can be run in different modes: central,

local, or interactive. For mode ∈ {central, local, interactive}, consider the following.

central Here the Setup algorithm is run by one trusted third party which outputs the

master secret keys and encryption keys for all users in the system.

local Here it is run independently by different parties without any interaction, and each

party outputs its own encryption key and/or master secret key.

interactive Here it is an interactive protocol run by a set of users, at the end of which,

each user has its encryption key and/or master secret key. We note that these keys

may be correlated across multiple users.
A multi-party functional encryption (MPFE) consists of the following:

Setup
(
1𝜆, 𝑛𝑥 , 𝑛𝑦,Agg𝑥 ,Agg𝑦

)
This algorithm/protocol can be executed in any one of

283

the three modes described above.Given input the security parameter, number of

ciphertext inputs 𝑛𝑥 , number of key inputs 𝑛𝑦 and two aggregation functions Agg𝑥 ,

Agg𝑦 as defined above, this algorithm outputs a set of encryption keys {ek𝑖}𝑖≤𝑛𝑥 ,

master secret keys {msk𝑖}𝑖≤𝑛𝑦 and public key pk.

Enc
(
pk, ek, 𝑖, 𝑥 =

(
𝑥pub, 𝑥priv

))
Given input the public key pk, an encryption key ek,

user index 𝑖 ∈ [𝑛𝑥], an input 𝑥 =
(
𝑥pub, 𝑥priv

)
, this algorithm outputs a ciphertext

ct𝑥 .

KeyGen
(
pk,msk, 𝑗 , 𝑦 =

(
𝑦pub, 𝑦priv

))
Given input the public key pk, a master secret

key msk, user index 𝑗 ∈ [𝑛𝑦] and a function input 𝑦 =
(
𝑦pub, 𝑦priv

)
, this algorithm

outputs a secret key sk𝑦.

Dec
(
pk, {sk 𝑗 } 𝑗≤𝑛𝑦 , {ct𝑖}𝑖≤𝑛𝑥

)
Given input the public key pk, a set of secret keys

{sk 𝑗 } 𝑗≤𝑛𝑦 and a set of ciphertexts {ct𝑖}𝑖≤𝑛𝑥 , this algorithm outputs a value 𝑧

or ⊥.
We remark that in the local setup mode, it will be helpful to separate the setup algorithm

into a global setup, denoted by Gsetup along with a local setup, denoted by Lsetup,

where the former is used only to generate common parameters of the system, such as

group descriptions and such.

Correctness. We say that an MPFE scheme is correct if, ∀(𝑛𝑥 , 𝑛𝑦) ∈ N2, ciphertext

inputs 𝑥𝑖 ∈ X for 𝑖 ∈ [𝑛𝑥], key inputs 𝑦 𝑗 ∈ Y for 𝑗 ∈ [𝑛𝑦], message and function

284

aggregation circuits Agg𝑥 and Agg𝑦, it holds that:

Pr

𝑧 = 𝑧′ :

(pk, {ek𝑖}, {msk 𝑗}) ←

Setup(1𝜆, 𝑛𝑥 , 𝑛𝑦 ,Agg𝑥 ,Agg𝑦)

ct𝑖 ← Enc(pk, ek𝑖 , 𝑖, 𝑥𝑖) ∀𝑖 ∈ [𝑛𝑥]

sk 𝑗 ← KeyGen(pk,msk 𝑗 , 𝑗 , 𝑦 𝑗) ∀ 𝑗 ∈ [𝑛𝑦]

𝑧 ← Dec
(
pk, {sk 𝑗} 𝑗≤𝑛𝑦 , {ct𝑖}𝑖≤𝑛𝑥

)
𝑧′ = U

(
Agg𝑥 ({𝑥𝑖}),Agg𝑦 ({𝑦 𝑗})

)

= 1.

Recall thatU is the universal circuit with appropriate input and output size.

Indistinguishability based security. Next, we define security of MPFE. The security

definition is modelled in a similar fashion to MIFE security [GGG+14, sec. 2.2] while

taking into account corruption queries.

For any choice of parameters 𝜆, 𝑛𝑥 , 𝑛𝑦, aggregation functions Agg𝑥 ,Agg𝑦, and master

keys K = (pk, {ek𝑖}𝑖∈[𝑛𝑥] , {msk 𝑗 } 𝑗∈[𝑛𝑦]) ← Setup(1𝜆, 𝑛𝑥 , 𝑛𝑦,Agg𝑥 ,Agg𝑦), we define

the following list of oracles:

QCorK(·), upon a call to this oracle for any 𝑖 ∈ [𝑛𝑥] or 𝑗 ∈ [𝑛𝑦], the adversary gets the

corresponding encryption key ek𝑖 or master secret key msk 𝑗 . In the case of a local setup,

the adversary could instead also supply the oracle with adversarially generated keys for

the corresponding user; whereas in case of an interactive setup, the adversary could

simulate the behavior of the queried user index in the setup protocol. (Let S𝑥 ⊆ [𝑛𝑥]

and S𝑦 ⊆ [𝑛𝑦] denote the set of user indices for which the corresponding encryption and

master keys have been corrupted.)

QEncK,𝛽(·, ·), upon a call to this oracle for an honest user index 𝑖 ∈ [𝑛𝑥], message

inputs (𝑥ℓ,0
𝑖
, 𝑥
ℓ,1
𝑖
) (where 𝑥ℓ,𝑏

𝑖
=

(
𝑥
ℓ,𝑏

𝑖,pub, 𝑥
ℓ,𝑏

𝑖,priv

)
for 𝑏 ∈ {0, 1}), the challenger first checks

whether the user 𝑖 was already corrupted or not. That is, if 𝑖 ∈ S𝑥 , then it sends nothing,

otherwise it samples a ciphertext for input 𝑥ℓ,𝛽
𝑖

using key ek𝑖 and sends it to the adversary.

285

QKeyK,𝛽(·, ·), upon a call to this oracle for an honest user index 𝑗 ∈ [𝑛𝑦], function inputs

(𝑦𝑘,0
𝑗
, 𝑦

𝑘,1
𝑗
) (where 𝑦𝑘,𝑏

𝑗
=

(
𝑦
𝑘,𝑏

𝑗 ,pub, 𝑦
𝑘,𝑏

𝑗 ,priv

)
for 𝑏 ∈ {0, 1}), the challenger first checks

whether the user 𝑗 was already corrupted or not. That is, if 𝑗 ∈ S𝑦, then it sends nothing,

otherwise it samples a decryption key for function input 𝑦𝑘,𝛽
𝑗

using key msk 𝑗 and sends

it to the adversary. (Here 𝛽 is the challenge bit chosen at the start of the experiment.)

We let 𝑄𝑥 and 𝑄𝑦 be the number of encryption and key generation queries (respectively)

that had non-empty responses. Let Q𝑥 = {(𝑖, (𝑥ℓ,0, 𝑥ℓ,1))}ℓ∈[𝑄𝑥] be the set of ciphertext

queries and Q𝑦 = {(𝑗 , (𝑦𝑘,0𝑗 , 𝑦
𝑘,1
𝑗
))}𝑘∈[𝑄𝑦] be the set of key queries.

We say that an adversary A is admissible if:

1. For each of the encryption and key challenges, the public components of the two
challenges are equal, namely 𝑥ℓ,0pub = 𝑥

ℓ,1
pub for all ℓ ∈ [𝑄𝑥], and 𝑦𝑘,0pub = 𝑦

𝑘,1
pub for all

𝑘 ∈ [𝑄𝑦].

2. For each of the encryption and key challenges, the private components of the
two challenges are also equal, namely 𝑥ℓ,0priv = 𝑥

ℓ,1
priv for all ℓ ∈ [𝑄𝑥] whenever

(𝑖, (𝑥ℓ,0, 𝑥ℓ,1)) ∈ Q𝑥 and 𝑖 ∈ S𝑥 , and 𝑦
𝑘,0
priv = 𝑦

𝑘,1
priv for all 𝑘 ∈ [𝑄𝑦] whenever

(𝑗 , (𝑦ℓ,0, 𝑦ℓ,1)) ∈ Q𝑦 and 𝑗 ∈ S𝑦. That is, the private components must be the
same as well if the user index 𝑖 or 𝑗 , that the query was made for, was corrupted
during the execution.13

3. There do not exist two sequences (−→𝑥 0,−→𝑦 0) and (−→𝑥 1,−→𝑦 1) such that:

U
(
Agg𝑥 ({𝑥0

𝑖 }),Agg𝑦 ({𝑦0
𝑗 })

)
≠ U

(
Agg𝑥 ({𝑥1

𝑖 }),Agg𝑦 ({𝑦1
𝑗 })

)
and i) for every 𝑖 ∈ [𝑛𝑥], either 𝑥𝑏

𝑖
was queried or ek𝑖 was corrupted, and ii) for

every 𝑗 ∈ [𝑛𝑦], either 𝑦𝑏
𝑗

was queried or msk 𝑗 was corrupted, and iii) at least one
of inputs = 𝑥𝑏

𝑖
, = 𝑦𝑏

𝑗
were queried and indices 𝑖, 𝑗 were not corrupted. (Note that if

𝑖 ∈ [𝑛𝑥] or 𝑗 ∈ [𝑛𝑦] were queried to the QCor oracle, the adversary can generate
partial keys or ciphertexts for any value of its choice.)

An MPFE scheme (Setup,KeyGen,Enc,Dec) is said to be IND secure if for any

admissible PPT adversaryA, all length parameters 𝑛𝑥 , 𝑛𝑦 ∈ N, and aggregation functions

Agg𝑥 ,Agg𝑦, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, the following

13This condition is an option. When we would like to claim that ek𝑖/msk𝑖 does not help to decode ct𝑖/sk𝑖 ,
item 2 should be removed.

286

holds

Pr

𝑏′ = 𝛽 :

K← Setup(1𝜆, 𝑛𝑥 , 𝑛𝑦 ,Agg𝑥 ,Agg𝑦),

K = (pk, {ek𝑖}𝑖 , {msk 𝑗} 𝑗),

𝛽← {0, 1},

𝛽′ ← AQCorK (·) ,QKeyK,𝛽 (·) ,QEncK,𝛽 (·) (1𝜆, pk)

≤ 1

2
+ negl .

Remark 11 (Weaker notions of security). We say the scheme is selective IND secure if

the adversary outputs the challenge message and function pairs at the very beginning

of the game, before it makes any queries or receives the pk. One may also consider

the semi-honest setting, where the QCor oracle is not provided, or the case of static

corruptions where the adversary provides all its corruptions once and for all at the start

of the game.

5.B.1 Dynamic Multi-Party Functional Encryption

In this section, we define the dynamic notion of multi-party functional encryption

(MPFE). We consider the fully dynamic setting where the number of key/ciphertext

inputs is unspecified during setup time, and the aggregation functions are also specified

only during key generation and encryption times. In the dynamic setting, an interactive

or centalized setup is not meaningful since the number of parties is itself not known

during setup time, hence we restrict ourselves to the local setup mode for simplicity.

Definition 5.21 (Dynamic Multi-Party Functional Encryption). Let X = Xpub × Xpriv

be the space of ciphertext inputs and Y = Ypub × Ypriv be the space of key inputs.

Also, let PK be the space to which each local public key belongs. A dynamic multi-

party functional encryption scheme (MPFE) with local setup is defined as a tuple of 5

algorithms/protocols (Gsetup, Lsetup,KeyGen,Enc,Dec) with the following syntax:

Gsetup(1𝜆) On input the security parameter, the global setup algorithm samples a

globally shared set of public parameters pp.

Lsetup(pp) Given input the public parameters, the local setup algorithm outputs a tuple

287

consisting of local public key pk, an encryption key ek, and a master secret key

msk. (Here the local public key is just regarded as a public identifier for the user,

and not given as explicit input to other algorithms since it could always be added

to the encryption and/or master secret key.)

Enc
(
ek, 𝑖, 𝑥 =

(
𝑥pub, 𝑥priv

)
,Agg𝑥

)
Given input an encryption key ek, user index 𝑖 ∈ [𝑛𝑥],

an input 𝑥 =
(
𝑥pub, 𝑥priv

)
, and an aggregation function Agg𝑥 : (PK × X)𝑛𝑥 → X∗

(for some 𝑛𝑥 ∈ N), this algorithm outputs a ciphertext ct𝑖.

KeyGen
(
msk, 𝑗 , 𝑦 =

(
𝑦pub, 𝑦priv

)
,Agg𝑦

)
Given input a master secret key msk, user

index 𝑗 ∈ [𝑛𝑦]

Dec
(
(sk 𝑗) 𝑗 , (ct𝑖)𝑖

)
Given input a sequence of secret keys (sk 𝑗) 𝑗 and a sequence of

ciphertexts (ct𝑖)𝑖, this algorithm outputs a value 𝑧 or ⊥.
Correctness. We say that an MPFE scheme is correct if, ∀(𝑁, 𝑛𝑥 , 𝑛𝑦) ∈ N3, ciphertext

inputs 𝑥𝑖 ∈ X for 𝑖 ∈ [𝑛𝑥], key inputs 𝑦 𝑗 ∈ Y for 𝑗 ∈ [𝑛𝑦], message and function

aggregation circuits Agg𝑥 and Agg𝑦, and indexing functions index𝑥 : [𝑛𝑥] → [𝑁],

index𝑦 : [𝑛𝑦] → [𝑁] it holds that:

Pr

𝑧 = 𝑧′ :

pp← Gsetup(1𝜆)

(pkℓ , ekℓ ,mskℓ) ← Lsetup(pp) ∀ℓ ∈ [𝑁]

ct𝑖 ← Enc(ekindex𝑥 (𝑖) , 𝑖, 𝑥𝑖 ,Agg𝑥) ∀𝑖 ∈ [𝑛𝑥]

sk 𝑗 ← KeyGen(mskindex𝑦 (𝑗) , 𝑗 , 𝑦 𝑗 ,Agg𝑦) ∀ 𝑗 ∈ [𝑛𝑦]

𝑧 ← Dec
(
(sk 𝑗) 𝑗≤𝑛𝑦 , (ct𝑖)𝑖≤𝑛𝑥

)
𝑧′ = U

(
Agg𝑥

(
(pkindex𝑥 (𝑖) , 𝑥𝑖)𝑖

)
,Agg𝑦

(
(pkindex𝑦 (𝑗) , 𝑦 𝑗) 𝑗

))

= 1.

Recall thatU is the universal circuit with appropriate input and output size.

Indistinguishability based security. Here we extend the security experiment for

multi-party functional encryption that we provided in Definition 5.20 to the dynamic

user setting in the local setup mode. Since we are working in the dynamic setting, we

288

need to define the following oracles

HonestGen(), upon a call to this oracle, the challenger samples a fresh tuple of local

public key, encryption key, and master key (pk, ek,msk), and stores them in a list Lsetup.

It sends pk to the adversary. (Note that if the scheme is a public key scheme, then the

challenger sends the encryption key ek to the adversary.)

QCor(·, ·), upon a call to this oracle for an honest user local public key pk and key type

type ∈= enc,master, the challenger first checks whether the list Lsetup contains a key

pair associated with pk. If there is such a key pair (pk, ek,msk), then it sends either the

ek or msk depending on the type queried. Otherwise, it sends nothing.14

QEnc𝛽(·, ·, ·, ·), upon a call to this oracle for an honest user local public key pk, inputs

(𝑥ℓ,0
𝑗
, 𝑥
ℓ,1
𝑗
) (where 𝑥ℓ,𝑏

𝑗
=

(
𝑥
ℓ,𝑏

𝑗 ,pub, 𝑥
ℓ,𝑏

𝑗 ,priv

)
for 𝑏 ∈ {0, 1}), index 𝑗 , aggregation function

Aggℓ𝑥, 𝑗 , the challenger first checks whether the list Lsetup contains a key pair associated

with pk. If there is such a key pair (pk, ek,msk), then it samples a ciphertext for input

𝑥
ℓ,𝛽

𝑗
using key ek and sends it to the adversary. Otherwise, it sends nothing. (Here 𝛽 is

the challenge bit chosen at the start of the experiment.)

QKey𝛽(·, ·, ·, ·), upon a call to this oracle for an honest user local public key pk, function

inputs (𝑦𝑘,0
𝑗
, 𝑦

𝑘,1
𝑗
) (where 𝑦𝑘,𝑏

𝑗
=

(
𝑦
𝑘,𝑏

𝑗 ,pub, 𝑦
𝑘,𝑏

𝑗 ,priv

)
for 𝑏 ∈ {0, 1}), index 𝑗 , aggregation

function Agg𝑘𝑦, 𝑗 , the challenger first checks whether the list Lsetup contains a key pair

associated with pk. If there is such a key pair (pk, ek,msk), then it samples a decryption

key for function input 𝑦𝑘,𝛽
𝑗

using key msk and sends it to the adversary. Otherwise, it

sends nothing. (Here 𝛽 is the challenge bit chosen at the start of the experiment.)

We let 𝑄𝑥 and 𝑄𝑦 be the number of encryption and key generation queries (respectively)

that had non-empty responses. Let Q𝑥 = {(pkℓ, (𝑥ℓ,0
𝑗
, 𝑥
ℓ,1
𝑗
), 𝑗 ,Aggℓ𝑥, 𝑗)}ℓ∈[𝑄𝑥] be the set

14As we point out in the static setting, in case ek𝑖 is completely contained in some msk𝑖 (or vice versa),
then making a master secret corruption query for 𝑖 will also imply that encryption key for 𝑖 has been
corrupted too (and vice versa).

289

of ciphertext challenge queries and Q𝑦 = {(pk𝑘 , (𝑦𝑘,0
𝑗
, 𝑦

𝑘,1
𝑗
), 𝑗 ,Agg𝑘𝑦, 𝑗)}𝑘∈[𝑄𝑦] be the set

of key challenge queries.

We say that an adversary A is admissible if:

1. For each of the encryption and key challenges, the public components of the two
challenges are equal, namely 𝑥ℓ,0

𝑗 ,pub = 𝑥
ℓ,1
𝑗 ,pub for all ℓ ∈ [𝑄𝑥], and 𝑦𝑘,0

𝑗 ,pub = 𝑦
𝑘,1
𝑗 ,pub

for all 𝑘 ∈ [𝑄𝑦].

2. For each of the encryption and key challenges, the private components of the two
challenges are also equal, namely 𝑥ℓ,0

𝑗 ,priv = 𝑥
ℓ,1
𝑗 ,priv for all ℓ ∈ [𝑄𝑥], and 𝑦𝑘,0

𝑗 ,priv = 𝑦
𝑘,1
𝑗 ,priv

for all 𝑘 ∈ [𝑄𝑦] if the encryption key ekℓ or the master secret key msk𝑘 , that the
query was made for, was corrupted during the execution (respectively).

3. There do not exist two sequences ((−→pk𝑥 ,−→𝑥 0), (−→pk𝑦,−→𝑦 0)) ≠ ((−→pk𝑥 ,−→𝑥 1), (−→pk𝑦,−→𝑦 1))
and aggregation functions Agg𝑥 ,Agg𝑦 such that:

U
(
Agg𝑥

(
(pk𝑥,𝑖, 𝑥0

𝑖)𝑖
)
,Agg𝑦

(
(pk𝑦, 𝑗 , 𝑦0

𝑗) 𝑗
))

≠

U
(
Agg𝑥

(
(pk𝑥,𝑖, 𝑥1

𝑖)𝑖
)
,Agg𝑦

(
(pk𝑦, 𝑗 , 𝑦1

𝑗) 𝑗
))

and i) 𝑥𝑏
𝑖

was queried for aggregation function Agg𝑥 , index 𝑖 and public key pk𝑥,𝑖,
and ii) 𝑦𝑏

𝑗
was queried for aggregation function Agg𝑦, index 𝑗 and public key pk𝑦, 𝑗 ,

and iii) at least one of inputs = 𝑥𝑏
𝑖
, = 𝑦𝑏

𝑗
were queried and public key pk𝑥,𝑖, pk𝑦, 𝑗 was

not corrupted. Note that if some 𝑥𝑏
𝑖

or 𝑦𝑏
𝑗

was not queried by the adversary, then it
can generate partial keys or ciphertexts for any value of its choice by performing a
fresh key generation since this is a fully dynamic system, however that samples a
fresh public as well.

An MPFE scheme (Gsetup, Lsetup,KeyGen,Enc,Dec) is said to be IND secure if for

any admissible PPT adversary A, there exists a negligible function negl(·) such that for

all 𝜆 ∈ N, the following holds

Pr
[
AHonestGen(), QCor(), QKey𝛽(), QEnc𝛽()(1𝜆) = 𝛽 : 𝛽← {0, 1}

]
≤ 1

2
+ negl .

Remark 12 (Potential variations). The above multi-party function encryption system that

we define allows the users to dynamically join the system in the permissionless model,

where each incoming user only needs to know the public parameters and not interact with

290

any authority. A slightly weaker setting could be a permissioned model in which users

can still dynamically join the system but they need to contact the global authority (which

sampled the public parameters) either for some identification tokens or its encryption and

master secret key pair in order to prevent totally unrestricted computation which happens

in the permissionless model.

Also, we want to point out that in our current framework we let the users select the

aggregation functions during individual functional key and ciphertext generation to

allow for more flexibility. This could be relaxed even further by letting the aggregation

functions be either be described in a uniform computation model, or using an ensemble

of non-uniform functions. Also, one could instead restrict the flexibility in aggregation

by asking each user to choose their aggregation functions at setup time. Such flexibilities

will be important in capturing the notion of DDFE described in Definition 5.17.

5.B.2 Capturing our primitives in the MPFE framework

They also proposed a dynamic variant of MPFE, which is presented in Section 5.B.1.

In this work, we use following variants of FE subsumed by MPFE or dynamic MPFE.

Formal definitions of these are found in Section 5.4.3 or respective sections.

Attribute-Based Encryption. Attribute-based encryption (ABE) for predicate P :

X × Y → {0, 1} is captured by MPFE as follows: (𝑛𝑥 , 𝑛𝑦) = (1, 1), 𝑥 = (𝑥pub, 𝑥priv) =

(𝑥′, 𝑀), 𝑦 = (𝑦pub, 𝑦priv) = (𝑦′,⊥). Agg𝑥 (𝑥) = 𝑥, and Agg𝑦 (𝑦) outputs 𝑓 such that

U(𝑥, 𝑓) = 𝑀 if P(𝑥′, 𝑦′) = 1 andU(𝑥, 𝑓) = ⊥ otherwise.

Secret-Key Functional Encryption. Secret-key functional encryption (SK-FE) for

function class F is captured by MPFE as follows: (𝑛𝑥 , 𝑛𝑦) = (1, 1), 𝑥 = (𝑥pub, 𝑥priv) =

(𝑥1, 𝑥2), 𝑦 = (𝑦pub, 𝑦priv) = (𝑓1, 𝑓2) = 𝑓 ∈ F . Agg𝑥 (𝑥) = 𝑥, and Agg𝑦 (𝑦) outputs 𝑓 such

thatU(𝑥, 𝑓) = 𝑓 (𝑥).

Multi-Input Functional Encryption. Multi-input functional encryption (MIFE) for

291

function class F is captured by MPFE as follows: (𝑛𝑥 , 𝑛𝑦) = (𝑛, 1), 𝑥𝑖 = (𝑥𝑖,pub, 𝑥𝑖,priv) =

(𝑥𝑖,1, 𝑥𝑖,2), 𝑦 = (𝑦pub, 𝑦priv) = (𝑓1, 𝑓2) = 𝑓 ∈ F . Agg𝑥 (𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑛), and

Agg𝑦 (𝑦) outputs 𝑓 such thatU((𝑥1, . . . , 𝑥𝑛), 𝑓) = 𝑓 (𝑥1, . . . , 𝑥𝑛).

Multi-Client Functional Encryption. Multi-client functional encryption (MCFE) for

function class F is captured by MPFE as follows: (𝑛𝑥 , 𝑛𝑦) = (𝑛, 1), 𝑥𝑖 = (𝑥𝑖,pub, 𝑥𝑖,priv) =

((𝑥𝑖,1, 𝐿𝑖), 𝑥𝑖,2), 𝑦 = (𝑦pub, 𝑦priv) = (𝑓1, 𝑓2) = 𝑓 ∈ F . Agg𝑥 (𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑛),

and Agg𝑦 (𝑦) outputs 𝑓 such thatU((𝑥1, . . . , 𝑥𝑛), 𝑓) = 𝑓 ((𝑥1,1, 𝑥1,2), . . . , (𝑥𝑛,1, 𝑥𝑛,2)) if

and only if 𝐿1 = · · · = 𝐿𝑛.

Dynamic Decentralized Functional Encryption. Dynamic decentralized functional

encryption (DDFE) for function 𝐹 is captured by dynamic MPFE (Section 5.B.1) as

follows: 𝑥𝑖 = (𝑥𝑖,pub, 𝑥𝑖,priv) = (𝑚𝑖,1, 𝑚𝑖,2) = 𝑚𝑖, 𝑦𝑖 = (𝑦𝑖,pub, 𝑦𝑖,priv) = (𝑘𝑖,1, 𝑘𝑖,2) = 𝑘𝑖.

Agg𝑥 is an identity function, and Agg𝑦 ({pk𝑖, 𝑘𝑖}𝑖∈U𝐾) outputs 𝑓 such that

U({pk𝑖, 𝑚𝑖}𝑖∈U𝑀 , 𝑓) = 𝐹 ({pk𝑖, 𝑚𝑖}𝑖∈U𝑀 , {pk𝑖, 𝑘𝑖}𝑖∈U𝐾). Note that we assume that

aggregate functions here can be described in non-uniform computation model such as

Turing machines as in Remark 12.

Attribute-Based FE for Attribute-Weighted Sums with Inner Product We can capture

Attribute-Based FE for AWS with Inner Product in the context of MPFE as follows. Let

G = (𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑔1, 𝑔2, 𝑒) be bilinear groups. The setup algorithm is run in the central

mode, and 𝑛𝑥 = 𝑛𝑦 = 1. A message is defined as 𝑥 = (𝑥pub, 𝑥priv) = ((y, {x 𝑗 } 𝑗∈[𝑁]),

({z 𝑗 } 𝑗∈[𝑁] , [p]1)) where y, x 𝑗 , z 𝑗 , p are all vectors in Z𝑝 while a function is defined as

𝑦 = (𝑦pub, 𝑦priv) = ((𝑔, ℎ), [q]2) where 𝑔, ℎ are ABPs, and q is a vector in Z𝑝. Agg𝑥 is an

identity function, and Agg𝑦 outputs a function 𝑓𝑔,ℎ,[q]2 that outputs [∑ 𝑗∈[𝑁] ⟨ℎ(x𝑖), z𝑖⟩ +

⟨p, q⟩]𝑇 if and only if 𝑔(y) = 0 on input 𝑥 = ((y, {x 𝑗 } 𝑗∈[𝑁]), ({z 𝑗 } 𝑗∈[𝑁] , [p]1)).

Attribute-Based MIFE for Attribute-Weighted Sums We can capture Attribute-Based

MIFE for AWS in the context of MPFE as follows. Let G = (𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑔1, 𝑔2, 𝑒)

292

be bilinear groups. The setup algorithm is run in the central mode, and 𝑛𝑥 = 𝑛, 𝑛𝑦 = 1

for some 𝑛 ∈ N. A message is defined as 𝑥 = (𝑥pub, 𝑥priv) = ((y, {x 𝑗 } 𝑗∈[𝑁]), {z 𝑗 } 𝑗∈[𝑁])

where y, x 𝑗 , z 𝑗 are all vectors in Z𝑝 while a function is defined as 𝑦 = (𝑦pub, 𝑦priv) =

({𝑔𝑖, ℎ𝑖}𝑖∈[𝑛] ,⊥) where 𝑔𝑖, ℎ𝑖 are ABPs. Agg𝑥 is an identity function, and Agg𝑦 outputs a

function 𝑓{𝑔𝑖 ,ℎ𝑖}𝑖∈[𝑛] that outputs [∑𝑖∈[𝑛]
∑
𝑗∈[𝑁𝑖] ⟨ℎ𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩]𝑇 if and only if 𝑔𝑖 (y𝑖) = 0

for all 𝑖 ∈ [𝑛] on input {𝑥𝑖}𝑖∈[𝑛] = {(y𝑖, {x𝑖, 𝑗 } 𝑗∈[𝑁𝑖]), {z𝑖, 𝑗 } 𝑗∈[𝑁𝑖]}𝑖∈[𝑛] .

Dynamic Decentralized Functional Encryption for AWS We can capture DDFE for

AWS in the context of dynamic MPFE as follows. Let G = (𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑔1, 𝑔2, 𝑒) be

bilinear groups. The setup algorithm is run in the local mode, since it works in a dynamic

manner. A message is defined as 𝑥 = (𝑥pub, 𝑥priv) = (({x 𝑗 } 𝑗∈[𝑁] ,U𝑀 , 𝐿𝑀), {z 𝑗 } 𝑗∈[𝑁])

where x 𝑗 , z 𝑗 are vectors in Z𝑝, U𝑀 is a set of IDs, and 𝐿𝑀 is a label while a function

is defined as 𝑦 = (𝑦pub, 𝑦priv) = (({ 𝑓𝑖}𝑖∈U𝐾 ,U𝐾),⊥) where 𝑓 is an ABP. Agg𝑥 checks

if the public inputs (U𝑀 , 𝐿𝑀) match for all parties and that all the ciphertexts are

provided for the set U𝑀 . If so, it outputs ({x𝑖, 𝑗 , z𝑖, 𝑗 }𝑖∈U𝑀 , 𝑗∈[𝑁𝑖] ,U𝑀). Agg𝑦 checks

({ 𝑓𝑖}𝑖∈U𝐾 ,U𝐾) match for all parties and that all the ciphertexts are provided for the set

U𝐾 . If so, it outputs a function 𝑓 ′𝑦 that outputs [∑𝑖∈U𝐾
∑
𝑗∈[𝑁𝑖] ⟨ 𝑓𝑖 (x𝑖, 𝑗), z𝑖, 𝑗 ⟩]𝑇 if and

only ifU𝑀 = U𝐾 on input (U𝑀 , {x𝑖, 𝑗 , z𝑖, 𝑗 }𝑖∈U𝑀 , 𝑗∈[𝑁𝑖]).

293

CHAPTER 6

ROUND-OPTIMAL LATTICE-BASED THRESHOLD
SIGNATURES

6.1 INTRODUCTION

In this chapter we describe our constructions of round-optimal threshold signatures from

lattice based assumptions. Threshold signatures [Des94] is a generalization of digital

signatures where the signature issuing capacity is distributed among several users, so

that a signature can be generated only if a sufficient number of users collaborate to sign

a message. In more detail, each of 𝑁 parties holds a partial signing key, and any set

of parties at least as large as a given threshold 𝑡 ≤ 𝑁 can participate in a protocol to

generate a signature. Security requires that a valid signature cannot be generated if fewer

than 𝑡 parties cooperate.

While threshold signatures have been studied for a long time [Lin17b; DKLS18; CCL+19;

GGN16; GG18; LN18; DKLS19; DOK+20; CCL+20; CGG+20; GKSŚ20; DJN+20;

GG20; BKP13], they have received renewed attention in recent years due to numerous

applications in modern topics such as cryptocurrencies and blockchains. Most prior

work has focused on creating distributed versions of classical digital signature schemes,

ECDSA or Schnorr signatures [LN18; GG18; DKLS19; CCL+19; CCL+20] which are

not quantum secure. From conjectured post-quantum assumptions such as those related

to Euclidean lattices, much less is known, especially with optimal round complexity.

Prior Work. The thresholdisation of lattice-based signatures from the NIST post-

quantum cryptography project has been investigated in [CS19] but the resulting candidates

incur several rounds of communication. A threshold signature restricted to 𝑡 = 𝑁 was

proposed in [DOTT21] but it also involves possibly many rounds, because of aborts.

To the best of our knowledge, the only lattice-based, round-optimal threshold signature

construction is by Boneh et al [BGG+18] (henceforth BGGJKRS), relying on the

Learning With Errors problem (LWE). However, while this construction provided the

first feasibility result for a long-standing open problem, it suffers from the following

drawbacks:

1. Noise Flooding and Impact on Parameters. It makes use of the so-called “noise
flooding” technique [Gen09; BD10; GKPV10], which aims to hide a noise term 𝑒 ∈
Z that possibly contains sensitive information, by adding to it a fresh noise term 𝑒′

whose distribution has a standard deviation that is much larger than an a priori
upper bound on |𝑒 |. To get security against attackers with success probability 2−𝑜(𝜆)
where 𝜆 is the security parameter, the standard deviation of 𝑒′must be a factor 2Ω(𝜆)
larger than the upper bound on |𝑒 |.

Unfortunately, this precludes the use of an efficient LWE parametrisation.
Concretely, one has to set the LWE noise rate 𝛼 as 2−Ω(𝜆) so that |𝑒′| remains
small compared to the working modulus 𝑞. As the best known algorithms for
attacking LWE with (typical) parameters 𝑛, 𝑞, 𝛼 have run-times that grow as
exp(𝑂 (𝑛 log 𝑞/log2 𝛼)) (see, e.g., [HKM18]) this leads to setting 𝑛 log 𝑞 = Ω̃(𝜆3).
As the signature shares have bit-sizes that grow as Ω(𝑛 log 𝑞), this leads to
Ω̃(𝜆3)-bit signature sizes – prohibitively expensive in practice.

2. Instantiating Underlying Signature. It requires a standard signature scheme to be
evaluated homomorphically. BGGJKRS do not suggest a candidate and existing
lattice based signatures are not suitable – the GPV signature scheme [GPV08] and
its practical versions [DP16; PP19; FHK+] seem ill-suited, as the signing algorithm
is very sequential, and the required 1-dimensional Gaussian samples are obtained
via algorithms based on rejection sampling (see, e.g., [HPRR20; ZSS20]) that are
costly to transform into circuits. The other candidate is Lyubashevsky’s signature
scheme [Lyu09; Lyu12]. It has the advantage of being far less sequential, but it
also relies on rejection sampling: when some rejection test does not pass, then one
needs to restart the signing process.

3. Selective Security. It only achieves a very restricted notion of selective security,
where all the corrupted parties must be announced before any partial signing query
is made. To obtain security in the more realistic adaptive setting, one option is
to invoke complexity leveraging, which consists in guessing at the outset which
parties will be corrupted. This is not only dissatisfying as a solution but also leads
to a further degradation of the parameters.

296

6.2 OUR RESULTS

We improve the construction from [BGG+18] in different ways. We list them below:

• Efficiency. We decrease the noise flooding ratio from 2Ω(𝜆) down to
√
𝑄, where𝑄 is

the bound on the number of generated signatures. This gives a one-round threshold
signature of bit-length growing as𝑂 (𝜆 log2𝑄), which is𝑂 (𝜆) for any polynomially
bounded 𝑄,1 in contrast with 𝑂 (𝜆3) for the construction from [BGG+18]. These
bit-lengths are obtained when relying on the ring variants of SIS and LWE [LM06;
PR06; SSTX09; LPR10]. Additionally, we show that the amount of noise flooding
used in this construction is optimal, by exhibiting an attack when a smaller noise
flooding ratio is used.

• Instantiation. To instantiate the signature underlying BGGJKRS, we provide a
homomorphism friendly variant of Lyubashevsky’s signature [EUROCRYPT ’12]
which achieves low circuit depth. We remove the rejection sampling at the expense
of adding moderate noise of size

√
𝑄, matching the above. Again, we show that this

amount of flooding is optimal by demonstrating an attack when smaller flooding is
used.

• Selective versus Adaptive. As discussed above, the construction BGGJKRS satisfies
only selective security. We improve this in two ways: in the Random Oracle
Model (ROM), in which a hash function is being modeled as a uniformly sampled
function with the same domain and range, we obtain a notion of partial adaptivity
where signing queries can be made before the corrupted parties are announced.
However, the set of corrupted parties must be announced all at once. In the
standard model, we obtain a construction with full adaptivity, where parties can be
corrupted at any stage in the protocol. However, this construction is in a weaker
pre-processing model where signers must be provided correlated randomness
of length proportional to the number of signing queries. The informed reader
may notice similarities with the “MPC with Preprocessing” model, please see
[FKOS15] and references therein 2.

1For many applications, the bound 𝑄 is quite limited and can be considered to be a small polynomial
in 𝜆. For example, for applications pertaining to cryptocurrencies, the bound 𝑄 may capture the total
number of transactions made with a user’s wallet during the lifetime of a signing key. According
to statistics available at the URLs below, one transaction per day and per user is a generous upper
bound. This suggests that number of signing queries in the lifecycle of the key will be quite
limited. https://www.blockchain.com/charts/n-transactions, https://www.statista.
com/statistics/647374/worldwide-blockchain-wallet-users/

2Note that we can trade the offline sharing of correlated randomness with an additional communication
round in the signing protocol – however, this would destroy round optimality.

297

https://www.blockchain.com/charts/n-transactions
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/

6.3 TECHNICAL OVERVIEW

Recap of BGGJKRS Threshold Signatures. The round-optimal threshold signatures

provided by [BGG+18] are designed using a “universal thresholdizer” which enables

the thresholdizing of a number of primitives. This thresholdizer is itself instantiated

using a threshold version of “special” fully homomorphic encryption (FHE), which in

turn can be constructed using the LWE assumption. In threshold fully homomorphic

encryption (TFHE), the setup algorithm takes as input a threshold 𝑡 and produces a set of

decryption key shares sk1, . . . , sk𝑁 for the parties such that every party can perform a

partial decryption using its own decryption key and any 𝑡 out of 𝑁 partial decryptions

can be combined into a complete decryption of the ciphertext in a single round.

In more detail, the TFHE construction of BGGJKRS leverages the fact that the decryption

in LWE based FHE schemes [BV11; BGV12; GSW13] requires to compute an inner

product of the ciphertext ct with the secret key sk, followed by a rounding operation. Since

inner product is a linear operation, a natural approach to thresholdize FHE decryption is

by applying a Shamir 𝑡-out-of-𝑁 secret sharing to sk. This will yield 𝑁 keys sk1, . . . , sk𝑁 ,

which can be distributed to the 𝑁 users. Now, to decrypt a ciphertext ct, each user can

compute the inner product with its individual secret key sk𝑖 as its partial decryption 𝑚𝑖.

To combine any 𝑡 partial decryptions into the final decryption, the combiner chooses

Lagrange coefficients 𝛾1, . . . , 𝛾𝑡 so that
∑
𝑖 𝛾𝑖sk𝑖 = sk. Then, she computes∑︁

𝑖

𝛾𝑖𝑚𝑖 =
∑︁
𝑖

𝛾𝑖 ⟨ct, sk𝑖⟩ = ⟨ct,
∑︁
𝑖

𝛾𝑖sk𝑖⟩ = ⟨ct, sk⟩,

followed by rounding, as desired. However, this appealingly simple construction turns

out to be insecure. This is because each time a party computes a partial decryption, it

leaks information about its secret share sk𝑖 via the inner product with (the public) value

ct.

To get around this insecurity, a natural approach is to add noise to the partial decryption

which quickly transforms a simple computation to intractable. However, care must

298

be taken to ensure that this added noise does not affect correctness, since it is later

multiplied by the Lagrange coefficients during reconstruction: the previous
∑
𝑖 𝛾𝑖𝑚𝑖 will

now become
∑
𝑖 𝛾𝑖 (𝑚𝑖 + 𝑒𝑖) for some noise terms 𝑒𝑖. BGGJKRS propose two solutions

– one to use a secret sharing scheme whose reconstruction coefficients are binary, and

another, to “clear the denominators” by observing that since the Lagrange coefficients

are rational numbers, it is possible to scale them to be integers. The exact details are not

relevant for the current discussion and hence omitted (please refer to [BGG+18] for more

details).

To use this technique to construct threshold signatures, the authors propose the following.

Choose a signature scheme Sig, compute an FHE encryption ctsk of its signing key

Sig.sk and let each signer homomorphically evaluate the signing algorithm for a message

𝜇 on this ciphertext. In more detail, given ctsk = FHE.Enc(Sig.sk), each party first

computes FHE.Eval(𝐶, ctsk) where 𝐶 is the circuit Sig.Sign(𝜇, ·). By correctness of

FHE, this yields an FHE encryption of the signature 𝜎 = Sig.Sign(Sig.sk, 𝜇). To this

ciphertext, the thresholdization trick described above may now be applied.

Modeling the Adversary and Effect on Parameters. In their analysis, BGGJKRS

consider the complexity-theory security requirement of “no polynomial time attacks”,

corresponding to assuming attacks with advantage 𝜖 = 𝜆−𝑂 (1) and run-time 𝜆𝑂 (1) .

However, for practically motivated primitives like threshold signatures, it is more

meaningful to consider attackers with advantage 2−𝑜(𝜆) and run-time 2𝑜(𝜆) . We choose

our adversarial model so that all attacks should be exponential while all honest algorithms

run in polynomial time. Compared to the complexity-theory definition of security, this

provides a much more significant (and practically meaningful) hardness gap between

honest and malicious parties.

For subexponentially strong attackers as described above, the noise flooding used in

BGGJKRS is exponential, severely damaging the practicality of the scheme, despite the

299

exciting developments in practical FHE [CGGI20; ZDH20; KS21; CKKS17; CHK+18;

DM15]. In more detail, the proof requires to make the statistical distance between

some noise terms 𝑒′ and 𝑒 + 𝑒′ small, so that knowing 𝑒 + 𝑒′ is essentially the same as

knowing 𝑒′, which does not carry sensitive information. To get security against attackers

with advantage 2−𝑜(𝜆) , the statistical distance must be set to 2−Ω(𝜆) and, as a result, the

standard deviation of 𝑒′ must be a factor 2Ω(𝜆) larger than the upper bound on |𝑒 |.

Tightening Analysis via Rényi divergence. In this work, we examine whether this

flooding noise can be improved so that the impact of flooding 𝑒 by 𝑒′ on efficiency is

minimised. To this end, we explore using Rényi divergence rather than statistical distance

to bound the distance between distributions in the security proof. Rényi divergence

has been used in prior work as a replacement to the statistical distance in lattice based

cryptography [LSS14; LPSS14; BGM+16; Pre17; HLS18; ADPS16; BCD+16; AD17;

BLRL+18]. To understand why this may be beneficial, let us first see how statistical

distance is used in typical security proofs of cryptography. Let P and Q be two

non-vanishing probability distributions over a common measurable support 𝑋 . Typical

security proofs consider a hard problem relying on some ideal distribution Q, and then

replace this ideal distribution by a real world distribution P. When the statistical distance

Δ(Q,P) between the two distributions is small, the problem remains hard, implying

security. This is made rigorous by the so-called “probability preservation” property

which says that for any measurable event 𝐸 ⊆ 𝑋 , we have Q(𝐸) ≥ P(𝐸) − Δ(Q,P).

Let us now define Rényi Divergence (RD). For 𝑎 ∈ (1,∞), the RD of order 𝑎 is defined

by 𝑅𝑎 (P||Q) =
(∑

𝑥∈𝑋
P(𝑥)𝑎
Q(𝑥)𝑎−1

) 1
𝑎−1 . It enjoys an analogous probability preservation

property, though multiplicative as against additive. For 𝐸 ⊆ 𝑋 , we have Q(𝐸) ≥

P(𝐸) 𝑎
𝑎−1 /𝑅𝑎 (P||Q). Thus, if an event 𝐸 occurs with significant probability under P,

and if the SD or the RD is small, then the event 𝐸 also occurs with significant probability

under Q. As discussed in [BLRL+18], probability preservation in SD is meaningful

when the distance is smaller than any P(𝐸) that the security proof is required to deal with

300

– if P(𝐸) ≥ 𝜖 for some 𝜖 , then we require that Δ(Q,P) < 𝜖 . The analogous requirement

for RD is 𝑅𝑎 (P||Q) ≤ poly(1/𝜖). Bai et al. [BLRL+18] observed that RD is often less

demanding than SD in proofs. This is because RD between distributions may be small

enough to suffice for RD probability preservation while SD may be too large for the SD

probability preservation to be applicable. Thus, RD can often serve as a better tool for

security analysis, especially in applications with search-type security definitions, like

signatures.

In this work, we study the applicability of RD analysis in the construction of threshold

signatures. Building upon the above approach, we show that a limited flooding growing

as
√
𝑄 suffices in BGGJKRS, where 𝑄 is the number of signing queries made by the

attacker. We note that this is a substantial improvement in practice, since the number

of sign queries is typically very different, and much smaller, than the run time of the

adversary. Note that signature queries require active participation by an honest user and

there is no reason for an honest user to keep replying after an overly high number of

queries that clearly shows adversarial behavior. As a concrete example, in the NIST post

quantum project [NIS17], adversarial runtimes can go up to 2256 in some security levels,

but the number of signature queries is always bounded by 264 (which is itself an overly

conservative bound in many scenarios). Thus, dependence on the number of queries is

significantly better than exponential dependence on the security parameter, and this leads

to a significant improvement in the signature bit size.

Optimality of our Moderate Flooding. We also show that this magnitude of flooding is

necessary for this construction, by exhibiting a statistical attack when smaller noise is

used. At a high level, our attack proceeds as follows. First we show that using legitimate

information available to her, the adversary can compute err𝑀 + 𝑒1,𝑀 where err𝑀 is the

error that results from homomorphically evaluating the signing algorithm for message 𝑀

and 𝑒1,𝑀 is the flooding noise that is used in the partial signature of the first party. As a

warmup, consider the setting where the flooding noise is randomized. Now, since the

301

signature scheme is deterministic, the term err𝑀 depends only on 𝑀 and remains fixed

across multiple queries for the same message. On the other hand, the term 𝑒1,𝑀 keeps

changing. Using Hoeffding’s bound, it is possible to estimate the average of 𝑒1,𝑀 across

multiple queries and use this to recover err𝑀 , leading to an attack.

This attack may be avoided by making the flooding noise a deterministic function

of the message, e.g., by using a pseudo-random function evaluated on the message

to generate the noise. We show that this modification is not sufficient to make the

threshold signature construction secure. For this purpose, we design a signature scheme

which includes “useless” information in the signature: this information does not affect

correctness nor security of the signature itself, but allows us to recreate the attack

described above on the resulting threshold signature. We start with a secure signature

scheme Sig = (Sig.KeyGen,Sig.Sign,Sig.Verify) whose signing key is a uniform bit-

string among those with the same number of 0’s and 1’s. Now, let us consider a special

signature scheme Sig′ = (Sig′.KeyGen, Sig′.Sign, Sig′.Verify) derived from Sig by

modifying the signing algorithm as follows: for 𝑖 ∈ [|Sig.sk |], if Sig.sk𝑖 = 0, then

append a 0 to the signature. Since our signing key has exactly half as many 0’s as

1’s, this leads to a string of |Sig.sk |/2 zeroes being appended to every signature: this

does not leak any information and does not affect correctness (it is simply ignored

during verification). Now, consider using Sig′ to instantiate our threshold signature

scheme. Then, for any message 𝑀 , the FHE ciphertext CT𝜎𝑀 now additionally includes

homomorphically evaluated encryptions of {Sig.sk𝑖}𝑖∈[|Sig.sk |]:Sig.sk𝑖=0. Note that these

extra encryptions are designed to be a deterministic function of the secret key so that

across multiple messages, the corresponding error term (obtained via homomorphic

evaluation) will not change. On the other hand, the message-dependent error terms can

be assumed to change across messages. Due to this, the error term recovered by the

adversary will be a sum of a fixed term (dependent only on the secret key) plus a fresh

term per signature, which allows it to recreate the first attack. Please see Section 6.5 for

more details.

302

Homomorphism-Friendly Signature. Next, we provide a variant of Lyubashevsky’s

signature scheme [Lyu12] which enjoys low circuit depth and is homomorphism friendly.

As discussed above, Lyubashevsky’s signature contains a rejection sampling step, whose

purpose is to make the distribution of the resultant signature canonical, but this step is

cumbersome to implement homomorphically. We show that by using RD analysis in place

of statistical distance, analogously to the case of threshold signatures discussed above,

the rejection sampling step can be replaced by noise flooding of moderate magnitude
√
𝑄.

Additionally, we show that this flooding is optimal – please see Section 6.6 for details.

Towards Adaptive Security. Another limitation of the construction of BGGJKRS is that

security is proved in the weak “selective” model where the adversary must announce all

corrupted users before receiving the public parameters and verification key. In contrast,

the more reasonable adaptive model allows the adversary to corrupt users based on the

public parameters, the verification key and previous user corruptions it may have made.

We briefly describe the difficulty in achieving adaptive security. At a high level, in the

selective game, the challenger proceeds by simulating the partial keys corresponding

to the honest parties in a “special way”. The challenge in the adaptive setting is that

without knowing who are the honest/corrupted parties, the challenger does not know

which partial keys to program.

For more details, let us consider the case of an 𝑁-out-of-𝑁 threshold signature. In the

simulation, the challenger knows which party is honest at the start of the game, e.g.,

player 𝑁 . Now, the challenger can sample FHE secret keys sk1, . . . , sk𝑁−1 randomly,

implicitly setting the last share as sk −∑
𝑖∈[𝑁−1] sk𝑖. To invoke the unforgeability of the

underlying signature scheme Sig, the challenger must “forget” the signing key Sig.sk at

some point in the proof, and rely on the Sig challenger to return signatures, which it then

encrypts using the (public key) FHE scheme. By correctness of FHE, this is the same as

computing the signing circuit for a given message on the ciphertext containing the secret

key, which is what happens in the real world. However, the FHE encryption of signing

303

key Sig.sk is provided as part of the public parameters in the real world, which in turn

means that the FHE secret key must be “forgotten” so that the FHE ciphertext of Sig.sk

is indistinguishable from a dummy value. Yet the challenger must return legitimate

partial signatures of queried messages 𝑚 𝑗 in the security game, which in turn are (noisy)

partial decryptions of the FHE ciphertexts 𝜎𝑗 of signatures 𝜎𝑗 . Knowing all the corrupt

secret keys sk1, . . . , sk𝑁−1 from the outset enables the challenger to walk this tightrope

successfully – it obtains 𝜎𝑗 from the Sig challenger, computes an FHE encryption 𝜎𝑗 of

this, computes partial decryptions using sk1, . . . , sk𝑁−1, floods these with appropriate

noise and returns these to the adversary.

In the adaptive game, the honest player is not known at the beginning of the game so the

challenger is unable to sample FHE secret key shares as described above. When requested

for a partial signatures for message 𝑚 𝑗 , it can obtain the corresponding signature 𝜎𝑗 and

can FHE encrypt it, but cannot decrypt it using secret key shares which are unavailable.

To preserve correctness and indistinguishability from the real world, it is forced to return

(noisy) random secret shares {𝜎𝑖, 𝑗 }𝑖∈[𝑁], 𝑗∈poly of 𝜎𝑗 as partial signatures, for unbounded

𝑗 . Later if user 1 is corrupted (say), the adversary receives the secret key share sk1.

Now, to preserve indistinguishability, the challenger must explain the partial signatures

{𝜎1, 𝑗 } 𝑗∈poly corresponding to user 1 as ⟨�̂�𝑗 , sk1⟩ ≈ 𝜎1, 𝑗 , which seems impossible for

unbounded 𝑗 .

We overcome this hurdle in the ROM by having the challenger simulate all partial keys

as though corresponding to a corrupt user and when the list of corrupted parties becomes

available, “program” the ROM to “explain” the returned keys in a consistent way. This

yields an intermediate notion of “partial adaptivity”, in which the attacker can make

signing queries before corruption, but must announce its corrupted users all at once. In

more detail, we modify the signing key to additionally contain a random secret share

of 0, i.e., each party is provided a vector v𝑖 of length 𝑁 , such that
∑
𝑖∈[𝑁] v𝑖 = 0. In the

scheme, to compute a partial signature for a message 𝑚 𝑗 , the partial signing algorithm

304

first computes 𝑟𝑖, 𝑗 = 𝐻 (𝑗 , 𝐾)T v𝑖 where 𝐻 (𝑗 , 𝐾) is a random vector of length 𝑁 , and 𝐾

is a secret value required for a technical reason that we will not discuss here. It then

returns ⟨�̂�𝑗 , sk𝑖⟩ + noise𝑖, 𝑗 + 𝑟𝑖, 𝑗 . By linearity, it holds that
∑
𝑖∈[𝑁] 𝐻 (𝑗 , 𝐾)T v𝑖 = 0, so

correctness is not affected. But the unbounded programmability of the ROM helps

us overcome the aforementioned impasse in the proof. Now, the challenger answers

partial signature queries by returning (noisy) random secret shares {𝜎𝑖, 𝑗 }𝑖∈[𝑁], 𝑗∈poly of

𝜎𝑗 . When later, user 1 is corrupted, it can correctly explain the returned signatures as

follows: it samples sk1, computes 𝑑1, 𝑗 = ⟨�̂�𝑗 , sk1⟩ + noise and sets 𝑟1, 𝑗 = 𝜎1, 𝑗 − 𝑑1, 𝑗 .

Now we may program 𝐻 (𝑗 , 𝐾) so that 𝑟𝑖, 𝑗 = 𝐻 (𝑗 , 𝐾)T v𝑖 for all 𝑗 – it can be checked

that there are enough degrees of freedom to satisfy these equations. However, since

all secrets of a user are revealed when it is corrupted, the value 𝐻 (𝑗 , 𝐾) is fixed when

even a single user is corrupted. This is why we require that all corruptions be made

simultaneously and only achieve the restricted notion of “partial” adaptivity.

We also provide a construction in the standard model which achieves full adaptivity where

users can be corrupted at arbitrary points in the security game. But this construction

is only secure in a weaker pre-processing model where the signers must be provided

correlated randomness of length proportional to the number of signing queries, in

an offline pre-processing phase. We emphasize that the correlated randomness is

independent of the messages to be signed later. This model is reminiscent of the “MPC

with Preprocessing” model (please see [FKOS15] and references therein). We refer the

reader to Section 6.7 and 6.8 for more details.

Oraganisation of the chapter. We organize the rest of the chapter as follows. In 6.4,

we give a formal definition of the threshold signatures and define other preliminaries

and notations used in this chapter. In section 6.5, we show how to reduce noise flooding

in BGGJKRS construction. In section 6.6, we describe our rejection free version of

Lyubashevsky’s signature scheme. We give our constructions of partially adaptive and

305

fully adaptive schemes in sections 6.7 and 6.8, respectively. In section 6.9, we give the

construction for 𝑡-out-of-𝑁 access structure.

6.4 PRELIMINARIES

We use the prliminaries defined in Chapter 2. In addition, we define the notations and

other preliminaries used in this chapter.

Notations used in this chapter. In this chapter, a vector v is by default, a column vector.

Let 𝑆 be any set, then |𝑆 | represents the cardinality of 𝑆, while in case of any 𝑥 ∈ R,

|𝑥 | represents absolute value of 𝑥. For lattices, we use the definitions and lemmas from

Chapter 2. DΛ,𝑠,c represents discrete Gaussian distribution over lattice Λ, with center c

and standard deviation parameter 𝑠. When c = 0, we omit it. Similarly, we omit Λ, if

Λ = Z.

6.4.1 Threshold Signatures

Definition 6.1 (Threshold Signatures). Let 𝑃 = {𝑃1, . . . , 𝑃𝑁 } be a set of 𝑁 parties. A

threshold signature scheme for a class of efficient access structures S on 𝑃 (see

Def. 6.23) is a tuple of PPT algorithms denoted by TS = (TS.KeyGen,

TS.PartSign, TS.PartSignVerify, TS.Combine, TS.Verify) defined as follows:

• TS.KeyGen(1𝜆,A) → (pp, vk, {sk𝑖}𝑁𝑖=1): On input the security parameter 𝜆 and an
access structure A, the KeyGen algorithm outputs public parameters pp, verification
key vk and a set of key shares {sk𝑖}𝑁𝑖=1.

• TS.PartSign(pp, sk𝑖, 𝑚) → 𝜎𝑖: On input the public parameters pp, a partial
signing key sk𝑖 and a message 𝑚 ∈ {0, 1}∗ to be signed, the partial signing
algorithm outputs a partial signature 𝜎𝑖.

• TS.PartSignVerify(pp, 𝑚, 𝜎𝑖) → accept/reject: On input the public parameters
pp, a message 𝑚 ∈ {0, 1}∗ and a partial signature 𝜎𝑖, the partial signature
verification algorithm outputs accept or reject.

• TS.Combine(pp, {𝜎𝑖}𝑖∈𝑆) → 𝜎𝑚: On input the public parameters pp and the

306

partial signatures {𝜎𝑖}𝑖∈𝑆 for 𝑆 ∈ A, the combining algorithm outputs a full
signature 𝜎𝑚.

• TS.Verify(vk, 𝑚, 𝜎𝑚) → accept/reject: On input a verification key vk, a message
𝑚 and a signature 𝜎𝑚, the verification algorithm outputs accept or reject.

A TS scheme should satisfy the following requirements.

Definition 6.2 (Compactness). A TS scheme for S satisfies compactness if there exist

polynomials poly1(·), poly2(·) such that for all 𝜆, A ∈ S and 𝑆 ∈ A, the following holds.

For (pp, vk, {sk𝑖}𝑁𝑖=1)←TS.KeyGen(1𝜆,A), 𝜎𝑖←TS.PartSign(pp, sk𝑖, 𝑚) for 𝑖 ∈ 𝑆, and

𝜎𝑚←TS.Combine(pp, {𝜎𝑖}𝑖∈𝑆), we have that |𝜎𝑚 | ≤ poly1(𝜆) and |vk | ≤ poly2(𝜆).

Definition 6.3 (Evaluation Correctness). A signature scheme TS for S satisfies

evaluation correctness if for all 𝜆,A ∈ S and 𝑆 ∈ A, the following holds. For

(pp, vk, {sk𝑖}𝑁𝑖=1) ← TS.KeyGen(1𝜆,A), 𝜎𝑖 ← TS.PartSign(pp, sk𝑖, 𝑚) for 𝑖 ∈ [𝑁]

and 𝜎𝑚 ← TS.Combine(pp, {𝜎𝑖}𝑖∈𝑆), we have that

Pr[TS.Verify(vk, 𝑚, 𝜎𝑚) = 𝑎𝑐𝑐𝑒𝑝𝑡] ≥ 1 − 𝜆−𝜔(1) .

Definition 6.4 (Partial Verification Correctness). A signature scheme TS for S satisfies

partial verification correctness if for all 𝜆 and A ∈ S, the following holds. For

(pp, vk, {sk𝑖}𝑁𝑖=1) ← TS.KeyGen(1𝜆,A),

Pr[TS.PartSignVerify(pp, 𝑚, TS.PartSign(pp, sk𝑖, 𝑚)) = 1] = 1 − 𝜆−𝜔(1) .

Definition 6.5 (Unforgeability). A TS scheme is unforgeable if for any adversary A

with run-time 2𝑜(𝜆) , the output of the following experiment Exptuf
TS,A (1𝜆) is 1 with

probability 2−Ω(𝜆):

1. On input the security parameter 𝜆, the adversary outputs an access structure A ∈ S.

2. Challenger runs the TS.KeyGen(1𝜆) algorithm and generates public parameters
pp, verification key vk and set of 𝑁 key shares {sk𝑖}𝑁𝑖=1. It sends pp and vk to A.

3. Adversary A then issues polynomial number of following two types of queries in
any order

• Corruption queries: A outputs a party 𝑖 ∈ [𝑁] which it wants to corrupt. In
response, the challenger returns the key share sk𝑖.

307

• Signature queries: A outputs a query of the form (𝑚, 𝑖), where𝑚 is a message
and 𝑖 ∈ [𝑁], to get partial signature 𝜎𝑖 for 𝑚. The challenger computes 𝜎𝑖 as
TS.PartSign(pp, sk𝑖, 𝑚) and provides it to A.

4. At the end of the experiment, adversary A outputs a message-signature pair
(𝑚∗, 𝜎∗).

5. The experiment outputs 1 if both of the following conditions are met: (i) Let
𝑆 ⊆ [𝑁] be the set of corrupted parties, then 𝑆 is a an invalid party set, i.e. 𝑆 ∉ A
(ii) 𝑚∗ was not queried previously as a signing query and TS.Verify(vk, 𝑚∗, 𝜎∗) =
𝑎𝑐𝑐𝑒𝑝𝑡.

We also consider following weaker notions of unforgeability.

Definition 6.6 (Partially Adaptive Unforgeability). Here, all the corruptions are done all

at once. That is, Step 3, is now changed as follows:

• A issues polynomial number of signing queries of the form (𝑚, 𝑖) adaptively and
gets corresponding 𝜎𝑖’s.

• A outputs a set 𝑆 ⊆ [𝑁] such that 𝑆 ∉ A. The challenger returns {sk𝑖}𝑖∈𝑆.

• A continues to issue polynomial number of more signing queries of the form
(𝑚, 𝑖) adaptively, and gets corresponding 𝜎𝑖.

Rest of the steps remain the same.

Definition 6.7 (Selective Unforgeability). In this case, all the corruptions happen before

any signing query. That is, Step 3, is now further changed as follows:

• A outputs a set 𝑆 ⊆ [𝑁] such that 𝑆 ∉ A. The challenger returns {sk𝑖}𝑖∈𝑆.

• A issues polynomial number of signing queries of the form (𝑚, 𝑖) adaptively, and
gets corresponding 𝜎𝑖.

Rest of the steps remain the same.

Definition 6.8 (Robustness). A TS scheme for S satisfies robustness if for all 𝜆, the

following holds. For any adversary A with run-time 2𝑜(𝜆) , the following experiment

ExptrbTS,A (1𝜆) outputs 1 with probability 2−Ω(𝜆):

• On input the security parameter 1𝜆, the adversary outputs an access structure
A ∈ S.

• The challenger samples (pp, vk, sk1, . . . , sk𝑁)←TS.KeyGen(1𝜆,A) and provides
(pp, vk, sk1, . . . , sk𝑁) to A.

308

• Adversary A outputs a partial signature forgery (𝑚∗, 𝜎∗
𝑖
, 𝑖).

• The experiment outputs 1 if TS.PartSignVerify(pp, 𝑚∗, 𝜎∗
𝑖
) = 1 and 𝜎∗

𝑖
≠

TS.PartSign(pp, sk𝑖, 𝑚∗).

6.4.2 Fully Homomorphic Encryption (FHE)

A fully homomorphic encryption scheme is an encryption scheme that allows

computations on encrypted data.

Definition 6.9 (Fully Homomorphic Encryption). A fully homomorphic encryption

scheme FHE is a tuple of PPT algorithms FHE = (FHE.KeyGen, FHE.Enc,

FHE.Eval, FHE.Dec) defined as follows:

• FHE.KeyGen(1𝜆, 1𝑑)→(pk, sk): On input the security parameter 𝜆 and a depth
bound 𝑑, the KeyGen algorithm outputs a key pair (pk, sk).

• FHE.Enc(pk, 𝜇)→ct: On input a public key pk and a message 𝜇 ∈ {0, 1}, the
encryption algorithm outputs a ciphertext ct.

• FHE.Eval(pk, C, ct1, . . . , ct𝑘)→ĉt: On input a public key pk, a circuit
C : {0, 1}𝑘→{0, 1} of depth at most 𝑑, and a tuple of ciphertexts ct1, . . . , ct𝑘 , the
evaluation algorithm outputs an evaluated ciphertext ĉt.

• FHE.Dec(pk, sk, ĉt)→�̂�: On input a public key pk, a secret key sk and a
ciphertext ĉt, the decryption algorithm outputs a message �̂� ∈ {0, 1,⊥}.

The definition above can be adapted to handle plaintexts over larger sets than {0, 1}. Note

that the evaluation algorithm takes as input a (deterministic) circuit rather than a possibly

randomized algorithm. An FHE should satisfy compactness, correctness and security

properties defined below.

Definition 6.10 (Compactness). We say that an FHE scheme is compact if there exists a

polynomial function 𝑓 (·, ·) such that for all 𝜆, depth bound 𝑑, circuit C : {0, 1}𝑘→{0, 1}

of depth at most 𝑑, and 𝜇𝑖 ∈ {0, 1} for 𝑖 ∈ [𝑘], the following holds: for

(pk, sk)←FHE.KeyGen(1𝜆, 1𝑑), ct𝑖←FHE.Enc(pk, 𝜇𝑖) for 𝑖 ∈ [𝑘],

ĉt←FHE.Eval(pk, C, ct1, . . . , ct𝑘), the bit-length of 𝑐𝑡 is at most 𝑓 (𝜆, 𝑑).

Definition 6.11 (Correctness). We say that an FHE scheme is correct if for all 𝜆, depth

bound 𝑑, circuit C : {0, 1}𝑘→{0, 1} of depth at most 𝑑, and 𝜇𝑖 ∈ {0, 1} for 𝑖 ∈ [𝑘], the

309

following holds: for (pk, sk)←FHE.KeyGen(1𝜆, 1𝑑), ct𝑖←FHE.Enc(pk, 𝜇𝑖) for 𝑖 ∈ [𝑘],

ĉt←FHE.Eval(pk, C, ct1, . . . , ct𝑘), we have

Pr[FHE.Dec(pk, sk, ĉt) = C(𝜇1, . . . , 𝜇𝑘)] = 1 − 𝜆−𝜔(1) .

Definition 6.12 (Security). We say that an FHE scheme is secure if for all 𝜆 and depth

bound 𝑑, the following holds: for any adversary A with run-time 2𝑜(𝜆) , the following

experiment outputs 1 with probability 2−Ω(𝜆):

1. On input the security parameter 𝜆 and a depth bound 𝑑, the challenger runs
(pk, sk)←FHE.KeyGen(1𝜆, 1𝑑) and ct←FHE.Enc(pk, 𝑏) for 𝑏←{0, 1}. It
provides (pk, ct) to A.

2. A outputs a guess 𝑏′. The experiment outputs 1 if 𝑏 = 𝑏′.

In this work, our constructions use a special FHE having some additional properties as

described in [BGG+18]. These properties are satisfied by direct adaptations of typical

FHE schemes such as [BV11; GSW13] (see, e.g., [BGG+18, Appendix B]).

Definition 6.13 (Special FHE). An FHE scheme is a special FHE scheme if it satisfies

the following properties:

1. On input (1𝜆, 1𝑑), the key generation algorithm FHE.KeyGen outputs (pk, sk),
where the public key contains a prime 𝑞 and the secret key is a vector sk ∈ Z𝑚𝑞 for
some 𝑚 = poly(𝜆, 𝑑).

2. The decryption algorithm FHE.Dec consists of two functions (FHE.decode0,

FHE.decode1) defined as follows:

• FHE.decode0(sk, ct): On input an encryption of a message 𝜇 ∈ {0, 1} and a
secret key vector sk, it outputs 𝑝 = 𝜇 ⌊𝑞/2⌉ + 𝑒 ∈ Z𝑞 for 𝑒 ∈ [−𝑐𝐵, 𝑐𝐵] with
𝐵 = 𝐵(𝜆, 𝑑, 𝑞) and 𝑒 is an integer multiple of 𝑐. This algorithm must be a
linear operation over Z𝑞 in the secret key sk.

• FHE.decode1(𝑝): On input 𝑝 ∈ Z𝑞, it outputs 1 if 𝑝 ∈ [− ⌊𝑞/4⌉ , ⌊𝑞/4⌉],
and 0 otherwise.

The bound 𝐵 = 𝐵(𝜆, 𝑑, 𝑞) is referred to as the associated noise bound parameter
of the construction and 𝑐 as the associated multiplicative constant.

310

6.4.3 Threshold Fully Homomorphic Encryption

Definition 6.14 (Threshold Fully Homomorphic Encryption). A threshold fully

homomorphic encryption for a class of efficient access structures S, defined on a set

𝑃 = {𝑃1, 𝑃2, . . . , 𝑃𝑁 } of parties is defined by a tuple of five algorithms

TFHE = (TFHE.KeyGen, TFHE.Enc, TFHE.Eval, TFHE.PartDec, TFHE.FinDec)

with the following specifications:

• TFHE.KeyGen(1𝜆, 1𝑑 ,A) → (pk, sk1, . . . , sk𝑁): On input the security
parameter 𝜆, a depth bound 𝑑 and an access structure A ∈ S, the KeyGen
algorithm outputs a public key pk and a set of secret key shares {sk𝑖}𝑁𝑖=1.

• TFHE.Enc(pk, 𝜇) → ct: On input a public key pk and a single bit message
𝜇 ∈ {0, 1}, the encryption algorithm outputs a ciphertext ct.

• TFHE.Eval(pk, C, ct1, ct2, . . . , ct𝑘) → ĉt: On input a public key pk, a circuit
C : {0, 1}𝑘 → {0, 1} of depth at most 𝑑 and a set of ciphertexts ct1, . . . , ct𝑘 , the
evaluation algorithm outputs an evaluated ciphertext ĉt.

• TFHE.PartDec(pk, sk𝑖, ct) → 𝑝𝑖: On input a public key pk, a secret key share sk𝑖
and a ciphertext ct, the partial decryption algorithm outputs a partial decryption 𝑝𝑖
corresponding to the party 𝑃𝑖.

• TFHE.FinDec(pk, {𝑝𝑖}𝑖∈𝑆) → �̂� : On input a public key pk and a set of partial
decryptions corresponding to parties in some set 𝑆 ⊆ [𝑁], the final decryption
algorithm outputs a message �̂� ∈ {0, 1,⊥}.

Definition 6.15 (Correctness). A TFHE scheme for S is said to satisfy evaluation

correctness if for all𝜆, depth bound 𝑑, access structure A ∈ S, circuit C : {0, 1}𝑘 → {0, 1}

of depth at most 𝑑, 𝑆 ∈ A, and 𝜇𝑖 ∈ {0, 1} for 𝑖 ∈ [𝑘], the following condition holds. For

(pp, 𝑠𝑘1, . . . , sk𝑁)←TFHE.KeyGen(1𝜆, 1𝑑 ,A), ct𝑖←TFHE.Enc(pk, 𝜇𝑖) for 𝑖 ∈ [𝑘],

ĉt←TFHE.Eval(pk, C, ct1, . . . , ct𝑘):

Pr[TFHE.FinDec(pk, {TFHE.PartDec(pk, sk𝑖, ĉt)}𝑖∈𝑆) = C({𝜇𝑖}𝑖∈[𝑘])] = 1 − 𝜆−𝜔(1) .

Definition 6.16 (Semantic security). A TFHE scheme is said to satisfy semantic security

if for all 𝜆 and depth bound 𝑑, the following holds. For any adversary A with run-time

bounded as 2𝑜(𝜆) , the experiment below outputs 1 with probability 2−Ω(𝜆):

311

1. On input the security parameter 𝜆, and a circuit depth 𝑑, the adversary A outputs
an access structure A ∈ S.

2. The challenger runs (pk, sk1, . . . , sk𝑁)←TFHE.KeyGen(1𝜆, 1𝑑 ,A) and provides
pk to A.

3. A outputs a set 𝑆 of participants, such that 𝑆 ∉ A.

4. The challenger provides {sk𝑖}𝑖∈𝑆 and TFHE.Enc(pk, 𝑏), where 𝑏←{0, 1} to A.

5. A outputs a guess bit 𝑏′. The experiment outputs 1 if 𝑏 = 𝑏′.

Definition 6.17 (Simulation security). A TFHE scheme for S is said to satisfy

simulation security if for all 𝜆, depth bound 𝑑 and access structure A, the following

holds: there exists a stateful PPT algorithm S = (S1,S2) such that for any adversary A

with run-time bounded as 2𝑜(𝜆) , the following two experiments are indistinguishable.

ExptReal
TFHE,A (1𝜆, 1𝑑) :

1. On input the security parameter 𝜆 and a circuit depth 𝑑, the adversary A outputs
an access structure A ∈ S.

2. The challenger runs (pk, sk1, . . . , sk𝑁)←TFHE.KeyGen(1𝜆, 1𝑑 ,A) and provides
pk to A.

3. Adversary A outputs a maximal invalid party set 𝑆∗ ⊆ [𝑁] and a set of message
bits, 𝜇1, 𝜇2, . . . , 𝜇𝑘 ∈ {0, 1}.

4. The challenger provides {sk𝑖}𝑖∈𝑆∗ and {ct𝑖 = TFHE.Enc(pk, 𝜇𝑖)}𝑖∈[𝑘] to A.

5. Adversary A issues a polynomial number of adaptive queries of the form (𝑆 ⊆
{𝑃1, . . . , 𝑃𝑁 }, C) for circuits C : {0, 1}𝑘 → {0, 1} of depth at most 𝑑.

6. For each query, the challenger computes ĉt←TFHE.Eval(pk, C, ct1, . . . , ct𝑘) and
sends {TFHE.PartDec (pk, sk𝑖, ĉt)}𝑖∈𝑆 to A.

7. At the end of the experiment, adversary A outputs a bit 𝑏.

ExptIdeal
TFHE,A (1𝜆, 1𝑑) :

1. On input the security parameter 𝜆 and circuit depth 𝑑, the adversary A outputs an
access structure A ∈ S.

2. The challenger runs (pk, sk1, . . . , sk𝑁 , st)←S1(1𝜆, 1𝑑 ,A) and provides pk to A.

312

3. AdversaryA outputs a maximal invalid party set 𝑆∗ ⊆ 𝑃 and a set of message bits,
𝜇1, 𝜇2, . . . , 𝜇𝑘 ∈ {0, 1}.

4. The challenger provides {sk𝑖}𝑖∈𝑆∗ and {ct𝑖 = TFHE.Enc(pk, 𝜇𝑖)}𝑖∈[𝑘] to A.

5. Adversary A issues a polynomial number of adaptive queries of the form (𝑆 ⊆
[𝑁], C) for circuits C : {0, 1}𝑘 → {0, 1} of depth at most 𝑑.

6. For each query, the challenger runs the simulator S2 to compute partial decryptions
as
{p𝑖}𝑖∈𝑆←S2(C, ct1, . . . , ct𝑘 , C(𝜇1, . . . , 𝜇𝑘), 𝑆, st) and sends {p𝑖}𝑖∈𝑆 to A.

7. At the end of the experiment, adversary A outputs a bit 𝑏.

6.4.4 Multi-data Homomorphic Signature

A homomorphic signature scheme is a signature scheme that allows computations on

authenticated data. In a multi-data homomorphic signature scheme, the signer can sign

many different datasets of arbitrary size. Each dataset is tied to some label 𝜏 (e.g., the

name of the dataset) and the verifier is assumed to know the label of the dataset over

which it wishes to verify computations.

Definition 6.18 (Multi-data Homomorphic Signature). A multi-data homomorphic

signature for messages over a set X is a tuple of PPT algorithms

HS = (HS.PrmsGen,HS.KeyGen,HS.Sign,HS.SignEval, HS.Process, HS.Verify)

with the following syntax.

• HS.PrmsGen(1𝜆, 1𝑁)→prms: Gets the security parameter 𝜆 and a data-size
bound 𝑁 and generates public parameters prms.

• HS.KeyGen(1𝜆, prms)→(pk, sk): Produces a public verification key pk and a
secret signing key sk.

• HS.Sign(sk, (𝑥1, . . . , 𝑥𝑁), 𝜏)→(𝜎𝜏, 𝜎1, . . . , 𝜎𝑁): Signs some data (𝑥1, . . . , 𝑥𝑁) ∈
X∗ under a label 𝜏 ∈ {0, 1}∗.

• HS.SignEval(prms, 𝑔, 𝜎𝜏, (𝑥1, 𝜎1), (𝑥ℓ, 𝜎ℓ))→𝜎∗: Homomorphically computes
a signature 𝜎∗ for 𝑔(𝑥1, . . . , 𝑥𝑁).

• HS.Process(prms, 𝑔)→𝛼𝑔: Produces a “public-key” 𝛼𝑔 for the function 𝑔.

• HS.Verify(pk, 𝛼𝑔, 𝑦, 𝜏, (𝜎𝜏, 𝜎∗))→accept/reject: Verifies that 𝑦 ∈ X is indeed

313

the output of the function 𝑔 over the data signed with label 𝜏. We can define the
“combined verification procedure” HS.Verify∗(pk, 𝑔, 𝑦, 𝜏, 𝜎𝜏, 𝜎∗) as: Compute
𝛼𝑔←HS.Process(prms, 𝑔) and output HS.Verify(pk, 𝛼𝑔, 𝑦, 𝜏, (𝜎𝜏, 𝜎∗)).

A homomorphic signature should satisfy the correctness and security properties defined

below.

Definition 6.19 (Correctness). Correctness of Signing. Let id𝑖 : X𝑁 → X be a

canonical description of the function id𝑖 (𝑥1, ..., 𝑥𝑁) = 𝑥𝑖 (i.e., a circuit consisting of a

single wire taking the 𝑖’th input to the output). We require that for any

prms←HS.PrmsGen(1𝜆, 1𝑁), (pk, sk)←HS.KeyGen(1𝜆, prms), (𝑥1, . . . , 𝑥𝑁) ∈ X𝑁 ,

any 𝜏 ∈ {0, 1}∗, and any (𝜎𝜏, 𝜎1, . . . , 𝜎𝑁)←HS.Sign(sk, (𝑥1, . . . , 𝑥𝑁), 𝜏), the

following must satisfy:

HS.Verify∗(pk, id𝑖, 𝑥𝑖, 𝜏, (𝜎𝜏, 𝜎𝑖)) = accept. In other words, the pair (𝜎𝜏, 𝜎𝑖) certifies 𝑥𝑖

as the 𝑖th data item of the data with label 𝜏.

Correctness of Evaluation. For any functions ℎ1, . . . , ℎℓ with ℎ𝑖 : X𝑁→X for 𝑖 ∈ [ℓ], any

function 𝑔 : Xℓ→X, any (𝑥1, . . . , 𝑥ℓ) ∈ Xℓ, any 𝜏 ∈ {0, 1}∗ and any (𝜎𝜏, 𝜎1, . . . , 𝜎ℓ):

{{HS.Verify(pk, ℎ𝑖, 𝑥𝑖, 𝜏, (𝜎𝜏, 𝜎𝑖)) = accept}𝑖∈[ℓ] ,

𝜎∗←HS.SignEval(prms, 𝑔, 𝜎𝜏, (𝑥1, 𝜎1), (𝑥ℓ, 𝜎ℓ))}

⇒ HS.Verify∗(pk, (𝑔 ◦ ℎ̄), 𝑔(𝑥1, . . . , 𝑥ℓ), 𝜏, (𝜎𝜏, 𝜎∗)) = accept.

In other words, if the signatures (𝜎𝜏, 𝜎𝑖) certify 𝑥𝑖 as the outputs of function ℎ𝑖 over the

data labeled with 𝜏 for all 𝑖 ∈ [ℓ], then (𝜎𝜏, 𝜎∗) certifies 𝑔(𝑥1, . . . , 𝑥ℓ) as the output of

𝑔 ◦ ℎ̄ over the data labeled with 𝜏.

Definition 6.20 (Security). The security is defined via the following game between an

attacker A and a challenger:

• The challenger runs prms←HS.PrmsGen(1𝜆, 1𝑁) and
(pk, sk)←HS.KeyGen(prms, 1𝜆), and gives prms, pk to the attacker A.

• Signing queries: The attacker A can ask an arbitrary number of signing queries.
In each query 𝑗 , the attacker chooses a fresh tag 𝜏𝑗 which was never queried

314

previously and a message (𝑥 𝑗1, . . . , 𝑥 𝑗𝑁 𝑗) ∈ X∗. The challenger responds with

(𝜎𝜏𝑗 , 𝜎𝑗1, . . . , 𝜎𝑗𝑁 𝑗)←HS.Sign(sk, (𝑥 𝑗1, . . . , 𝑥 𝑗𝑁 𝑗), 𝜏𝑗).

• The attacker A outputs a function 𝑔 : X𝑁 ′→X and values 𝜏, 𝑦′, (𝜎′𝜏, 𝜎′). The
attacker wins if .HS.Verify∗(pk, 𝑔, 𝑦′, 𝜏, (𝜎′𝜏, 𝜎′)) = accept and either:

– Type 1 forgery: 𝜏 ∉ {𝜏𝑗 } 𝑗 or 𝜏 = 𝜏𝑗 for some 𝑗 but 𝑁′ ≠ 𝑁 𝑗 , i.e., the signing
query with label 𝜏 was never made or there is a mismatch between the size of
the data signed under label 𝜏 and the arity of the function 𝑔.

– Type 2 forgery: 𝜏 = 𝜏𝑗 for some 𝑗 with corresponding message 𝑥 𝑗 ,1, . . . , 𝑥 𝑗 ,𝑁 ′
such that (a) 𝑔 is admissible on 𝑥 𝑗 ,1, . . . , 𝑥 𝑗 ,𝑁 ′ and (b) 𝑦′ ≠ 𝑔(𝑥 𝑗 ,1, . . . , 𝑥 𝑗 ,𝑁 ′).

We require that for allA with run-time 2𝑜(𝜆) , we have Pr[A wins] ≤ 2−Ω(𝜆) in the above

game.

We now give a simulation-based notion of context-hiding security, requiring that a context

hiding signature �̃� can be simulated given the knowledge of only the computation 𝑔 and

output 𝑦, but without any other knowledge of underlying data. The simulation remains

indistinguishable even given the underlying data, the underlying signatures, and even the

public/secret key of the scheme. In other words, the derived signature does not reveal

anything beyond the output of the computation even to an attacker that may have some

partial information on the underlying values.

Definition 6.21 (Context Hiding). A multi-data homomorphic signature supports

context hiding if there exist additional PPT procedures �̃�←HS.Hide(pk, 𝑦, 𝜎),

HS.HVerify(pk, 𝑔,HS.Process(𝑔), 𝑦, 𝜏, (𝜎𝜏, �̃�)) such that:

• Correctness: For any prms←HS.PrmsGen(1𝜆, 1𝑁), any
(pk, sk)←HS.KeyGen(1𝜆, prms) and any 𝛼, 𝑦, 𝜏, 𝜎𝜏, 𝜎 such that
HS.Verify(pk, 𝛼, 𝑦, 𝜏, (𝜎𝜏, 𝜎)) = accept, for any �̃�←HS.Hide(pk, 𝑦, 𝜎) we have

HS.HVerify(pk, 𝛼, 𝑦, 𝜏, (𝜎𝜏, �̃�)) = accept.

• Unforgeability: Multi-data signature security holds when we replace the HS.Verify
procedure by HS.HVerify in the security game.

• Context hiding security: Firstly, in the procedure (𝜎𝜏, {𝜎𝑖}𝑖∈[𝑁])←HS.Sign(sk,
{𝑥𝑖}𝑖∈[𝑁] , 𝜏), we require that 𝜎𝜏 can only depend on (sk, 𝑁, 𝜏) but not on the

315

data {𝑥𝑖}. Secondly, we require that there is a simulator HS.Sim such that for any
fixed (worst-case) choice of prms, (pk, sk) and any 𝛼, 𝑦, 𝜏, 𝜎𝜏, 𝜎 such that
HS.Verify(pk, 𝛼, 𝑦, 𝜏, (𝜎𝜏, 𝜎)) = accept, we have that the distributions
HS.Hide(pk, 𝑦, 𝜎) and HS.Sim(sk, 𝛼, 𝑦, 𝜏, 𝜎𝜏) are indistinguishable, where the
randomness is only over the random coins of the simulator and the HS.Hide
procedure. We say that such schemes are statistically context hiding if the above
indistinguishability holds statistically.

6.4.5 Rényi Divergence

The Rényi Divergence (RD) is a measure of closeness of any two probability distributions.

In certain cases, especially in proving the security of cryptographic primitives where

the adversary is required to solve a search-based problem, the RD can be used as an

alternative to the statistical distance [BLRL+18], which may help obtain security proofs

for smaller scheme parameters and may sometimes lead to simpler proofs.

Definition 6.22 (Rényi Divergence). Let 𝑃 and 𝑄 be any two discrete probability

distributions such that 𝑆𝑢𝑝𝑝(𝑃) ⊆ 𝑆𝑢𝑝𝑝(𝑄). Then for 𝑎 ∈ (1,∞), the Rényi Divergence

of order 𝑎 is defined by

𝑅𝑎 (𝑃 | |𝑄) =
©«

∑︁
𝑥∈𝑆𝑢𝑝𝑝(𝑃)

𝑃(𝑥)𝑎
𝑄(𝑥)𝑎−1

ª®¬
1
𝑎−1

.

For 𝑎 = 1 and 𝑎 = ∞, the RD is defined as

𝑅1(𝑃 | |𝑄) = exp ©«
∑︁

𝑥∈𝑆𝑢𝑝𝑝(𝑃)
𝑃(𝑥) log

𝑃(𝑥)
𝑄(𝑥)

ª®¬ and 𝑅∞(𝑃 | |𝑄) = max
𝑥∈𝑆𝑢𝑝𝑝(𝑃)

𝑃(𝑥)
𝑄(𝑥) .

For any fixed distributions 𝑃 and 𝑄, the function 𝑓 (𝑎) = 𝑅𝑎 (𝑃∥𝑄) is non decreasing,

continuous over (1,∞) and tends to 𝑅∞(𝑃∥𝑄) as 𝑎 goes to infinity. Further, if 𝑅𝑎 (𝑃∥𝑄)

is finite for some 𝑎, then it tends to 𝑅1(𝑃∥𝑄) as 𝑎 tends to 1.

The following lemma is borrowed from [BLRL+18, Lemma 2.9], with the exception of the

multiplicativity property for non-independent variables, which is borrowed from [Ros20,

Proposition 2].

Lemma 6.1. Let 𝑎 ∈ [1,∞]. Let 𝑃 and 𝑄 denote distributions with 𝑆𝑢𝑝𝑝(𝑃) ⊆

316

𝑆𝑢𝑝𝑝(𝑄). Then the following properties hold

• Log Positivity: 𝑅𝑎 (𝑃 | |𝑄) ≥ 𝑅𝑎 (𝑃 | |𝑃) = 1.

• Data Processing Inequality: 𝑅𝑎 (𝑃 𝑓 | |𝑄 𝑓) ≤ 𝑅𝑎 (𝑃 | |𝑄) for any function 𝑓 , where
𝑃 𝑓 (resp. 𝑄 𝑓) denotes the distribution of 𝑓 (𝑦) induced by sampling 𝑦←𝑃 (resp.
𝑦←𝑄).

• Probability preservation: Let 𝐸 ⊆ 𝑆𝑢𝑝𝑝(𝑄) be an arbitrary event. If 𝑎 ∈ (1,∞),
then

𝑄(𝐸) ≥ 𝑃(𝐸) 𝑎
𝑎−1 /𝑅𝑎 (𝑃∥𝑄).

For 𝑎 = ∞,
𝑄(𝐸) ≥ 𝑃(𝐸)/𝑅∞(𝑃∥𝑄).

For 𝑎 = 1, Pinsker’s inequality gives the following analogue property:

𝑄(𝐸) ≥ 𝑃(𝐸) −
√︁

ln 𝑅1(𝑃 | |𝑄)/2.

• Multiplicativity: Assume that 𝑃 and 𝑄 are two distributions of a pair of random
variables (𝑌1, 𝑌2). For 𝑖 ∈ {1, 2}, let 𝑃𝑖 (resp. 𝑄𝑖) denote the marginal distribution
of 𝑌𝑖 under 𝑃 (resp. 𝑄), and let 𝑃2|1(·|𝑦1) (resp. 𝑄2|1(·|𝑦1)) denote the conditional
distribution of 𝑌2 given that 𝑌1 = 𝑦1. Then we have:

• 𝑅𝑎 (𝑃 | |𝑄) = 𝑅𝑎 (𝑃1 | |𝑄1) · 𝑅𝑎 (𝑃2 | |𝑄2) if 𝑌1 and 𝑌2 are independent for
𝑎 ∈ [1,∞].

• 𝑅𝑎 (𝑃 | |𝑄) ≤ 𝑅𝑎 (𝑃1 | |𝑄1) ·max𝑦1∈𝑌1 𝑅𝑎 (𝑃2|1(·|𝑦1) | |𝑄2|1(·|𝑦1)).

• Weak Triangle Inequality: Let 𝑃1, 𝑃2, 𝑃3 be three distributions with 𝑆𝑢𝑝𝑝(𝑃1) ⊆
𝑆𝑢𝑝𝑝(𝑃2) ⊆ 𝑆𝑢𝑝𝑝(𝑃3). Then we have

𝑅𝑎 (𝑃1 | |𝑃3) ≤
{
𝑅𝑎 (𝑃1 | |𝑃2) · 𝑅∞(𝑃2 | |𝑃3),
𝑅∞(𝑃1 | |𝑃2)

𝑎
𝑎−1 · 𝑅𝑎 (𝑃2 | |𝑃3) if 𝑎 ∈ (1, +∞).

(6.1)

We will use the following RD bounds. Note that proof tightness can often be improved

by optimizing over 𝑎, as suggested in [TT15].

Lemma 6.2 ([BLRL+18]). For any 𝑛-dimensional lattice, Λ ⊆ R𝑛 and 𝑠 > 0, let 𝑃 be

the distribution DΛ,𝑠,c and 𝑄 be the distribution DΛ,𝑠,c′ for some fixed c, c′ ∈ R𝑛. If

c, c′ ∈ Λ, let 𝜖 = 0. Otherwise fix 𝜖 ∈ (0, 1) and assume that 𝑠 > 𝜂𝜖 (Λ). Then for any

317

𝑎 ∈ (1, +∞)

𝑅𝑎 (𝑃 | |𝑄) ∈
[(

1 − 𝜖
1 + 𝜖

) 2
𝑎−1

,

(
1 + 𝜖
1 − 𝜖

) 2
𝑎−1

]
· exp

(
𝑎𝜋
| |c − c′| |2

𝑠2

)
.

6.4.6 Secret Sharing

We now recall some standard definitions related to secret sharing.

Definition 6.23 (Monotone Access Structure). Let 𝑃 = {𝑃𝑖}𝑖∈[𝑁] be a set of parties. A

collection A ⊆ P(𝑃) is monotone if for any two sets 𝐵,𝐶 ⊆ 𝑃 , if 𝐵 ∈ A and 𝐵 ⊆ 𝐶,

then 𝐶 ∈ A. A monotone access structure on 𝑃 is a monotone collection A ⊆ P(𝑃) \ ∅.

The sets in A are called valid sets and the sets in P(𝑃) \ A are called invalid sets.

Let 𝑆 ⊆ 𝑃 be a subset of parties in 𝑃. 𝑆 is called maximal invalid party set if 𝑆 ∉ A, but

for any 𝑃𝑖 ∈ 𝑃 \ 𝑆, we have 𝑆 ∪ {𝑃𝑖} ∈ A. 𝑆 is called minimal valid party set if 𝑆 ∈ A,

but for any 𝑆′ ⊊ 𝑆, we have 𝑆′ ∉ A.

In this work, since we only use monotone access structures, we sometimes drop the word

monotone. When it is clear from the context, we use either 𝑖 or 𝑃𝑖 to represent party 𝑃𝑖.

Definition 6.24 (Threshold Access Structure). Let 𝑃 = {𝑃𝑖}𝑖∈[𝑁] be a set of 𝑁 parties.

An access structure A𝑡 is called a threshold access structure, if for all 𝑆 ⊆ 𝑃, we have

𝑆 ∈ A iff |𝑆 | ≥ 𝑡. We let TAS denote the class of all access structures A𝑡 for all 𝑡 ∈ N.

For any set of parties 𝑆 ⊆ 𝑃, we define x𝑆 = (𝑥1, . . . , 𝑥𝑁) ∈ {0, 1}𝑁 with 𝑥𝑖 = 1 iff 𝑃𝑖 ∈ 𝑆.

Definition 6.25 (Efficient Access Structure). An access structure A on set 𝑃 as defined

above is called an efficient access structure if there exists a polynomial size circuit

𝑓A : {0, 1}𝑁→{0, 1}, such that for all 𝑆 ⊆ 𝑃, 𝑓A (x𝑆) = 1 iff 𝑆 ∈ A.

Definition 6.26 (Secret sharing). Let 𝑃 = {𝑃1, . . . , 𝑃𝑁 } be a set of parties and S be a

class of efficient access structures on 𝑃. A secret sharing scheme SS for a secret space

K is a tuple of PPT algorithms SS = (SS.Share,SS.Combine) defined as follows:

• SS.Share(k,A)→(𝑠1, . . . , 𝑠𝑁): On input a secret k ∈ K and an access structure A,
the sharing algorithm returns shares 𝑠1, . . . , 𝑠𝑁 for all parties.

• SS.Combine(𝐵)→k: On input a set of shares 𝐵 = {𝑠𝑖}𝑖∈𝑆, where 𝑆 ⊆ [𝑁], the
combining algorithm outputs a secret k ∈ K.

318

A secret sharing algorithm must satisfy the following correctness and privacy properties.

Definition 6.27 (Correctness). For all 𝑆 ∈ A and k ∈ K, if

(𝑠1, . . . , 𝑠𝑁)←SS.Share(k,A), then

SS.Combine({𝑠𝑖}𝑖∈𝑆) = k.

Definition 6.28 (Privacy). For all 𝑆 ∉ A and k0, k1 ∈ K, if

(𝑠𝑏,1, . . . , 𝑠𝑏,𝑁)←SS.Share(k𝑏,A) for 𝑏 ∈ {0, 1}, then the distributions {𝑠0,𝑖}𝑖∈𝑆 and

{𝑠1,𝑖}𝑖∈𝑆 are identical.

Definition 6.29 (Linear Secret Sharing (LSSS)). Let 𝑃 = {𝑃𝑖}𝑖∈[𝑁] be a set of parties

and S be a class of efficient access structures. A secret sharing scheme SS with secret

space K = Z𝑝 for some prime 𝑝 is called a linear secret sharing scheme if it satisfies the

following properties:

• SS.Share(k,A): There exists a matrix M ∈ Zℓ×𝑁𝑝 called the share matrix, and
each party 𝑃𝑖 is associated with a partition 𝑇𝑖 ⊆ [ℓ]. To create the shares on a
secret k, the sharing algorithm first samples uniform values 𝑟2, . . . , 𝑟𝑁←Z𝑝 and
defines a vector w = M · (k, 𝑟2, . . . , 𝑟𝑁)𝑇 . The share for 𝑃𝑖 consists of the entries
{𝑤 𝑗 } 𝑗∈𝑇𝑖 .

• SS.Combine(𝐵): For any valid set 𝑆 ∈ A, we have

(1, 0, . . . , 0) ∈ span({M[𝑗]} 𝑗∈⋃𝑖∈𝑆 𝑇𝑖).

over Z𝑝 where 𝑀 [𝑗] denotes the 𝑗 th row of 𝑀 . Any valid set of parties 𝑆 ∈ A can
efficiently find the coefficients {𝑐 𝑗 } 𝑗∈⋃𝑖∈𝑆 𝑇𝑖 satisfying∑︁

𝑗∈⋃𝑖∈𝑆 𝑇𝑖

𝑐 𝑗 ·M[𝑗] = (1, 0, . . . , 0)

and recover the secret by computing k =
∑
𝑗∈⋃𝑖∈𝑆 𝑇𝑖 𝑐 𝑗 · 𝑤 𝑗 . The coefficients {𝑐 𝑗 }

are called recovery coefficients.

Definition 6.30. Let 𝑃 = {𝑃1, . . . , 𝑃𝑁 } be a set of parties, S a class of efficient structures

on 𝑃, and SS a linear secret sharing scheme with share matrix M ∈ Zℓ×𝑁𝑞 . For a set of

indices 𝑇 ⊆ [ℓ], 𝑇 is said to be a valid share set if (1, 0, . . . , 0) ∈ span({M[𝑗]} 𝑗∈𝑇),

and an invalid share set otherwise. We also use following definitions:

• A set of indices 𝑇 ⊆ [ℓ] is a maximal invalid share set if 𝑇 is an invalid share set,

319

but for any 𝑖 ∈ [ℓ] \ 𝑇 , the set 𝑇 ∪ {𝑖} is a valid share set.

• A set of indices 𝑇 ⊆ [ℓ] is a minimal valid share set if 𝑇 is a valid share set, but
for any 𝑇 ′ ⊊ 𝑇 , 𝑇 ′ is an invalid share set.

The class of access structures that can be supported by a linear secret sharing scheme on

𝑁 parties is represented by LSSS𝑁 . When the context is clear LSSS𝑁 is simply written

as LSSS. We let {0, 1}-LSSS denote the class of access structures that can be supported

by a LSSS where the recovery coefficients are binary: for a set 𝑃 of 𝑁 parties, let k be the

shared secret and {𝑤 𝑗 } 𝑗∈𝑇𝑖 be the share of party 𝑃𝑖 for 𝑖 ∈ [𝑁]; then for every set 𝑆 ∈ A,

there exists a subset 𝑇 ⊆ ⋃
𝑖∈𝑆 𝑇𝑖 such that k =

∑
𝑗∈𝑇 𝑤 𝑗 . It was shown in [BGG+18] that

such a set 𝑇 ⊆ ⋃
𝑖∈𝑆 𝑇𝑖 can be computed efficiently, and that TAS belongs to {0, 1}-LSSS.

Hence, we can use {0, 1}-LSSS for secret sharing in TAS.

To secret-share a vector s = {𝑠1, . . . , 𝑠𝑛} ∈ Z𝑛𝑝, we can simply secret-share each entry 𝑠𝑖

using fresh randomness. This gives secret share vectors s1, . . . , sℓ ∈ Z𝑛𝑝. Using these

secret shares, the secret vector s can be recovered using the same coefficients as that for a

single field element.

6.4.7 Lattice preliminaries

For definitions and related hard problems on lattices, we refer to Chapter 2. We will use

the following adaptation of Lemma 2.1.

Lemma 6.3 (Adapted from [Lyu12, Lemma 4.4]).

1. For any 𝑘 > 0, Pr[|𝑧 | > 𝑘𝜎; 𝑧←DZ,𝜎] ≤ 2 exp(−𝜋𝑘2).

2. For any 𝜎 ≥ 3, 𝐻∞(DZ𝑚,𝜎) ≥ 𝑚.

3. For any 𝑘 > 1/
√

2𝜋, Pr[∥z∥ > 𝑘𝜎
√

2𝜋𝑚; z←DZ𝑚,𝜎] < (𝑘
√

2𝜋)𝑚 exp(𝑚2 (1 −
2𝜋𝑘2)).

6.5 MORE EFFICIENT THRESHOLD SIGNATURES FROM LATTICES

In this section, we show how to drastically decrease the exponential flooding used in

the scheme by Boneh et al [BGG+18]. We also show that the limited flooding that we

320

use is in fact optimal, and smaller noise would lead to an attack. For ease of exposition,

the construction below is for the special case of 𝑁 out of 𝑁 threshold and restricted

to selective security. We extend it to adaptive security in Section 6.7 and Section 6.8

and 𝑡 out of 𝑁 threshold in Section 6.9. In Section 6.6, we show how to instantiate the

underlying signature scheme using a variant of Lyubashevsky’s signature [Lyu12] with

matching moderate flooding.

6.5.1 Optimizing the Boneh et al scheme using the Rényi Divergence

Our scheme is similar to the one in [BGG+18]. The construction uses the following

building blocks:

• A PRF 𝐹 : K × {0, 1}∗→{0, 1}𝑟 , where K is the PRF key space and 𝑟 is the
bit-length of randomness used in sampling from discrete Gaussian D𝑠.

• A fully homomorphic encryption scheme FHE = (FHE.KeyGen, FHE.Enc,
FHE.Dec, FHE.Eval). As in [BGG+18], we also assume that the FHE.Dec can
be divided into two sub-algorithms: FHE.decode0 and FHE.decode1 as defined
in Section 6.4.2.

• A deterministic UF-CMA signature scheme3

Sig = (Sig.KeyGen,Sig.Sign,Sig.Verify).

• A context hiding homomorphic signature scheme HS = (HS.PrmsGen,
HS.KeyGen, HS.Sign, HS.SignEval, HS.Process, HS.Verify, HS.Hide,
HS.HVerify) to provide robustness.

• An 𝑁 out of 𝑁 secret sharing scheme Share.

Construction.

TS.KeyGen(1𝜆): Upon input the security parameter 𝜆, do the following.

1. For each party 𝑃𝑖, sample a PRF key sprf𝑖←K.

2. Generate the signature scheme’s keys (Sig.vk,Sig.sk)←Sig.KeyGen(1𝜆).

3. Generate the FHE keys (FHE.pk, FHE.sk)←FHE.KeyGen(1𝜆) and compute
an FHE encryption of Sig.sk as CTSig.sk←FHE.Enc(FHE.pk,Sig.sk).

3Any randomized signature scheme can be made deterministic by using PRF to generate the randomness
used by the signing algorithm.

321

4. Generate the HS public parameters HS.pp←HS.PrmsGen(1𝜆, 1𝑛) and the
public and the signing keys (HS.pk,HS.sk)←HS.KeyGen(1𝜆,HS.pp). Here
𝑛 is the bit-length of (FHE.sk, sprf𝑖).

5. Share FHE.sk as {sk𝑖}𝑁𝑖=1←Share(FHE.sk) such that
∑𝑁
𝑖=1 sk𝑖 = FHE.sk.

6. For each party 𝑃𝑖, randomly choose a tag 𝜏𝑖 ∈ {0, 1}∗ and compute
(𝜋𝜏𝑖 , 𝜋𝑖)←HS.Sign(HS.sk, (sk𝑖, sprf𝑖), 𝜏𝑖).

7. Output TSig.pp = {FHE.pk,CTSig.sk,HS.pp,HS.pk, {𝜏𝑖, 𝜋𝜏𝑖 }𝑁𝑖=1},
TSig.vk = Sig.vk, TSig.sk = {TSig.sk𝑖 = (sk𝑖, sprf𝑖, 𝜋𝑖)}𝑁𝑖=1.

TS.PartSign(TSig.pp, TSig.sk𝑖, 𝑀): Upon input the public parameters TSig.pp, a

partial signing key TSig.sk𝑖 and a message 𝑀, parse TSig.pp as

(FHE.pk,CTSig.sk,HS.pp,HS.pk, {𝜏𝑖, 𝜋𝜏𝑖 }𝑁𝑖=1}) and TSig.sk𝑖 as (sk𝑖, sprf𝑖, 𝜋𝑖)

and do the following.

1. Compute 𝑢 = 𝐹 (sprf𝑖, 𝑀) and sample 𝑒′
𝑖
←D𝑠 (𝑢), where D𝑠 (𝑢) represents

sampling from D𝑠 using 𝑢 as the randomness.

2. Let C𝑀 be the signing circuit, with message 𝑀 being hardwired. Compute
CT𝜎 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk).

3. Compute 𝜎𝑖 = FHE.decode0(sk𝑖,CT𝜎) + 𝑒′𝑖.

4. This step computes a homomorphic signature 𝜋𝑖 on partial signature 𝜎𝑖 to
provide robustness (Definition 6.8).
Let CPS be the circuit to compute FHE.decode0(sk𝑖,CT𝜎) + 𝑒′𝑖 in which
CT𝜎 is hardcoded and the FHE key share sk𝑖 and the PRF key sprf𝑖 are given
as inputs.

• Compute 𝜋∗
𝑖
= HS.SignEval(HS.pp, CPS, 𝜋𝜏𝑖 , (sk𝑖, sprf𝑖), 𝜋𝑖).

• Compute �̃�𝑖 = HS.Hide(HS.pk, 𝜎𝑖, 𝜋∗𝑖).

5. Output 𝑦𝑖 = (𝜎𝑖, 𝜋𝑖).

TS.Combine(TSig.pp, {𝑦𝑖}𝑖∈[𝑁]): Upon input the public parameters TSig.pp and a set

of partial signatures {𝑦𝑖}𝑖∈[𝑁] , parse 𝑦𝑖 as (𝜎𝑖, �̃�𝑖) and output

𝜎𝑀 = FHE.decode1(
∑𝑁
𝑖=1 𝜎𝑖).

322

TS.PartSignVerify(TSig.pp, 𝑀, 𝑦𝑖): Upon input the public parameters TSig.pp,

message 𝑀 , and a partial signature 𝑦𝑖, parse 𝑦𝑖 as (𝜎𝑖, �̃�𝑖) and do the following.

1. Compute CT𝜎 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk).

2. Compute 𝛼 = HS.Process(HS.pp, CPS), where CPS is as described above.

3. Parse 𝑦𝑖 as (𝜎𝑖, �̃�𝑖) and output HS.HVerify(HS.pk, 𝛼, 𝜎𝑖, 𝜏𝑖, (𝜋𝜏𝑖 , �̃�𝑖)).

TS.Verify(TSig.vk, 𝑀, 𝜎𝑀): Upon input the verification key TSig.vk, a message 𝑀 and

a signature 𝜎𝑀 , output Sig.Verify(TSig.vk, 𝑀, 𝜎𝑀).

In the above, we set 𝑠 = 𝐵𝑒𝑣𝑎𝑙 ·
√
𝑄𝜆, where 𝐵𝑒𝑣𝑎𝑙 ≤ poly(𝜆) is a bound on the FHE

decryption noise after homomorphic evaluation of the signing circuit C𝑀 , and 𝑄 is the

bound on the number of signatures.

Correctness

From the correctness of FHE.Eval algorithm, CT𝜎 is an encryption of C𝑀 (Sig.sk) =

Sig.Sign(Sig.sk, 𝑀) = 𝜎𝑀 , which decrypts with the FHE secret key FHE.sk.

So, FHE.decode0(FHE.sk,CT𝜎) = 𝜎𝑀 ⌊𝑞/2⌉ + 𝑒. The signature computed by the

TS.Combine algorithm is

FHE.decode1(
𝑁∑︁
𝑖=1

𝜎𝑖) = FHE.decode1(
∑𝑁
𝑖=1 FHE.decode0(sk𝑖 ,CT𝜎) +

∑𝑁
𝑖=1 𝑒

′
𝑖
)

= FHE.decode1(FHE.decode0(
∑𝑁
𝑖=1 sk𝑖 ,CT𝜎) +

∑𝑁
𝑖=1 𝑒

′
𝑖
)

= FHE.decode1(FHE.decode0(FHE.sk,CT𝜎) +
∑𝑁
𝑖=1 𝑒

′
𝑖
)

= FHE.decode1(𝜎𝑀 ⌊𝑞/2⌉ + 𝑒 +
∑𝑁
𝑖=1 𝑒

′
𝑖
) = 𝜎𝑀 .

6.5.2 Unforgeability

For security, we prove the following theorem.

Theorem 6.4. Assume 𝐹 is a secure PRF, Sig is a UF-CMA secure signature scheme,

FHE is a secure fully homomorphic encryption scheme (Definition 6.12), Share is a

secret sharing scheme that satisfies privacy (Definition 6.28) and HS is a context hiding

secure homomorphic signature scheme (Definitions 6.21). Then our construction of

323

threshold signatures satisfies selective unforgeablity (Definition 6.7) if the flooding noise

is of the size poly(𝜆) ·
√
𝑄, where 𝑄 is the number of the signing queries.

Proof. The security of the construction can be argued using a sequence of hybrids.

We assume w.l.o.g. that the adversary A queries for all but the first key share, i.e.,

𝑆 = [𝑁] \ {1}.

Hybrid0: This is the real world.

Hybrid1: Same as Hybrid0, except that �̃�1 in PartSign is now generated using HS

simulator as �̃�1 = HS.Sim(HS.sk, 𝛼, 𝜎1,𝜏1, 𝜋𝜏1), where

𝛼 = HS.Process(HS.pp, CPS).

Hybrid2: Same as Hybrid1 except that to compute 𝜎1 = FHE.decode0(sk1,CT𝜎) + 𝑒′1,

the randomness 𝑢 used to sample 𝑒′1←D𝑠 (𝑢) is chosen uniformly randomly instead

of computing it using the PRF.

Hybrid3: Same as Hybrid2, except that now, for signing query for (𝑀, 1), the challenger

simulates 𝜎1 as follows:

1. Computes CT𝜎 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk) and
{𝜎′

𝑖
= FHE.decode0(sk𝑖,CT𝜎)}𝑖∈[2,𝑁] .

2. Computes 𝜎𝑀 = Sig.Sign(Sig.sk, 𝑀) and set 𝜎1 = 𝜎𝑀
⌊ 𝑞

2
⌉
−∑𝑁

𝑖=2 𝜎
′
𝑖
+ 𝑒′1,

where 𝑒′1 ← D𝑠.

Hybrid4: Same as Hybrid3 except that instead of sharing FHE.sk, now the challenger

generates the FHE key shares as {sk𝑖}𝑁𝑖=1←Share(0).

Hybrid5: Same as Hybrid4, except that CTSig.sk in TSig.pp is replaced by CT0 =

FHE.Enc(FHE.pk, 0).

324

Indistinguishability of Hybrids. Now, we show that consecutive hybrids are

indistinguishable.

Claim 6.5. Assume HS is a context hiding homomorphic signature scheme. Then,

Hybrid0 and Hybrid1 are indistinguishable.

Proof. The two hybrids differ only in the way �̃�1 is computed. In Hybrid0, �̃�1 =

HS.Hide(HS.pk, 𝜎1, 𝜋
∗
1), where 𝜋∗1 = HS.SignEval(HS.pp, CPS, 𝜋𝜏1 , (sk1, sprf1), 𝜋1).

In Hybrid1, �̃�1 = HS.Sim(HS.sk, 𝛼, 𝜎1, 𝜏1, 𝜋𝜏1), where 𝛼 = HS.Process(HS.pp, CPS).

Hence, the two hybrids are indistinguishable because of the context hiding property of

HS which ensures that HS.Hide(HS.pk, 𝜎1, 𝜋
∗
1) ≈ HS.Sim(HS.sk, 𝛼, 𝜎1, 𝜏1, 𝜋𝜏1). ■

Claim 6.6. Assume 𝐹 is a secure PRF. Then Hybrid1 and Hybrid2 are indistinguishable.

The proof follows via a standard reduction to PRF security and is omitted.

Claim 6.7. If there is an adversary that can win the unforgeability game in Hybrid2 with

probability 𝜖 , then its probability of winning the game in Hybrid3 is at least 𝜖2/2.

Proof. Let the number of signing queries that the adversary makes be 𝑄. The two

hybrids differ only in the error term in 𝜎1, as shown below. In Hybrid2, we have

𝜎1 = FHE.decode0(sk1,CT𝜎) + 𝑒′1, for 𝑒′1 ← D𝑠. In Hybrid3, we have:

𝜎1 = 𝜎𝑀 . ⌊𝑞/2⌉ −
∑︁𝑁

𝑖=2
FHE.decode0 (sk𝑖 ,CT𝜎) + 𝑒′1

= 𝜎𝑀 . ⌊𝑞/2⌉ −
∑︁𝑁

𝑖=1
FHE.decode0 (sk𝑖 ,CT𝜎) + FHE.decode0 (sk1,CT𝜎) + 𝑒′1

= 𝜎𝑀 . ⌊𝑞/2⌉ − FHE.decode0 (
∑︁𝑁

𝑖=1
sk𝑖 ,CT𝜎) + FHE.decode0 (sk1,CT𝜎) + 𝑒′1

= 𝜎𝑀 . ⌊𝑞/2⌉ − FHE.decode0 (sk,CT𝜎) + FHE.decode0 (sk1,CT𝜎) + 𝑒′1

= 𝜎𝑀 . ⌊𝑞/2⌉ − 𝜎𝑀 . ⌊𝑞/2⌉ + 𝑒 + FHE.decode0 (sk1,CT𝜎) + 𝑒′1

= FHE.decode0 (sk1,CT𝜎) + (𝑒′1 + 𝑒),

for some 𝑒 satisfying |𝑒 | ≤ 𝐵𝑒𝑣𝑎𝑙 . Thus, in Hybrid2, the error term in 𝜎1 is 𝑒′1, while in

Hybrid3, it is 𝑒′1 + 𝑒, where, 𝑒′1 ← D𝑠, and 𝑒 is the error in FHE ciphertext CT𝜎.

Recall the distribution seen by the adversary – the public parameters TSig.pp, the

325

verification key TSig.vk, the corrupted secret key shares TSig.sk𝑖, the messages 𝑀 𝑗

and corresponding partial signatures (𝜎𝑗 , �̃� 𝑗). Note that since messages are chosen

adaptively, their distribution depends on previous signature queries and responses, and

in particular on the differently generated error terms in both hybrids. On the other

hand TSig.pp, TSig.vk, {TSig.sk𝑖}, {�̃� 𝑗 } are constructed identically in both hybrids and

independently from the rest (in particular these error terms): we implicitly assume that

they are fixed and known, and exclude them from the analysis. We refer to the distribution

to be considered in Hybrid2 as 𝐷2 and in Hybrid3 as 𝐷3.

Let 𝐸 𝑗 be the random variables corresponding to the error term in CT𝜎𝑗 in the 𝑗-th

response and E (2)
𝑗

and E (3)
𝑗

be their distributions in Hybrids 2 and 3, respectively.

Similarly, let 𝑀 𝑗 be the random variable corresponding to the queried message in 𝑗-th

query andM (2)
𝑗

andM (3)
𝑗

be their distributions in Hybrids 2 and 3, respectively. Then,

from the discussion above, we have E (2)
𝑗

= D𝑠 and E (3)
𝑗

= D𝑠,𝑒 𝑗 for all 𝑗 ∈ [𝑄], where

𝑒 𝑗 is the error in CT𝜎𝑗 and can depend upon previous queries and responses.

Overall, we have 𝐷𝑘 = (E (𝑘)𝑄 ,M (𝑘)
𝑄
, E (𝑘)

𝑄−1,M
(𝑘)
𝑄−1, . . . , E

(𝑘)
1 ,M (𝑘)1) for 𝑘 ∈ {2, 3} and

𝑅𝑎 (𝐷2∥𝐷3) = 𝑅𝑎 (E (2)𝑄 ,M (2)
𝑄
, . . . , E (2)1 ,M (2)1 ∥ E (3)

𝑄
,M (3)

𝑄
, . . . , E (3)1 ,M (3)1). (6.2)

Applying the multiplicativity property of the Rényi divergence (Lemma 6.1), we obtain

that 𝑅𝑎 (𝐷2∥𝐷3) is bounded from above by

max
𝑥∈𝑋

𝑅𝑎 (E (2)𝑄 |𝑋 = 𝑥 ∥ E (3)
𝑄
|𝑋 = 𝑥) · 𝑅𝑎 (M (2)𝑄 , . . . , E (2)1 ,M (2)1 ∥ M (3)

𝑄
, . . . , E (3)1 ,M (3)1)

= max
𝑥∈𝑋

𝑅𝑎 (D𝑠 |𝑋 = 𝑥 ∥ D𝑠,𝑒𝑄 |𝑋 = 𝑥) · 𝑅𝑎 (M (2)𝑄 , . . . , E (2)1 ,M (2)1 ∥ M (3)
𝑄
, . . . , E (3)1 ,M (3)1),

(6.3)

where 𝑋 = (𝑀𝑄 , 𝐸𝑄−1, . . . , 𝐸1) and 𝑒𝑄 is the error term in CT𝜎𝑄 ; note that 𝑒𝑄 may

depend on the sample from 𝑋 (which differs in Hybrids 2 and 3) and is bounded by 𝐵𝑒𝑣𝑎𝑙 .

326

Then applying Lemma 6.2 in Equation (6.3), we get

𝑅𝑎 (𝐷2∥𝐷3) ≤ exp(𝑎𝜋∥𝑒𝑄 ∥2/𝑠2) · 𝑅𝑎 (M (2)𝑄 , . . . , E (2)1 ,M (2)1 ∥ M (3)
𝑄
, . . . , E (3)1 ,M (3)1)

≤ exp(𝑎𝜋𝐵2
𝑒𝑣𝑎𝑙/𝑠

2) · 𝑅𝑎 (M (2)𝑄 , . . . , E (2)1 ,M (2)1 ∥ M (3)
𝑄
, . . . , E (3)1 ,M (3)1).

Further, since𝑀𝑄 is a function of 𝐸𝑄−1, 𝑀𝑄−1, . . . , 𝐸1, 𝑀1, the data processing inequality

(Lemma 6.1) gives

𝑅𝑎 (M (2)𝑄 , E (2)
𝑄−1, . . . , E

(2)
1 ,M (2)1 ∥ M (3)

𝑄
, E (3)

𝑄−1, . . . , E
(3)
1 ,M (3)1)

≤ 𝑅𝑎 (E (2)𝑄−1, . . . , E
(2)
1 ,M (2)1 ∥ E (3)

𝑄−1, . . . , E
(3)
1 ,M (3)1),

Hence, we get

𝑅𝑎 (𝐷2∥𝐷3) ≤ exp(𝑎𝜋𝐵2
𝑒𝑣𝑎𝑙/𝑠

2) · 𝑅𝑎 (E (2)𝑄−1, . . . , E
(2)
1 ,M (2)1 ∥ E (3)

𝑄−1, . . . , E
(3)
1 ,M (3)1)

≤ exp(𝑎𝜋𝐵2
𝑒𝑣𝑎𝑙𝑄/𝑠

2),

where the last inequality follows from induction.

As 𝑠 = 𝐵𝑒𝑣𝑎𝑙 ·
√
𝑄𝜆, we get 𝑅𝑎 (𝐷2∥𝐷3) ≤ exp(𝑎𝜋/𝜆). Therefore, from the probability

preservation property of the Rényi divergence (Lemma 6.1), we have

𝐷3(E) ≥ 𝐷2 (E)
𝑎
𝑎−1

𝑅𝑎 (𝐷2∥𝐷3) ≥ 𝐷2(E)
𝑎
𝑎−1 exp(−𝑎𝜋

𝜆
). The result is obtained by setting 𝑎 = 2. ■

Claim 6.8. Assume that Share is a secret sharing scheme that satisfies privacy

(Definition 6.28). Then, Hybrid3 and Hybrid4 are indistinguishable.

Proof. The only difference between Hybrid3 and Hybrid4 is in the way the key shares

sk1, sk2, . . . , sk𝑁 are generated. In Hybrid3 (sk1, sk2, . . . , sk𝑁)←Share(FHE.sk),

while in Hybrid4, (sk1, sk2, . . . , sk𝑁)←Share(0). Since, the adversary is given secret

shares for an invalid set of parties, distribution in the two hybrids are identical. ■

Claim 6.9. Assume FHE is a fully homomorphic encryption that satisfies security

(Definition 6.12). Then Hybrid4 and Hybrid5 are indistinguishable.

327

Proof. Let A be an adversary who can distinguish Hybrid4 and Hybrid5. Then we

construct an adversary B against the FHE scheme as follows.

1. After receiving FHE.pk from the FHE challenger, B generates
(Sig.sk,Sig.vk)←Sig.KeyGen(1𝜆) and the HS keys.

2. It generates secret shares of 0 as (sk1, sk2, . . . , sk𝑁)←Share(0).

3. It sends the challenge messages 𝑚0 = Sig.sk and 𝑚1 = 0 to the FHE challenger.

4. After receiving the challenge ciphertext CT𝑏 from the FHE challenger, B constructs
TSig.pp using CT𝑏. It also generates TSig.vk and TSig.sk as defined for the hybrid.
In particular, note that in both the hybrids, the key shares {sk𝑖}𝑁𝑖=1 are generated as
random secret shares of 0 in place of FHE.sk and hence B does not need FHE.sk
to answer key queries.

5. To answer a PartSign query for a message 𝑀 issued by adversaryA, B computes
𝜎1 as follows. It computes 𝜎 = Sig.Sign(Sig.sk, 𝑀), samples 𝑒′1←D𝑠 and returns
𝜎1 = 𝜎 −∑𝑁

𝑖=2 TS.decode0(TSig.sk𝑖,CT𝑏) + 𝑒′1.

6. Finally, A outputs a guess bit 𝑏′. B returns the same to the FHE challenger.

Clearly, if 𝑏 = 0, then B simulates Hybrid4, else Hybrid5 with A. Hence if A wins with

non-negligible probability in distinguishing the two hybrids then so does B against the

FHE challenger. ■

Finally the proof of Theorem 6.4 completes with the following claim.

Claim 6.10. If the underlying signature scheme Sig is unforgeable, then the advantage

of the adversary in the unforgeability game of Definition 6.7 is negligible in Hybrid5.

Proof. Let A be an adversary who wins the unforgeability game in Hybrid5. Then we

can construct an adversary B against the signature scheme Sig as follows:

1. On receiving a verification key Sig.vk from Sig challenger, B generates
(FHE.sk, FHE.pk), HS.pp, (HS.pk,HS.sk) and all the other values required to
define TSig.pp, TSig.vk and TSig.sk on its own. In particular, since in Hybrid5,
TSig.pp contains CT0 instead of CTSig.sk, B does not require Sig.sk to generate a
valid TSig.pp.

2. B then sends TSig.vk = Sig.vk, TSig.pp, {TSig.sk𝑖}𝑁𝑖=2 to A.

328

3. To simulate PartSign query 𝜎1 for any message 𝑀 , B needs 𝜎𝑀 . For this, it issues
a signing query on message 𝑀 to the Sig challenger and receives 𝜎𝑀 .

4. In the end, let (𝑀∗, 𝜎∗) be the forgery returned by A. Then B returns the same to
the Sig challenger.

Since B issues signing queries on only those messages for which A also issues signing

queries to B, if (𝑀∗, 𝜎∗) is a valid forgery for A, then it is a valid forgery for B as

well. ■

6.5.3 Robustness

Claim 6.11. If HS is multi data secure (Definition 6.20) homomorphic signature, then

the above construction of TS satisfies robustness.

Proof. In the robustness security experiment ExptA,TS,𝑟𝑏 (1𝜆), the adversary wins if A

outputs a partial signature forgery (𝑀∗, 𝑦∗
𝑖
, 𝑖) such that

1. TS.PartSignVerify(TSig.pp, 𝑀∗, 𝑦∗
𝑖
) = 1

2. 𝑦∗
𝑖
= (𝜎∗

𝑖
, �̃�∗

𝑖
) ≠ TS.PartSign(TSig.pp, TSig.sk𝑖, 𝑀∗).

TS.PartSignVerify(TSig.pp, 𝑀∗, 𝑦∗
𝑖
) first computes CT𝜎 ←

FHE.Eval(FHE.pk, C𝑀∗ ,CTSig.sk) and outputs 1 iff

HS.HVerify(HS.pk, 𝛼, 𝜎∗
𝑖
, 𝜏𝑖, (𝜋𝜏𝑖 , �̃�∗𝑖)) = 1, where 𝛼 = HS.Process(HS.pp, CPS).

Thus, A wins the experiment iff both the following two conditions are true.

1. For 𝛼 = HS.Process(HS.pp, CPS)

HS.HVerify(HS.pk, 𝛼, 𝜎∗𝑖 , 𝜏𝑖, (𝜋𝜏𝑖 , �̃�∗𝑖)) = 1,

2. 𝑦∗
𝑖
= (𝜎∗

𝑖
, �̃�∗

𝑖
) ≠ TS.PartSign(TSig.pp, TSig.sk𝑖, 𝑀∗), which implies

𝜎∗
𝑖
≠ FHE.decode0(sk𝑖,CT𝜎) + 𝑒′𝑖, which in turn is same as

𝜎∗𝑖 ≠ CPS(sk𝑖, sprf𝑖).

But this is a case for valid forgery of type 2 (Definition 6.20) against HS scheme, which

can happen only with negligible probability. Note that since (𝜏𝑖, 𝜋𝜏𝑖) are part of HS.pp,

329

case of type 2 in HS security definition is inherently applied. ■

6.5.4 On the Optimality of Our Flooding

We show that the flooding amount that we achieved is optimal for our threshold signature

scheme. To argue this, we show how to attack it if the flooding amount is below

Ω(
√
𝑄). For simplicity, we restrict to the case of 𝑁 = 2. Recall that in our construction,

TS.PartSign(TSig.pp, TSig.sk𝑖, 𝑀) outputs 𝜎𝑖,𝑀 = FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑒′𝑖,𝑀 ,

where TSig.sk𝑖 = (sk𝑖, sprf𝑖).4 W.l.o.g, assume that the adversary gets the partial

signing key TSig.sk2 and the response for any signing query is a partial signature

corresponding to party 𝑃1. For any message 𝑀 of its choice, the adversary receives

𝜎1,𝑀 = FHE.decode0(sk1,CT𝜎𝑀) + 𝑒′1,𝑀 . From this the adversary can compute:

𝜎1,𝑀 + FHE.decode0(sk2,CT𝜎𝑀) = FHE.decode0(FHE.sk,CT𝜎𝑀) + 𝑒′1,𝑀

= 𝜎𝑀 + err𝑀 + 𝑒′1,𝑀 ,

where err𝑀 is the error in CT𝜎𝑀 . Note that if the adversary succeeds in computing err𝑀

for polynomially many 𝑀’s, then it can compute FHE.sk.

As a warm-up, we show that if the error 𝑒′1,𝑀 is randomized, small and of center 0, then

the adversary can indeed compute err𝑀 . Later, we will show that even for deterministic

flooding 𝑒′1,𝑀 , there exist secure signature schemes for which the attack can be extended.

Since the adversary knows the key share sk2, it can compute 𝜎2,𝑀 on its own and hence

can compute 𝜎𝑀 = TS.Combine(TSig.pp, 𝜎1,𝑀 , 𝜎2,𝑀). Hence, from 𝜎𝑀 + err𝑀 + 𝑒′1,𝑀 ,

the adversary can compute err𝑀 + 𝑒′1,𝑀 . Since, the signature scheme is deterministic,

err𝑀 depends only on 𝑀. Thus, if the same message is queried for signature multiple

times, then each time the term err𝑀 remains the same, but since flooding is randomized,

the term 𝑒′1,𝑀 is different.

To compute err𝑀 , the adversary issues all 𝑄 signing queries for the same message 𝑀 and

receives 𝜎 (1)1,𝑀 , . . . , 𝜎
(𝑄)
1,𝑀 , where 𝜎 (𝑖)1,𝑀 denotes the partial signature returned for message

4We focus only on the 𝜎𝑖,𝑀 component of PartSign’s output since the second component, the HS
signature of 𝜎𝑖,𝑀 , is not relevant here.

330

𝑀 in the 𝑖th query. From these responses the adversary gets 𝑄 different values of the

form

𝑤𝑖 = err𝑀 + 𝑒′𝑖1,𝑀 (6.4)

Since err𝑀 is same, taking average on both sides of Equation (6.4) over all the𝑄 samples,

we get
∑
𝑖∈[𝑄] 𝑤

𝑖

𝑄
= err𝑀 +

∑
𝑖∈[𝑄] 𝑒

′𝑖
1,𝑀

𝑄
. If | 1

𝑄

∑
𝑖∈[𝑄] 𝑒

′𝑖
1,𝑀 | < 1/2, then the adversary

can recover err𝑀 as err𝑀 =

⌊
1
𝑄

∑
𝑖∈[𝑄] 𝑤

𝑖
⌉
. As 𝑒′11,𝑀 , . . . , 𝑒

′𝑄
1,𝑀 are independently and

identically distributed with mean 0, by Hoeffding’s inequality, we have

Pr
[���∑𝑖∈[𝑄] 𝑒

′𝑖
1,𝑀

𝑄

��� < 1/2
]
≥ 1 − 2exp

(
− 𝑄

2𝑠2

)
.

If 𝑄 ≥ Ω(𝑠2 log𝜆), then 1 − 2exp(−𝑄/(2𝑠2)) ≥ 1 − 𝜆−Ω(1) , in which case the adversary

can recover err𝑀 with probability sufficiently close to 1 to recover sufficiently many

err𝑀’s to compute FHE.SK. To prevent this, we do need 𝑠 to grow at least proportionally

to
√
𝑄.

Attack for Deterministic Error

In the argument for randomized error, the fact that 𝑒′𝑖1,𝑀 is randomized is crucial. However,

as discussed in Section 6.1, we can extend the attack for the case of deterministic flooding

as well, by exhibiting a secure signature scheme (with deterministic flooding) for which

a variant of the attack can apply.

Consider a special (contrived) signature scheme Sig′ = (Sig′.KeyGen,

Sig′.Sign,Sig′.Verify) derived from a secure signature scheme Sig = (Sig.KeyGen,

Sig.Sign,Sig.Verify) as follows:

1. Sig′.KeyGen is identical to Sig.KeyGen. Let (Sig.sk,Sig.vk) be the signing and
verification keys, respectively, and Sig.sk𝑖 denote the 𝑖th bit of Sig.sk for 𝑖 ∈ [ℓ],
where ℓ is the bit-length of Sig.sk.

2. Sig′.Sign(Sig.sk, 𝑀) is modified as follows:

• Compute 𝜎𝑀 = Sig.Sign(Sig.sk, 𝑀). Set 𝜎′
𝑀

:= 𝜎𝑀 .

• For 𝑖 from 1 to ℓ: if Sig.sk𝑖 = 0, then set 𝜎′
𝑀

:= 𝜎′
𝑀
∥Sig.sk𝑖.

331

• Output 𝜎′
𝑀

.

3. Sig′.Verify(Sig.vk, 𝑀, 𝜎′
𝑀
) is defined as Sig.Verify(Sig.vk, 𝑀, 𝜎𝑀), where 𝜎𝑀 is

obtained from 𝜎′
𝑀

by removing all the bits after the 𝑘th bit, where 𝑘 is the bit-length
of signatures in Sig.

Above, we assume that the signing key of Sig is a uniform bit-string among those with the

same number of 0’s and 1’s. Since Sig.sk has always ℓ/2 bits equal to 0, the number of

zeroes appended to the signature will be ℓ/2 and hence does not leak any extra information

to the adversary. Hence, it follows easily that if Sig is a secure signature scheme, then so

is Sig′. However, as discussed in Section 6.1, our attack can be generalized to work for

this setting.

The Attack Now, consider using Sig′ to instantiate our threshold signature scheme.

Then, for any message 𝑀, the FHE ciphertext CT𝜎𝑀 now additionally includes

homomorphically evaluated encryptions of {Sig.sk𝑖}𝑖∈[ℓ]:Sig.sk𝑖=0. Let CT𝜎𝑀 , err𝑀 , 𝑒′𝑀
respectively denote the encryption of 𝜎𝑀 , the error in CT𝜎𝑀 and the flooding noise

added to partial decryption of CT𝜎𝑀 . Let CT∗, err∗ and 𝑒∗
𝑀

denote the components

corresponding to {Sig.sk𝑖}𝑖∈[ℓ]:Sig.sk𝑖=0.

For any message 𝑀, the adversary can compute err𝑀 + 𝑒′𝑀 as described previously,

from which the adversary gets err∗ + 𝑒∗
𝑀

. If the adversary manages to compute err∗ (for

sufficiently many instances), then it can also recover FHE.sk.

Note that err∗ is independent of any message and hence is constant across different

messages, while 𝑒∗
𝑀

does depend on 𝑀 and is different for different messages. This gives

an attack strategy. To compute err∗, the adversary issues 𝑄 signing queries on different

messages {𝑀 𝑗 } 𝑗∈[𝑄] , and from the received partial signatures, derives the values for

𝑤∗
𝑗
= err∗ + 𝑒∗

𝑀 𝑗
for 𝑗 ∈ [𝑄] .

Observe that the above equation is of the same form as Equation (6.4). Heuristically,

one would expect the 𝑒∗
𝑀 𝑗

to behave as independent and identically distributed random

332

variables with centre 0. Hence, we can argue in similar way that if 𝑄 ≥ Ω(𝑠2 log𝜆)

then the adversary can recover err∗ with probability 1 − 1/poly(𝜆). This implies that for

hiding err∗, the standard deviation parameter 𝑠 must grow at least proportionally to
√
𝑄.

6.6 INSTANTIATING THRESHOLD SIGNATURES: REJECTION-FREE

LYUBASHEVSKY

Here, we provide an FHE friendly variant of Lyubashevsky’s signature scheme

from [Lyu12].

6.6.1 Construction

Our construction uses a hash function 𝐻 : {0, 1}∗→𝐷𝐻 := {v : v ∈ {−1, 0, 1}𝑘 ; ∥v∥1 ≤

𝛼}, modeled as a random oracle. Here 𝛼 is a parameter, typically much smaller than 𝑘 .

KeyGen(1𝜆): Upon input the security parameter 𝜆, set 𝑞, 𝑛, 𝑚, 𝛽, 𝑘, 𝑑, 𝜎 such that

𝑛 = Ω(𝜆) and the scheme is secure (see Theorem 6.12); then do the following:

1. Sample A←Z𝑛×𝑚𝑞 and S←{−𝑑, . . . , 0, . . . , 𝑑}𝑚×𝑘 .

2. Set T = AS.

3. Output vk = (A,T), sk = S.

Sign(sk, 𝜇): Upon input the signing key sk and a message 𝜇, do the following:

1. Sample y←DZ𝑚,𝜎.

2. Set c = 𝐻 (Ay, 𝜇).

3. Set z = y + Sc.

4. Output (z, c).

Verify(vk, 𝜇, (z, c)): Upon input the verification key vk, a message 𝜇, and a signature

(z, c), do the following:

333

1. Check if ∥z∥ ≤ 𝛾, where 𝛾 = (2𝜎 + 𝛼𝑑)
√
𝑚.

2. Check if 𝐻 (Az − Tc, 𝜇) = c.

3. If both checks pass, then accept, else reject.

Correctness. Since z = y + Sc, where y←DZ𝑚,𝜎, we have ∥z∥ ≤ 2𝜎
√
𝑚 + ∥Sc∥ with

probability 1− 2−Ω(𝜆) , using standard Gaussian tail bounds (see, e.g., Lemma 6.3). Since

∥S∥∞ ≤ 𝑑 and ∥c∥1 ≤ 𝛼, we have ∥Sc∥ ≤ 𝑑𝛼
√
𝑚. This gives us ∥z∥ ≤ (2𝜎 + 𝑑𝛼)

√
𝑚

with overwhelming probability. Finally, note that

𝐻 (Az − Tc, 𝜇) = 𝐻 (A(y + Sc) − ASc, 𝜇) = 𝐻 (Ay, 𝜇) = c.

6.6.2 Security

We establish security via the following theorem.

Theorem 6.12. Assume that 𝑚 > 𝜆 + (𝑛 log 𝑞)/log(2𝑑 + 1), 𝜎 ≥ 𝛼𝑑
√
𝑚𝑄 where 𝑄 is

the maximum number of signing queries an attacker can make and |𝐷𝐻 | ≥ 2𝜆. Assume

further that SIS𝑞,𝑛,𝑚,𝛽 is hard for 𝛽 = 2𝛾+2𝑑𝛼
√
𝑚. Then the construction in Section 6.6.1

satisfies UF-CMA in the random oracle model.

Proof. We prove the security via the following hybrids:

Hybrid0: This is the genuine security game, i.e., with honest executions of the Sign

algorithm on signing queries by the adversary.

Hybrid1: In this hybrid the challenger responds to the signing query for any message 𝜇

as follows.

1. Sample y←DZ𝑚,𝜎 as in the previous hybrid.

2. Sample c←{v : v ∈ {−1, 0, 1}𝑘 , ∥v∥1 ≤ 𝛼}.

3. Set z = y + Sc.

4. Set 𝐻 (Az − Tc, 𝜇) = c.

334

5. Output (z, c).

Hybrid2: In this hybrid the challenger responds to the signing query for any message 𝜇

as follows.

1. Sample c←{v : v ∈ {−1, 0, 1}𝑘 , ∥v∥1 ≤ 𝛼}.

2. Sample z←DZ𝑚,𝜎.

3. Set 𝐻 (Az − Tc, 𝜇) = c.

4. Output (z, c).

The only difference between Hybrid0 and Hybrid1 is that in Hybrid1, the output value

for 𝐻 is chosen at random, and then programmed as the answer to 𝐻 (Ay, 𝜇), without

checking whether the value for (Ay, 𝜇) is already set, when a signing query for 𝜇 is made.

By the definition of the random oracle, the two hybrids are identical if the same input

(Ay, 𝜇) is not programmed twice throughout hash and sign queries, and forgery. The

distinguishing advantage is therefore bounded as 𝑄(𝑄 +𝑄𝐻 + 1) · 2−ℎ, where ℎ is the

min-entropy of Ay for y←DZ𝑚,𝜎. Standard arguments show that this is negligible.

The result now follows from the two claims below.

Claim 6.13. If there is an adversary that makes at most 𝑄 signing queries and can win

the game in Hybrid1 with probability 𝛿, then its probability of winning in Hybrid2 is

polynomial in 𝛿, if 𝜎 ≥ 𝛼𝑑
√
𝑚𝑄.

Proof. Wlog, we assume that the adversary makes exactly𝑄 queries. The only difference

between the two hybrids is in the value of z. Let us refer to the joint distribution of

all (z, c)’s in Hybrid1 as 𝐷1 and that in Hybrid2 as 𝐷2. Note that the c𝑖’s are sampled

identically in both hybrids, and independently from all the rest. For 𝑖 ∈ [𝑄], the vector

z𝑖 is from distribution 𝑍1𝑖 := DZ𝑚,𝜎,Sc𝑖 in Hybrid1 and from distribution 𝑍2𝑖 = DZ𝑚,𝜎

335

in Hybrid2. By Lemma 6.2, we have

𝑅𝑎 [𝑍1𝑖∥𝑍2𝑖] = exp
(
𝑎𝜋
∥Sc𝑖∥2
𝜎2

)
for any 𝑎 ∈ (1,∞).

Recall from the correctness proof that we have ∥Sc𝑖∥ ≤ 𝑑𝛼
√
𝑚.

Let 𝐷1𝑖 (resp. 𝐷2𝑖) be the distribution of (z𝑖, c𝑖)’s in Hybrid1 (resp. Hybrid2). As c𝑖 is

identically distributed in both games, we have, by using the multiplicativity property of

Rényi divergence (Lemma 6.1):

𝑅𝑎 [𝐷1𝑖∥𝐷2𝑖] ≤ 1 ·max
c𝑖

𝑅𝑎 [𝑍1𝑖∥𝑍2𝑖] ≤ exp
(
𝑎𝜋
(𝑑𝛼
√
𝑚)2

𝜎2

)
.

As 𝐷1 = (𝐷1𝑖)𝑖 and 𝐷2 = (𝐷2𝑖)𝑖, by using the multiplicativity property of the Rényi

divergence once more, we get:

𝑅𝑎 (𝐷1∥𝐷2) ≤ exp
(
𝑎𝜋
𝑄(𝑑𝛼

√
𝑚)2

𝜎2

)
≤ exp(𝑎𝜋), for any 𝑎 ∈ (1,∞). (6.5)

Now, the view of the adversary in both hybrids includes the verification key vk, the

queried messages 𝑀𝑖 and the signature replies (z𝑖, c𝑖) for 𝑖 ∈ [𝑄]. As the distribution

of vk is identical in both games and vk is sampled independently from all the rest, we

may implicitly assume that it is fixed. As they are chosen adaptively, the 𝜇𝑖’s may depend

on the previous queries and replies. But the dependence of the responses on the messages

is broken by the random oracle (unlike in the proof of Claim 6.7). Hence, the (c𝑖, z𝑖)’s

are independent of the 𝜇𝑖’s in both the hybrids. As the 𝜇𝑖’s are functions of the (c𝑖, z𝑖)’s,

by the data processing inequality of the Rényi divergence (Lemma 6.1), we have

𝑅𝑎 (𝑉1∥𝑉2) ≤ 𝑅𝑎 (𝐷1∥𝐷2), (6.6)

where 𝑉1 (resp. 𝑉2) is the adversary’s view in Hybrid1 (resp. Hybrid2).

Let E denote the event that the adversary wins the game. Then by our assumption, we

have 𝐷1(E) = 𝛿. From the probability preservation property (Lemma 6.1) of the Rényi

336

divergence, we get:

𝑉2(E) ≥
𝛿

𝑎
𝑎−1

𝑅𝑎 (𝑉1∥𝑉2)
, for any 𝑎 ∈ (1,∞). (6.7)

Using Equations (6.5), (6.6) and (6.7), we obtain that 𝑉2(E) ≥ 𝛿
𝑎
𝑎−1 exp(−𝑎𝜋). Taking

any value of 𝑎 > 1 provides the result. ■

Claim 6.14. Let 𝐷𝐻 be the range of the random oracle 𝐻. If there is a forger F that

makes at most 𝑄 signing queries and 𝑄𝐻 random oracle queries, and succeeds in forging

a valid signature with probability 𝛿 in Hybrid2, then we can define an algorithm B which

given A←Z𝑛×𝑚𝑞 , finds a non-zero v such that ∥v∥ ≤ (2𝛾 + 2𝑑𝛼
√
𝑚) and Av = 0, with

probability at least (
1
2
− 𝜀

2

) (
𝛿 − 1
|𝐷𝐻 |

) (
𝛿 − 1/|𝐷𝐻 |
𝑄𝐻 +𝑄

− 1
|𝐷𝐻 |

)
.

This claim and its proof are identical to [Lyu12, Lemma 5.4]. Note that under the

conditions of Theorem 6.12, the latter probability lower bound is ≥ 𝛿2/(2(𝑄𝐻 +𝑄)) −

2−Ω(𝜆) . ■

Note that the condition 𝜎 ≥ 𝛼𝑑
√
𝑚𝑄 from Theorem 6.12 forces to set a modulus 𝑞 and a

SIS bound 𝛽 that grow linearly with
√
𝑄. To ensure 𝜆 bits of security, one may choose 𝑛

growing linearly with
√
𝑄. Overall, if using a Ring-SIS or Module-SIS instantiation,

then the bit-length of the signature grows linearly with 𝑛 log 𝑞 and hence with log2𝑄.

Next, we show that the flooding noise used in the above construction is essentially optimal

by exhibiting an attack when the flooding noise is smaller.

6.6.3 Optimality of Flooding

In this section, we show that the flooding amount used in the construction in Section 6.6.1

is essentially optimal, and in particular that the dependence on
√
𝑄 is necessary. In

more detail, we show that if the flooding noise is smaller than this, then an adversary

can recover the signing key. Note that this attack is folklore, we recall it for the sake of

337

completeness.

Statistical Attack

Recall that the signature for message 𝑀𝑖 is of the form (z𝑖, c𝑖), where z𝑖 = Sc𝑖 + y𝑖,

c𝑖 ∈ {−1, 0, 1}𝑘 , ∥c𝑖∥1 ≤ 𝛼, and S is the signing key. The adversary can obtain many

such pairs corresponding to different messages. Let 𝑄 be the maximum number of

signing queries that the adversary can make. Let S𝑖 represents the 𝑖th row of matrix S.

Let c𝑖 𝑗 , y𝑖 𝑗 and S𝑖 𝑗 represent the 𝑗 th entry in vectors c𝑖, y𝑖 and S𝑖 respectively. Consider

such tuples (z𝑖, c𝑖) where c𝑖1 = 1. Let 𝐵 ⊆ [𝑄] be the set of such indices. The adversary

gets approximately 𝑄/3 such tuples corresponding to 𝑖 ∈ 𝐵. For each 𝑖, using the first

row of S, we may write:

S11 +
𝑘∑︁
𝑗=2

S1 𝑗c𝑖 𝑗 + y𝑖1 = z𝑖1 (6.8)

We denote the average of
∑𝑘
𝑗=2 S1 𝑗c𝑖 𝑗 + y𝑖1 over 𝑖 ∈ 𝐵 as avg. We show that unless y𝑖1

is 𝑂 (
√
𝑄), we can recover S11. To conduct the attack, we bound each summand of avg

separately.

Claim 6.15. Let 𝑡1 < 1/2 be a positive constant and 𝑄, 𝑘 , 𝑑, 𝛼 be as above. Then,

Pr
[���∑𝑖∈𝐵

∑𝑘
𝑗=2 S1 𝑗c𝑖 𝑗
|𝐵 |

��� < 𝑡1] ≥ 1 − 2 exp(
−𝑄𝑡21

6(𝛼 − 1)2𝑑2)

Proof. Note that
∑𝑘
𝑗=2 S1 𝑗c𝑖 𝑗 takes values in the range [−(𝛼 − 1)𝑑, (𝛼 − 1)𝑑], with

mean at 0. In more detail, let 𝑋 be a random variable, with mean 0 and support

[−(𝛼 − 1)𝑑, (𝛼 − 1)𝑑], then for some positive constant 𝑡1 < 1/2, we have from

Hoeffding’s bound

Pr[| �̄� − 𝐸 [𝑋] | ≥ 𝑡1] ≤ 2 exp(
−(𝑄/3)𝑡21

2(𝛼 − 1)2𝑑2)

=⇒ Pr[| �̄� | ≥ 𝑡1] ≤ 2 exp(
−𝑄𝑡21

6(𝛼 − 1)2𝑑2)

=⇒ Pr[| �̄� | < 𝑡1] ≥ 1 − 2 exp(
−𝑄𝑡21

6(𝛼 − 1)2𝑑2)

338

Since 𝑑 is small, in particular if (6(𝛼 − 1)2𝑑2 < 𝑄𝑡21), then 1 − 2 exp(−𝑄𝑡21
6(𝛼−1)2𝑑2) is

non-negligible. ■

Let us assume that the average of y𝑖1 is also smaller than 1/2 − 𝑡1 with non negligible

probability. Then, avg < 1/2 with non negligible probability. Summing both sides of

Equation 6.8 over the set 𝐵, we get S11 + avg =
∑
𝑖∈𝐵 z𝑖1
|𝐵 | . In this case the adversary can

successfully recover S11 as

S11 =

⌊∑
𝑖∈𝐵 z𝑖1
|𝐵 |

⌉
We now examine how large y𝑖1 must be to avoid this attack. Let 𝑌←D𝜎 be the random

variable representing the distribution of y𝑖1 values. Then from Hoeffding’s bound, for

some constant 𝑐′ and 𝑡2 < (1/2 − 𝑡1),

Pr[|𝑌 − 𝐸 [𝑌] | ≥ 𝑡2] ≤ 2 exp(−𝑐′𝑄𝑡22/3𝜎
2)

=⇒ Pr[|𝑌 | ≥ 𝑡2] ≤ 2 exp(−𝑐′𝑄𝑡22/3𝜎
2)

=⇒ Pr[|𝑌 | < 𝑡2] ≥ 1 − 2 exp(−𝑐′𝑄𝑡22/3𝜎
2)

Thus, if 3𝜎2 < 𝑐′𝑄𝑡22, then 1 − 2 exp(−𝑐′𝑄𝑡22/3𝜎
2) is non-negligible. Hence, for the

average of y𝑖1 to be greater than 𝑡2, we need that 𝜎 must grow proportional to
√
𝑄.

From Gaussian to Uniform

In some applications, it may be preferable to use a vector y whose coordinates are

uniform in some interval [−𝐵, 𝐵] rather than Gaussian (at Step 1 of the Sign algorithm).

This is the choice made for the regular Dilithium signature scheme DKL+18. Looking

ahead, if the sampling of y is done under a homomorphic encryption layer, this may be

significantly simpler to implement.

To adapt the current proof, the only step that needs to be modified is in the transition

between Hybrid 1 and Hybrid 2. A difficulty is that the support of the distribution of z in

Hybrid 2 has to contain the support of the distribution of z in Hybrid 2, for the Rényi

divergence to be defined. For this purpose, we consider a wider interval in Hybrid 2,

339

which contains all possible intervals [−𝐵, 𝐵]𝑚 + Sc of Hybrid 1. Concretely, in Hybrid 1,

the vector z is sampled from 𝐷1 = 𝑈 ([−𝐵, 𝐵]𝑚) + Sc, whereas in Hybrid 2, the vector z

is sampled from 𝐷2 = 𝑈 ([−𝐵′, 𝐵′]𝑚). As ∥Sc∥∞ ≤ 𝛼𝑑, we can take 𝐵′ = 𝐵 + 𝛼𝑑.

Assuming that both 𝐵 and 𝐵′ are integers, we have

𝑅𝑎 (𝐷1∥𝐷2) =
(
2𝐵′ + 1
2𝐵 + 1

)𝑄𝑆𝑚
≤

(
1 + 2𝛼𝑑

𝐵

)𝑄𝑆𝑚
, for any 𝑎 ∈ (1,∞).

We obtain that for transiting from Hybrid 1 to Hybrid 2, it suffices to set 𝐵 ≥ Ω(𝑚𝑑𝛼𝑄𝑆).

6.7 THRESHOLD SIGNATURES WITH ADAPTIVE SECURITY

As discussed in Section 6.1, we provide two constructions to improve the selective

security achieved by [BGG+18]. Below, we describe our construction in the ROM, which

satisfies partially adaptive unforgeability (Definition 6.6). We provide our construction

in the standard model with pre-processing that satisfies fully adaptive unforgeability

(Definition 6.5) in Section 6.8.

6.7.1 Construction for Partially Adaptive Unforgeability

We denote our scheme for threshold signatures with partial adaptivity by

pTS = (pTS.KeyGen, pTS.PartSign, pTS.PartSignVerify, pTS.Combine, pTS.Verify).

We use the same building blocks for construction as those used for the non-adaptive

construction. We also use two keyed hash function modelled as random oracles:

𝐻 : {0, 1}𝜆 × {0, 1}∗→Z𝑁𝑞 and 𝐻1 : {0, 1}𝜆 × {0, 1}∗→{0, 1}𝑟 .

Construction

pTS.KeyGen(1𝜆): Upon input the security parameter 𝜆, do the following:

1. Randomly choose 𝐾 ← {0, 1}𝜆 and 𝑁 vectors v1, v2, . . . , v𝑁 ∈ Z𝑁𝑞 such that∑𝑁
𝑖=1 v𝑖 = 0.

2. Generate (Sig.vk,Sig.sk)←Sig.KeyGen(1𝜆) and
(FHE.pk, FHE.sk)←FHE.KeyGen(1𝜆) and share FHE.sk into 𝑁 shares as
(sk1, sk2, . . . , sk𝑁) ← Share(FHE.sk) such that

∑𝑁
𝑖=1 sk𝑖 = FHE.sk.

340

3. Compute an FHE encryption of the signing key as
CTSig.sk = FHE.Enc(FHE.pk,Sig.sk).

4. For each party 𝑃𝑖, randomly choose a tag 𝜏𝑖 ∈ {0, 1}∗, a hash key
hkey𝑖←{0, 1}𝜆 and generate HS public parameters
HS.pp←HS.PrmsGen(1𝜆, 1𝑛) and HS public and signing keys as
(HS.pk,HS.sk)←HS.KeyGen(1𝜆,HS.pp). Here, 𝑛 is the length of input to
PartSign circuit which depends on (FHE.sk, 𝐾, v𝑖, hkey𝑖).

5. Compute (𝜋𝜏𝑖 , 𝜋𝑖) = HS.Sign(HS.sk, (sk𝑖, 𝐾, v𝑖, hkey𝑖), 𝜏𝑖).

6. Output TSig.pp = (FHE.pk,HS.pp,HS.pk,CTSig.sk, {𝜏𝑖, 𝜋𝜏𝑖 }𝑁𝑖=1), TSig.vk =

Sig.vk, TSig.sk = {TSig.sk𝑖 = (sk𝑖, 𝐾, v𝑖, hkey𝑖, 𝜋𝑖)}𝑁𝑖=1.

pTS.PartSign(TSig.pp, TSig.sk𝑖, 𝑀): Upon input the public parameters TSig.pp, the

key share TSig.sk𝑖 = (sk𝑖, 𝐾, v𝑖, hkey𝑖, 𝜋𝑖) and a message 𝑀 , do the following:

1. Compute 𝑢𝑖 = 𝐻1(hkey𝑖, 𝑀) and sample 𝑒′
𝑖
←D𝑠 (𝑢𝑖).

2. Let C𝑀 be the signing circuit, with message 𝑀 being hardcoded. Compute
an FHE encryption of signature 𝜎𝑀 as
CT𝜎𝑀 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk).

3. Compute 𝑟𝑖,𝑀 = 𝐻 (𝐾, 𝑀)𝑇v𝑖 and 𝜎𝑖,𝑀 = FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖,𝑀 +
𝑒′
𝑖
.

4. This step computes a homomorphic signature �̃�𝑖,𝑀 on partial signature 𝜎𝑖,𝑀
to provide robustness (Definition 6.8).
LetCPS be the circuit to compute FHE.decode0(sk𝑖,CT𝜎𝑀)+𝐻 (𝐾, 𝑀)𝑇v𝑖+𝑒′𝑖
in which CT𝜎𝑀 is hardcoded and the key share TSig.sk𝑖 is given as the input.
Compute 𝜋∗

𝑖,𝑀
= HS.SignEval(HS.pp, CPS, 𝜋𝜏𝑖 , (sk𝑖, 𝐾, v𝑖, hkey𝑖), 𝜋𝑖) and

�̃�𝑖,𝑀 = HS.Hide(HS.pk, 𝜎𝑖,𝑀 , 𝜋∗𝑖,𝑀).

5. Output 𝑦𝑖,𝑀 = (𝜎𝑖,𝑀 , �̃�𝑖,𝑀).

The algorithms pTS.PartSignVerify, pTS.Combine and pTS.Verify are identical

to the corresponding algorithms in section 6.5.1.

Correctness

The correctness can be argued in the same way as that in Section 6.5.1. The

pTS.Combine algorithm outputs FHE.decode1(
∑𝑁
𝑖=1 𝜎𝑖,𝑀), where

341

𝜎𝑖,𝑀 = FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑒′
𝑖
+ 𝑟𝑖,𝑀 . First observe that∑𝑁

𝑖=1 𝑟𝑖,𝑀 =
∑𝑁
𝑖=1 𝐻 (𝐾, 𝑀)𝑇v𝑖 = 𝐻 (𝐾, 𝑀)𝑇 ∑𝑁

𝑖=1 v𝑖 = 0, because
∑𝑁
𝑖=1 v𝑖 = 0. Hence,

FHE.decode1(
∑𝑁
𝑖=1 𝜎𝑖,𝑀) = FHE.decode1((

∑𝑁
𝑖=1 FHE.decode0(sk𝑖,CT𝜎𝑀)

+𝑒′
𝑖
) + ∑𝑁

𝑖=1 𝑟𝑖,𝑀) = FHE.decode1(
∑𝑁
𝑖=1(FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑒′𝑖) + 0) = 𝜎𝑀 ,

where the last equality can be derived in the same way as in Section 6.5.1.

6.7.2 Unforgeability

We prove that the above construction satisfy partially adaptive unforgeability via the

following theorem.

Theorem 6.16. Assume the signature scheme Sig satisfies unforgeability, FHE is a

semantically secure fully homomorphic encryption scheme (Definition 6.12), HS is

context hiding homomorphic signature scheme (Definition 6.21) and Share satisfies

privacy (Definition 6.28). Then the pTS construction above satisfies partially adaptive

unforgeability (Definition 6.6) in ROM if the flooding error is of size poly(𝜆)
√
𝑄, where

𝑄 is the upper bound on the number of signing queries.

Proof. The theorem can be proved using the following hybrids:

Hybrid0 and Hybrid1 are the same as that in the proof of Theorem 6.4.

Hybrid2: Same as Hybrid1, except that the randomness 𝑢𝑖 used in sampling 𝑒′
𝑖

in

𝜎𝑖,𝑀 is chosen uniformly randomly from {0, 1}𝑟 and then 𝐻1 is programmed as

𝐻1(hkey𝑖, 𝑀) = 𝑢𝑖. For random oracle queries for hash 𝐻1 by the adversaryA on

an input 𝑥, the challenger first checks if 𝐻1(𝑥) is already set. If so, then returns

that value else chooses a value uniformly randomly from {0, 1}𝑟 and saves and

returns it.

Hybrid3: Same as Hybrid2 except that the value of𝐻 (𝐾, 𝑀) for each 𝑀 in pre corruption

signing query is set in the reverse order, i.e., firstly partial signatures are computed

342

and then 𝐻 (𝐾, 𝑀) is set accordingly as follows:

1. The challenger computes CT𝜎𝑀 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk).

2. It then computes FHE.decode0(FHE.sk,CT𝜎𝑀) and generates 𝑁 shares as
{𝑠𝑖,𝑀}𝑁𝑖=1 ← Share(FHE.decode0(FHE.sk,CT𝜎𝑀)).

3. Returns partial signatures as {𝜎𝑖,𝑀 = 𝑠𝑖,𝑀 + 𝑒′𝑖}𝑁𝑖=1. Also, if a message 𝑀 is
repeated for signing query, then the challenger uses same {𝑠𝑖,𝑀}𝑁𝑖=1 shares of
FHE.decode0(FHE.sk,CT𝜎𝑀) again.

4. When the adversary A outputs the set 𝑆 of corrupted parties, the challenger
first programs the value of 𝐻 (𝐾, 𝑀) for each 𝑀 in pre corruption signing
queries as described next, and then provides key shares for 𝑖 ∈ 𝑆 to A.

• Programming 𝐻 (𝐾, 𝑀): ∀𝑖 ∈ [𝑁], compute
𝑟𝑖,𝑀 = 𝑠𝑖,𝑀 − FHE.decode0(sk𝑖,CT𝜎𝑀) and solve for vector b𝑀 ∈ Z𝑁𝑞
such that ∀ 𝑖 ∈ [𝑁], b𝑇

𝑀
v𝑖 = 𝑟𝑖,𝑀 . Set 𝐻 (𝐾, 𝑀) = b𝑀 . Note that since

there are 𝑁 − 1 independent equations in 𝑁 unknowns, such a b𝑀 exists
and can be computed.

5. To answer a random oracle query for hash function 𝐻 on input 𝑥, the
challenger first checks if the value is already set, if so then returns that value,
else randomly samples a fresh vector r𝑥 and sets and returns 𝐻 (𝑥) = r𝑥 .

Hybrid4: Same as Hybrid3, except that now the signing queries are answered differently.

For each pre-corruption signing query for a message 𝑀 , the challenger computes

𝜎𝑖,𝑀 as follows:

1. Computes 𝜎𝑀 = Sig.Sign(Sig.sk, 𝑀) and generates random shares of
𝜎𝑀 ⌊𝑞/2⌉ as {𝑠𝑖,𝑀}𝑁𝑖=1 ← Share(𝜎𝑀 ⌊𝑞/2⌉) such that∑𝑁
𝑖=1 𝑠𝑖,𝑀 = 𝜎𝑀 ⌊𝑞/2⌉.

2. Returns 𝜎𝑖,𝑀 = 𝑠𝑖,𝑀 + 𝑒′𝑖, where 𝑒′
𝑖
← D𝑠

When A outputs the set 𝑆 of corrupted parties, the challenger does the following:

1. Let 𝑃𝑟𝑒𝑄 be the set of messages for which signing queries were made
before. Then for each 𝑀 ∈ 𝑃𝑟𝑒𝑄 it does the following. For each 𝑖 ∈ 𝑆,
computes 𝑟𝑖,𝑀 = 𝑠𝑖,𝑀 − FHE.decode0(sk𝑖,CT𝜎𝑀). Computes b𝑀 such that
∀ 𝑖 ∈ 𝑆, b𝑇

𝑀
v𝑖 = 𝑟𝑖,𝑀 . Sets 𝐻 (𝐾, 𝑀) = b𝑀 . Such a b𝑀 exists and can be

computed since there are only 𝑁 − 1 equations to satisfy in 𝑁 unknowns.

343

2. Returns the secret key shares {TSig.sk𝑖}𝑖∈𝑆.

For each post corruption signing query on message 𝑀, the challenger does the

following. Let the honest party be 𝑃𝑎, i.e. 𝑆 = [𝑁] \ {𝑎}.

1. Computes CT𝜎𝑀 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk) and
𝜎𝑀 = Sig.Sign(Sig.sk, 𝑀).

2. For each 𝑖 ∈ 𝑆, computes 𝜎′
𝑖,𝑀

= FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇v𝑖
and 𝜎𝑖,𝑀 = 𝜎′

𝑖,𝑀
+ 𝑒′

𝑖
, where 𝑒′

𝑖
←D𝑠.

3. Returns 𝜎𝑎,𝑀 = 𝜎𝑀 ⌊𝑞/2⌉ −
∑
𝑖∈𝑆 𝜎

′
𝑖,𝑀
+ 𝑒′𝑎, where 𝑒′𝑎←D𝑠.

Hybrid5 and Hybrid6: are the same as Hybrid4 and Hybrid5, respectively, defined in the

proof of Theorem 6.4.

Indistinguishability of Hybrids. Now we show that the consecutive hybrids are

indistinguishable.

Claim 6.17. If the underlying homomorphic signature scheme HS is context hiding then

Hybrid0 and Hybrid1 are indistinguishable.

Proof. The two hybrids differ only in the way �̃�𝑖,𝑀 is computed. In Hybrid0 it is computed

using HS.SignEval while in Hybrid1 it is generated by HS simulator. Hence, from the

context hiding property of HS, the two hybrids are indistinguishable. ■

Claim 6.18. If 𝐻1 is modeled as random oracle then Hybrid1 and Hybrid2 are

indistinguishable.

Proof. The two hybrids differ only in the way 𝑢𝑖s are computed while computing partial

signatures. In Hybrid1, 𝑢𝑖 = 𝐻1(hkey𝑖, 𝑀), while in Hybrid2, it is chosen uniformly

randomly and then 𝐻1 is programmed accordingly. Since 𝐻1 is modeled as a random

oracle the two hybrids are indistinguishable in the adversary’s view. ■

Claim 6.19. Hybrid2 and Hybrid3 are statistically indistinguishable.

344

Proof. The two hybrids differ only in the order in which𝐻 (𝐾, 𝑀) and 𝑟𝑖,𝑀 = 𝐻 (𝐾, 𝑀)𝑇v𝑖

are computed in pre-corruption queries. In Hybrid2, 𝐻 (𝐾, 𝑀) is set first, and then 𝑟𝑖,𝑀 is

computed accordingly. In Hybrid3, 𝑟𝑖,𝑀 is fixed first, and then 𝐻 (𝐾, 𝑀) is programmed

after the adversary reveals the set 𝑆 of corrupted parties such that 𝐻 (𝐾, 𝑀)𝑇v𝑖 = 𝑟𝑖,𝑀 is

satisfied for each 𝑖 ∈ 𝑆. Next, we show that this change in the order of computation does

not change the adversary’s view.

Let 𝑃𝑎 be the honest party. Then, observe that the adversary receives the following

values: 𝐻 (𝐾, 𝑀), {sk𝑖}𝑖∈[𝑁]\{𝑎}, {v𝑖}𝑁𝑖=1 and {𝜎𝑖,𝑀}𝑁𝑖=1 in the two hybrids. We show that

their joint distribution in the two hybrids is indistinguishable.

Firstly, consider 𝜎 (2)
𝑖,𝑀

and 𝜎
(3)
𝑖,𝑀

, where superscripts indicate the respective hybrids.

Recall that 𝜎 (2)
𝑖,𝑀

= 𝑠
(2)
𝑖,𝑀
+ 𝑒′

𝑖,𝑀
and 𝜎 (3)

𝑖,𝑀
= 𝑠
(3)
𝑖,𝑀
+ 𝑒′

𝑖,𝑀
where the added noise is sampled

from the same distribution in both the hybrids. Hence we focus on 𝑠
(2)
𝑖,𝑀

and 𝑠
(3)
𝑖,𝑀

.

𝑠
(2)
𝑖,𝑀

= FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)Tv𝑖. Recall that {sk𝑖}𝑖∈[𝑁] are random

secret shares of FHE.sk and {v𝑖}𝑖∈[𝑁] are random secret shares of 0. Hence, by linearity

property of Share, {FHE.decode0(sk𝑖,CT𝜎𝑀)}𝑖∈[𝑁] are secret shares of

FHE.decode0(FHE.sk,CT𝜎𝑀), {𝐻 (𝐾, 𝑀)Tv𝑖}𝑖∈[𝑁] are secret shares of 0 and hence

{s(2)
𝑖,𝑀
}𝑖∈[𝑁] are secret shares of FHE.decode0(FHE.sk,CT𝜎𝑀). Moreover, since 𝐻 is

modeled as a random oracle, we have that {𝐻 (𝐾, 𝑀)Tv𝑖}𝑖∈[𝑁] is a random secret sharing

of 0, due to which 𝑠(2)
𝑖,𝑀

are a random secret sharing of FHE.decode0(FHE.sk,CT𝜎𝑀).

On the other hand, {𝑠(3)
𝑖,𝑀
}𝑖∈[𝑁] are also random secret shares of

FHE.decode0(FHE.sk,CT𝜎𝑀), by design. Hence, they have the same distribution.

Next, observe that the adversary has sk𝑖 for 𝑖 ∈ [𝑁] \ {𝑎} and hence it can compute

𝑟𝑖,𝑀 = 𝑠𝑖,𝑀 − FHE.decode0(sk𝑖,CT𝜎𝑀) which is supposed to be equal to 𝐻 (𝐾, 𝑀)Tv𝑖

for 𝑖 ∈ [𝑁] \ {𝑎}. Thus, given v𝑖, sk𝑖, 𝑠𝑖,𝑀 for 𝑖 ∈ [𝑁] \ {𝑎}, 𝐻 (𝐾, 𝑀) is a random

vector from the set {b : bTv𝑖 = 𝑠𝑖,𝑀 − FHE.decode0(sk𝑖,CT𝜎𝑀) ∀ 𝑖 ∈ [𝑁] \ {𝑎}}.

Again, the same is true for 𝐻 (𝐾, 𝑀) in Hybrid3 by design. Hence, the joint distribution

345

of adversary’s view in the two hybrids is indistinguishable.

Finally, since the adversary gets to know the secret 𝐾 only after revealing the set 𝑆 of

corrupted parties, there is only negligible probability that the adversary makes a random

oracle query for input (𝐾, 𝑀) before revealing the set 𝑆 (which could lead to inconsistent

values for 𝐻 (𝐾, 𝑀)). Hence, setting 𝐻 (𝐾, 𝑀) for pre-corruption queries in the two

hybrids in the above described ways, does not change adversary’s view. ■

Claim 6.20. Assume that the flooding error is of the order poly(𝜆) ·
√
𝑄. Then if there

is an adversary that can win the unforgeability game in Hybrid3 with probability 𝜖 , then

its probability of winning the game in Hybrid4 is at least 𝜖2/2.

Proof. Let the adversary makes 𝑄 signing queries and let the𝑃𝑎 be the honest party.

Then in the adversary’s view the two hybrids differ only in the error term in 𝜎𝑎,𝑀 , as

shown below.

Let 𝑒′𝑎 ← D𝑠. In Hybrid3, for pre-corruption queries, the partial signature 𝜎𝑎,𝑀 is

computed as follows:

𝜎𝑎,𝑀 = 𝑠𝑎,𝑀 + 𝑒′𝑎

=

𝑁∑︁
𝑖=1

𝑠𝑖,𝑀 −
∑︁

𝑖∈[𝑁]\{𝑎}
𝑠𝑖,𝑀 + 𝑒′𝑎

= FHE.decode0(FHE.sk,CT𝜎𝑀) −
∑︁

𝑖∈[𝑁]\{𝑎}
𝑠𝑖,𝑀 + 𝑒′𝑎

= FHE.decode0(FHE.sk,CT𝜎𝑀) −
∑︁

𝑖∈[𝑁]\{𝑎}
(FHE.decode0(sk𝑖,CT𝜎𝑀)

+𝐻 (𝐾, 𝑀)Tv𝑖) + 𝑒′𝑎

= FHE.decode0(FHE.sk,CT𝜎𝑀) −
𝑁∑︁
𝑖=1

FHE.decode0(sk𝑖,CT𝜎𝑀)

+FHE.decode0(sk𝑎,CT𝜎𝑀) −
𝑁∑︁
𝑖=1

𝐻 (𝐾, 𝑀)𝑇v𝑖 + 𝐻 (𝐾, 𝑀)Tv𝑎 + 𝑒′𝑎

= FHE.decode0(FHE.sk,CT𝜎𝑀) − FHE.decode0(
𝑁∑︁
𝑖=1

sk𝑖,CT𝜎𝑀)

346

+FHE.decode0(sk𝑎,CT𝜎𝑀) −
𝑁∑︁
𝑖=1

𝐻 (𝐾, 𝑀)𝑇v𝑖 + 𝐻 (𝐾, 𝑀)𝑇v𝑎 + 𝑒′𝑎

= FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇v𝑎 + 𝑒′𝑎

(∵
𝑁∑︁
𝑖=1

v𝑖 = 0;
𝑁∑︁
𝑖=1

sk𝑖 = FHE.sk)

In Hybrid3, for any post-corruption signing query on message 𝑀, the partial signature

𝜎𝑎,𝑀 is computed as:

FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)Tv𝑎 + 𝑒′𝑎

In Hybrid4, for pre-corruption queries, we have

𝜎𝑎,𝑀 = 𝑠𝑎,𝑀 + 𝑒′𝑎

= 𝜎𝑀 ⌊𝑞/2⌉ −
∑︁

𝑖∈[𝑁]\{𝑎}
𝑠𝑖,𝑀 + 𝑒′𝑎

= 𝜎𝑀 ⌊𝑞/2⌉ −
∑︁

𝑖∈[𝑁]\{𝑎}
(FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇v𝑖) + 𝑒′𝑎

= 𝜎𝑀 ⌊𝑞/2⌉ −
𝑁∑︁
𝑖=1

FHE.decode0(sk𝑖,CT𝜎𝑀) −
𝑁∑︁
𝑖=1

𝐻 (𝐾, 𝑀)𝑇v𝑖

+ FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇v𝑎 + 𝑒′𝑎

= 𝜎𝑀 ⌊𝑞/2⌉ − FHE.decode0(
𝑁∑︁
𝑖=1

sk𝑖,CT𝜎𝑀) − 𝐻 (𝐾, 𝑀)𝑇
𝑁∑︁
𝑖=1

v𝑖

+ FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇v𝑎 + 𝑒′𝑎

= 𝜎𝑀 ⌊𝑞/2⌉ − FHE.decode0(FHE.sk,CT𝜎𝑀) + FHE.decode0(sk𝑎,CT𝜎𝑀)

+𝐻 (𝐾, 𝑀)𝑇v𝑎 + 𝑒′𝑎

= FHE.decode0(sk𝑎,CT𝜎) + 𝐻 (𝐾, 𝑀)𝑇v𝑎 + 𝑒 + 𝑒′𝑎

In Hybrid4, for any post-corruption query for a message 𝑀 , we have

𝜎𝑎,𝑀 = 𝑠𝑎,𝑀 + 𝑒′𝑎

= 𝜎𝑀 . ⌊𝑞/2⌉ −
∑︁

𝑖∈[𝑁]\{𝑎}
(FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇v𝑖) + 𝑒′𝑎

347

= 𝜎𝑀 . ⌊𝑞/2⌉ −
𝑁∑︁
𝑖=1
(FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇v𝑖)

+FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇v𝑎 + 𝑒′𝑎

= 𝜎𝑀 . ⌊𝑞/2⌉ − FHE.decode0(
𝑁∑︁
𝑖=1

sk𝑖,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇
𝑁∑︁
𝑖=1

v𝑖

+FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇v𝑎 + 𝑒′𝑎

= 𝜎𝑀 . ⌊𝑞/2⌉ − FHE.decode0(FHE.sk,CT𝜎𝑀) + FHE.decode0(sk𝑎,CT𝜎𝑀)

+𝐻 (𝐾, 𝑀)𝑇v𝑎 + 𝑒′𝑎

= FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝐻 (𝐾, 𝑀)𝑇v𝑎 + (𝑒′𝑎 + 𝑒).

Thus, the difference in the two hybrids is in the error terms in 𝜎𝑎,𝑀 . In Hybrid3, the error

is 𝑒′𝑎, while in Hybrid4, it is 𝑒′𝑎 + 𝑒. This is the same case as in Claim 6.7 in Section 6.5.

Hence we can use exactly the same analysis using Rényi Divergence as in the proof of

Claim 6.7, to complete the proof. ■

Claim 6.21. Assuming the privacy property of secret sharing scheme Share, Hybrid4

and Hybrid5 are indistinguishable.

Proof. The only difference between Hybrid4 and Hybrid5 is in the way the key shares

sk1, . . . , sk𝑁 are generated. In Hybrid4, {sk𝑖}𝑖∈[𝑁]←Share(FHE.sk), while in Hybrid5,

{sk𝑖}𝑖∈[𝑁]←Share(0). Since the adversary is given the key shares only for an invalid set

of parties, the two distributions are identical due to the privacy property of secret sharing

scheme Share. ■

Claim 6.22. Assume that FHE is semantically secure. Then Hybrid5 and Hybrid6 are

computationally indistinguishable.

Proof. The proof is via standard reduction to FHE security and is similar to the proof of

Claim 6.9. ■

348

Finally the proof for Theorem 6.16 completes with the following claim.

Claim 6.23. If the underlying signature scheme Sig is unforgeable, then the advantage

of the adversary in the unforgeability game of Definition 6.6 is negligible in Hybrid6.

Proof. The proof is via standard reduction to Sig security and is similar to the proof of

Claim 6.10. ■

6.7.3 Robustness

It can be seen that if HS is a multi data secure homomorphic signature, then the

construction of pTS satisfies robustness. The proof is the same as that for Claim 6.11.

6.8 FULLY ADAPTIVE UNFORGEABILITY IN THE PREPROCESSING

MODEL

In this section we provide our construction for fully adaptive threshold signatures in

the standard model but with pre-processing, where signers must be provided correlated

randomness of length proportional to the number of signing queries. We emphasize that

this correlated randomness is independent of messages, and that this processing can be

done in an offline phase before any messages are made available. The informed reader

may notice similarities with the “MPC with Preprocessing” model (please see [FKOS15]

and references therein).

6.8.1 Construction

The construction in standard model differs from the one in ROM in the way the random

values 𝑟𝑖, 𝑗 are chosen. In this construction, 𝑟𝑖, 𝑗 is sampled directly for all possible signing

query 𝑗 in such a way that for each 𝑗 ,
∑𝑁
𝑖=1 𝑟𝑖, 𝑗 = 0. This helps to achieve full adaptivity

because when key shares of one or more parties in 𝑆′ ⊆ [𝑁] are revealed to the adversary,

it does not fix 𝑟𝑖, 𝑗 values for 𝑖 ∈ [𝑁] \ 𝑆′. This gives the challenger the flexibility to

simulate partial signature for uncorrupted parties and adjust their randomness 𝑟𝑖, 𝑗 later.

349

Let 𝑄 be the maximum number of signing queries. For a stateless scheme, we use a

collision resistant hash function 𝐻{0, 1}∗→[𝑄], which maps a message to an index in

[𝑄]. We also use 𝐻1 : {0, 1}𝜆 × {0, 1}∗→{0, 1}𝑟 modelled as random oracle as also

used in the partially adaptive construction. We denote our scheme for full adaptivity by

fTS = (fTS.KeyGen, fTS.PartSign, fTS.PartSignVerify, fTS.Combine, fTS.Verify).

Construction

fTS.KeyGen(1𝜆): Upon input the security parameter 𝜆, do the following:

1. For 𝑗 = 1 to 𝑄, generate random values {𝑟𝑖 𝑗 }𝑁𝑖=1 ← Share(0), such that∑𝑁
𝑖=1 𝑟𝑖 𝑗 = 0.

2. Generate (Sig.vk,Sig.sk)←Sig.KeyGen(1𝜆), (FHE.pk, FHE.sk) ←
FHE.KeyGen(1𝜆) and 𝑁 shares of FHE.sk as
(sk1, sk2, . . . , sk𝑁) ← Share(FHE.sk) such that

∑𝑁
𝑖=1 sk𝑖 = FHE.sk.

3. Compute an FHE encryption of Sig.sk as
CTSig.sk←FHE.Enc(FHE.pk,Sig.sk).

4. For each 𝑃𝑖, sample a tag 𝜏𝑖 ← {0, 1}∗ and a hash key hkey𝑖←{0, 1}𝜆.
Generate HS public parameters HS.pp←HS.PrmsGen(1𝜆, 1𝑛), and the
public and the signing keys as (HS.pk,HS.sk)←HS.KeyGen(1𝜆,HS.pp).
Here, 𝑛 is the bit length of input to PartSign circuit which depends on
(FHE.sk, 𝑟𝑖 𝑗 , hkey𝑖).

5. Compute (𝜋𝜏𝑖 , 𝜋𝑖) = HS.Sign(HS.sk, (sk𝑖, {𝑟𝑖 𝑗 } 𝑗∈[𝑄] , hkey𝑖), 𝜏𝑖) for each
𝑖 ∈ [𝑁].

6. Output TSig.pp = (FHE.pk,HS.pp,HS.pk,CTSig.sk, {𝜏𝑖, 𝜋𝜏𝑖 }𝑁𝑖=1), TSig.vk =

Sig.vk, TSig.sk = {TSig.sk𝑖 = (sk𝑖, {𝑟𝑖 𝑗 } 𝑗∈[𝑄] , hkey𝑖, 𝜋𝑖)}𝑁𝑖=1.

fTS.PartSign(TSig.pp, TSig.sk𝑖, 𝑀): Upon input the public parameters TSig.pp, a

partial signing key TSig.sk𝑖 = (sk𝑖, {𝑟𝑖 𝑗 } 𝑗∈[𝑄] , hkey𝑖, 𝜋𝑖) and a message 𝑀 , do the

following:

1. Compute 𝑗 = 𝐻 (𝑀), 𝑢𝑖 = 𝐻1(hkey𝑖, 𝑀) and sample 𝑒′
𝑖
←D𝑠 (𝑢𝑖).

2. Let C𝑀 be the Sig.Sign circuit with message 𝑀 being hardcoded. Compute

350

FHE encryption of signature 𝜎𝑀 as
CT𝜎𝑀←FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk).

3. Compute 𝜎𝑖,𝑀 = FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖 𝑗 + 𝑒′𝑖.

4. This step computes a homomorphic signature �̃�𝑖,𝑀 on partial signature 𝜎𝑖,𝑀
to provide robustness (Definition 6.8).
Let CPS be a circuit with CT𝜎𝑀 being hardcoded and which takes as input
the key share TSig.sk𝑖 to compute FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖 𝑗 + 𝑒′𝑖.

• Compute 𝜋∗
𝑖,𝑀

= HS.SignEval(HS.pp, CPS, 𝜋𝜏𝑖 , (sk𝑖, 𝑟𝑖 𝑗 , hkey𝑖), 𝜋𝑖).

• Compute �̃�𝑖,𝑀 = HS.Hide(HS.pk, 𝜎𝑖,𝑀 , 𝜋∗𝑖,𝑀).

5. Output 𝑦𝑖,𝑀 = (𝜎𝑖,𝑀 , �̃�𝑖,𝑀).

fTS.PartSignVerify(TSig.pp, 𝑀, 𝑦𝑖,𝑀): Upon input the public parameters TSig.pp,

message 𝑀 , and a partial signature 𝑦𝑖,𝑀 , the verifier does the following.

1. Computes CT𝜎𝑀 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk).

2. Defines circuit CPS as described before and computes
𝛼 = HS.Process(HS.pp, CPS).

3. Parses 𝑦𝑖,𝑀 as (𝜎𝑖,𝑀 , �̃�𝑖,𝑀) and outputs
HS.HVerify(HS.pp, 𝛼, 𝜎𝑖,𝑀 , 𝜏𝑖, (𝜋𝜏𝑖 , �̃�𝑖,𝑀)).

fTS.Combine(TSig.pp, {𝑦𝑖,𝑀}𝑖∈[𝑁]): Upon input the public parameters TSig.pp and

a set of partial signatures {𝑦𝑖,𝑀}𝑖∈[𝑁] , parse 𝑦𝑖,𝑀 as (𝜎𝑖,𝑀 , �̃�𝑖,𝑀) and output

𝜎𝑀 = FHE.decode1(
∑𝑁
𝑖=1 𝜎𝑖,𝑀).

fTS.Verify(TSig.vk, 𝑀, 𝜎𝑀): Upon input a verification key TSig.vk, a message 𝑀 and

signature 𝜎𝑀 , output Sig.Verify(TSig.vk, 𝑀, 𝜎𝑀).

Correctness

From the correctness of FHE.Eval, CT𝜎𝑀 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk) is the

encryption of C𝑀 (Sig.sk) = Sig.Sign(Sig.sk, 𝑀) = 𝜎𝑀 , which decrypts with the FHE

351

secret key FHE.sk. So, FHE.decode0(FHE.sk,CT𝜎𝑀) = 𝜎𝑀 ⌊𝑞/2⌉ + 𝑒. The signature

computed by the fTS.Combine algorithm is

FHE.decode1(
𝑁∑︁
𝑖=1

𝜎𝑖,𝑀) = FHE.decode1(
𝑁∑︁
𝑖=1

FHE.decode0(sk𝑖 ,CT𝜎𝑀) +
𝑁∑︁
𝑖=1

𝑟𝑖 𝑗 +
𝑁∑︁
𝑖=1

𝑒′𝑖)

= FHE.decode1(FHE.decode0(
𝑁∑︁
𝑖=1

sk𝑖 ,CT𝜎𝑀) + 0 +
𝑁∑︁
𝑖=1

𝑒′𝑖)

= FHE.decode1(FHE.decode0(FHE.sk,CT𝜎𝑀) +
𝑁∑︁
𝑖=1

𝑒′𝑖)

= FHE.decode1(𝜎𝑀 ⌊𝑞/2⌉ + 𝑒 +
𝑁∑︁
𝑖=1

𝑒′𝑖) = 𝜎𝑀 .

6.8.2 Unforgeability

Theorem 6.24. Assume the signature scheme Sig satisfies unforgeability, FHE is a

CPA secure fully homomorphic encryption scheme (Definition 6.12), HS is context

hiding homomorphic signature scheme (Definition 6.21) and Share satisfies privacy

(Definition 6.28). Then the above construction of fTS satisfies adaptive unforgeability

(Definition 6.5) if the flooding error is of the size poly(𝜆)
√
𝑄, where 𝑄 is the number of

signing queries.

Proof. The security of the construction can be argued using the following hybrids:

Hybrid0: The real world.

Hybrid1 : Same as Hybrid0, except that now instead of using HS.SigEval algorithm to

compute the homomorphic signature �̃�𝑖,𝑀 on 𝜎𝑖,𝑀 , the challenger simulates �̃�𝑖,𝑀

as �̃�𝑖,𝑀 = HS.Sim(HS.sk, 𝛼, 𝜎𝑖,𝑀 , 𝜏𝑖, 𝜋𝜏𝑖), where 𝛼 = HS.Process(HS.pp, CPS).

Hybrid2: Same as Hybrid1, except that now the randomness 𝑢𝑖 used in sampling flooding

noise in PartSign algorithm is chosen uniformly randomly from {0, 1}𝑟 and then

𝐻1 is programmed as 𝐻1(hkey𝑖, 𝑀) = 𝑢𝑖. For random oracle queries by the

352

adversary on an input 𝑥, the challenger first checks if 𝐻1(𝑥) is already set. If so,

then returns it else chooses a value uniformly randomly from {0, 1}𝑟 and saves and

returns it.

Hybrid3: Same as Hybrid2 except that now the 𝑟𝑖 𝑗 values are set in a different order. In

particular, for each 𝑖 ∈ [𝑁], let 𝑃𝑟𝑒𝑄𝑖 be the set of messages for which partial

signatures are computed before corrupting 𝑃𝑖. Then, for each 𝑗 ∈ {𝐻 (𝑀) : 𝑀 ∈

𝑃𝑟𝑒𝑄𝑖}, 𝑟𝑖 𝑗 is set in reverse order, i.e the challenger first computes the partial

signature 𝜎𝑖,𝑀 and then sets the value for 𝑟𝑖,𝐻 (𝑀) as defined below. For any signing

query on message 𝑀 , let 𝑆𝑀 ⊆ [𝑁] be the set of parties corrupted by the adversary

so far. Then to compute 𝜎𝑖,𝑀 , the challenger does the following.

1. If 𝑀 was queried before then returns 𝜎′
𝑖𝑀
+ 𝑒′

𝑖
for each 𝑖 ∈ [𝑁] \ 𝑆𝑀 , where

𝜎′
𝑖,𝑀

is the same value as in the earlier response, but 𝑒′
𝑖
is sampled afresh.

2. Else, computes CT𝜎𝑀 = FHE.Eval(FHE.pk, C𝑀 ,Sig.sk) and does the
following:

• For each 𝑖 ∈ 𝑆𝑀 , computes 𝜎′
𝑖,𝑀

= FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖,𝐻 (𝑀)
and sets 𝜎𝑖,𝑀 = 𝜎′

𝑖,𝑀
+ 𝑒′

𝑖
.

• For 𝑖 ∈ [𝑁] \ 𝑆𝑀 ,

• Divide FHE.decode0(FHE.sk,CT𝜎𝑀) −
∑
𝑘∈𝑆𝑀 𝜎

′
𝑘,𝑀

into 𝑁 − |𝑆𝑀 |
random shares, {𝑠𝑖,𝑀}𝑖∈[𝑁]\𝑆𝑀 .

• Set 𝜎′
𝑖,𝑀

= 𝑠𝑖,𝑀 and 𝜎𝑖,𝑀 = 𝜎′
𝑖,𝑀
+ 𝑒′

𝑖
.

3. Return {𝜎𝑖,𝑀}𝑖∈[𝑁]\𝑆𝑀 to the adversary.

When the adversary makes a key query for some 𝑖 ∈ [𝑁], the challenger does the

following.

1. For each 𝑀 ∈ 𝑃𝑟𝑒𝑄𝑖, computes 𝑟𝑖,𝐻 (𝑀) = 𝑠𝑖,𝑀 − FHE.decode0(sk𝑖,CT𝜎𝑀).

2. For 𝑗 ∈ [𝑄] \ {𝐻 (𝑀) : 𝑀 ∈ 𝑃𝑟𝑒𝑄𝑖} chooses 𝑟𝑖, 𝑗 randomly.

353

Hybrid4: Same as Hybrid3, except the following changes: To answer signing query on

any message 𝑀, for each 𝑖 ∈ 𝑆𝑀 , the challenger computes the signatures as in

Hybrid3, but for 𝑖 ∈ [𝑁] \ 𝑆𝑀 the challenger simulates the signatures as follows:

instead of sharing FHE.decode0(FHE.sk,CT𝜎𝑀) −
∑
𝑖∈𝑆𝑀 𝜎

′
𝑖,𝑀

, the challenger

now shares 𝜎𝑀 ⌊𝑞/2⌉ −
∑
𝑖∈𝑆𝑀 𝜎

′
𝑖,𝑀

between the uncorrupted parties as described

below.

1. Compute CT𝜎𝑀 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk) and
𝜎𝑀 = Sig.Sign(Sig.sk, 𝑀).

2. For each 𝑖 ∈ 𝑆𝑀 , compute 𝜎′
𝑖,𝑀

= FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖,𝐻 (𝑀) and
𝜎𝑖,𝑀 = 𝜎′

𝑖,𝑀
+ 𝑒′

𝑖
, where 𝑒′

𝑖
←D𝑠.

3. For uncorrupted parties do the following: divide𝜎𝑀 ⌊𝑞/2⌉−
∑
𝑘∈𝑆𝑀 𝜎

′
𝑘,𝑀

into
𝑁− |𝑆𝑀 | random shares, {𝑠𝑖,𝑀}𝑖∈[𝑁]\𝑆𝑀 . Set 𝜎𝑖,𝑀 = 𝑠𝑖,𝑀 +𝑒′𝑖 for 𝑖 ∈ [𝑁] \𝑆𝑀 .

4. Return 𝜎𝑖,𝑀 for 𝑖 ∈ [𝑁] \ 𝑆𝑀 .

Key queries are answered in the same way as in the previous hybrid.

Hybrid5: Same as Hybrid4, except that now the challenger shares zero vector as

{sk𝑖}𝑁𝑖=1←Share(0) instead of FHE.sk to generate the key share sk𝑖 in TSig.sk𝑖.

Hybrid6: Same as Hybrid5, except that now CTSig.sk in TSig.pp is replaced by CT0 =

FHE.Enc(FHE.pk, 0).
Indistinguishability of Hybrids. Next, we show that consecutive hybrids are

indistinguishable.

Proof for indistinguishability between Hybrid0, Hybrid1 and Hybrid2 is the same as that

in the proof of Theorem 6.16 in Section 6.7.

Claim 6.25. Hybrid2 and Hybrid3 are statistically indistinguishable

Proof. Observe that the two hybrids differ only in the way the {𝑟𝑖, 𝑗 } shares are set. For

any message 𝑀, in Hybrid2, {𝑟𝑖, 𝑗 }𝑖∈[𝑁] ← Share(0), where 𝑗 = 𝐻 (𝑀). In Hybrid3,

354

{𝑟𝑖, 𝑗 }𝑖∈𝑆𝑀 are randomly chosen and for 𝑖 ∈ [𝑁] \ 𝑆𝑀 ,

𝑟𝑖, 𝑗 = 𝑠𝑖, 𝑗 − FHE.decode0(sk𝑖,CT𝜎𝑀), where {𝑠𝑖, 𝑗 }𝑖∈[𝑁]\𝑆𝑀 are obtained by randomly

sharing FHE.decode0(FHE.sk,CT𝜎𝑀) −
∑
𝑘∈𝑆𝑀 (FHE.decode0(sk𝑘 ,CT𝜎𝑀) + 𝑟𝑘, 𝑗)

into 𝑁 − |𝑆𝑀 | shares. Thus,

FHE.decode0(FHE.sk,CT𝜎𝑀) =
∑︁
𝑘∈𝑆𝑀

FHE.decode0(sk𝑘 ,CT𝜎𝑀) +
∑︁
𝑘∈𝑆𝑀

𝑟𝑘, 𝑗 +
∑︁

𝑖∈[𝑁]\𝑆𝑀

𝑠𝑖, 𝑗

=
∑︁
𝑘∈𝑆𝑀

FHE.decode0(sk𝑘 ,CT𝜎𝑀) +
∑︁
𝑘∈𝑆𝑀

𝑟𝑘, 𝑗

+
∑︁

𝑖∈[𝑁]\𝑆𝑀

FHE.decode0(sk𝑖 ,CT𝜎𝑀) +
∑︁

𝑖∈[𝑁]\𝑆𝑀

𝑟𝑖, 𝑗

=
∑︁
𝑖∈[𝑁]

FHE.decode0(sk𝑖 ,CT𝜎𝑀) +
∑︁
𝑖∈[𝑁]

𝑟𝑖, 𝑗

= FHE.decode0(FHE.sk,CT𝜎𝑀) +
∑︁
𝑖∈[𝑁]

𝑟𝑖, 𝑗

This implies
∑
𝑖∈[𝑁] 𝑟𝑖, 𝑗 = 0, and since {𝑠𝑖, 𝑗 }𝑖∈[𝑁]\𝑆𝑀 are random shares, we can conclude

that {𝑟𝑖, 𝑗 }𝑖∈[𝑁] are random shares of 0, which is same as Hybrid2. ■

Claim 6.26. Assume that the flooding error is of the order poly(𝜆) ·
√
𝑄. If there is an

adversary who can win the unforgeability game as per Definition 6.5 in Hybrid3 with

probability 𝜖 , then its probability of winning the game in Hybrid4 is at least 𝜖2/2.

Proof. Let the adversary issues 𝑄 signing queries. Let 𝑃𝑎 be the honest party for some

𝑎 ∈ [𝑁]. Then the two hybrids differ only in the error term in 𝜎𝑎,𝑀 , as shown below.

Consider any signing query for a message 𝑀 . Let 𝑆𝑀 be the set of corrupted parties so

far and let 𝐻 (𝑀) = 𝑗 and 𝑒′𝑎 ← D𝑠. Then,

In Hybrid4, we have:

𝜎𝑎,𝑀 = 𝑠𝑎,𝑀 + 𝑒′𝑎

= 𝜎𝑀 ⌊𝑞/2⌉ −
∑︁
𝑖∈𝑆𝑀

𝜎′𝑖,𝑀 −
∑︁

𝑖∈[𝑁]\𝑆𝑀
𝑖≠𝑎

𝑠𝑖,𝑀 + 𝑒′𝑎

355

= 𝜎𝑀 ⌊𝑞/2⌉ −
∑︁
𝑖∈𝑆𝑀
(FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖 𝑗)

−
∑︁

𝑖∈[𝑁]\𝑆𝑀
𝑖≠𝑎

(FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖 𝑗) + 𝑒′𝑎

= 𝜎𝑀 ⌊𝑞/2⌉ −
∑︁
𝑖∈[𝑁]

FHE.decode0(sk𝑖,CT𝜎𝑀) −
∑︁

𝑖∈[𝑁]\{𝑎}
𝑟𝑖 𝑗

+FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝑒′𝑎

= 𝜎𝑀 ⌊𝑞/2⌉ − FHE.decode0(
∑︁
𝑖∈[𝑁]

sk𝑖,CT𝜎𝑀) −
∑︁

𝑖∈[𝑁]\{𝑎}
𝑟𝑖 𝑗

+FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝑒′𝑎

= 𝜎𝑀 ⌊𝑞/2⌉ − FHE.decode0(FHE.sk,CT𝜎𝑀) −
∑︁
𝑖∈[𝑁]

𝑟𝑖 𝑗 + 𝑟𝑎, 𝑗

+FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝑒′𝑎

= FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝑟𝑎 𝑗 + 𝑒 + 𝑒′𝑎

On the other hand in Hybrid3,

𝜎𝑎,𝑀 = 𝑠𝑎,𝑀 + 𝑒′𝑎

= FHE.decode0(FHE.sk,CT𝜎𝑀) −
∑︁
𝑖∈𝑆𝑀

𝜎′𝑖,𝑀 −
∑︁

𝑖∈[𝑁]\𝑆𝑀
𝑖≠𝑎

𝑠𝑖,𝑀 + 𝑒′𝑎

= FHE.decode0(FHE.sk,CT𝜎𝑀) −
∑︁
𝑖∈𝑆𝑀
(FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖 𝑗)

−
∑︁

𝑖∈[𝑁]\𝑆𝑀
𝑖≠𝑎

(FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖 𝑗) + 𝑒′𝑎

= FHE.decode0(FHE.sk,CT𝜎𝑀) −
∑︁
𝑖∈[𝑁]

FHE.decode0(sk𝑖,CT𝜎𝑀)

−
∑︁

𝑖∈[𝑁]\{𝑎}
𝑟𝑖 𝑗 + FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝑒′𝑎

= FHE.decode0(FHE.sk,CT𝜎𝑀) − FHE.decode0(
∑︁
𝑖∈[𝑁]

sk𝑖,CT𝜎𝑀)

−
∑︁

𝑖∈[𝑁]\{𝑎}
𝑟𝑖 𝑗 + FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝑒′𝑎

= FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝑒′𝑎 −
∑︁

𝑖∈[𝑁]\{1}
𝑟𝑖 𝑗

= FHE.decode0(sk𝑎,CT𝜎𝑀) + 𝑟𝑎 𝑗 + 𝑒′𝑎

356

In the third step, 𝜎′
𝑖,𝑀

is computed as FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖 𝑗 , while 𝑠𝑖,𝑀 is

replaced with FHE.decode0(sk𝑖,CT𝜎𝑀) + 𝑟𝑖 𝑗 because of the way 𝑟𝑖, 𝑗 is set. In the last

step we replace −∑
𝑖∈[𝑁]\{𝑎} 𝑟𝑖 𝑗 by 𝑟𝑎 𝑗 because

∑
𝑖∈[𝑁] 𝑟𝑖 𝑗 = 0. However note that 𝑟𝑎 𝑗 is

never actually set since TSig.sk𝑎 is never queried for.

Thus, the difference in the two hybrids is in the error terms in 𝜎𝑎. In Hybrid3, the error is

𝑒′𝑎, while in Hybrid4, it is 𝑒′𝑎 + 𝑒. This is the same case as in Claim 6.7 in Section 6.5.

Hence we can use exactly the same analysis using Rényi Divergence as in the proof of

Claim 6.7, to complete the proof. ■

Indistinguishability between Hybrid4,Hybrid5 and Hybrid6 has the same argument as

that for indistinguishability between Hybrid4,Hybrid5 and Hybrid6 in the proof of

Theorem 6.16.

Finally the proof of Theorem 6.24 completes with the following claim.

Claim 6.27. If the underlying signature scheme Sig is unforgeable, then the advantage

of the adversary in the unforgeability game of Definition 6.5 is negligible in Hybrid6.

Proof. The proof is via standard reduction to Sig security and is similar to the proof of

Claim 6.10. ■

6.8.3 Robustness

Claim 6.28. If HS is multi data secure homomorphic signature, then the above

construction of fTS satisfies robustness.

Proof. The proof is same as the proof for Claim 6.11. ■

357

6.9 THRESHOLD SIGNATURES FOR 𝑡-OUT-OF-𝑁 ACCESS STRUCTURES

In this section we give a general construction for 𝑡-𝑜𝑢𝑡-𝑜 𝑓 -𝑁 access structure using

{0, 1}-LSSS.

6.9.1 Construction

The construction uses following building blocks:

1. A special fully homomorphic encryption scheme FHE = (FHE.KeyGen, FHE.Enc,
FHE.Dec, FHE.Eval). Let 𝐵 be the error bound of the FHE scheme.

2. A UF-CMA signature scheme Sig = (Sig.KeyGen,Sig.Sign,Sig.Verify).

3. A 𝑡 out of 𝑁 {0, 1}-LSSS, Share.

We denote our scheme for threshold signatures with partial adaptivity by

tTS = (pTS.KeyGen, tTS.PartSign, tTS.Combine, tTS.Verify). To keep the

construction simple, we have omitted the steps required for robustness. The robustness

can be achieved using homomorphic signatures in the same way as in the previous

constructions.

Construction

tTS.KeyGen(1𝜆, 𝑡): Upon input the security parameter 𝜆 and the threshold 𝑡 do the

following:

1. Generate the verification and signing keys for the signature scheme
(Sig.vk,Sig.sk)← Sig.KeyGen(1𝜆).

2. Generate the keys for the FHE scheme
(FHE.pk, FHE.sk)←FHE.KeyGen(1𝜆) and compute
CTSig.sk = FHE.Enc(FHE.pk,Sig.sk).

3. Share the FHE secret key as: {TSig.sk𝑖}𝑁𝑖=1←Share(FHE.sk, 𝑡). Note that
for {0, 1}-LSSS, each TSig.sk𝑖 can be a set of more than one secret shares.
Notation: Let M be the share matrix (Def. 6.29) of dimension ℓ × 𝑁 . Then
for 𝑖 ∈ [𝑁], 𝑇𝑖 refers to the partition of [ℓ] corresponding to party 𝑃𝑖 and
TSig.sk𝑖 = {sk 𝑗 } 𝑗∈𝑇𝑖 , where sk 𝑗 , is the 𝑗 th (out of ℓ shares) share of FHE.sk.

4. Output TSig.pp = {FHE.pk,CTSig.sk}, TSig.vk = Sig.vk,
TSig.sk = {TSig.sk𝑖}𝑁𝑖=1.

358

tTS.PartSign(TSig.pp, TSig.sk𝑖, 𝑀): Upon input the public parameters TSig.pp, the

partial signing key TSig.sk𝑖 and a message 𝑀 , do the following:

1. Let C𝑀 be the signing circuit, with message 𝑀 being hardcoded. Compute
CT𝜎 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk).

2. Output 𝜎𝑖 = {�̂�𝑗 } 𝑗∈𝑇𝑖 , where �̂�𝑗 = FHE.decode0(sk 𝑗 ,CT𝜎) + 𝑒′𝑗 , where,
𝑒′
𝑗
← D𝑠.

tTS.Combine(TSig.pp, {𝜎𝑖}𝑖∈𝑆): Upon input the public parameters TSig.pp and a set

of partial signatures {𝜎𝑖}𝑖∈𝑆, where 𝜎𝑖 = {�̂�𝑗 } 𝑗∈𝑇𝑖 and 𝑆 ⊆ [𝑁], the Combine

algorithm first checks if |𝑆 | ≥ 𝑡. If not, then outputs ⊥, else computes a minimum

valid share set (Def. 6.30) 𝑇 ⊆ ⋃
𝑖∈𝑆 𝑇𝑖 and outputs

𝜎𝑀 = FHE.decode1(
∑︁
𝑗∈𝑇

�̂�𝑗).

tTS.Verify(TSig.vk, 𝑀, 𝜎𝑀): Upon input the verification key TSig.vk, a message 𝑀

and signature 𝜎𝑀 , output Sig.Verify(TSig.vk, 𝑀, 𝜎𝑀).

Correctness

From the correctness of FHE.Eval algorithm, CT𝜎 = FHE.Eval(FHE.pk, C𝑀 ,CTSig.sk)

is the encryption of C𝑀 (Sig.sk) = Sig.Sign(Sig.sk, 𝑀) = 𝜎𝑀 , which decrypts with the

FHE secret key FHE.sk. So, FHE.decode0(FHE.sk,CT𝜎) = 𝜎𝑀 ⌊𝑞/2⌉ + 𝑒, where 𝑒 is

the error in CT𝜎. The signature computed by the tTS.Combine algorithm is

FHE.decode1(
∑︁
𝑗∈𝑇

�̂�𝑗) = FHE.decode1(
∑︁
𝑗∈𝑇

FHE.decode0(sk 𝑗 ,CT𝜎) +
∑︁
𝑗∈𝑇

𝑒′𝑗)

= FHE.decode1(FHE.decode0(
∑︁
𝑗∈𝑇

sk 𝑗 ,CT𝜎) +
∑︁
𝑗∈𝑇

𝑒′𝑗)

= FHE.decode1(FHE.decode0(FHE.sk,CT𝜎) +
∑︁
𝑗∈𝑇

𝑒′𝑗)

(from the correctness of Share algorithm.)

359

= FHE.decode1(𝜎𝑀 ⌊𝑞/2⌉ + 𝑒 +
∑︁
𝑗∈𝑇

𝑒′𝑗) = 𝜎𝑀 .

6.9.2 Unforgeability

Theorem 6.29. Assume FHE is a secure fully homomorphic encryption as per

Definition 6.12, Share is a {0, 1}-LSSS 𝑡-out-of-𝑁 secret sharing scheme that satisfies

Definition 6.28 and Sig is a signature scheme that satisfies (UF-CMA) unforgeability.

Then the above construction of 𝑡-out-of-𝑁 threshold signature satisfies selective

unforgeability (Definition 6.7).

Proof. We prove the theorem using following hybrids.

Hybrid0 : Same as the real world.

Hybrid1: Same as Hybrid0 except that now the signing queries are answered differently.

1. Upon receiving the (invalid) party set 𝑆∗ from A, the challenger commits to
a maximal invalid share set 𝑇∗ which contains

⋃
𝑖∈𝑆∗ 𝑇𝑖.

2. To answer any partial signing query (𝑀, 𝑖) for message 𝑀 and party 𝑃𝑖
(𝑖 ∈ [𝑁] \ 𝑆∗), the challenger computes �̂�𝑗 for 𝑗 ∈ 𝑇𝑖 as follows:

• If 𝑗 ∈ 𝑇𝑖 ∩ 𝑇∗, then computes �̂�𝑗 = FHE.decode0(sk 𝑗 ,CT𝜎) + 𝑒′𝑗 , i.e.
as in the real world.

• If 𝑗 ∉ 𝑇𝑖 ∩ 𝑇∗, then the challenger does the following: computes a
minimal valid share set 𝑇 ⊆ 𝑇∗ ∪ { 𝑗} (Note that such a set always exists
and contains 𝑗 because 𝑇∗ is a maximal invalid share set and 𝑗 ∉ 𝑇∗,
hence 𝑇∗ ∪ { 𝑗} is a valid share set.) and 𝜎𝑀 = Sig.Sign(Sig.sk, 𝑀).
Then it computes �̂�𝑗 as

�̂�𝑗 = ⌊𝑞/2⌉ · 𝜎𝑀 −
∑︁

𝑗 ′∈𝑇\{ 𝑗}
FHE.decode0(sk 𝑗 ′ ,CT𝜎) + 𝑒′𝑗 .

Hybrid2: Same as Hybrid1, except that instead of sharing FHE.sk the challenger now

360

shares 0 to compute key shares as (TSig.sk1, . . . , TSig.sk𝑁)←Share(0, 𝑡).

Hybrid3: Same as Hybrid2, except that CTSig.sk in TSig.pp is replaced by CT0 =

FHE.Enc(FHE.pk, 0).

Indistinguishability of Hybrids. Next, we show that consecutive hybrids are

indistinguishable.

Claim 6.30. If the flooding error is of the size poly(𝜆)
√
𝑄, then if there is an adversary

who can win the unforgeability game in Hybrid0 with probability 𝜖 , then its probability

of winning the game in Hybrid1 is at least 𝜖2/2.

Proof. Let the number of signing queries that an adversary can make be bounded by 𝑄.

The two hybrids differ only in the error term in partial signatures returned by the

challenger. Let the adversary issues partial signing query for (𝑀, 𝑖). Let 𝑇𝑖, 𝑆∗ and 𝑇∗ be

as defined in Hybrid1. Then for 𝑗 ∈ 𝑇𝑖 ∩ 𝑇∗, �̂�𝑗 is computed in the same way in both the

hybrids. The difference is in the error term in �̂�𝑗 for 𝑗 ∈ 𝑇𝑖 \ 𝑇∗.

Let us focus on one such 𝑗 . Let 𝑒′
𝑗
← D𝑠 and 𝑇 be a minimal valid share set contained

in 𝑇∗ ∪ { 𝑗}.

In Hybrid0, we have:

�̂�𝑗 = FHE.decode0(sk 𝑗 ,CT𝜎) + 𝑒′𝑗 .

In Hybrid1, we have:

�̂�𝑗 = 𝜎𝑀 . ⌊𝑞/2⌉ −
∑︁

𝑗 ′∈𝑇\{ 𝑗}
FHE.decode0(sk 𝑗 ′ ,CT𝜎) + 𝑒′𝑗

= 𝜎𝑀 . ⌊𝑞/2⌉ −
∑︁
𝑗 ′∈𝑇

FHE.decode0(sk 𝑗 ′ ,CT𝜎) + FHE.decode0(sk 𝑗 ,CT𝜎) + 𝑒′𝑗

= 𝜎𝑀 . ⌊𝑞/2⌉ − FHE.decode0(
∑︁
𝑗 ′∈𝑇

sk 𝑗 ′ ,CT𝜎) + FHE.decode0(sk 𝑗 ,CT𝜎) + 𝑒′𝑗

361

= 𝜎𝑀 . ⌊𝑞/2⌉ − FHE.decode0(FHE.sk,CT𝜎) + FHE.decode0(sk 𝑗 ,CT𝜎) + 𝑒′𝑗

= 𝜎𝑀 . ⌊𝑞/2⌉ − 𝜎𝑀 . ⌊𝑞/2⌉ + 𝑒 + FHE.decode0(sk 𝑗 ,CT𝜎) + 𝑒′𝑗

= FHE.decode0(sk 𝑗 ,CT𝜎) + (𝑒′𝑗 + 𝑒)

Thus, the difference in the two hybrids is in the error terms in �̂�𝑗 for 𝑗 ∈ 𝑇𝑖 \ 𝑇∗. In

Hybrid0, the error is 𝑒′
𝑗
, while in Hybrid1, it is 𝑒′

𝑗
+𝑒. The proof uses Rényi Divergence and

is similar to the proof given for Claim 6.7. We refer to the distribution to be considered in

Hybrid1 and Hybrid2 by 𝐷1 and 𝐷2, respectively. Let 𝐸𝑘 be the random variable for error

vector corresponding to the error terms in ciphertexts returned in response to the 𝑘-th

query. Let 𝑌𝑘 be the random variable for 𝑘-th query which is of the form (𝑀𝑘 , 𝑖𝑘). Then

as we discussed in proof of Claim 6.7, 𝐷𝑡 = (E (𝑡)𝑄 ,M
(𝑡)
𝑄
, E (𝑡)

𝑄−1,M
(𝑡)
𝑄−1, . . . , E

(𝑡)
1 ,M (𝑡)1)

for 𝑡 ∈ {1, 2}, where E (𝑡)
𝑘

is the distribution of 𝐸𝑘 in Hybrid𝑡 andM (𝑡)
𝑘

is the distribution

of 𝑌𝑘 in Hybrid𝑡 . From the above analysis, we have that for any given query (𝑀𝑘 , 𝑖𝑘),

E (1)
𝑘

= DZ𝑛𝑘 ,𝑠,0 and E (2)
𝑘

= DZ𝑛𝑘 ,𝑠,e𝑘 , where e𝑘 = (𝑒𝑘 , . . . , 𝑒𝑘) is a vector of length

𝑛𝑘 = |𝑇𝑖𝑘 \ 𝑇∗ | and |𝑒𝑘 | ≤ 𝐵𝑒𝑣𝑎𝑙 and 𝑛𝑘 ≤ ℓ, where ℓ is the number of rows in the share

matrix (see Definition 6.29) and is bounded by poly(𝑁). Then,

𝑅𝑎 (𝐷1∥𝐷2) = 𝑅𝑎 (E (1)𝑄 ,M (1)
𝑄
, . . . , E (1)1 ,M (1)1 ∥ E (2)

𝑄
,M (2)

𝑄
, . . . , E (2)1 ,M (2)1). (6.9)

Applying the multiplicativity property of the Rényi divergence (Lemma 6.1), we obtain

that 𝑅𝑎 (𝐷1∥𝐷1) is bounded from above by

max
𝑥∈𝑋

𝑅𝑎 (E (1)𝑄 |𝑋 = 𝑥 ∥ E (2)
𝑄
|𝑋 = 𝑥) · 𝑅𝑎 (M (1)

𝑄
, . . . , E (1)1 ,M (1)

1 ∥ M (2)
𝑄
, . . . , E (2)1 ,M (2)

1)

= max
𝑥∈𝑋

𝑅𝑎 (DZ𝑛𝑄 ,𝑠,0 |𝑋 = 𝑥 ∥ DZ𝑛𝑄 ,𝑠,e𝑄 |𝑋 = 𝑥) · 𝑅𝑎 (M (1)
𝑄
, . . . , E (1)1 ,M (1)

1 ∥ M (2)
𝑄
, . . . , E (2)1 ,M (2)

1),

(6.10)

where 𝑋 = (𝑌𝑄 , 𝐸𝑄−1, . . . , 𝐸1).

Then applying Lemma 6.2 in Equation (6.10), we get

𝑅𝑎 (𝐷1∥𝐷2) ≤ max
𝑥∈𝑋

exp(𝑎𝜋∥e𝑄 ∥2/𝑠2) · 𝑅𝑎 (M (1)𝑄 , . . . , E (1)1 ,M (1)1 ∥ M (2)
𝑄
, . . . , E (2)1 ,M (2)1)

362

= max
𝑥∈𝑋

exp(𝑎𝜋𝑛𝑄𝑒2
𝑄/𝑠

2) · 𝑅𝑎 (M (1)𝑄 , . . . , E (1)1 ,M (1)1 ∥ M (2)
𝑄
, . . . , E (2)1 ,M (2)1)

≤ exp(𝑎𝜋ℓ𝐵2
𝑒𝑣𝑎𝑙/𝑠

2) · 𝑅𝑎 (M (1)𝑄 , . . . , E (1)1 ,M (1)1 ∥ M (2)
𝑄
, . . . , E (2)1 ,M (2)1).

Further, from the data processing inequality (Lemma 6.1),

𝑅𝑎 (M (1)𝑄 , E (1)
𝑄−1, . . . , E

(1)
1 ,M (1)1 ∥ M (2)

𝑄
, E (2)

𝑄−1, . . . , E
(2)
1 ,M (2)1)

≤ 𝑅𝑎 (E (1)𝑄−1, . . . , E
(1)
1 ,M (1)1 ∥ E (2)

𝑄−1, . . . , E
(2)
1 ,M (2)1),

Hence, we get

𝑅𝑎 (𝐷1∥𝐷2) ≤ exp(𝑎𝜋ℓ𝐵2
𝑒𝑣𝑎𝑙/𝑠

2) · 𝑅𝑎 (E (2)𝑄−1, . . . , E
(2)
1 ,M (2)1 ∥ E (3)

𝑄−1, . . . , E
(3)
1 ,M (3)1)

≤ exp(
𝑎𝜋𝑄ℓ𝐵2

𝑒𝑣𝑎𝑙

𝑠2),

where the second inequality follows from induction.

Setting 𝑠 = 𝐵𝑒𝑣𝑎𝑙 ·
√
ℓ · 𝑄𝜆, we get

𝑅𝑎 (𝐷0∥𝐷1) ≤ exp
(𝑎𝜋
𝜆

)
Therefore,

𝐷1(𝐸) ≥
𝐷0(𝐸)

𝑎
𝑎−1

𝑅𝑎 (𝐷0∥𝐷1)

≥ 𝐷0(𝐸)
𝑎
𝑎−1 exp

(
−𝑎𝜋
𝜆

)
The claim is proved by taking 𝑎 = 2. Thus, if the probability of success in Hybrid0 is

non-negligible then it is non-negligible in Hybrid1 as well. ■

Claim 6.31. Assume that Share is secure sharing scheme, then Hybrid1 and Hybrid2 are

indistinguishable.

Proof. The two hybrids differ only in the generation of key shares. In Hybrid1,

{TSig.sk𝑖}𝑖∈[𝑁] = Share(FHE.sk, 𝑡), while in Hybrid2 {TSig.sk𝑖}𝑖∈[𝑁] is computed as

Share(0, 𝑡). Hence by the privacy property (Definition 6.28) of Share the two hybrids

363

are identical in the adversary’s view since it receives the key shares only for an invalid

set of participants. ■

Claim 6.32. Assume the FHE scheme is secure (Definition 6.12). Then Hybrid2 and

Hybrid3 are indistinguishable.

Proof. The proof is similar to the proof of Claim 6.9. ■

Finally, the proof of Theorem 6.29 completes with the following claim. The proof of the

claim is similar to the proof of Claim 6.10 and is omitted.

Claim 6.33. If the underlying signature scheme Sig is unforgeable, then the the adversary

cannot win the unforgeability game in Hybrid3 with non-negligible advantage.

■

6.9.3 Robustness

To add robustness in the above scheme, we can use context hiding secure homomorphic

signature in the same way as in Section 6.5. In particular, the KeyGen algorithm also

includes in TSig.sk𝑖 a HS signature of party 𝑃𝑖’s key shares. To prove the honest

evaluation of PartSign algorithm, the signer homomorphically computes a signature on

𝜎𝑖,𝑀 and gives it to the verifier. The unforgeability property of HS provides robustness

and its context hiding property ensures that unforgeability of TS is maintained.

6.9.4 Construction for adaptive unforgeability

The above construction of 𝑡-out-of-𝑁 threshold signatures can be made partially adaptive

unforgeable in the same way as in Section 6.7. In particular, for 𝑡-out-of-𝑁 access

structure, the random shares of 0, i.e. vector v𝑖 in TSig.sk𝑖 for 𝑖 ∈ [𝑁] are now computed

as {v𝑖}𝑖∈[𝑁] ← Share(0, 𝑡). Similarly for fully adaptive unforgeablity the construction

can be modified in the same way as in Section 6.8. In particular, for 𝑡-out-of-𝑁 adaptation,

the random shares of 0 in TSig.sk𝑖 are now generated as: ∀ 𝑗 ∈ [𝑄], {𝑟𝑖, 𝑗 }𝑖∈[𝑁] ←

Share(0, 𝑡).

364

CHAPTER 7

PRACTICAL, ROUND-OPTIMAL LATTICE-BASED
BLIND SIGNATURES

7.1 INTRODUCTION

Blind signatures are a fundamental cryptographic primitive with numerous applications

in e-cash [Cha82], e-voting [IKSA03] cryptocurrencies [YL19] and many others. In

a blind signature scheme [Cha82], a user U, holding a public key and message, may

request a signature from a signer S, holding a signing key, such that the signer is not

able to link a message-signature pair with a protocol execution, and the user is not able

to forge signatures even after multiple interactions with the signer.

In this work, we provide a lattice-based blind signature that is overall practical and

supports an unbounded number of signature queries and additionally enjoys optimal

round complexity.

Prior Work. Blind signatures have been studied for several decades, and admit

instantiations from a variety of assumptions

[CP92; PS00; FPS20; KLX22; GG14; GRS+11; Fis06; LNP22a]. Given their wide

applicability, there has been a significant thrust towards obtaining practical efficiency.

Constructions based on standard assumptions are primarily feasibility results

[GRS+11; Fis06] which do not admit practical instantiations. In light of this, in the

number-theoretic regime, reasonable new assumptions were introduced to obtain

efficient constructions. For instance, in the group setting, several candidates

[CP92; Oka92; PS00; HKL19; FPS20] are based on the hardness of the non-standard

ROS/mROS problem (note that the ROS problem was recently broken [BLL+21]) or rely

on the algebraic group and the generic group models [Abe01; TZ22; KLX22], which are

very strong idealizations. The situation is analogous in the regime of pairings

[BLS01; Bol03; GG14] or RSA [BNPS03].

Post-Quantum Regime. Under post-quantum assumptions, the situation is much more

unsatisfactory – even disregarding efficiency, several lattice-based blind signatures

[Rüc10; ABB20b; ABB20a; BECE+20; LSK+19; PHVBS19] were found to have errors

in their security proofs [HKLN20]. The recent construction by Hauck et al. [HKLN20]

aimed to fix the errors but the resulting construction is completely impractical – using their

suggested parameters, the constructed blind signature has size ≈ 7.73MB, for security

against adversaries limited to getting 7 signatures. The very recent work of Lyubashevsky

et al. [LNP22a] achieves better parameters (signature size of about 150KB), but the

cost of their signing algorithm grows linearly in the maximum number of signatures that

an adversary can query. This makes it impractical for situations where the number of

signatures is large or cannot be apriori bounded. Finally, there are constructions based

on codes [BGSS17] and systems of algebraic equations [PSM17] but these are either

impractical or do not satisfy the standard definition of security.

Other Related Work. Subsequent to the public appearance of the present work, del

Pino and Katsumata [dPK22] also provided a two round lattice-based blind signature.

Their techniques and final result are incomparable to ours – on one hand, their signature

is of size 102.6KB, which is more than twice as large as ours, and their transcript size is

851KB, which is about 18 times as large as ours. On the other hand, their construction

relies on the hardness of the standard MSIS and MLWE assumptions, while ours relies

on a new hardness assumption called the one-more-ISIS assumption (described below).

Additionally, they show how to upgrade their construction to be secure in the quantum

random oracle model (albeit at the cost of making the transcript size 770 times larger

than ours) while we do not consider this extension in the present work.

366

7.2 OUR RESULTS.

In this work, we provide the first overall practical, lattice-based blind signature, which

additionally enjoys optimal round complexity. Our scheme relies on the Gentry, Peikert

and Vaikuntanathan (GPV) signature [GPV08] and non-interactive zero-knowledge

proofs for linear relations with small unknowns, which are significantly more efficient

than their general purpose counterparts. Its security stems from a new and arguably

natural assumption that we introduce, called one-more-ISIS. This assumption can be

seen as a lattice analogue of the one-more-RSA assumption by Bellare et al. [JoC’03].

Informally, the one-more-ISIS assumption states that for any polynomially bounded ℓ, it

is difficult to forge ℓ + 1 GPV signatures [GPV08], even when given access to up to ℓ

inversions of arbitrarily chosen syndromes.

Our construction supports an unbounded number of signatures and is overall more

efficient than all prior candidates. While it is based on a new assumption, we believe

that for a practice oriented primitive like blind signatures, it is justified to introduce

plausible assumptions as was done in the number-theoretic regime. We provide detailed

cryptanalysis to justify our new assumption.

7.3 OUR TECHNIQUES

The starting point of our work is a two round blind signature by Fischlin [Fis06],

which relies on the CRS model. To begin, we adapt this scheme to the ROM and

instantiate it with efficient lattice based signatures and non-interactive zero knowledge

proofs (NIZK). Due to the extensive research in efficient lattice based signatures [GPV08;

Lyu12; ESS+19; GLP12; FHK+; BG14; DKL+18] and proof systems [LNSW13; DRS18;

BCR+19; YAZ+19; BLS19; ESS+19; ENS20; LNS21] over the last 15 years, this already

provides a candidate which is “somewhat reasonable” in practice.

367

Adapting Fischlin’s Protocol. Our adaptation of Fischlin’s protocol uses a public key

encryption scheme PKE and a non-interactive zero knowledge argument of knowledge

NIZKAoK as building blocks. To begin, we consider the honest signer model for blindness,

in which it is assumed that the signing and verification keys are generated honestly,

though the signer can deviate arbitrarily from the signing protocol. This assumption will

subsequently be removed. We summarize this protocol next. In what follows, we assume

some familiarity with the signature scheme of Gentry, Peikert and Vaikuntanathan (GPV);

please refer to [GPV08] for a refresher.

In the setup phase, we run (PKE.pk,PKE.sk)←PKE.KeyGen(1𝜆) and discard PKE.sk.

Next, following the GPV signature scheme, we sample a matrix C ∈ Z𝑛×𝑚𝑞 together with a

trapdoor TC ∈ Z𝑚×𝑚 of it. We set the signing key of the blind signature as BSig.sk = TC,

and the verification key as BSig.vk = (C,PKE.pk).

To sign the message g, the user U samples PKE.Enc randomness 𝑟 and computes

ct = PKE.Enc(PKE.pk, 𝜇; 𝑟). It sends ct to the signer. Upon receiving ct, the signer

S computes a GPV signature on ct and returns this to the user. In more detail, it

computes 𝐻 (ct) and uses the trapdoor TC to sample y such that y is short and Cy = 𝐻 (ct)

(modulo 𝑞). It sends y to the user. Here 𝐻 is a hash function, modeled as a random

oracle in the security proof.

Upon receiving y, the user U verifies that y is small and that Cy = 𝐻 (ct) and aborts

if this fails. It generates a non-interactive zero-knowledge argument of knowledge

(NIZKAoK) 𝜋 for following statement: Given BSig.vk = (C,PKE.pk) and 𝜇, there exists

PKE randomness 𝑟 and a vector y such that

∥y∥ ≤ 𝛽 ∧ Cy = 𝐻 (Enc(PKE.pk, 𝜇; 𝑟)).

In the above, 𝛽 is some appropriate bound. Finally, the user outputs 𝜋 as the signature.

To verify the blind signature, the verifier checks that the proof 𝜋 is valid. Thus, the

368

final signature in the blind signature protocol is a NIZKAoK that the user knows a GPV

signature for an encryption of the message.

For full-fledged blindness, it suffices to ensure that PKE.pk has been honestly generated

by the adversarial signer, without a corresponding decryption key. This can be achieved,

for example, by choosing PKE such that PKE.pk is computationally indistinguishable

from uniform, and then setting PKE.pk as the output of another hash function 𝐻′modeled

as a random oracle, on an arbitrary public input.

Since the witness of the NIZKAoK includes the randomness 𝑟 used to compute the

ciphertext, and the ciphertext is inside a (complex) hash function, the statement that

we require to prove becomes very complex and resorting to general purpose NIZKAoK

seems unavoidable. Despite amazing recent advances in efficient general purpose

NIZKAoK [BCR+19; AHIV17], the resulting parameters are formidable – as discussed

in Section 7.5, we estimate a proof size of more than 100KB and prover time complexity

of one hour or more. Even worse, the prover of the NIZKAoK is the user in the blind

signature, who is generally expected to be computationally light. This leads to a blind

signature with very large user time complexity, which is very dissatisfying, both in theory

and practice.

An Efficient Construction from one-more-ISIS. We begin by observing that general

purpose NIZKAoKs are the primary source of inefficiency in the above protocol, and

“lightening” the usage of NIZKAoK would result in a significantly lighter overall protocol.

Intuitively, some usage of NIZKs feels unavoidable if we want to stick to a two round

protocol, but can we simplify the statement that is proved? Our main new idea is to

leverage a new, arguably natural assumption, which we call one-more-ISIS so that the

problematic general purpose NIZKAoK above may be replaced by an efficient lattice

based NIZK for linear statements with small unknowns, for which practical constructions

have been developed recently [ENS20; LNS21; LNP22b]. Armed with these ideas, we

369

provide a simple, overall efficient protocol as follows.

For setup, we run (PKE.pk,PKE.sk)←PKE.KeyGen(1𝜆) and discard PKE.sk. Again,

discarding PKE.sk can be achieved in the real world by setting PKE.pk as the output of

a hash function on a public value (this requires ensuring that the distributions match).

Next, we sample a matrix C together with trapdoor TC as before. At this stage, we depart

from the previous protocol – instead of encrypting the message g to achieve blindness,

we will rely on a much simpler “one time pad” style blinding mechanism. For this, we

sample another matrix A and set BSig.sk = TC, BSig.vk = (C,A,PKE.pk). For full

fledged blindness, we would also need to set A as the output of a random oracle, together

with PKE.pk as discussed above.

For signing a message g, a userU samples a vector x from a suitable distribution such

that Ax is indistinguishable from uniform. It computes t = Ax + 𝐻 (g) and sends t to the

signer. Note that for a suitable choice of x, the term 𝐻 (g) and hence g is hidden from the

view of the signer. Upon receiving t, signer S uses the trapdoor TC to sample a short

vector y such that Cy = t (modulo 𝑞). It sends y to the user. Upon receiving y, user

U verifies that y is short and satisfies Cy = t. It samples PKE.Enc randomness 𝑟 and

computes

ct = PKE.Enc(PKE.pk, x∥y; 𝑟).

It generates a NIZK 𝜋 for following statement: Given BSig.vk = (C,A,PKE.pk), ct and

𝜇, there exist 𝑟 and vectors x, y such that

∥x∥ ≤ 𝛽1 ∧ ∥y∥ ≤ 𝛽2 ∧ Cy − Ax = 𝐻 (g)

∧ ct = PKE.Enc(PKE.pk, x∥y; 𝑟).

In the above, 𝛽1 and 𝛽2 are appropriate parameters and 𝐻 is the random oracle hash

function. The signature is (𝜋, ct), and verification consists in verifying the NIZK 𝜋 as

before.

370

Note that the above statement also involves the hash function 𝐻 which is modeled as a

random oracle in the security proof. But, crucially, the input 𝜇 to 𝐻 is known, implying

that 𝐻 (𝜇) can be seen as a public quantity and this does not make the proof complex.

By using Regev’s encryption scheme [Reg09] (or variants of it), one can ensure that the

statement to be proved is linear in the unknowns, which are themselves required to be

small. As a result, we can circumvent the use of a general-purpose NIZKAoK and can

instead rely on NIZK for linear relations with small unknowns [ENS20; LNS21; LNP22b].

This lets us reduce the signature size to 45.19KB, as against more than 100KB. More

importantly, the cost of generating and verifying the proof becomes very small.

The astute reader may wonder why the witnesses x∥y are being encrypted. In the

unforgeability proof, this allows to circumvent rewinding when extracting GPV preimages

from the output of the adversary. Rewinding would incur a loss that is exponential in the

number of preimages that the attacker requested from the signer. Please see Section 7.6

for more details.

The resultant protocol is extremely simple and appears quite similar to the first protocol

we presented, which in turn is a natural adaptation of Fischlin’s protocol from 2006

[Fis06]. The reader may wonder whether replacing the ciphertext computed by the user

in the first step by a one time pad is the only difference from the first scheme, and if

so, why efficient lattice-based blind signatures have remained elusive for so long. The

key new insight of our work is in formulating a meaningful new assumption that allows

reducing security of this very natural construction to it. We describe our assumption

next and discuss how it implies security of our candidate.

The one-more-ISIS Assumption. The one-more-ISIS𝑞,𝑛,𝑚,𝜎,𝛽 assumption is defined

using the following experiment between a challenger C and adversary A. First, C

uniformly samples a matrix C ∈ Z𝑛×𝑚𝑞 and sends it to A. Then A adaptively makes two

types of queries: syndrome queries, to which C replies with a uniformly sampled vector

371

t ← Z𝑛𝑞, and preimage queries, where A queries a vector t′ ∈ Z𝑛𝑞, to which C replies

with a short vector y′← 𝐷Z𝑚,𝜎 such that Cy′ = t′. If ℓ is the total number of preimage

queries, we ask the adversary to output ℓ + 1 pairs of the form {(y 𝑗 , t 𝑗)} 𝑗∈[ℓ+1] , such that

Cy 𝑗 = t 𝑗 , ∥y 𝑗 ∥ ≤ 𝛽 and t 𝑗 were provided via syndrome queries, for all 𝑗 ∈ [ℓ + 1]. We

say that the one-more-ISIS𝑞,𝑛,𝑚,𝜎,𝛽 problem is hard if the probability thatA succeeds in

the above game is negligible.

Note that this definition is reminiscent to the chosen target version of the one-more-RSA

inversion problem from [BNPS03]. It is also closely related to the 𝑘-SIS problem [BF11]

which was introduced in the context of linearly homomorphic signatures. The 𝑘-SIS

problem is as follows: Given a matrix C ∈ Z𝑛×𝑚𝑞 , and 𝑘 short vectors e1, . . . , e𝑘 ∈ Z𝑚

satisfying A · e𝑖 = 0 mod 𝑞, find a short vector e ∈ Z𝑚 satisfying A · e = 0 mod 𝑞, such

that e is not in Q-span(e1, . . . , e𝑘). In [BF11], the linearly homomorphic signature must

intuitively sign a subspace. Hence for 𝑘-SIS, the goal is to restrict the attacker to the

subspace of the signatures it has already seen; this prevents it from obtaining signatures

of vectors out of the vector subspace that has already been signed. In contrast, in our

one-more-ISIS, we do not want to restrict the subspace and indeed allow the attacker to

query the oracle more times than the dimension of the whole space. But we are more

demanding on the norm of the vector that the attacker must find.

In particular, even if the attacker manages to obtain a trapdoor for the matrix C via

repeated preimage queries to the vector 0, this trapdoor will not be of sufficiently

good quality to lead to an attack. In more detail, such a trapdoor enables sampling

preimages to arbitrary images, and hence the attacker can output ℓ + 1 pairs of the form

{(y 𝑗 , t 𝑗)} 𝑗∈[ℓ+1] , such that Cy 𝑗 = t 𝑗 and t 𝑗 were provided via syndrome queries, for all

𝑗 ∈ [ℓ + 1]. However, it will be unable to meet the constraint that ∥y 𝑗 ∥ ≤ 𝛽. We believe

this assumption is very natural and are optimistic that it may have other applications.

Given our new assumption, one more unforgeability follows very naturally. In the proof,

372

the challenger can sample the PKE public and secret keys using the PKE setup algorithm,

and not discard the secret key. Assuming correctness of PKE and with knowledge of

PKE.sk, the challenger can extract the pairs (x 𝑗 , y 𝑗) corresponding to the signature of

each message 𝜇 𝑗 . We have by soundness of the NIZK that Cy 𝑗 −Ax 𝑗 = 𝐻 (g 𝑗). By setting

A = C · R for a low norm matrix R, we can (i) use the leftover hash lemma to argue that

A appears uniform, and (ii) rewrite Cy 𝑗 −Ax 𝑗 as C(y 𝑗 −Rx 𝑗). Finally, by programming

the random oracle so that 𝐻 (g 𝑗) is a syndrome queried by the one-more-ISIS adversary

yields the proof. Please see Section 7.6 for more details.

To justify our assumption, we attempted to cryptanalyze it. For some parameter regimes,

the problem can be solved in polynomial time but, as far as we know, the problem is

exponentially hard for the regimes that we use in the blind signature scheme. Broadly,

we consider two approaches to solve one-more-ISIS: combinatorial and lattice-based

algorithms, and we provide complexity results for one-more-ISIS using these approaches.

We also formulate new cryptanalytic questions that the one-more-ISIS assumption raises.

Please see Section 7.6.6 for more details.

Estimating Performance. We provide a detailed analysis of the performance of our new

candidate in Section 7.6.5. To instantiate our new protocol based on one-more-ISIS, we

use the following building blocks:

• For the hash function, we use SHA-3-256;

• For the trapdoor generation and preimage sampling, we follow Falcon-512 [FHK+];

• For the IND-CPA secure PKE, we adapt the CRYSTALS-Kyber encryption
scheme [ABD+17];

• For the NIZK scheme, we follow the recent protocol of [LNP22b, Figure 10].

To make these building blocks compatible with each other, we need a working modulus

that must satisfy the following constraints:

• Its prime factors must be sufficiently large to avoid soundness improving repetitions

373

in the zero knowledge proof;

• The moduli of the underlying signature and encryption schemes should divide the
working modulus so that the relations required to be proven are simpler;

• The polynomial 𝑥128 + 1 defining the ring used in the NIZK scheme should split
in exactly two prime factors modulo all factors of the working modulus, due to
technical reasons related to the NIZK.

Satisfying the above constraints requires a delicate balancing of parameters, which results

in a number of changes in the building blocks. First, we must modify Falcon’s modulus

because 𝑥128 + 1 splits completely modulo the original Falcon modulus, which violates

the last constraint above. We must also instantiate the CRYSTALS-Kyber framework

so that it complies with the zero-knowledge proof 𝜋 from [LNP22b] and enjoys perfect

correctness. Since it is the zero-knowledge proof that makes most of the overall signature

size as well as the complexity to generate it, we are mainly interested in making the

generation of 𝜋 efficient, while potentially sacrificing the efficiency of the other routines.

We provide a detailed guideline on how to instantiate the NIZKAoK protocol from

[LNP22b, Figure 10], and how to choose the parameters for the other building blocks so

as to obtain a concrete estimate for all the parameters of the resultant blind signature

scheme. We provide a python script (included with the submission) that estimates the

concrete security of the building blocks, as well as the size of the resulting signatures.

The resulting protocol has security relying on Ring-LWE [SSTX09; LPR10], Module-

LWE [BGV12; LS15] and the Module-SIS [LS15] variant of one-more-ISIS.

Using our script, we obtain a signature of size less than 44KB, for a classical core-SVP

hardness of 109 bits (following the security methodology from [ADPS16]). Note that bit

security is typically estimated to be higher than core-SVP hardness (see [ABD+17]), and

we expect it to be of the order of 128 bits. The transcript has size less than 1.5KB. The

costs of the signer and user in the signing protocol, as well as that of the verifier are also

very low. To see this, note that the signer must simply compute a GPV pre-image, the

user must compute a ciphertext and proof for a linear statement with small unknowns,

374

while the verifier must verify this proof. Thus, in the end, we obtain a protocol which

enjoys security under a post-quantum assumption and is overall more efficient than all

prior candidates.

Other Related Works. Aside from lattice based blind signatures, there are a few

other constructions from conjectured post-quantum assumptions. The most relevant

to our work is the code-based construction of Blazy et al. [BGSS17], relying on the

CFS signature scheme [CFS01] and Stern zero-knowledge proofs [Ste96]. Like in our

one-more-ISIS construction, their construction relies on a new assumption, related to

CFS. However, there are important differences with our work. In CFS, not all syndromes

can be inverted, and the procedure needs to be repeated if no inversion is possible. Hence,

the resulting blind signature scheme is not round optimal. Moreover, due to the poor

scaling of CFS signatures and the use of Stern proofs, their construction achieves a

signature size of several MB. A blind signature based on multivariate polynomial systems

was described in [PSM17], with a non-standard unforgeability security property.

Organisation of the chapter. The rest of the chapter is organised as follows. In

Section 7.4, we provide the preliminaries used in the chapter. Then we begin with

instantiating a blind signature scheme from Fischlin’s signature in Section 7.5. In

Section 7.6, we define our one-more-ISIS assumption and provide our construction of

blind signature under the assumption in Section 7.6.2. This construction satisfies honest

signer blindness, which can easily be extended to full fledged blindness. We provide the

construction for full-fledged blindness in Appendix 7.A.

7.4 PRELIMINARIES

In this section, we provide the preliminaries used in this chapter.

375

Notations used in this chapter. Any vector v in this chapter is a column vector by

default, and vT is a row vector. For any vector v, we denote its 𝑖th element by v[𝑖].

Similarly, for any matrix M, M[𝑖] [𝑗] represents the element in the 𝑗 th column of 𝑖th row.

For a set 𝑆, |𝑆 | represents the cardinality of 𝑆, while if 𝑥 ∈ R, then |𝑥 | represents absolute

value of 𝑥. DΛ,𝑠,c represents discrete Gaussian distribution over lattice Λ, with center c

and standard deviation parameter 𝑠. When c = 0, we omit it. Similarly, we omit Λ, if

Λ = Z. For a distribution 𝐷 over a countable setX, we let 𝐻∞(𝐷) = −max𝑥∈X log2 𝐷 (𝑥)

denote the min-entropy of 𝐷. The statistical distance between two distributions 𝐷0

and 𝐷1 over X is defined as 1
2
∑
𝑥∈X |𝐷0(𝑥) − 𝐷1(𝑥) |.

We use standard definitions for pseudo-random functions (PRF), public-key encryption

(PKE) and signatures as provided in Chapter 2. For lattice-related preliminaries, we refer

to Chapter 2.

We place ourselves in a setup that allows the attackers to run in time 2𝑜(𝜆) and succeed

with probability 2−𝑜(𝜆) , but that forbids them to make more than poly(𝜆) interactions

with honest users. Compared to the setup of polynomially bounded attackers, this allows

to better reflect practice and to better differentiate between operations that the adversary

can do on its own and are only limited by the adversary runtime (such as hash queries)

and operations that require interaction with a honest user and are much more limited

(such as signature queries). We note that if we limit ourselves to polynomially bounded

adversaries, then all our reductions of our security proofs involve polynomial-time

reductions and would not require subexponential hardness assumptions.

7.4.1 Blind Signatures

To begin, we introduce some notation for interactive executions between algorithms X

and Y. By (𝑎, 𝑏) ← ⟨X(𝑥),Y(𝑦)⟩, we denote the joint execution of X and Y where

X has private input 𝑥, Y has private input 𝑦 and X receives private output 𝑎 while Y

receives private output 𝑏.

376

Definition 7.1 (Blind Signature). A blind signature scheme BS consists of PPT algorithms

Gen, Vrfy along with interactive PPT algorithms S,U such that for any 𝜆:

• Gen(1𝜆) generates a key pair (BSig.sk,BSig.vk).

• The joint execution of S(BSig.sk) and U(BSig.vk, 𝜇), where 𝜇 ∈ {0, 1}∗,
generates an output 𝜎 for the user and no output for the signer; this is denoted as
(⊥, 𝜎) ← ⟨S(BSig.sk),U(BSig.vk, 𝜇)⟩.

• Algorithm Vrfy(BSig.vk, 𝜇, 𝜎) outputs a bit 𝑏.

The scheme must satisfy completeness: for any (BSig.sk,BSig.vk)←

Gen(1𝜆), 𝜇 ∈ {0, 1}∗ and 𝜎 output by U in the joint execution of S(BSig.sk) and

U(BSig.vk, 𝜇), it holds that Vrfy(BSig.vk, 𝜇, 𝜎) = 1 with probability 1 − 𝜆−𝜔(1) .

Blind signatures must satisfy two security properties: one more unforgeability and

blindness [JLO97].

Definition 7.2 (One More Unforgeability). The blind signature BS = (Gen,S,U,Vrfy)

is one more unforgeable if for any polynomial 𝑄𝑆, and any algorithm U∗ with run-

time 2𝑜(𝜆) , the success probability ofU∗ in the following game is 2−Ω(𝜆):

1. Gen(1𝜆) outputs (BSig.sk,BSig.vk), and algorithmU∗ is given BSig.vk.

2. AlgorithmU∗ interacts concurrently with 𝑄𝑆 instances S1
BSig.sk, . . . ,S

𝑄𝑆
BSig.sk.

3. AlgorithmU∗ outputs (𝜇1, 𝜎1, . . . , 𝜇𝑄𝑆+1, 𝜎𝑄𝑆+1).

AlgorithmU∗ succeeds if Vrfy(BSig.vk, 𝜇𝑖, 𝜎𝑖) = 1 for all 𝑖 ∈ [𝑄𝑆 + 1] and the 𝜇𝑖’s are

distinct.

The blindness condition says that it should be infeasible for any malicious signer S∗

to decide which of two messages 𝜇0 and 𝜇1 of its choice has been signed first in two

executions with a honest user U. If one of these executions has returned ⊥, then the

signer is not informed about the other signature either. We will focus on the following

notion of honest signer blindness.

Definition 7.3 (Honest Signer Blindness). The blind signature BS = (Gen,S,U,Vrfy)

satisfies honest signer blindness if for any algorithmS∗ with run-time 2𝑜(𝜆) , the advantage

of S∗ in the following game is 2−Ω(𝜆):

377

1. Gen(1𝜆) outputs (BSig.sk,BSig.vk) and gives it to S∗; algorithm 𝑆∗ outputs two
messages 𝜇0, 𝜇1 of its choice.

2. A random bit 𝑏 is chosen andS∗ interacts concurrently withU0 := U(BSig.vk, 𝜇𝑏)
andU1 := U(BSig.vk, 𝜇�̄�) possibly maliciously; whenU0 andU1 have completed
their executions, the values 𝜎𝑏, 𝜎�̄� are defined as follows:

• If eitherU0 orU1 aborts, then (𝜎𝑏, 𝜎�̄�) := (⊥,⊥).

• Otherwise, let 𝜎𝑏 (resp. 𝜎�̄�) be the output ofU0 (resp. U1).
Algorithm S∗ is given (𝜎0, 𝜎1).

3. Algorithm S∗ outputs a bit 𝑏′.

Algorithm S∗ succeeds if 𝑏′ = 𝑏. If succ denotes the latter event, then the advantage of

S∗ is defined as |Pr[succ] − 1/2|.

Full-fledged blindness lets the adversary S∗ sample its own pair (BSig.sk,BSig.vk) at

Step 1 (possibly maliciously), and gives BSig.vk to the challenger.

7.4.2 Non-Interactive Zero Knowledge Arguments

Definition 7.4 (Non Interactive Zero Knowledge Argument). A non-interactive zero-

knowledge (NIZK) argument system Π for an NP relation 𝑅 consists of three PPT

algorithms (Gen,P,V) with the following syntax:

• Gen(1𝜆)→crs : On input a security parameter 𝜆, the Gen algorithm outputs a
common reference string crs; in the random oracle model, this algorithm may be
skipped, since the crs can be generated by P and V by querying the random oracle
on some fixed value.

• P(crs, 𝑥, 𝑤)→𝜋 : On input the common reference string crs, a statement 𝑥 ∈
{0, 1}poly(𝜆) , a witness 𝑤 such that (𝑥, 𝑤) ∈ 𝑅, the prover P outputs a proof 𝜋.

• V(crs, 𝑥, 𝜋)→accept/reject : On input a common reference string crs, a statement
𝑥 ∈ {0, 1}poly(𝜆) and a proof 𝜋, the verifier V outputs accept or reject.

The argument system Π should satisfy the following properties.

• Completeness: For any (𝑥, 𝑤) ∈ 𝑅, we have

Pr[crs← Gen(1𝜆), 𝜋 ← P(crs, 𝑥, 𝑤) : V(crs, 𝑥, 𝜋) = 1] ≥ 1 − 𝜆−𝜔(1) .

378

• Soundness: Let 𝐿 be the language corresponding to NP relation 𝑅. For any
𝑥 ∈ {0, 1}poly(𝜆) such that 𝑥 ∉ 𝐿 and any 2𝑜(𝜆) time prover P∗, we have

Pr[crs← Gen(1𝜆), 𝜋 ← P∗(crs, 𝑥) : V(crs, 𝑥, 𝜋) = 1] ≤ 2−Ω(𝜆) .

• Honest Verifier Zero Knowledge: There is a PPT simulator Sim such that, for
all statements 𝑥 for which there exists 𝑤 with 𝑅(𝑥, 𝑤) = 1, for any 2𝑜(𝜆) time
adversary A, we have:�� Pr

[
1← A

(
(crs, 𝑥, 𝜋) : crs← Gen(1𝜆), 𝜋 ← P(crs, 𝑥, 𝑤)

)]
−Pr

[
1← A

(
(crs, 𝑥, 𝜋) : (crs, 𝜋) ← Sim(1𝜆, 𝑥)

)] �� ≤ 2−Ω(𝜆) .

Definition 7.5 (Argument of Knowledge). The argument system (Gen,P,V) is called

an argument of knowledge for the relation 𝑅 if it is complete and knowledge-sound as

defined below.

• Knowledge Sound: For any 2𝑜(𝜆) time prover P∗, there exists an extractor E with
expected run-time polynomial in 𝜆 and the run-time of P∗, such that for all PPT
adversaries A

Pr

crs← Gen(1𝜆),
(𝑥, 𝑠) ← A(crs),

𝜋∗ ← P∗(crs, 𝑥, 𝑠),
𝑏 ← V(crs, 𝑥, 𝜋∗),

𝑤 ← EP∗ (crs,𝑥,𝑠) (crs, 𝑥, 𝜋∗, 𝑏)

������������
(𝑥, 𝑤) ∉ 𝑅 ∧ 𝑏 = accept

≤ 2−Ω(𝜆) .

If an argument of knowledge is also non-interactive zero knowledge, it is termed as a

non-interactive zero knowledge argument of knowledge, abbreviated as NIZKAoK.

7.5 STARTING POINT: INSTANTIATING FISCHLIN’S BLIND SIGNATURE

A simple way to obtain a two-round blind signature from lattices is to instantiate Fischlin’s

construction [Fis06].

7.5.1 Construction

The construction uses the following building blocks:

1. A hash function 𝐻 : {0, 1}∗ → Z𝑛𝑞 that will be modeled as random oracle in the
unforgeability proof.

379

2. A CPA-secure PKE scheme PKE that is perfectly correct.

3. A NIZKAoK for the statement of Equation (7.1).

The construction is given as follows:

Setup. Gen(1𝜆): Upon input the security parameter 𝜆, define 𝑛, 𝑚, 𝑞, 𝜎, 𝛽 = 𝜎
√
𝑚

as functions of 𝜆 such that 𝑞 is prime, SIS𝑞,𝑛,𝑚,2𝛽 is hard and the scheme is both

efficient and complete; then do the following:

• Run (PKE.pk,PKE.sk)←PKE.KeyGen(1𝜆) and discard PKE.sk.

• Compute (C,TC) ← TrapGen(𝑛, 𝑚, 𝑞).

• Output BSig.sk = TC, BSig.vk = (C,PKE.pk).

Signing. ⟨S(BSig.sk),U(BSig.vk, g)⟩:

1. User: Given the key BSig.vk and a message g, userU does the following:

• It samples PKE.Enc randomness 𝑟 and computes
ct = PKE.Enc(PKE.pk, 𝜇; 𝑟).

• It sends ct to the signer.

2. Signer: Upon receiving ct, signer S does the following:

• It computes 𝐻 (ct) and samples y←SamplePre(C,TC, 𝐻 (ct), 𝜎); we
have that y is short and Cy = 𝐻 (ct).

• It sends y to the user.

3. User: Upon receiving y, userU does the following:

• It verifies that ∥y∥ ≤ 𝛽 and Cy = 𝐻 (ct) and aborts if this fails.

• It generates a NIZKAoK 𝜋 for following statement: Given BSig.vk =

(C,PKE.pk) and 𝜇, there exists 𝑟 and a vector y such that

∥y∥ ≤ 𝛽 ∧ Cy = 𝐻 (Enc(PKE.pk, 𝜇; 𝑟)). (7.1)

• The signature is 𝜋.

380

Verifying. The verifier accepts if the proof 𝜋 is valid, and rejects if it is not.

The parameters 𝑞, 𝑛, 𝑚, 𝜎 are set such that 𝑛 = Ω(𝜆), Lemmas 2.2 and 2.3 are applicable,

and SIS𝑞,𝑚,𝑛,2𝛽 is hard with 𝛽 = 𝜎
√
𝑚. The completeness of the scheme follows from

the choice of 𝛽 (using the Gaussian tail bound from Lemma 2.1) and the completeness of

the NIZKAoK.

Note that Steps 1 and 2 of the signing algorithm can be implemented quite efficiently.

Step 3 is much more costly and results in a large signature bit-size. This is because the

statement of Equation (7.1) involves the hash function 𝐻 (in particular, the input of 𝐻

must be kept secret). Note that we make a non-black-box use of 𝐻 in the scheme, but

require it to be modeled as a random oracle in the unforgeability proof.

Security We show that the construction satisfies one more unforgeability and blindness.

7.5.2 Unforgeability

Theorem 7.1. Assume that SIS𝑞,𝑛,𝑚,2𝛽 is hard and the NIZKAoK is knowledge sound.

Then the blind signature scheme above, in Section 7.5.1, is one more unforgeable in the

random oracle model.

Proof. We argue one more unforgeability using the following hybrids.

Hybrid0: This is the genuine one more unforgeability experiment.

Hybrid1: In this hybrid, the challenger (which plays the role of the signer) does not

discard the decryption key PKE.sk. For every sign query 𝑐 𝑗 , it uses PKE.sk to

decrypt 𝑐 𝑗 into a plaintext 𝜇 𝑗 (which can be ⊥ in case decryption fails). It stores

the 𝜇 𝑗 ’s.

381

Hybrid2: The difference between this hybrid and the previous one is in how the hash

and sign queries are answered. On a fresh input 𝑐 for a hash query, the challenger

first samples y←DZ𝑚,𝜎 and returns 𝐻 (𝑐) = Cy. To answer a signing query for an

input 𝑐, the challenger returns the corresponding y that it must have sampled while

answering the hash query for 𝑐. If the sign query is made before the corresponding

hash query, then the challenger first sets the hash value as above and then returns

the corresponding y.
Indistinguishability of hybrids

1. The differences between Hybrid0 and Hybrid1 are only concerning the inner
computations of the challenger and not its interactions with the adversary. Hence,
the two hybrids are identical in the view of the adversary.

2. By Lemmas 2.2, 2.3 and 2.1, the views of the adversary in Hybrid1 and Hybrid2
are within statistical distance (𝑄𝑆 +𝑄𝐻) · 2−Ω(𝜆) from one another, where 𝑄𝑆 is
the number of signing queries and 𝑄𝐻 is the number of hash queries1.

Assume now that the adversary succeeds in Hybrid2 with probability 𝜀. When it succeeds,

it generates distinct messages (𝜇𝑖)𝑖≤𝑄𝑆+1 and corresponding signatures, i.e., proofs

(𝜋𝑖)𝑖≤𝑄𝑆+1 for the statement of Equation (7.1), such that all these proofs are accepted. As

the adversary makes at most 𝑄𝑆 sign queries, at least one of these 𝜇𝑖’s cannot be part

of the 𝜇 𝑗 ’s stored by the challenger: let 𝜇★ be an arbitrary such message and 𝜋★ be its

associated proof.

Using the knowledge soundness of the NIZKAoK on 𝜋★, the challenger extracts a

witness (𝑟★, y★) such that ∥y★∥ ≤ 𝛽 and Cy★ = 𝐻 (ct★) with ct★ = Enc(PKE.pk, 𝜇★; 𝑟★).

By perfect correctness of PKE, the ciphertext ct★ decrypts to 𝜇★. By definition, the

message 𝜇★ cannot have been queried for a signature. However, it must have been

queried for a hash, as otherwise the equality Cy★ = 𝐻 (ct★) would hold with probability at

most 𝑞−𝑛. This implies that the challenger has previously sampled a vector y←DZ𝑚,𝜎 such

that Cy = 𝐻 (ct★). By Lemma 2.1, we have ∥y∥ ≤ 𝛽 = 𝜎
√
𝑚 with probability 1 − 2−Ω(𝜆)

and y = y★ with probability 2−Ω(𝜆) . We conclude that y − y★ is non-zero, has norm ≤ 2𝛽

1We note here that SamplePre is assumed to be deterministic (see Section 2.1.2), without which the
claim would not be true.

382

and satisfies C(y − y★) = 0, providing a solution to the SIS𝑞,𝑛,𝑚,2𝛽 instance C. ■

7.5.3 Blindness

Theorem 7.2. Assume that PKE is IND-CPA secure and the NIZKAoK is zero-knowledge.

Then the blind signature scheme above, in Section 7.5.1, satisfies honest signer blindness.

Proof. We argue blindness using the following hybrids.

Hybrid0: This is the genuine honest signer blindness experiment.

Hybrid1: In this hybrid, the proofs 𝜋𝑏 and 𝜋
𝑏

are replaced with simulated proofs.

Hybrid2: In this hybrid, the ciphertexts ct𝑏 and ct
𝑏

are changed to independent

encryptions of 0.
Indistinguishability of hybrids

1. Hybrid0 and Hybrid1 are indistinguishable in the view of the adversary, because of
the zero-knowledge property of the NIZKAoK.

2. Hybrid1 and Hybrid2 are indistinguishable in the view of the adversary, because of
the IND-CPA security of PKE.

In Hybrid2, the distinguishing advantage of the adversary is 0, because its views for 𝑏 = 0

and 𝑏 = 1 are statistically identical. ■

Full-Fledged Blindness. Note that the scheme as stated may not satisfy full-fledged

blindness. In particular, if the malicious signer does not discard PKE.sk in the setup

phase, it could use it to decrypt the ciphertexts in the challenge phase and break blindness.

However, the security proof above can be extended to handle full-fledged blindness

if we can ensure that PKE.pk has been honestly generated by the adversarial signer,

without a corresponding decryption key. For example, if PKE.pk is computationally

indistinguishable from uniform, then we could replace PKE.pk in the scheme by the

383

output of another hash function 𝐻′ modeled as a random oracle, on an arbitrary public

input. Since the secret key must anyway be discarded in the construction, setting the

public key as the output of the random oracle ensures that the adversarial signer cannot

know the corresponding secret key. In the (full fledged blindness) security proof, we

would then introduce a very first game in which the output of 𝐻′ is replaced by a properly

generated PKE.pk. Note that a maliciously generated C has no impact on blindness since

it is not involved in the user’s message to the signer.

7.5.4 Efficiency Estimate

We consider the following instantiation of the building blocks.

• For PKE, we can take any lattice-based public-key encryption scheme. It is only
required to be IND-CPA, but it must be perfectly correct. The latter property
can typically be guaranteed by tail-cutting error distributions and increasing the
working modulus sufficiently. Also, lattice-based encryption schemes typically
have public keys that are computationally indistinguishable from uniform, as
required for the full fledged blindness adaptation described above. For example,
one could use a variant of the NewHope scheme [ADPS16], modified to provide
perfect correctness. It is expected that ciphertexts will be of bitlengths below a
few KB.

• For the underlying signature scheme, we recommend using the Falcon
scheme [FHK+], which is an efficient instantiation of the TrapGen-SamplePre
framework from [GPV08]. With this choice, the second transcript will have the
size below 1KB. Also, that makes the signer particularly efficient – for instance,
using Falcon [FHK+], signing time is in the range 0.15 − 0.3 ms depending on
the choice of parameters.

• As the hash function is modeled as a random oracle in the unforgeability proof,
one could use SHA-3-256. With the above choices for the public-key encryption
and signature schemes, one may need more than 15 sponge absorbing steps for
reading the input and 7 sponge squeezing steps to write the output.

• Unfortunately, as the statement of Equation (7.1) involves a hash function 𝐻 that is
modeled as a random oracle in the unforgeability proof, it seems we are bound
to use an all-purpose NIZKAoK. For example, one could use an instantiation of
Aurora [BCR+19]. Estimating a precise cost is difficult, but we do not expect
a proof of size below 100KB. We also do not expect the prover runtime to be
below 1 hour, whereas the verifier runtime could be significantly lower. It could
be beneficial to use hash functions designed to be compatible with all-purpose
NIZKAoK, such as [AAB+20; GKR+21].

384

7.6 TWO ROUND BLIND SIGNATURE FROM ONE-MORE-ISIS

In this section, we describe a significantly more practical scheme, under a new assumption.

7.6.1 The One-More-ISIS Assumption

We first introduce the one-more-ISIS hardness assumption. As it is a new assumption,

we provide a detailed assessment of potential attacks, in Subsection 7.6.6.

Informally, the one-more-ISIS assumption states that for any polynomially bounded ℓ, it

is difficult to forge ℓ + 1 GPV signatures [GPV08], even when given access to up to ℓ

inversions of arbitrary syndromes. We stress that these are not signature queries, as a

query for a message 𝜇 corresponds to a uniformly distributed syndrome 𝐻 (𝜇) (modeling

𝐻 by a random oracle), whereas here the attacker is allowed to make inversion queries

for arbitrary syndromes. As a result, one-more-ISIS could possibly be easier to solve

than it is to break the chosen-message security of the GPV signature scheme.

Definition 7.6. Let 𝑞, 𝑛, 𝑚, 𝜎, 𝛽 be functions of security parameter 𝜆. The one-more-

ISIS𝑞,𝑛,𝑚,𝜎,𝛽 assumption is defined using the following experiment.

1. The challenger C uniformly samples a matrix C ∈ Z𝑛×𝑚𝑞 and sends C to adversaryA.

2. The adversary adaptively makes queries of the following types to the challenger, in
any order.

• Syndrome queries. The adversary A requests C for a challenge vector, to
which C replies with a uniformly sampled vector t← Z𝑛𝑞. We denote the set
of received vectors by 𝑆.

• Preimage queries. The adversary A queries a vector t′ ∈ Z𝑛𝑞, to which C
replies with a short vector y′ ← 𝐷Z𝑚,𝜎 such that Cy′ = t′. We denote by ℓ
the total number of preimage queries.

3. In the end, the adversary A outputs ℓ + 1 pairs of the form {(y 𝑗 , t 𝑗)} 𝑗∈[ℓ+1] .

4. The adversary wins if Cy 𝑗 = t 𝑗 , ∥y 𝑗 ∥ ≤ 𝛽 and t 𝑗 ∈ 𝑆 for all 𝑗 ∈ [ℓ + 1].

The one-more-ISIS𝑞,𝑛,𝑚,𝜎,𝛽 assumption states that for every adversary A running in

time 2𝑜(𝜆) making at most 𝜆𝑂 (1) preimage queries and 2𝑜(𝜆) syndrome queries, the

probability (over the randomness of A and C) that A wins is 2−Ω(𝜆) .

385

The definition is reminiscent of the chosen target version of the one-more-RSA inversion

problem from [BNPS03]. We could define a variant of one-more-ISIS inspired from the

known target version of the one-more-RSA inversion problem from [BNPS03], in which

the set 𝑆 is restricted to be of size ℓ + 1. The choice (chosen target) of formulation made

in Definition 7.6 is driven by the security proof of the blind signature scheme. In the

RSA setting, the chosen and known target versions reduce to one another, but this seems

difficult to adapt to the ISIS setting.

7.6.2 Construction

The construction uses the following building blocks:

1. A hash function 𝐻 : {0, 1}∗ → Z𝑛𝑞 that will be modeled as random oracle in the
unforgeability proof.

2. A NIZK for the statement of Equation (7.2).

3. A CPA-secure PKE scheme PKE that is perfectly correct.

The construction is provided below.

Setup. Gen(1𝜆): Upon input the security parameter 𝜆, define 𝑛, 𝑚, 𝑞, 𝜎, 𝛽 = 𝜎
√
𝑚

as functions of 𝜆 such that 𝑞 is prime, one-more-ISIS𝑞,𝑛,𝑚,𝜎,2𝛽 is hard and the

scheme is both efficient and complete; then do the following:

• Run (PKE.pk,PKE.sk)←PKE.KeyGen(1𝜆) and discard PKE.sk.

• Compute (C,TC) ← TrapGen(𝑛, 𝑚, 𝑞).

• Sample A← Z𝑛×𝑚𝑞 .

• Output BSig.sk = TC, BSig.vk = (C,A,PKE.pk).

Signing. ⟨S(BSig.sk),U(BSig.vk, g)⟩:

1. User: Given the key BSig.vk and a message g, userU does the following:

• It samples x← DZ𝑚,𝜎/𝑚.

• It computes t = Ax + 𝐻 (g).

386

• It sends t to the signer.

2. Signer: Upon receiving t, signer S does the following:

• It samples a short vector y←SamplePre(C,TC, t, 𝜎); we have Cy = t.

• It sends y to the user.

3. User: Upon receiving y, userU does the following:

• It verifies that ∥y∥ ≤ 𝛽 and satisfies Cy = t.

• It samples PKE.Enc randomness 𝑟 and computes

ct = PKE.Enc(PKE.pk, x∥y; 𝑟).

• It generates a NIZK 𝜋 for following statement: Given
BSig.vk = (C,A,PKE.pk), ct and 𝜇, there exists 𝑟 and vectors x, y such
that

∥x∥ ≤ 𝛽/𝑚∧ ∥y∥ ≤ 𝛽∧Cy−Ax = 𝐻 (g)∧ ct = PKE.Enc(PKE.pk, x∥y; 𝑟).
(7.2)

• The signature is (𝜋, ct).

Verifying. The verifier accepts if the proof 𝜋 is valid, and rejects if it is not.

The parameters 𝑞, 𝑛, 𝑚, 𝜎 are set such that Lemmas 2.2 and 2.3 are applicable, the

distribution of Ax is close to uniform at Step 1 of the signing algorithm (using Lemmas 2.3

and 2.1 with standard deviation parameter 𝜎/𝑚 = Ω(1)), and one-more-ISIS𝑞,𝑚,𝑛,𝜎,2𝛽

is hard with 𝛽 = 𝜎
√
𝑚.

Completeness We make the following observations to argue completeness. From

the correctness of SamplePre, the vector y is small and satisfies Cy = t, where

t = Ax + 𝐻 (𝜇). This gives us Cy − Ax = 𝐻 (𝜇). Furthermore, the vector x is small

by design and ct = PKE.Enc(PKE.pk, x∥y; 𝑟) by construction. Hence, the proof 𝜋 for

Equation (7.2) verifies and the user accepts the proof because of the completeness of

NIZK.

387

We now make a few remarks about the construction. Observe that we choose x to have

norm at most 𝛽/𝑚, which is a factor 𝑚 smaller than that of y. This is because in the

security proof, we will construct solutions to the one-more-ISIS𝑞,𝑛,𝑚,𝜎,2𝛽 problem as

y − Rx (see Step 5 of the unforgeability proof), where R← {0, 1}𝑚×𝑚. Thus, choosing

∥x∥ ≤ 𝛽/𝑚 and ∥y∥ ≤ 𝛽 allows us to bound the norm of the one-more-ISIS solution by

2𝛽 as desired. Note that by increasing the ratio between the norms of x and y further,

one can decrease the quantity 2𝛽 to a value that is arbitrarily close to 𝛽 (hence possibly

weakening the hardness assumption). Another important component is the inclusion

of ciphertext ct = PKE.Enc(PKE.pk, x∥y; 𝑟) in the signature. It enables to circumvent

rewinding in the extraction of all the witnesses (x𝑖∥y𝑖) of the 𝑄𝑆 + 1 message-signature

pairs output by the adversary, in the proof of unforgeability (see Step 5). Without it, the

reduction may need to rewind 𝑄𝑆 + 1 times to extract all the pairs (x𝑖, y𝑖), to construct

the one-more-ISIS solution, leading to a security loss exponential in 𝑄𝑆.

Security. We show that our construction satisfies one more unforgeability and blindness.

7.6.3 Unforgeability

Theorem 7.3. Assume that NIZK is sound. Then if there exists an adversary A in the

random oracle model that issues 𝑄𝑆 signing queries and any number of hash queries

and outputs 𝑄𝑆 + 1 signatures with probability 𝛿, then there exists an algorithm B that

runs in essentially the same time as A and requests 𝑄𝑆 preimage queries and wins the

one-more-ISIS𝑞,𝑛,𝑚,𝜎,2𝛽 game with probability at least 𝛿−2−Ω(𝜆)−(𝑄𝑆+1) (2−Ω(𝜆)+𝑞−𝑛).

Proof. We construct the proof using the following hybrids.

Hybrid0: This is the genuine one more unforgeability experiment.

Hybrid1 : In this hybrid, the challenger does not discard the decryption key PKE.sk. For

every signature 𝜎𝑗 = (𝜋 𝑗 , ct 𝑗) output by the adversary (for 𝑗 ∈ [𝑄𝑆 + 1]), it uses

388

PKE.sk to decrypt ct 𝑗 into a plaintext (x 𝑗 ∥y 𝑗) (which can be ⊥ in case decryption

fails). It stores the (x 𝑗 ∥y 𝑗)’s.

Hybrid2 : This hybrid differs from the previous one in the way matrix A is chosen. The

challenger first samples a binary matrix R← {0, 1}𝑚×𝑚 and sets A = CR.
Indistinguishability of hybrids

In the following, we let Advomuf
𝑖 represent the advantage of A in the one more

unforgeability game in Hybrid𝑖. Then Advomuf
0 = 𝛿.

1. The differences between Hybrid0 and Hybrid1 are only concerning the inner
computations of the challenger and not its interactions with the adversary. Hence,
the two hybrids are identical in the view of the adversary. Thus Advomuf

1 =

Advomuf
0 = 𝛿.

2. The only difference between Hybrid1 and Hybrid2 is that in the latter A is computed
as CR, where R is a uniform binary matrix, instead of sampling it uniformly
randomly from Z𝑛×𝑚𝑞 . The two hybrids are indistinguishable because Lemmas 2.3
and 2.1 imply that (C,A) is within statistical distance 2−Ω(𝜆) from (C,CR). Thus
Advomuf

2 ≥ Advomuf
1 − 2−Ω(𝜆) = 𝛿 − 2−Ω(𝜆) .

We conclude with the following claim.

Claim 7.4. Assume that the NIZK argument system is sound. Then if there is an

adversary A in the random oracle model that makes at most 𝑄𝑆 signing queries and

succeeds in generating𝑄𝑆 + 1 signatures with probability 𝜀 in Hybrid2, then there exists a

one-more-ISIS adversary B, with essentially the same run time asA, with 𝑄𝑆 preimage

queries with success probability at least 𝜀 − (𝑄𝑆 + 1) (2−Ω(𝜆) + 𝑞−𝑛).

Proof. The reduction B is as follows.

1. Upon being challenged by the one-more-ISIS challenger C, with matrix C,
algorithm B does the following:

• It uniformly samples a binary matrix R and sets A = CR.

• It samples (PKE.pk,PKE.sk) ← PKE.KeyGen(1𝜆).

• It invokes A with (A,C,PKE.pk) as verification key.

389

2. In response to each (fresh) hash query on input 𝜇 from A, algorithm B makes a
syndrome query to C. Challenger C returns a uniform vector t ∈ Z𝑛𝑞, which B
forwards to A as 𝐻 (𝜇).

3. To answer a signing query on input t′, algorithm B forwards t′ to C as a preimage
query. Challenger C returns a short vector y′, such that Cy′ = t′. Algorithm B
forwards y′ to A.

4. Eventually, adversary A outputs 𝑄𝑆 + 1 message-signature pairs
{𝜇 𝑗 , (𝜋 𝑗 , ct 𝑗)} 𝑗∈[𝑄𝑆+1] .

5. If the 𝜋 𝑗 ’s pass verification, then algorithm B decrypts the ct 𝑗 ’s and obtains𝑄𝑆 + 1
corresponding pairs of short vectors (x 𝑗 , y 𝑗). If all 𝜇 𝑗 ’s have been hash-queried
by A and the vectors (x 𝑗 , y 𝑗) satisfy Equation (7.2) for all 𝑗 ∈ [𝑄𝑆 + 1], then B
outputs {(y 𝑗 − Rx 𝑗 , 𝐻 (𝜇 𝑗))} 𝑗∈[𝑄𝑆+1] . If any decryption fails or any of the above
conditions is not satisfied, then B aborts.

First note that by the soundness of NIZK, the probability that a statement with a valid

proof is false is bounded above by 2−Ω(𝜆) . Now, since the ciphertext ct is part of the

statement, we have by perfect correctness of PKE that it decrypts to the correct value.

Hence, the overall probability that a decryption fails is ≤ (𝑄𝑆 + 1) · 2−Ω(𝜆) . Next, we

claim that for each 𝜇 𝑗 , adversary A must have issued a corresponding hash query to B.

This is because otherwise, there is only a 𝑞−𝑛 probability that a fresh 𝐻 (𝜇 𝑗) is equal to

Cy 𝑗 − Ax 𝑗 . Additionally, by the soundness of NIZK, it holds that for all 𝑗 ∈ [𝑄𝑆 + 1]:

∥x 𝑗 ∥ ≤ 𝛽/𝑚 ∧ ∥y 𝑗 ∥ ≤ 𝛽 ∧ Cy 𝑗 − Ax 𝑗 = 𝐻 (𝜇 𝑗).

Observe that because of the way hash queries are answered by B, the value 𝐻 (𝜇 𝑗) is one

of the syndromes returned by C. Define t 𝑗 = 𝐻 (𝜇 𝑗). Then we get, for all 𝑗 ∈ [𝑄𝑆 + 1],

t 𝑗 = Cy 𝑗 − Ax 𝑗 = Cy 𝑗 − CRx 𝑗 = C(y 𝑗 − Rx 𝑗).

Since R is a binary matrix, we have ∥y 𝑗 − Rx 𝑗 ∥ ≤ 2𝛽 for all 𝑗 .

Note that B issues one preimage query for each signing query from A. Since A can

issue at most 𝑄𝑆 signing queries, algorithm B also issues at most 𝑄𝑆 preimage queries

to C. Hence B is a valid adversary in the one-more-ISIS game. ■

390

■

Next we show that the construction satisfies honest signer blindness.

7.6.4 Blindness

Theorem 7.5. Assume that NIZK is zero-knowledge. Then if there exists a signer S∗

in the random oracle model that wins the honest signer blindness game for the blind

signature scheme in Section 7.6.2 with advantage 𝛿, then there exists an adversary B,

with essentially the same runtime as S∗, that wins the IND-CPA security game for PKE

with advantage at least 𝛿/2 − 2−Ω(𝜆) .

Proof. We argue blindness using following hybrids.

Hybrid0 : This is the genuine honest signer blindness experiment.

Hybrid1 : This hybrid differs from the previous one in the way the proofs 𝜋0 and 𝜋1 are

computed: instead of genuinely computing the NIZKs, the challenger simulates

them without using the witnesses.

Hybrid2 : This hybrid differs from the previous hybrid in that both ct0 and ct1 encrypt 0

instead of (x0∥y0) and (x1∥y1), respectively.

Hybrid3 : This hybrid differs from the previous hybrid in the way the challenger

computes t0 and t1. Instead of sampling x0 (resp. x1) and computing t0 =

Ax0 + 𝐻 (𝜇𝑏) (resp. t1 = Ax1 + 𝐻 (𝜇�̄�)), it samples u0 (resp. u1) uniformly and

sets t0 = u0 + 𝐻 (𝜇𝑏) (resp. t1 = u1 + 𝐻 (𝜇�̄�)).
Indistinguishability of hybrids

In the following, we let Advbl
𝑖 represent the advantage of S∗ in the honest signer blindness

game in Hybrid𝑖. Then Advbl
0 = 𝛿.

391

1. The only difference between Hybrid0 and Hybrid1 is in the way 𝜋0 and 𝜋1 are
computed. The two hybrids are indistinguishable because of the zero-knowledge
property of the NIZK. Thus Advbl

1 ≥ Advbl
0 − 2−Ω(𝜆) = 𝛿 − 2−Ω(𝜆) .

2. The only difference between Hybrid1 and Hybrid2 is in the messages being encrypted
by ct0 and ct1. The two hybrids are computationally indistinguishable because of
the IND-CPA security of PKE. In particular, if the advantage of S∗ in the honest
signer blindness game in Hybrid2 is Advbl

2 , then there exists an adversary B against
IND-CPA security of PKE with advantage AdvIND-CPA such that 2AdvIND-CPA ≥
Advbl

1 −Advbl
2 ≥ 𝛿 − 2−Ω(𝜆) −Advbl

2 . (Here, we consider twice of AdvIND-CPA since
both ct0 and ct1 are replaced with encryptions of 0 and hence the IND-CPA security
of PKE is called twice.).

3. The only difference between Hybrid2 and Hybrid3 is in the choice of the masking
term for 𝐻 (g). Since the vectors x0 and x1 are only used in the computations of the
vectors t0 and t1, we have by the leftover hash lemma2 (Lemmas 2.3 and 2.1), that
Ax0 and Ax1 are statistically indistinguishable from uniform u0 and u1. Hence,
Hybrid2 and Hybrid3 are statistically indistinguishable. More concretely, we have
Advbl

3 ≥ Advbl
2 − 2−Ω(𝜆) ≥ 𝛿 − 2−Ω(𝜆) − 2AdvIND-CPA − 2−Ω(𝜆) .

However, in Hybrid3, the adversary S∗ has zero advantage in guessing the bit 𝑏 since it is

information theoretically hidden. Hence 𝛿 − 2−Ω(𝜆) − 2AdvIND-CPA − 2−Ω(𝜆) ≤ 0, which

is equivalent to AdvIND-CPA ≥ 𝛿/2 − 2−Ω(𝜆) . ■

Full-Fledged Blindness. Similarly to the construction in Section 7.5, the security proof

above can be extended to handle full-fledged blindness if we can ensure that PKE.pk has

been honestly generated by the adversarial signer, without a corresponding decryption

key and that the matrix A is uniform. By choosing a suitable encryption scheme so

that PKE.pk is computationally indistinguishable to uniform, one can set PKE.pk as the

output of a random oracle on a publicly-known value. To ensure A is uniform, it can

similarly be set as the output of a random oracle on a publicly known value. Please see

Appendix 7.A for more details.

2We observe that in place of LHL, we can also use LWE in this step, by letting A = (A′∥I) and
xT = (x′T∥eT). This would change statistical closeness to computational indistinguishability. We use
this variant in the concrete instantiation described below.

392

7.6.5 Concrete Instantiation

The goal of this section is to describe a concrete instantiation of the scheme from

Section 7.6.2, and analyze the size of the resulting signature. We rely on the following

building blocks:

• for the hash function, we use SHA-3-256;

• for the trapdoor generation TrapGen and preimage sampling SamplePre
algorithms, we follow Falcon-512 [FHK+];

• for the IND-CPA secure PKE, we use an instantiation of the scheme from [LPS10]
under the Module-LWE assumption, which may be viewed as a simplification of
CRYSTALS-Kyber [ABD+17];

• for the NIZK scheme, we follow the protocol from [LNP22b, Figure 10].

Since it is the NIZK scheme that makes most of the signature size as well as the cost to

generate it, we are mainly interested in making the generation of the proof 𝜋 efficient,

while potentially sacrificing the efficiency of the other components.

Choosing the moduli. For compatibility with [LNPS21], the modulus of the ZK proof

is chosen as a product of primes that are congruent to 5 modulo 8. Further, we require these

primes to be above 212.8, to avoid too many soundness-boosting repetitions. The smallest

such prime is 7213. Concretely, we set the preimage sampling modulus to 𝑞F = 7213,

the PKE modulus to 𝑞PKE = 72132 and the ZK modulus to 𝑞zk = 72132 · 123637. We

chose 𝑞zk as a multiple of 𝑞F and 𝑞PKE to simplify the linear relations to be proven

(see [LNP22b, Section 6.3]).

Trapdoor generation and preimage sampling. We instantiate Falcon-512 over the

ring R512 = Z[𝑥]/(𝑥512 + 1), where the computations are taken modulo prime 𝑞F = 7213.

It allows us to build our TrapGen algorithm as [FHK+, Algorithm 5] that generates an

NTRU secret key as the trapdoor, and to use Klein’s sampler [Kle00] (also known as

the GPV sampler [GPV08]) for our SamplePre algorithm. Our modulus 𝑞F slightly

393

differs from the one proposed in [FHK+], since the zero-knowledge proof construction

we use requires 𝑥128 + 1 to have only few (two in our case) factors modulo 𝑞F. Note

that our modulus is a little smaller than Falcon’s (12289): as discussed in [ETWY22],

moduli in this range have limited impact on the security. Also, this modulus change

does not significantly impact the efficiency of the Falcon-512 preimage sampler [FHK+,

Algorithm 10], as the modulus plays a limited role in it.

The TrapGen routine generates an NTRU secret key f, g ∈ R512, with coefficients of

each polynomial f and g taken from D
Z,1.17
√
𝑞F/(2·512) (see [FHK+, Algorithm 5]), and

builds up a short basis for the corresponding NTRU lattice (as in [FHK+, Algorithm 5]).

The public key is h = g/f mod 𝑞F, defining the NTRU lattice {y = (y1∥y2) ∈ R2
512 :

h · y1 + y2 = 0 mod 𝑞F}. The short basis enables a SamplePre routine that, given on

input t, outputs a preimage y = (y1∥y2) such that ∥y∥ < 1.1 ·
√

2 · 512 · 𝜎F, where

𝜎F = 1.17
𝜋

√︃
𝑞F · log(4 · 512 · (1 +

√
128 · 264))/2 (see [FHK+, Eq. (2.13-2.14)]). For this

instantiation, the relation “Cy = t” from the construction in Section 7.6.2 translates into

h · y1 + y2 = t mod 𝑞F. (7.3)

Another minor difference with Falcon-512 is that we perform rejection sampling to

guarantee that y1 has infinity norm below a prescribed bound. Concretely, this bound is

set to ⌈4.15 · 𝜎F⌉ so that this acceptance probability is ≥ 0.52. This is to ensure that y1

always belongs to the plaintext space of the encryption scheme described below.

With all the above, we now have concrete values for the parameters 𝑛, 𝑚, 𝑞, 𝛽: 𝑛 = 512,

𝑚 = 1024, 𝑞 = 𝑞F, 𝛽 = 1.1 ·
√

2 · 512 · 𝜎F. Going forward, the transcript of the blind

signature scheme will consist of t and y1 (note that y2 can be recovered as t − h · y1).

Using the figures above, we obtain a transcript size of 1.37KB.

394

Blinding the message. We now explain how we instantiate Step (1) of the signing

protocol in the construction in Section 7.6.2 We sample h′ ∈ R512 uniformly modulo 𝑞F:

the vector (h′∥1) plays the role of A from the construction in Section 7.6.2. We then

choose x1, x2 ∈ R512 with coefficients bounded in ℓ∞-norm and set

t = h′x1 + x2 + 𝐻 (𝜇) mod 𝑞F. (7.4)

In particular, we choose ∥(x1∥x2)∥∞ ≤ 2, and use the Ring-LWE assumption to argue

the computational indistinguishability of t from uniform (as opposed to a statistical

argument as in the proof of Theorem 7.5).

Important for our construction is the ability to transform mod-𝑞F linear relations defined

over the ring R512 to mod-𝑞F linear relations defined over R128. Following [LNPS21,

Section 2.8] we can map one linear relation from R512 to 4 linear relations from R128,

thus Eqs. (7.3) and (7.4) can both be viewed as 4 relations over R128. This will become

relevant in the zero-knowledge proof.

IND-CPA secure PKE We use R128 = Z[𝑥]/(𝑥128 + 1) as underlying ring, by

compatibility with the proof system (though we could have kept Kyber’s Z[𝑥]/(𝑥256 + 1)

and viewed it as an extension of R128). We let S𝜏 denote the set of elements from R128

with ℓ∞-norm ≤ 𝜏. The rank of the plaintext space (12) is 3 times the Falcon dimension,

as we will encrypt m = (y1∥x1∥x2): note that we do not encrypt y2 as it can be

recovered from m and 𝐻 (𝜇) by using Eqs. (7.3) and (7.4). The ℓ∞-norm bound on all

small variables (𝜏 = 3) and the Module-LWE rank (8) are set to obtain a sufficiently high

hardness.

In Figure 7.1, all computations are performed modulo 𝑞PKE = 72132, which is set high

enough to guarantee correctness. Note that we rely neither on ciphertext compression

nor on the binomial distribution as in CRYSTALS-Kyber, for the sake of simplicity. With

these parameters, the ciphertext occupies 8.01KB.

395

Setup

• 𝜏: ℓ∞-norm bound on all short elements in the scheme

• 𝑞PKE: a modulus

• 𝑝 < 𝑞PKE: a positive integer
KeyGen()

• Sample A1 ∈ R8×8
128 uniform modulo 𝑞PKE

• Sample S1, S2 ← 𝑈 (S12×8
𝜏)

• Compute A2 = S1 · A1 + S2

• Set pk = (A1,A2) and sk = S1

Enc(pk = (A1,A2), m ∈ R12
128)

• Sample s, e1 ← 𝑈 (S8
𝜏), and e2 ← 𝑈 (S12

𝜏)

• Compute c1 = A1 · s + e1

• Compute c2 = A2 · s + e2 + 𝑝 ·m

• Return ct = (c1, c2)
Dec(sk = S1, ct = (c1, c2))

• Compute t = c2 − S1 · c1

• Return (t − t mod 𝑝)/𝑝

Figure 7.1: Instantiation of PKE for the construction of blind signature in Section 7.6.2

The correctness follows from the fact that for a properly formed ciphertext ct = (c1, c2),

we have t = S2 · s + e2 − S1 · e1 + 𝑝m mod 𝑞PKE. For well-chosen parameters, this

is < 𝑞PKE/2, and we recover S2 · s + e2 − S1 · e1 + 𝑝m mod 𝑞PKE over the integers. To

recover m, it suffices to take the quotient modulo 𝑝 (provided that S2 · s + e2 − S1 · e1 is

sufficiently small). Overall, for the decryption to be (perfectly) correct we require that

(I) ∥S2 · s + e2 − S1 · e1 + 𝑝m∥∞ < 𝑞PKE/2, so that c2 − S1 · c1 is not scrambled in the
first step of the decryption algorithm;

(II) ∥S2 · s + e2 − S1 · e1∥∞ < 𝑝/2, so that S2 · s + e2 − S1 · e1 is not scrambled in the

396

second step of the decryption algorithm.

These requirements should hold for all S1, S2 sampled during key generation, and for all

s, e1, e2,m as small as guaranteed by the zero-knowledge proof. Note that the latter is

more demanding than requesting it for s, e1, e2,m as small as honestly generated, because

the proof is for the ℓ2-norm (rather than ℓ∞-norm) and it batches several norm bounds

together to reduce the number of proved norm bounds, at the expense of a constant factor

increase in norm bound. The above conditions are satisfied for 𝑝 = 49126 .

Zero-knowledge proof We instantiate the zero-knowledge proof using [LNP22b,

Figure 10]. We need to prove knowledge of y = (y1∥y2) and x = (x1∥x2) with

y1, y2, x1, x2 ∈ R512 � R
4
128 with small norms, such that (combining Eqs. (7.3) and (7.4)):

h · y1 − h′ · x1 + y2 − x2 = 𝐻 (𝜇) mod 𝑞F. (7.5)

We also need to prove the well-formedness of ct, i.e., the existence of s, e1 ∈ R8
128

and e2 ∈ R12
128 that are small and satisfy the relations of the Enc algorithm from Figure 7.1

(modulo 𝑞PKE) for the message m = (y1∥x1∥x2).

We commit to the vector (y1∥y2∥x1∥x2∥s∥e1∥e2), prove two linear relations involving

this vector (one coming from Eq. (7.5) and the other from the encryption), and prove

three ℓ2-norm bounds:

(I) ∥(y1∥y2)∥ ≤ 𝛽,

(II) ∥(x1∥x2)∥ ≤
√

2 · 512 · 2,

(III) ∥(s∥e1∥e2)∥ ≤ 𝜏 ·
√︁
(8 + 8 + 12) · 128.

We shall not repeat the steps of the zero-knowledge proof from [LNP22b], but instead

make a guideline on how to instantiate the protocol in [LNP22b, Figure 10]. The reader

is advised to follow it using Table 7.1. Note that the two linear relations we need to prove

incur negligible additional cost in terms of size, see [LNP22b, Figure 4].

397

variable description instantiation
𝜌 # of quadratic eqs. 0
𝜌eval # of evaluations with const. coeff. 0 0
𝑣𝑒 # exact norm proofs 3
𝑣𝑑 # non-exact norm proofs 0
s1 committed message in the Ajtai part (y∥x∥s∥e1∥e2)
m committed message in the BDLOP part ∅
s (s1∥m) (y∥x∥s∥e1∥e2)

E1 public matrix proving that ∥E1s − v1∥ ≤ 𝛽1

(
Id4 0 0 0 0 0 0
0 Id4 0 0 0 0 0

)
𝛽1 upper bound on ∥E1s − v1∥ 𝛽

E2 public matrix proving that ∥E2s − v2∥ ≤ 𝛽2

(
0 0 Id4 0 0 0 0
0 0 0 Id4 0 0 0

)
𝛽2 upper bound on ∥E2s − v2∥

√
2 · 512 · 2

E3 public matrix proving that ∥E3s − v3∥ ≤ 𝛽3

(
0 0 0 0 Id8 0 0
0 0 0 0 0 Id8 0
0 0 0 0 0 0 Id12

)
𝛽3 upper bound on ∥E3s − v3∥ 𝜏 ·

√
28 · 128

v1, v2, v3 public vectors proving that ∥E𝑖s − v𝑖 ∥ ≤ 𝛽𝑖 0, 0, 0
∥x∥ norm of ((𝛽 (𝑒)

𝑖
)2 − ∥E𝑖s − v𝑖 ∥2)𝑖

√
3 · 128

𝑝1, 𝑝2, 𝑝3 number of rows of E1, E2, E3 8, 8, 28
𝑐 (𝑒) 128 ·∑𝑖 (𝑝𝑖 + 1) 6016
𝛼 (𝑒) upper bound on ∥(E1s − v1∥ . . . ∥E3s − v3∥x)∥ 5840

Table 7.1: Instantiation of the protocol from [LNP22b, Figure 10]. The left-most
column ‘variable’ and the middle column ‘description’ refer to the notations
from [LNP22b, Figure 10], the right-most column ‘instantiation’ refers to our
notations.

398

For concrete parameter selection, we refer the reader to Table 7.2. We instantiate the

variables 𝜅, 𝑙, 𝜂, 𝜈 as in [LNP22b].

The parameters 𝛾1, 𝛾2, 𝛾𝑒 are rejection sampling parameters. They are set so that the

expected number of rejections before producing a valid signature is small. Using [LNP22b,

Section 6.1], we obtain that the expected number is ≈ 2 exp(14
𝛾1
+ 1

2𝛾2
1
+ 1

2𝛾2
2
+ 1

2𝛾2
𝑒
) ≈ 10.4.

The parameter 𝑚1 = 4 · 4+2 · 8+12+3 = 47 counts the length of the committed message

as a vector over R128 (adding 3 as we have three norm equations). The parameters 𝑛 and

𝑚2 are chosen such that the Module-SIS and Module-LWE problems that underlie the

zero-knowledge protocol are sufficiently hard.

Following the compression technique of [DKL+18], we can reduce the proof size by

cutting low-order bits of the commitment. There are two variables responsible for this cut:

𝛾 and 𝐷. To choose these variables we follow the approach from [LNP22b, Section 6.1].

With these parameters, the proof 𝜋 has size 37.18KB, and the overall signature (including

𝜋 and ct) has size 45.19KB. (Recall the transcript has size 1.37KB.) This is for

classical core-SVP hardness of 109 bits. Below, we give precise figures for our

security estimates. These estimates as well as the sizes of signature components

can be verified via a script available at https://gitlab.com/ElenaKirshanova/

onemoresis_estimates. For concrete estimates of ModuleLWE and ModuleSIS

assumptions we rely on the work from [ABD+17], and for the NTRU assumption security

– on the work from [DvW21]. To compute the proof size 𝜋, we adapt the strategy

from [LNP22b, Section 6.1] to our setting with the exception that we take the estimates

on the entropy of a discrete Gaussian variable from [ESLR22]. This choice is inline with

the recent work [ETWY22, Section 5].

Security Let us summarize our security assumptions and their corresponding bit

security levels.

399

https://gitlab.com/ElenaKirshanova/onemoresis_estimates
https://gitlab.com/ElenaKirshanova/onemoresis_estimates

variable value variable value variable value
𝑞zk 6432507821053 𝜅 2 𝑛 11
𝑙 2 𝜆 10 𝑚1 47
𝛾1 10 𝜂 59 𝑚2 34
𝛾2 1.5 𝜈 1 ℓ 0
𝛾𝑒 5 𝐷 16 𝛾 224

Table 7.2: Concrete parameter selection for the zero-knowledge protocol from [LNP22b,
Figure 10]. The columns ‘variable’ refer to the notations from [LNP22b].

1. The security of Falcon’s signature scheme relies on two assumptions:

(I) Key recovery security relies on the NTRU assumption (i.e., it is hard to
recover f, g from h = g/h). The estimator from [DvW21] states that this has
core-SVP hardness of 135 bits.

(II) Forgery security relies on Module-SIS hardness. To estimate it, we use the
Dilithium script [DKL+18], which states that this has core-SVP hardness of
129 bits.

2. Given h′, we argue that h′x1 + x2 hides x1, x2 under the Module-LWE assumption.
Again, we use the script from [DKL+18], which states that this has core-SVP
hardness of 122 bits.

3. The security of the encryption scheme (for both the secret key and the ciphertext)
relies on the Module-LWE assumption. Here we reach core-SVP hardness of 120
bits.

4. The zero-knowledge proof relies on the Module-SIS and Module-LWE assumptions
(technically, the construction of [LNP22b] relies on the so-called Extended-Module-
LWE, whose hardness is conjectured to be the same as plain Module-LWE). For
both Module-SIS and Module-LWE, we obtain 109 bits of core-SVP hardness.

5. Finally, we estimate the hardness of solving one-more-ISIS with the norm bound to
be the norm of the extracted solution. For this, we assume that h′ is set as x′1 ·h+x′2
in the unforgeability proof instead of “A = CR” (see the proof of Theorem 7.3),
using the same Module-LWE assumption as we did to argue computational
indistinguishability from uniform of x1 · h′ + x2, i.e., with ∥x′1∥∞, ∥x

′
2∥∞ ≤ 2.

The extracted solution is (y1 − x1x′1∥y2 − x1x′2 − x2), which has ℓ2-norm ≤√︁
𝛽2 + 24 · 512 · 4 + 22 · 512 · 2. Having h, the hardness of finding a preimage of

such norm is again a Module-SIS instance, which we estimate to be at 109 bits of
core-SVP hardness. The one-more-ISIS attacks described in the next section all
have higher costs.

400

7.6.6 Security Analysis of One-More-ISIS

The purpose of this section is to argue why we believe that the new computational

problem we introduce, one-more-ISIS, is hard. We did not succeed in obtaining a

reduction from a well-studied problem to one-more-ISIS, but we still expect that for

the parameter ranges relevant to our constructions, this problem cannot be solved by

polynomial or even sub-exponential time attackers.

The hardness of the one-more-ISIS problem as stated in Definition 7.6 primarily depends

on the precise relation between 𝛽, the upper bound on the norm of the vectors y𝑖’s the

adversary must output, and the dimensions 𝑚 and 𝑛 of the input matrix C. We also

assume that 𝜎 – the standard deviation parameter of the preimage queries – is of order

Ω(
√
𝑚), which what we would expect from an efficient sampler, e.g. [GPV08]. Note

that a significantly smaller standard deviation, e.g., of order 𝑂 (1), would invalidate

the hardness of the one-more-ISIS assumption as extremely short y’s would enable an

adversary to solve one-more-ISIS (see the discussion below). In this section we make the

hardness of the one-more-ISIS problem explicit by describing the parameter regimes for

which this problem can be solved in polynomial time, and for which, as far as we know,

the problem is exponentially hard. We consider two approaches to solve one-more-ISIS:

combinatorial attacks and lattice-based attacks.

Combinatorial attacks. We start by showing an elementary polynomial time algorithm

that achieves 𝛽 = Θ(
√
𝑚𝑛𝜎) and requires (𝑞 · 𝑛) ISIS preimage oracle calls.

Consider the set of 𝑛-dimensional vectors 𝐴 = {e𝑖 · 𝑎 : 𝑖 ∈ [𝑛], 𝑎 ∈ Z𝑞}, where the e𝑖’s

are the canonical-basis vectors. The set 𝐴 is of size 𝑞 · 𝑛. The adversary runs preimage

queries for all vectors from 𝐴 and receives Gaussian vectors y′’s. Thanks to the Gaussian

tail bound (see Lemma 2.1), we have ∥y′∥ ≤ 2
√
𝑚𝜎 with probability greater than 1−2−𝑚

for all y′’s. Any element from Z𝑛𝑞, and thus the challenge t, can be expressed as a sum

of at most 𝑛 vectors from 𝐴 (one for each coordinate). The adversary then sums the

401

corresponding y′’s it received from the ISIS preimage oracle and obtains a new y such

that Cy = t. The resulting y is a valid one-more-ISIS solution for 𝛽 = Θ(
√
𝑛𝑚 · 𝜎) with

probability 1 − 2−Ω(𝑚) .

The algorithm can be generalized to a larger set 𝐴. The generalization, presented in

Figure 7.2, makes the attack less efficient, but reduces the bound on 𝛽. It is parametrized

by 𝑄, the upper bound on the number of the preimage queries the attacker can issue.

This is also the assumed upper bound on the memory capacity of the attacker, since the

attack requires that all the responses are stored.

Input: The ISIS preimage oracle OISIS(·), a number 𝑄 of queries to OISIS, and t ∈ Z𝑛𝑞.

Output: A short vector y ∈ Z𝑚𝑞 such that Cy = t mod 𝑞.

1. Set 𝑤 = ⌊ log(𝑄/𝑛2)
log 𝑞 ⌋.

2. Let 𝐴 =

{∑
𝑤 · (𝑖−1)< 𝑗
≤max{𝑤 ·𝑖,𝑛}

e 𝑗 · 𝑎 𝑗 : ∀𝑖 ∈
[⌈
𝑛
𝑤

⌉]
, 𝑎 𝑗 ∈ Z𝑞

}
.

3. For all a ∈ 𝐴, set 𝑇 [a] = OISIS(a).

4. Write t = a𝑖1 + . . . + a𝑖⌈𝑛/𝑤⌉ .

5. Output y = 𝑇 [a𝑖1] + . . . + 𝑇 [a𝑖⌈𝑛/𝑤⌉].

Figure 7.2: Combinatorial Attack on one-more-ISIS.

The correctness of the algorithm in Figure 7.2 is direct: any t ∈ Z𝑛𝑞 can be efficiently

written as a sum of at most ⌈𝑛/𝑤⌉ elements from the set 𝐴 constructed on Step 2. Note

that |𝐴| ≤ 𝑛2𝑞𝑤: by definition of 𝑤, the algorithm makes ≤ 𝑄 queries. Finally, we can

bound the norm of the output as ∥y∥ < 2
√︁
⌊ 𝑛
𝑤
⌋ · 𝑚 · 𝜎 = Θ

(√︃
1 + 𝑛 log 𝑞

log(𝑄/𝑛2) ·
√
𝑚 · 𝜎

)
,

with probability greater than 1 − 2−Ω(𝑚) . The algorithm is correct for any 1 ≤ 𝑤 ≤ 𝑛

computed on Step 1, providing a trade-off between the runtime (which is essentially the

number 𝑄 of preimage queries) and the bound on 𝛽.

402

Lattice-based attacks. A strategy to attack one-more-ISIS is to use a discrete Gaussian

sampler algorithm [Kle00; GPV08]. This allows to solve one-more-ISIS in poly(𝑚)

time with 𝛽 = Ω(𝑚𝜎) using 𝑂 (𝑚2) preimage queries. More precisely, the attacker

performs the following:

1. Given C, compute a basis of Λ⊥𝑞 (𝐶).

2. Query the preimage ISIS oracle Θ(𝑚2) times for t = 0. From the oracle’s answers
and from the basis of Λ⊥𝑞 (𝐶) constructed in the previous step, compute a basis
B for Λ⊥𝑞 (C) = {y ∈ Z𝑚 : Cy = 0 mod 𝑞} such that the norms of Gram-Schmidt
orthogonalization B̃ of B are bounded from above.

3. Given an input t ∈ Z𝑛𝑞 find any z ∈ Z𝑚 such that Cz = t.

4. Run Babai’s Nearest Plane algorithm [Bab85] on input (B, z). Let v ∈ Λ⊥𝑞 (𝐶) be
the output. Return z − v as a one-more-ISIS solution for t.

Let us analyse the quality of the vectors returned by the above procedure. First, thanks to

standard properties of lattice Gaussian distributions, it indeed suffices to query the ISIS

preimage oracle Θ(𝑚2) times in Step 1, in order to obtain a set of 𝑚 linearly independent

vectors from Λ⊥𝑞 (C) with at least constant probability bounded away from 0 (see [Reg09,

Corollary 3.16]). According to [BF11, Proposition 4.7.], these linearly independent

vectors will be of norm bounded from above and below by Θ(
√
𝑚𝜎). Out of this set,

we can efficiently extract 𝑚 linearly independent vectors by checking which ones form

a subspace of the desired rank. Using [MG02, Lemma 7.1] we can convert this set to

a basis B, such that ∥B̃∥ <
√
𝑚𝜎. Finally, Babai’s Nearest Plane algorithm in Step 4

outputs a vector v such that ∥v − z∥ ≤ 1
2 (

∑
𝑖∈[𝑚] ∥b̃𝑖∥2)1/2, where the right-hand side of

the inequality is bounded from above by 𝑚𝜎 with probability greater than 1 − 2−Ω(𝑚) .

Furthermore, the returned vector e = z − v satisfies Ce = Cz − Cv = t as Cv = 0,

hence giving a one-more-ISIS solution for 𝛽 = 𝑂 (𝑚𝜎). As the vectors b̃𝑖 are already

somewhat short thanks to the Gaussian tail bound, we do not expect a significant decay in

their norms when converting them to a basis and/or applying a basis reduction algorithm,

like LLL or BKZ, on B. Hence, the norm of e is expected to be close to the above upper

bound, resulting in the one-more-ISIS solution for 𝛽 = Θ(𝑚𝜎).

403

Another strategy to improve the above bounds on 𝛽 at higher costs is to obtain a basis

of the lattice Λ⊥𝑞 (C) that is shorter than what the ISIS preimage oracle offers. We can

go as far as the Minkowski’s bound suggests, i.e., we can achieve ∥B∥ = 𝜆1(Λ⊥𝑞 (C)) ≤

min𝑚′≤𝑚
√
𝑚′ · 𝑞𝑛/𝑚′ (here we assume that all lattice minima have essentially the same

norms, which is expected to be the case when C is sampled uniformly). The latter bound

is 𝑂 (
√︁
𝑛 ln 𝑞) when 𝑚 = Ω(𝑛 log 𝑞). Vectors of such a small norm can be found by

calling shortest vector problem solvers on Λ⊥𝑞 (C). The fastest known such algorithms

run in time 2𝑂 (𝑚) (see, e.g., [BDGL16]). This exponential time attack enables us to

solve one-more-ISIS for 𝛽 = Θ(
√︁
𝑚𝑛 ln 𝑞) by invoking Babai’s Nearest Plane algorithm

on the obtained short basis. Note that the ISIS preimage oracle is only used to obtain

a basis of Λ⊥𝑞 (C). A trade-off between the quality of 𝛽 and the runtime is possible: a

𝑏-BKZ reduction [HPS11; SE94] yields a basis B with ∥B∥ ≤ 𝑏𝑂 (𝑚/𝑏) · 𝜆1(Λ⊥𝑞 (C)) in

time 2𝑂 (𝑏) , thus leading to 𝛽 = 𝑏𝑂 (𝑚/𝑏) ·
√︁
𝑚𝑛 ln 𝑞. Note that in order to outperform the

bound on 𝛽 we have in the polynomial time regime, the BKZ parameter 𝑏 has to be of

order Θ(𝑚/log𝜎), when 𝑚 = Θ(𝑛 log 𝑞).

To summarize, we have the run-times for solving one-more-ISIS:

• there exists a combinatorial algorithm that achieves
𝛽 = Θ

(√︃
1 + 𝑛 log 𝑞

log(𝑄/𝑛2) ·
√
𝑚𝜎

)
in time 𝑄 and using 𝑄 ≥ 𝑛𝑞 preimage queries;

• there exists a lattice-based algorithm that achieves 𝛽 = Θ(𝑚𝜎) in polynomial time
using 𝑂 (𝑚2) preimage queries; except for very few queries, it is outperformed by
the combinatorial algorithm;

• there exists a lattice-based algorithm that achieves
𝛽 = 2𝑂 (

𝑚 log log𝑇
log𝑇)√︁

𝑚𝑛 log 𝑞 in time 𝑇 without any preimage query (except to obtain
a basis of Λ⊥𝑞 (C)).

Open questions and potential directions. Let us now formulate two cryptanalytic

questions that the new one-more-ISIS hardness assumptions raises.

404

I. Improving algorithms for the shortest vector problem with preimage queries. One

might wonder whether we can accelerate existing shortest vector solvers, such as sieving

algorithms [AKS01; NV08; BDGL16], once we already have a somewhat short basis.

Just from the nature of sieving algorithms it does not seem to be the case: even to obtain

a small constant reduction in the norm of the current shortest vector, sieving generates

and processes 2𝑂 (𝑚) vectors which already constitutes its asymptotic cost.

II. Improving Babai’s Nearest Plane with a short generating set. Given access to ISIS

preimages, another direction one can consider is to try to accelerate the closest vector

problem (CVP) solvers on Λ⊥𝑞 (C), by exploiting the fact that we have many short vectors

from this lattice. The presence of many short vectors helps to heuristically improve

the Voronoi cell-based CVP algorithms [DLdW19]. Yet their heuristic correctness and

analysis rely on the presence of the shortest vectors from Λ⊥𝑞 (C), which, as we believe,

the preimage ISIS queries do not help to obtain fast.

APPENDIX

7.A FULL-FLEDGED BLINDNESS

In this section, we provide a construction of a blind signature with full-fledged blindness.

The construction differs from the one in Section 7.6.2 in the way the PKE encryption key

PKE.pk is generated.

7.A.1 Construction

The construction uses the following building blocks:

1. A hash function 𝐻 : {0, 1}∗ → Z𝑛𝑞 that will be modeled as a random oracle in the
unforgeability proof.

2. A NIZK for the statement of Equation (7.6)

3. A perfectly correct IND-CPA secure public key encryption scheme
PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) having the property that the public
key generated by PKE.KeyGen is computationally indistinguishable from a
uniformly sampled value from its range.

405

4. A hash function HPKE : {} → KPKE that will be modeled as a random oracle in the
unforgeability proof. Here, represents an empty bitstring and KPKE is the public
key space of PKE.

5. A hash function HA : {} → Z𝑛×𝑚𝑞 that will be modeled as a random oracle in the
unforgeability proof.

The construction is as below:

Setup. Gen(1𝜆): Upon input the security parameter 𝜆, define 𝑛, 𝑚, 𝑞, 𝜎, 𝛽 = 𝜎
√
𝑚

as functions of 𝜆 such that 𝑞 is prime, one-more-ISIS𝑞,𝑛,𝑚,𝜎,2𝛽 is hard and the

scheme is both efficient and complete; then do the following:

• Set PKE.pk = HPKE().

• Compute (C,TC) ← TrapGen(𝑛, 𝑚, 𝑞).

• Sample A = HA ().

• Output BSig.sk = TC, BSig.vk = C.

Signing. ⟨S(BSig.sk),U(BSig.vk, g)⟩:

1. User: Given the key BSig.vk and a message g, userU does the following:

• It computes A = HA ().

• It samples x← DZ𝑚,𝜎/𝑚.

• It computes t = Ax + 𝐻 (g).

• It sends t to the signer.

2. Signer: Upon receiving t, signer S does the following:

• It samples a short vector y←SamplePre(C,TC, t, 𝜎); we have Cy = t.

• It sends y to the user.

3. User: Upon receiving y, userU does the following:

• It computes PKE.pk = HPKE().

• It verifies that ∥y∥ ≤ 𝛽 and satisfies Cy = t.

406

• It samples PKE.Enc randomness 𝑟 and computes

ct = PKE.Enc(PKE.pk, x∥y; 𝑟).

• It generates a NIZK 𝜋 for following statement3: Given
C,A = HA (),PKE.pk = HPKE(), ct and 𝜇, there exists 𝑟 and vectors x, y
such that

∥x∥ ≤ 𝛽/𝑚∧ ∥y∥ ≤ 𝛽∧Cy−Ax = 𝐻 (g)∧ ct = PKE.Enc(PKE.pk, x∥y; 𝑟).
(7.6)

• The signature is (𝜋, ct).

Verifying. The verifier computes PKE.pk = HPKE() and A = HA () and accepts if the

proof 𝜋 is valid, and rejects if it is not.

Parameters and Completeness The parameters setting and the completeness argument

are the same as in Section 7.6.2.

Security We show that our construction satisfies one more unforgeability and blindness.

7.A.2 Unforgeability

Theorem 7.6. Assume that NIZK is sound. Then if there exists an adversary A in the

random oracle model that issues 𝑄𝑆 signing queries and any number of hash queries and

outputs 𝑄𝑆 + 1 signatures with probability 𝛿, then there exist algorithms B and C, both

having essentially the same runtime as A, where B requests 𝑄𝑆 preimage queries and

wins the one-more-ISIS𝑞,𝑛,𝑚,𝜎,2𝛽 game with probability Advomisis and C distinguishes

the public key of the PKE scheme from uniform with advantage AdvPKE such that

AdvPKE + Advomisis ≥ 𝛿 − 2−Ω(𝜆) − (𝑄𝑆 + 1) (2−Ω(𝜆) + 𝑞−𝑛).

Proof. We construct the proof using the following hybrids.
3Note that this is the same statement as in (7.2) in Section 7.6.2.

407

Hybrid0: This is the genuine one more unforgeability experiment.

Hybrid1 : In this hybrid, the challenger computes PKE.pk differently. It first runs

(PKE.pk,PKE.sk) ← PKE.KeyGen(1𝜆) and then programs HPKE() = PKE.pk.

It stores PKE.sk.

Hybrid2 : In this hybrid, for every signature 𝜎𝑗 = (𝜋 𝑗 , ct 𝑗) output by the adversary

(for 𝑗 ∈ [𝑄𝑆+1]), the challenger uses PKE.sk to decrypt ct 𝑗 into a plaintext (x 𝑗 ∥y 𝑗)

(which can be ⊥ in case decryption fails). It stores the (x 𝑗 ∥y 𝑗)’s.

Hybrid3 : This hybrid differs from the previous hybrid in the way matrix A is computed.

In this hybrid, the challenger first samples A← Z𝑛×𝑚𝑞 and then programs HA () = A.

Hybrid4 : This hybrid differs from the previous one in the way matrix A is chosen. The

challenger first samples a binary matrix R← {0, 1}𝑚×𝑚 and sets A = CR.
Indistinguishability of hybrids

In the following, we let Advomuf
𝑖 represent the advantage of A in the one more

unforgeability game in Hybrid𝑖. Then Advomuf
0 = 𝛿.

1. The only difference between Hybrid0 and Hybrid1 is in the way PKE.pk is computed.
Hence if A succeeds in the one more unforgeability game in Hybrid1 with
probability Advomuf

1 , then there exists an algorithm C which runs in essentially the
same time asA and distinguishes the public key of the PKE scheme from uniform
with advantage at least Advomuf

0 − Advomuf
1 . Let us denote the advantage of C with

AdvPKE. Then Advomuf
1 ≥ Advomuf

0 − AdvPKE = 𝛿 − AdvPKE.

2. The differences between Hybrid1 and Hybrid2 are only concerning the inner
computations of the challenger and not its interactions with the adversary. Hence,
the two hybrids are identical in the view of the adversary. Thus Advomuf

2 =

Advomuf
1 ≥ 𝛿 − AdvPKE.

3. The only difference between Hybrid2 and Hybrid3 is that in the latter A is first
chosen uniformly from Z𝑛×𝑚𝑞 and then HA () is programmed to be A. Hence, the
two hybrids are identical in the adversary’s view in the random oracle model. Thus
Advomuf

3 = Advomuf
2 ≥ 𝛿 − AdvPKE.

408

4. The only difference between Hybrid3 and Hybrid4 is that in the latter A is computed
as CR, where R is a uniform binary matrix, instead of sampling it uniformly
randomly from Z𝑛×𝑚𝑞 . The two hybrids are indistinguishable because Lemmas 2.3
and 2.1 imply that (C,A) is within statistical distance 2−Ω(𝜆) from (C,CR). Thus
Advomuf

4 ≥ Advomuf
3 − 2−Ω(𝜆) ≥ 𝛿 − AdvPKE − 2−Ω(𝜆) .

We conclude with the following claim.

Claim 7.7. Assume that the NIZK argument system is sound and PKE is perfectly correct.

Then if there is an adversary A in the random oracle model that makes at most 𝑄𝑆

signing queries and succeeds in generating 𝑄𝑆 + 1 signatures in Hybrid4 with probability

𝜀, then there exists a one-more-ISIS adversary B with𝑄𝑆 preimage queries with success

probability at least 𝜀 − (𝑄𝑆 + 1) (2−Ω(𝜆) + 𝑞−𝑛).

Proof. The reduction B is as follows.

1. Upon being challenged by the one-more-ISIS challenger C, with matrix C,
algorithm B does the following:

• It uniformly samples a binary matrix R and sets A = CR. It programs
HA () = A.

• It samples (PKE.pk,PKE.sk) ← PKE.KeyGen(1𝜆) and sets HPKE() =

PKE.pk.

• It invokes A with C as the verification key.

2. In response to each (fresh) hash query on input 𝜇 from A, algorithm B makes a
syndrome query to C. Challenger C returns a uniform vector t ∈ Z𝑛𝑞, which B
forwards to A as 𝐻 (𝜇).

3. To answer a signing query on input t′, algorithm B forwards t′ to C as a preimage
query. Challenger C returns a short vector y′, such that Cy′ = t′. Algorithm B
forwards y′ to A.

4. Eventually, adversary A outputs 𝑄𝑆 + 1 message-signature pairs
{𝜇 𝑗 , (𝜋 𝑗 , ct 𝑗)} 𝑗∈[𝑄𝑆+1] .

5. If the 𝜋 𝑗 ’s pass verification, then algorithm B decrypts the ct 𝑗 ’s and obtains𝑄𝑆 + 1
corresponding pairs of short vectors (x 𝑗 , y 𝑗). If all 𝜇 𝑗 ’s have been hash-queried
by A and the vectors (x 𝑗 , y 𝑗) satisfy Equation (7.6) for all 𝑗 ∈ [𝑄𝑆 + 1], then B
outputs {(y 𝑗 − Rx 𝑗 , 𝐻 (𝜇 𝑗))} 𝑗∈[𝑄𝑆+1] . If any decryption fails or any of the above
conditions is not satisfied, then B aborts.

409

First note that by the soundness of NIZK, the probability that a statement with a valid

proof is false is bounded above by 2−Ω(𝜆) . Now, since the ciphertext ct is part of the

statement, we have by perfect correctness of PKE that it decrypts to the correct value.

Hence, the overall probability that a decryption fails is ≤ (𝑄𝑆 + 1) · 2−Ω(𝜆) .

Next, we claim that for each 𝜇 𝑗 , adversary A must have issued a corresponding hash

query to B. This is because otherwise, there is only a 𝑞−𝑛 probability that a fresh

𝐻 (𝜇 𝑗) is equal to Cy 𝑗 − Ax 𝑗 . Additionally, by the soundness of NIZK, it holds that for

all 𝑗 ∈ [𝑄𝑆 + 1]:

∥x 𝑗 ∥ ≤ 𝛽/𝑚 ∧ ∥y 𝑗 ∥ ≤ 𝛽 ∧ Cy 𝑗 − Ax 𝑗 = 𝐻 (𝜇 𝑗).

Observe that because of the way hash queries are answered by B, the value 𝐻 (𝜇 𝑗) is one

of the syndromes returned by C. Define t 𝑗 = 𝐻 (𝜇 𝑗). Then we get, for all 𝑗 ∈ [𝑄𝑆 + 1],

t 𝑗 = Cy 𝑗 − Ax 𝑗 = Cy 𝑗 − CRx 𝑗 = C(y 𝑗 − Rx 𝑗).

Since R is a binary matrix, we have ∥y 𝑗 − Rx 𝑗 ∥ ≤ 2𝛽 for all 𝑗 . Thus, the success

probability of B is at least 𝜀 − (𝑄𝑆 + 1) (2−Ω(𝜆) + 𝑞−𝑛).

Note that B issues one preimage query for each signing query from A. Since A can

issue at most 𝑄𝑆 signing queries, algorithm B also issues at most 𝑄𝑆 preimage queries

to C. Hence B is a valid adversary in the one-more-ISIS game. ■
■

7.A.3 Blindness

Theorem 7.8. Assume that NIZK is zero-knowledge. Then if there exists a signer S∗ in

the random oracle model that wins the full-fledged blindness game for the blind signature

scheme in Section 7.A.1 with advantage 𝛿, then there exist adversaries B and C, both

running in essentially the same time as S∗, where B wins the IND-CPA security game for

PKE with advantage AdvIND-CPA and C distinguishes the public key of the PKE scheme

410

from uniform with advantage AdvPKE such that

2AdvIND-CPA + AdvPKE ≥ 𝛿 − 2−Ω(𝜆) .

Proof. We argue blindness using the following hybrids.

Hybrid0 : This is the genuine full-fledged blindness experiment.

Hybrid1 : This hybrid differs from the previous one in the way PKE.pk is computed: the

challenger now samples (PKE.pk,PKE.sk) ← PKE.Setup(1𝜆) and sets HPKE() =

PKE.pk.

Hybrid2 : This hybrid differs from the previous one in the way the proofs 𝜋0 and 𝜋1 are

computed: instead of genuinely computing the NIZKs, the challenger simulates

them without using the witnesses.

Hybrid3 : This hybrid differs from the previous hybrid in that both ct0 and ct1 encrypt 0

instead of (x0∥y0) and (x1∥y1), respectively.

Hybrid4 : This hybrid differs from the previous hybrid in the way matrix A is computed.

In this hybrid, the challenger first samples A← Z𝑛×𝑚𝑞 and then programs HA () = A.

Hybrid5 : This hybrid differs from the previous hybrid in the way the challenger

computes t0 and t1. Instead of sampling x0 (resp. x1) and computing t0 =

Ax0 + 𝐻 (𝜇𝑏) (resp. t1 = Ax1 + 𝐻 (𝜇�̄�)), it samples u0 (resp. u1) uniformly and

sets t0 = u0 + 𝐻 (𝜇𝑏) (resp. t1 = u1 + 𝐻 (𝜇�̄�)).
Indistinguishability of hybrids

In the following, we let Advbl
𝑖 represent the advantage of S∗ in the full-fledged blindness

game in Hybrid𝑖. Then Advbl
0 is 𝛿.

411

1. The only difference between Hybrid0 and Hybrid1 is in the way PKE.pk is computed.
Hence if S∗ succeeds in the full-fledged blindness game in Hybrid1 with advantage
Advbl

1 , then we can design an algorithm C which runs in essentially the same time
as S∗ and distinguishes the public key of the PKE scheme from uniform with
advantage at least Advbl

0 − Advbl
1 . Thus if the advantage of C is represented by

AdvPKE, we get Advbl
1 ≥ Advbl

0 − AdvPKE = 𝛿 − AdvPKE.

2. The only difference between Hybrid1 and Hybrid2 is in the way 𝜋0 and 𝜋1 are
computed. The two hybrids are indistinguishable because of the zero-knowledge
property of the NIZK. Hence Advbl

2 ≥ Advbl
1 − 2−Ω(𝜆) ≥ 𝛿 − AdvPKE − 2−Ω(𝜆) .

3. The only difference between Hybrid2 and Hybrid3 is in the messages being encrypted
by ct0 and ct1. The two hybrids are computationally indistinguishable because of
the IND-CPA security of PKE. In particular, if advantage of S∗ in the full-fledged
blindness game in Hybrid3 is Advbl

3 , then there exists an adversary B against
IND-CPA security of PKE with advantage AdvIND-CPA such that 2AdvIND-CPA ≥
Advbl

2 − Advbl
3 ≥ 𝛿 − AdvPKE − 2−Ω(𝜆) − Advbl

3 . (Here, we consider twice of
AdvIND-CPA since both ct0 and ct1 are replaced with encryptions of 0 and hence
the IND-CPA security of PKE is called twice.).

4. The only difference between Hybrid3 and Hybrid4 is in the computation of matrix A:
the challenger first samples A uniformly from Z𝑛×𝑚𝑞 and then programs HA () = A.
The two hybrids are therefore, identical in the adversary’s view in the random
oracle model. Hence Advbl

4 = Advbl
3 ≥ 𝛿 − AdvPKE − 2−Ω(𝜆) − 2AdvIND-CPA.

5. The only difference between Hybrid4 and Hybrid5 is in the choice of the masking
term for 𝐻 (g). Since the vectors x0 and x1 are only used in the computations of
the vectors t0 and t1, we have by the leftover hash lemma (Lemmas 2.3 and 2.1),
that Ax0 and Ax1 are statistically indistinguishable from uniform u0 and u1.
Hence Hybrid4 and Hybrid5 are indistinguishable. More concretely, we have
Advbl

5 ≥ Advbl
4 − 2−Ω(𝜆) ≥ 𝛿 − AdvPKE − 2−Ω(𝜆) − 2AdvIND-CPA − 2−Ω(𝜆) .

However, in Hybrid5, the adversary S∗ has zero advantage in guessing the bit 𝑏 since

it is information theoretically hidden. Hence 𝛿 − AdvPKE − 2AdvIND-CPA − 2−Ω(𝜆) ≤ 0,

which is equivalent to AdvPKE + 2AdvIND-CPA ≥ 𝛿 − 2−Ω(𝜆) . ■

412

CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we studied different cryptographic primitives of practical importance in

distributed settings. We categorized these primitives in two parts, where: (i) the data is

distributed, and (ii) the authority is distributed.

Distributed Data

In the first part, We began with the study of attribute based encryption and predicate

encryption in multi-input settings, where the data to be encrypted is the concatenation of

multiple data generated independently at different locations. We initiated their study by

defining MIABE and MIPE and formalizing their security definition under unbounded

collusions. We defined two notions of security - the first (regular) notion does not

allow any decrypting key query as is common in the case of single input ABE/PE. The

second, stronger notion allows decrypting keys as well, with the necessary restrictions to

prevent trivial attacks. We then gave two schemes for 2ABE for NC1 using pairings and

LWE. We proved their security in the bilinear generic group model and standard model

using KOALA assumption, respectively. Using heuristic assumptions from [BV22], we

constructed 2ABE for poly class and 3ABE for NC1. We gave a generic compiler to

translate any kABE to kPE, for a constant 𝑘 , using lockable obfuscation which in turn,

can be constructed from LWE. For stronger security, 𝑘 = 2. This, along with our results

for MIABE, implied 2PE for NC1 and heuristic 2PE for P and 3PE for NC1. We further

significantly enhanced our results for MIABE to any constant arity, using the recently

introduced lattice-based assumptions of evasive and tensor LWE. For NC1 circuits, we

used evasive LWE, while for circuits in P, we used evasive LWE along with suitable

strengthening of the tensor LWE assumption. We note that for 2ABE in P, we only used

evasive and tensor LWE as introduced by [Wee22] (without any strengthening). Since

these constructions are based only on lattice-based assumptions, they have the additional

advantage of potentially being quantum safe. Using our compiler for MIPE, we get

constant input PE for the same circuit classes under the same set of assumptions and

LWE.

Then we moved towards building FE, which is a generalization of ABE and PE, in

multi-party settings for attribute weighted sums (AWS) functionality. We gave the first

constructions for attribute based multi-input FE (MIFE), multi-client FE (MCFE) and

dynamic decentralized FE (DDFE) for AWS functionality. Previously, constructions for

these primitives were known only for inner product functionality. Our constructions are

based on pairings and proven selectively secure under the matrix DDH assumption.

We summarize our results from the first part in Table 8.1.

Primitive Arity Ref. Decentr–
alized

Corrup-
tion Security Assumptions Function

class Main contribution

2ABE 2 Sec. 3.6 data No Strong LWE, and
pairings (in GGM) NC1

introduced MIPE,

formalized MIABE
and MIPE.

gave the first
constructions

for these primitives

2ABE 2 Sec. 3.7 data No Strong LWE+KOALA NC1
3ABE 3 Sec. 3.10 data No heuristic heuristic NC1
2ABE 2 Sec. 3.11 data No heuristic heuristic P

2ABE 2 Sec. 4.6 data No Strong evasive LWE and
tensor LWE P

kABE constant Sec. 4.7.1 data No Strong evasive LWE NC1

kABE constant Sec. 4.7.3 data No Strong evasive LWE,
strong tensor LWE P

AB-MIFE poly Sec. 5.6 data yes Selective Matrix DDH AWS
MCFE poly Sec. 5.7 data yes Selective Matrix DDH AWS

DDFE poly Sec. 5.8 data and
authority yes Selective Matrix DDH AWS

kPE to kABE compiler from LWE
• Strong security for 𝑘 = 2 (3.9)

• Weak security for any constant 𝑘 > 2 (3.8)

Table 8.1: Summary of our contributions in the first part of the thesis

Several interesting future directions emerge from our work.

1. Extending the arity. A dream goal in this direction would be to construct
MIABE/MIPE for polynomial arity. Since MIABE with polynomial arity implies
WE [BJK+18], it seems hard to construct a scheme with polynomial arity from
LWE since construction for WE from LWE has remained elusive. However, WE

414

can be constructed from recently introduced assumptions of evasive LWE [Tsa22;
VWW23]. So, one can hope to construct MIABE/MIPE with polynomial arity
from these assumptions for general circuit classes like NC1 and P. We constructed
MIABE with constant arity using evasive and tensor LWE [Wee22]. It would also
be very interesting to construct MIABE/MIPE for constant arity from standard
LWE.

2. Supporting class P from well studied assumptions. Another significant extension
would be to construct MIABE/MIPE for P from the well studied assumptions. We
recall that our candidate construction for 2ABE for class P, is either based on the
techniques developed in the context of succinct CPABE in [BV22], and similarly to
[BV22], has no formal proof, or from evasive and tensor LWE. Our constant arity
MIABE construction for P further requires strong tensor LWE. We would want to
construct them from standard LWE. It would also be of independent interest to
develop a proof for the assumption used in [BV22].

3. Supporting user corruption. In our schemes for MIABE and MIPE all the users
share the same encryption key, which is a secret1. If the encryption key leaks from
any one of the users, it will basically leak the key for all the users which will break
the security. Hence, our construction can not support user corruption. Ideally, we
would like to construct a scheme where each user has a different encryption key
and the security should hold even if the encryption key of some of the users is
leaked.

4. Strengthening the MIPE compiler. Our MIABE to MIPE compiler for stronger
security supports only arity two. We would like to extend it to any constant arity
as is the case for our compiler with regular security. Even further, we would like
to design a compiler for polynomial arity.

Distributed Authority

Continuing with the theme of distributed cryptography, in the second part of the thesis,

we focused on primitives with distributed authority. We studied threshold signatures

and blind signatures. In threshold signatures, we improved Boneh et al.’s round-optimal

lattice based threshold signatures in terms of efficiency and security. The main source of

efficiency came from the use of Rényi divergence based distance measurement between

two distributions instead of statistical distance which helped us reduce the noise flooding

used in [BGG+18] from exponential to polynomial. This in turn, reduced the signature

size from �̃� (𝜆3) to �̃� (𝜆). We gave two more constructions that achieved partially

1In our construction for constant arity, the user holding the message encrypts using the public key, but all
the other users use the common secret key.

415

adaptive and fully adaptive security as opposed to selective security in Boneh et al.’s

construction. We then continued this thread with blind signatures where we constructed

the first practical, round-optimal lattice-based blind signature. Our construction achieved

overall better parameters. We achieved signature size of approx. 44KB and transcript

size of 1.4 KB for 128 bits of security parameter. The security of our construction

followed from a new and natural lattice-based assumption of one-more-ISIS, that we

introduced. We studied our assumption with various attack strategies to gain confidence

in its hardness. We summarize our results in the second part of the thesis in Table 8.2.

Primitive Ref. Decentr-
alized Security Assumptions Remark

Threshold
Signature Sec. 6.5 authority selective

unforgeability LWE improved efficiency- sig size
reduced from �̃� (𝜆3) to �̃� (𝜆)

the first round optimal, lattice based
threshold signature with adaptivity

Limitation: key size in fully
adaptive construction grows linearly

with number of signatures

Threshold
Signature Sec. 6.7 authority partially adaptive

unforgeability LWE

Threshold
Signature Sec. 6.8 authority fully adaptive

unforgeability LWE

Rejection free [Lyu12]
signature Sec. 6.6 - unforgeability LWE

Blind
Signature Sec. 7.6.2 authority one-more-unforgeability

full-fledged blindness one-more-ISIS

first overall practical and
round optimal constr. from lattices.

sig. size 45 KB, transcript 1.4 KB
for 128 bits of security

introduced one-more-ISIS assumption

Table 8.2: Summary of our contributions in the second part of the thesis

Below we list some directions for future work.

1. Direct construction of threshold signature scheme: Recall that our threshold
signature scheme, similarly to Boneh et al., uses homomorphic encryption scheme
where each party computes an encryption of the signature, as an intermediate step,
by homomorphically evaluating the signing circuit on the encryption of the signing
key, given as public parameters. Known constructions for lattice based signatures
have complex circuits for which existing FHE constructions are not practical. This
limits the practical usage of our scheme as well. While constructing a practical
FHE scheme is an important active area of research in itself, it would be interesting
to design a direct, practical construction for threshold signatures without using
FHE.

2. Fully adaptive threshold signature with succinct keys: Our fully adaptive threshold

416

signature scheme has the limitation that the size of the signing key is linearly
dependent on the number of signing queries 𝑄𝑆. We would like to remove this
dependency on 𝑄𝑆.

3. More applications of one-more-ISIS assumption: It would be interesting to find
more applications for our one-more-ISIS assumption. For example, we would like
to explore the possibility of using the assumption in constructing other variants of
blind signatures, like partial blind signatures, where only a part of the message is
blinded.

4. Threshold blind signatures: A natural combination of threshold signature and
blind signature defines the notion of threshold blind signatures, where a user needs
to interact with at least 𝑡 out of 𝑁 signers to get a signature for his/her message.
The notion of threshold blind signatures already exists in the literature [KM15;
CXW06; CXYN07; JL99]. However, most of the constructions are from discrete
log or RSA based assumptions. It would be interesting to explore the possibility of
combining the techniques developed for threshold signatures and blind signatures
in this thesis to construct lattice based threshold blind signatures.

5. Decentralizing the Setup algorithm in our constructions: In our constructions of
different primitives, the setup algorithm is a centralized algorithm, thus placing the
entire trust in a single trusted authority which again means a single point of security
failure. So, it is interesting and desirable to decentralize the setup algorithm so
that there is no single trusted authority. For example, in threshold signatures, we
would like to let the parties choose their own partial signing keys. Similarly, in
MIABE/MIPE, it would be interesting to construct a scheme where users choose
their own encryption key, or at least these keys are derived from each party’s/user’s
contribution.

417

BIBLIOGRAPHY

[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe,
and Alan Szepieniec. Design of symmetric-key primitives for advanced
cryptographic protocols. IACR Trans. Symmetric Cryptol., 2020(3):1–45,
2020. https://doi.org/10.13154/tosc.v2020.i3.1-45.

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in
the standard model. In EUROCRYPT, volume 6110 of LNCS, pages 553–572.
Springer, 2010. http://dx.doi.org/10.1007/978-3-642-13190-5_
28.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation
in fixed dimension and shorter-ciphertext hierarchical IBE. In CRYPTO,
volume 6223 of LNCS, pages 98–115. Springer, 2010. https://doi.org/
10.1007/978-3-642-14623-7_6.

[ABB20a] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann.
BLAZE: practical lattice-based blind signatures for privacy-preserving
applications. In Financial Cryptography and Data Security, volume 12059
of LNCS, pages 484–502. Springer, 2020. https://doi.org/10.1007/
978-3-030-51280-4_26.

[ABB20b] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann.
On lattice-based interactive protocols: An approach with less or no aborts.
In ACISP, volume 12248 of LNCS, pages 41–61. Springer, 2020. https:
//doi.org/10.1007/978-3-030-55304-3_3.

[ABD+17] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Kyber: Algorithm
specifications and supporting documentation, 2017. https:
//csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/
Round-1-Submissions.

[Abe01] Masayuki Abe. A secure three-move blind signature scheme for
polynomially many signatures. In EUROCRYPT, volume 2045 of
LNCS, pages 136–151. Springer, 2001. https://doi.org/10.1007/
3-540-44987-6_9.

[ABG19] Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input
to multi-client inner-product functional encryption. In ASIACRYPT, volume
11923 of LNCS, pages 552–582. Springer, 2019. https://doi.org/10.
1007/978-3-030-34618-8_19.

419

https://doi.org/10.13154/tosc.v2020.i3.1-45
http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-030-51280-4_26
https://doi.org/10.1007/978-3-030-51280-4_26
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-55304-3_3
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Round-1-Submissions
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-34618-8_19

[ABKW19] Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik
Waldner. Decentralizing inner-product functional encryption. In PKC,
volume 11443 of LNCS, pages 128–157. Springer, 2019. https://doi.
org/10.1007/978-3-030-17259-6_5.

[ACF+18] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan
Ursu. Multi-input functional encryption for inner products: Function-hiding
realizations and constructions without pairings. In CRYPTO, volume 10991
of LNCS, pages 597–627. Springer, 2018. https://doi.org/10.1007/
978-3-319-96884-1_20.

[ACF+20] Shweta Agrawal, Michael Clear, Ophir Frieder, Sanjam Garg, Adam
O’Neill, and Justin Thaler. Ad hoc multi-input functional encryption. In
ITCS, volume 151 of LIPIcs, pages 40:1–40:41. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2020. https://doi.org/10.4230/LIPIcs.
ITCS.2020.40.

[ACGU20] Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-
product functional encryption with fine-grained access control. In
ASICRYPT, volume 12493 of LNCS, pages 467–497. Springer, 2020.
10.1007/978-3-030-64840-4_16.

[AD17] Martin R Albrecht and Amit Deo. Large modulus ring-LWE ≥ module-
LWE. In ASIACRYPT, volume 10624 of LNCS, pages 267–296. Springer,
2017. https://doi.org/10.1007/978-3-319-70694-8_10.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange—A new hope. In USENIX Security, volume
2016 of SEC ’16, pages 327–343. USENIX Association, 2016. https:
//dl.acm.org/doi/10.5555/3241094.3241120.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan.
Functional encryption for inner product predicates from learning with
errors. In Asiacrypt, volume 7073 of LNCS, pages 21–40. Springer, 2011.
https://doi.org/10.1007/978-3-642-25385-0_2.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps:
New techniques for bootstrapping and instantiation. In EUROCRYPT,
volume 11476 of LNCS, pages 191–225. Springer, 2019. https://doi.
org/10.1007/978-3-030-17653-2_7.

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-
input inner-product functional encryption from pairings. In EUROCRYPT,
volume 10210 of LNCS, pages 601–626. Springer, 2017. https://doi.
org/10.1007/978-3-319-56620-7_21.

420

https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.4230/LIPIcs.ITCS.2020.40
https://doi.org/10.4230/LIPIcs.ITCS.2020.40
10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-319-70694-8_10
https://dl.acm.org/doi/10.5555/3241094.3241120
https://dl.acm.org/doi/10.5555/3241094.3241120
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21

[AGT21a] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic
functional encryption from pairings. In CRYPTO, volume 12828 of
LNCS, pages 208–238. Springer, 2021. https://doi.org/10.1007/
978-3-030-84259-8_8.

[AGT21b] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional
encryption. In TCC, volume 13043 of LNCS, pages 224–255. Springer,
2021. https://doi.org/10.1007/978-3-030-90453-1_8.

[AGT22] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic
functional encryption: Stronger security, broader functionality. In TCC,
volume 13747 of LNCS, pages 711–740. Springer, 2022. https://doi.
org/10.1007/978-3-031-22318-1_25.

[AGW20] Michel Abdalla, Junqing Gong, and Hoeteck Wee. Functional encryption
for attribute-weighted sums from 𝑘-Lin. In CRYPTO, volume 12170 of
LNCS, pages 685–716. Springer, 2020. https://doi.org/10.1007/
978-3-030-56784-2_23.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments without a
trusted setup. In ACM SIGSAC CCS, CCS ’17, pages 2087–2104. ACM,
2017. https://doi.org/10.1145/3133956.3134104.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
NC0. In FOCS, pages 166–175. IEEE, 2004. https://doi.org/10.
1109/FOCS.2004.20.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation
from compact functional encryption. In CRYPTO, volume 9215 of
LNCS, pages 308–326. Springer, 2015. https://doi.org/10.1007/
978-3-662-47989-6_15.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huĳia Lin, Christian Matt, and Amit
Sahai. Indistinguishability obfuscation without multilinear maps: iO from
LWE, bilinear maps, and weak pseudorandomness. In CRYPTO, volume
11694 of LNCS, pages 284–332. Springer, 2019. https://doi.org/10.
1007/978-3-030-26954-8_10.

[AJS23] Paul Lou Aayush Jain, Huĳia Lin and Amit Sahai. Polynomial-time
cryptanalysis of the subspace flooding assumption for post-quantum io. In
EUROCRYPT, volume 14004 of LNCS, pages 205–235. Springer, 2023.
https://doi.org/10.1007/978-3-031-30545-0_8.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC,
pages 99–108. ACM, 1996. https://dl.acm.org/doi/pdf/10.1145/

421

https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-90453-1_8
https://doi.org/10.1007/978-3-031-22318-1_25
https://doi.org/10.1007/978-3-031-22318-1_25
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1109/FOCS.2004.20
https://doi.org/10.1109/FOCS.2004.20
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-031-30545-0_8
https://dl.acm.org/doi/pdf/10.1145/237814.237838
https://dl.acm.org/doi/pdf/10.1145/237814.237838
https://dl.acm.org/doi/pdf/10.1145/237814.237838

237814.237838.

[Ajt99] Miklos Ajtai. Generating hard instances of the short basis problem. In
ICALP, volume 1644 of LNCS, pages 1–9. Springer, 1999. https://doi.
org/10.1007/3-540-48523-6_1.

[AKS01] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm
for the shortest lattice vector problem. In STOC, STOC, pages 601–610.
ACM, 2001. https://doi.org/10.1145/380752.380857.

[AKYY23] Shweta Agrawal, Simran Kumari, Anshu Yadav, and Shota Yamada.
Trace and revoke with optimal parameters from polynomial hardness.
In EUROCRYPT, volume 14006 of LNCS, pages 605–636. Springer, 2023.
https://doi.org/10.1007/978-3-031-30620-4_20.

[APM20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation
without maps: Attacks and fixes for noisy linear fe. In EUROCRYPT,
volume 12105 of LNCS, pages 110–140. Springer, 2020. https://doi.
org/10.1007/978-3-030-45721-1_5.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective
security: Framework, fully secure functional encryption for regular
languages, and more. In EUROCRYPT, volume 8441 of LNCS,
pages 557–577. Springer, 2014. https://doi.org/10.1007/
978-3-642-55220-5_31.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast
encryption from lwe and pairings in the standard model. In TCC, volume
12550 of LNCS, pages 149–178. Springer, 2020. https://doi.org/10.
1007/978-3-030-64375-1_6.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from
pairings and lwe. In EUROCRYPT, volume 12105 of LNCS, pages 13–43.
Springer, 2020. https://doi.org/10.1007/978-3-030-45721-1_2.

[Bab85] László Babai. On Lovász’ lattice reduction and the nearest lattice point
problem (shortened version). In STACS, volume 182 of LNCS, pages 13–20.
Springer, 1985. https://doi.org/10.1007/BFb0023990.

[BCD+16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo:
Take off the ring! practical, quantum-secure key exchange from LWE. In
ACM CCS, CCS ’16, pages 1006–1018. ACM, 2016. https://doi.org/
10.1145/2976749.2978425.

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and

422

https://dl.acm.org/doi/pdf/10.1145/237814.237838
https://dl.acm.org/doi/pdf/10.1145/237814.237838
https://dl.acm.org/doi/pdf/10.1145/237814.237838
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1145/380752.380857
https://doi.org/10.1007/978-3-031-30620-4_20
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-45721-1_2
https://doi.org/10.1007/BFb0023990
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425

Romain Gay. Practical functional encryption for quadratic functions
with applications to predicate encryption. In CRYPTO, volume 10401
of LNCS, pages 67–98. Springer, 2017. https://doi.org/10.1007/
978-3-319-63688-7_3.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Transparent
succinct arguments for R1CS. In EUROCRYPT, volume 11476 of
LNCS, pages 103–128. Springer, 2019. https://doi.org/10.1007/
978-3-030-17653-2_4.

[BD10] Rikke Bendlin and Ivan Damgård. Threshold decryption and zero-
knowledge proofs for lattice-based cryptosystems. In TCC, volume 5978
of LNCS, pages 201–218. Springer, 2010. https://doi.org/10.1007/
978-3-642-11799-2_13.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thĳs Laarhoven. New
directions in nearest neighbor searching with applications to lattice sieving.
In SODA, pages 10–24. ACM, 2016. https://doi.org/10.1137/1.
9781611974331.ch2.

[BECE+20] Samuel Bouaziz-Ermann, Sébastien Canard, Gautier Eberhart, Guillaume
Kaim, Adeline Roux-Langlois, and Jacques Traoré. Lattice-based (partially)
blind signature without restart. IACR Cryptol. ePrint Arch., 2020. https:
//eprint.iacr.org/2020/260.

[BF11] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures
over binary fields and new tools for lattice-based signatures. In PKC,
volume 6571 of LNCS, pages 1–16. Springer, 2011. https://doi.org/
10.1007/978-3-642-19379-8_1.

[BFF+14] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre
Scedrov, and Benedikt Schmidt. Automated analysis of cryptographic
assumptions in generic group models. In CRYPTO, volume 8616 of
LNCS, pages 95–112. Springer, 2014. https://doi.org/10.1007/
978-3-662-44371-2_6.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique
for signatures based on learning with errors. In CT-RSA, volume 8366
of LNCS, pages 28–47. Springer, 2014. https://doi.org/10.1007/
978-3-319-04852-9_2.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria
Nikolaenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran
Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit
ABE and compact garbled circuits. In EUROCRYPT, volume 8441 of

423

https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://eprint.iacr.org/2020/260
https://eprint.iacr.org/2020/260
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/978-3-662-44371-2_6
https://doi.org/10.1007/978-3-662-44371-2_6
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-04852-9_2

LNCS, pages 533–556. Springer, 2014. https://doi.org/10.1007/
978-3-642-55220-5_30.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In CRYPTO, volume 10991 of
LNCS, pages 565–596. Springer, 2018. https://doi.org/10.1007/
978-3-319-96884-1_19.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO,
volume 2139 of LNCS, pages 1–18. Springer, 2001. https://doi.org/
10.1007/3-540-44647-8_1.

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon
Rosen. On the hardness of learning with rounding over small modulus.
In TCC, volume 9562 of LNCS, pages 209–224. Springer, 2016. https:
//doi.org/10.1007/978-3-662-49096-9_9.

[BGSS17] Olivier Blazy, Philippe Gaborit, Julien Schrek, and Nicolas Sendrier.
A code-based blind signature. In ISIT, pages 2718–2722. IEEE, 2017.
https://doi.org/10.1109/ISIT.2017.8007023.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS, pages 309–325,
2012. http://doi.acm.org/10.1145/2090236.2090262.

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding
inner product encryption. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT, volume 9452 of LNCS, pages 470–491. Springer, 2015.
https://doi.org/10.1007/978-3-662-48797-6_20.

[BJK+18] Zvika Brakerski, Aayush Jain, Ilan Komargodski, Alain Passelègue, and
Daniel Wichs. Non-trivial witness encryption and null-io from standard
assumptions. In SCN, volume 11035 of LNCS, pages 425–441. Springer,
2018. https://doi.org/10.1007/978-3-319-98113-0_23.

[BKP13] Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice
trapdoor: threshold protocols for signatures and (H) IBE. In ACNS, volume
7954 of LNCS, pages 218–236. Springer, 2013. https://doi.org/10.
1007/978-3-642-38980-1_14.

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and
Mariana Raykova. On the (in)security of ROS. In EUROCRYPT, volume
12696 of LNCS, pages 33–53. Springer, 2021. https://doi.org/10.
1007/978-3-030-77870-5_2.

424

https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1109/ISIT.2017.8007023
http://doi.acm.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-319-98113-0_23
https://doi.org/10.1007/978-3-642-38980-1_14
https://doi.org/10.1007/978-3-642-38980-1_14
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth
Raghunathan. Key homomorphic PRFs and their applications. In
CRYPTO, volume 8042 of LNCS, pages 410–428. Springer, 2013. https:
//doi.org/10.1007/978-3-642-40041-4_23.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In STOC, STOC ’13,
pages 575–584. ACM, 2013. https://doi.org/10.1145/2488608.
2488680.

[BLRL+18] Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien
Stehlé, and Ron Steinfeld. Improved security proofs in lattice-based
cryptography: using the Rényi divergence rather than the statistical
distance. J. Cryptol., 31:610–640, 2018. https://doi.org/10.1007/
s00145-017-9265-9.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. In ASIACRYPT, volume 2248 of LNCS, pages 514–532. Springer,
2001. https://doi.org/10.1007/3-540-45682-1_30.

[BLS19] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic
techniques for short(er) exact lattice-based zero-knowledge proofs. In
CRYPTO, volume 11692 of LNCS, pages 176–202. Springer, 2019. https:
//doi.org/10.1007/978-3-030-26948-7_7.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. The one-more-RSA-inversion problems and the security of
Chaum’s blind signature scheme. J. Cryptol., 16:185–215, 2003. https:
//doi.org/10.1007/s00145-002-0120-1.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-Diffie-Hellman-group signature scheme. In
PKC, volume 2567 of LNCS, pages 31–46. Springer, 2003. https://doi.
org/10.1007/3-540-36288-6_3.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions
and lattices. In EUROCRYPT, volume 7237 of LNCS, pages 719–737.
Springer, 2012. https://doi.org/10.1007/978-3-642-29011-4_
42.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:
Definitions and challenges. In TCC, volume 6597 of LNCS, pages 253–273.
Springer, 2011. https://doi.org/10.1007/978-3-642-19571-6_
16.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic

425

https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/s00145-017-9265-9
https://doi.org/10.1007/s00145-017-9265-9
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16

encryption from (standard) LWE. In FOCS, pages 97–106. IEEE Computer
Society, 2011. https://doi.org/10.1109/FOCS.2011.12.

[BV15a] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. In FOCS, pages 171–190. IEEE Computer
Society, 2015. https://doi.org/10.1109/FOCS.2015.20.

[BV15b] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic
PRFs from standard lattice assumptions - or: How to secretly embed a
circuit in your PRF. In TCC, volume 9015 of LNCS, pages 1–30. Springer,
2015. 10.1007/978-3-662-46497-7_1.

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-abe from lwe:
Unbounded attributes and semi-adaptive security. In CRYPTO, volume
9816 of LNCS, pages 363–84. Springer, 2016. https://doi.org/10.
1007/978-3-662-53015-3_13.

[BV22] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast
encryption and succinct ciphertext policy abe. In ITCS, volume 215
of LIPIcs, pages 28:1–28:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. https://doi.org/10.4230/LIPIcs.ITCS.2022.
28.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on
encrypted data. In TCC, volume 4392 of LNCS, pages 535–554. Springer,
2007. https://doi.org/10.1007/978-3-540-70936-7_29.

[BW19] Ward Beullens and Hoeteck Wee. Obfuscating simple functionalities from
knowledge assumptions. In PKC, volume 11443 of LNCS, pages 254–283.
Springer, 2019. https://doi.org/10.1007/978-3-030-17259-6_9.

[CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta,
and Ida Tucker. Two-party ECDSA from hash proof systems and efficient
instantiations. In CRYPTO, volume 11694 of LNCS, pages 191–221.
Springer, 2019. https://doi.org/10.1007/978-3-030-26954-8_7.

[CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta,
and Ida Tucker. Bandwidth-efficient threshold EC-DSA. In PKC, volume
12111 of LNCS, pages 266–296. Springer, 2020. https://doi.org/10.
1007/978-3-030-45388-6_10.

[CDG+18a] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan,
and David Pointcheval. Decentralized multi-client functional encryption
for inner product. In ASIACRYPT, volume 11273 of LNCS, pages 703–732.
Springer, 2018. https://doi.org/10.1007/978-3-030-03329-3_
24.

426

https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1109/FOCS.2015.20
10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.4230/LIPIcs.ITCS.2022.28
https://doi.org/10.4230/LIPIcs.ITCS.2022.28
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-030-17259-6_9
https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-030-45388-6_10
https://doi.org/10.1007/978-3-030-45388-6_10
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-03329-3_24

[CDG+18b] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan,
and David Pointcheval. Multi-client functional encryption with repetition
for inner product. Cryptology ePrint Archive, Report 2018/1021, 2018.
https://eprint.iacr.org/2018/1021.

[CDSG+20] Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan,
and David Pointcheval. Dynamic decentralized functional encryption.
In CRYPTO, volume 12170 of LNCS, pages 747–775. Springer, 2020.
https://doi.org/10.1007/978-3-030-56784-2_25.

[CFS01] Nicolas T. Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to achieve
a McEliece-based digital signature scheme. In ASIACRYPT, volume 2248
of LNCS, pages 157–174. Springer, 2001. https://doi.org/10.1007/
3-540-45682-1_10.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis,
and Udi Peled. UC non-interactive, proactive, threshold ECDSA with
identifiable aborts. In CCS, CCS ’20, pages 1769–1787. ACM, 2020.
https://doi.org/10.1145/3372297.3423367.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. TFHE: fast fully homomorphic encryption over the torus.
Journal of Cryptology, 33:34–91, 2020. https://doi.org/10.1007/
s00145-019-09319-x.

[Cha82] David Chaum. Blind signatures for untraceable payments. In
CRYPTO, pages 199–203. Springer, 1982. https://doi.org/10.1007/
978-1-4757-0602-4_18.

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. Bootstrapping for approximate homomorphic encryption. In
EUROCRYPT, volume 10820 of LNCS, pages 360–384. Springer, 2018.
https://doi.org/10.1007/978-3-319-78381-9_14.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai
trees, or how to delegate a lattice basis. In EUROCRYPT, volume 6110
of LNCS, pages 523–552. Springer, 2010. https://doi.org/10.1007/
978-3-642-13190-5_27.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song.
Homomorphic encryption for arithmetic of approximate numbers. In
ASIACRYPT, volume 10624 of LNCS, pages 409–437. Springer, 2017.
https://doi.org/10.1007/978-3-319-70694-8_15.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key
leveled FHE from learning with errors. In CRYPTO, volume 9216 of

427

https://eprint.iacr.org/2018/1021
https://doi.org/10.1007/978-3-030-56784-2_25
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-319-70694-8_15

LNCS, pages 630–656. Springer, 2015. https://doi.org/10.1007/
978-3-662-48000-7_31.

[CP92] David Chaum and Torben Pryds Pedersen. Wallet databases with observers.
In CRYPTO, volume 740 of LNCS, pages 89–105. Springer, 1992. https:
//doi.org/10.1007/3-540-48071-4_7.

[CS19] Daniele Cozzo and Nigel P. Smart. Sharing the LUOV: threshold post-
quantum signatures. In IMACC, volume 11929 of LNCS, pages 128–153.
Springer, 2019. https://doi.org/10.1007/978-3-030-35199-1_7.

[CW14] Jie Chen and Hoeteck Wee. Semi-adaptive attribute-based encryption
and improved delegation for boolean formula. In SCN, volume 8642 of
LNCS, pages 277–297. Springer, 2014. https://doi.org/10.1007/
978-3-319-10879-7_16.

[CXW06] Xiangguo Cheng, Weidong Xu, and Xinmei Wang. A threshold
blind signature from well pairing on elliptic curves. Journal of
electronics (China), 23(1):76–80, 2006. https://doi.org/10.1007/
s11767-004-0071-9.

[CXYN07] Wei Cui, Yang Xin, Yixian Yang, and Xinxin Niu. A new blind signature and
threshold blind signature scheme from pairings. In CISW), pages 699–702.
IEEE, 2007. https://doi.org/10.1109/CISW.2007.4425591.

[DDM16] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional
encryption for inner product with full function privacy. In PKC, volume
9614 of LNCS, pages 164–195. Springer, 2016. https://doi.org/10.
1007/978-3-662-49384-7_7.

[Des94] Yvo Desmedt. Threshold cryptography. European Transactions on
Telecommunications, 5(4):449–458, 1994. https://doi.org/10.1002/
ett.4460050407.

[DJN+20] Ivan Damgård, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg
Pagter, and Michael Bæksvang Østergård. Fast threshold ECDSA with
honest majority. In SCN, volume 12238 of LNCS, pages 382–400. Springer,
2020. https://doi.org/10.1007/978-3-030-57990-6_19.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A
lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(1):238–268, 2018. https://doi.org/10.13154/
tches.v2018.i1.238-268.

[DKLS18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure

428

https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-030-35199-1_7
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/s11767-004-0071-9
https://doi.org/10.1007/s11767-004-0071-9
https://doi.org/10.1109/CISW.2007.4425591
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1002/ett.4460050407
https://doi.org/10.1002/ett.4460050407
https://doi.org/10.1007/978-3-030-57990-6_19
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268

two-party threshold ECDSA from ECDSA assumptions. In S& P, pages
980–997, 2018. https://doi.org/10.1109/SP.2018.00036.

[DKLS19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold
ECDSA from ECDSA assumptions: The multiparty case. In S&P, pages
1051–1066, 2019. https://doi.org/10.1109/SP.2019.00024.

[DLdW19] Emmanouil Doulgerakis, Thĳs Laarhoven, and Benne de Weger. Finding
closest lattice vectors using approximate Voronoi cells. In PQCrypto,
volume 11505 of LNCS, pages 3–22. Springer, 2019. https://doi.org/
10.1007/978-3-030-25510-7_1.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic
encryption in less than a second. In EUROCRYPT, volume 9056 of
LNCS, pages 617–640. Springer, 2015. https://doi.org/10.1007/
978-3-662-46800-5_24.

[DOK+20] Anders Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya
Shulman. Securing DNSSEC keys via threshold ECDSA from generic
MPC. In ESORICS, volume 12309 of LNCS, pages 654–673. Springer,
2020. https://doi.org/10.1007/978-3-030-59013-0_32.

[DOT18] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding
(unbounded) multi-input inner product functional encryption from the
𝑘-Linear assumption. In PKC, volume 10770 of LNCS, pages 245–277.
Springer, 2018. https://doi.org/10.1007/978-3-319-76581-5_9.

[DOTT21] Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi.
Two-round 𝑛-out-of-𝑛 and multi-signatures and trapdoor commitment from
lattices. In PKC, volume 12710 of LNCS, pages 99–130. Springer, 2021.
https://doi.org/10.1007/978-3-030-75245-3_5.

[DP16] Léo Ducas and Thomas Prest. Fast Fourier orthogonalization. In ISSAC,
ISSAC ’16, pages 191–198. ACM, 2016. https://doi.org/10.1145/
2930889.2930923.

[DP21] Pratish Datta and Tapas Pal. (Compact) adaptively secure FE for
attribute-weighted sums from k-lin. In ASIACRYPT, volume 13093 of
LNCS, pages 434–467. Springer, 2021. https://doi.org/10.1007/
978-3-030-92068-5_15.

[dPK22] Rafael del Pino and Shuichi Katsumata. A new framework for more
efficient round-optimal lattice-based (partially) blind signature via trapdoor
sampling. In CRYPTO, volume 13508 of LNCS, pages 306–336. Springer,
2022. https://doi.org/10.1007/978-3-031-15979-4_11.

429

https://doi.org/10.1109/SP.2018.00036
https://doi.org/10.1109/SP.2019.00024
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-030-75245-3_5
https://doi.org/10.1145/2930889.2930923
https://doi.org/10.1145/2930889.2930923
https://doi.org/10.1007/978-3-030-92068-5_15
https://doi.org/10.1007/978-3-030-92068-5_15
https://doi.org/10.1007/978-3-031-15979-4_11

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee,
and Daniel Wichs. Succinct LWE sampling, random polynomials, and
obfuscation. In TCC, volume 13043, pages 256–287. Springer, 2021.
https://doi.org/10.1007/978-3-030-90453-1_9.

[DRS18] David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-quantum
zero-knowledge proofs for accumulators with applications to ring signatures
from symmetric-key primitives. In PQCrypto, volume 10786 of
LNCS, pages 419–440. Springer, 2018. https://doi.org/10.1007/
978-3-319-79063-3_20.

[DvW21] Léo Ducas and Wessel van Woerden. Ntru fatigue: How stretched is
overstretched? In ASIACRYPT, volume 13093 of LNCS, pages 3–32.
Springer, 2021. https://doi.org/10.1007/978-3-030-92068-5_1.

[EHK+17] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Luis
Villar. An algebraic framework for Diffie-Hellman assumptions.
Journal of Cryptology, 30(1):242–288, January 2017. 10.1007/
s00145-015-9220-6.

[ENS20] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
exact proofs from lattices: New techniques to exploit fully-splitting rings.
In ASIACRYPT, volume 12492 of LNCS, pages 259–288. Springer, 2020.
https://doi.org/10.1007/978-3-030-64834-3_9.

[ESLR22] Muhammed F. Esgin, Ron Steinfeld, Dongxi Liu, and Sushmita Ruj.
Efficient hybrid exact/relaxed lattice proofs and applications to rounding
and vrfs. IACR Cryptol. ePrint Arch., 2022. https://eprint.iacr.
org/2022/141.

[ESS+19] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and
Dongxi Liu. Short lattice-based one-out-of-many proofs and applications to
ring signatures. In ACNS, volume 11464 of LNCS, pages 67–88. Springer,
2019. https://doi.org/10.1007/978-3-030-21568-2_4.

[ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Tang Yu. Shorter
hash-and-sign lattice-based signatures. In CRYPTO, volume 13508 of
LNCS, pages 245–275. Springer, 2022. https://doi.org/10.1007/
978-3-031-15979-4_9.

[FFMV23] Danilo Francati, Daniele Friolo, Giulio Malavolta, and Daniele Venturi.
Multi-key and multi-input predicate encryption from learning with errors.
In EUROCRYPT, volume 14006 of LNCS, pages 573–604. Springer, 2023.
https://doi.org/10.1007/978-3-031-30620-4_19.

[FHK+] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,

430

https://doi.org/10.1007/978-3-030-90453-1_9
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-030-92068-5_1
10.1007/s00145-015-9220-6
10.1007/s00145-015-9220-6
https://doi.org/10.1007/978-3-030-64834-3_9
https://eprint.iacr.org/2022/141
https://eprint.iacr.org/2022/141
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-3-031-15979-4_9
https://doi.org/10.1007/978-3-031-15979-4_9
https://doi.org/10.1007/978-3-031-30620-4_19

Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier lattice-based compact
signatures over NTRU. Specification v1.0, available at https://
falcon-sign.info/.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common
reference string model. In CRYPTO, volume 4117 of LNCS, pages 60–77.
Springer, 2006. https://doi.org/10.1007/11818175_4.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter
Scholl. A unified approach to MPC with preprocessing using OT. In
ASIACRYPT, volume 9452 of LNCS, pages 711–735. Springer, 2015.
https://doi.org/10.1007/978-3-662-48797-6_29.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr
signatures and signed ElGamal encryption in the algebraic group model.
In EUROCRYPT, volume 12106 of LNCS, pages 63–95. Springer, 2020.
https://doi.org/10.1007/978-3-030-45724-2_3.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

[GG14] Sanjam Garg and Divya Gupta. Efficient round optimal blind signatures.
In EUROCRYPT, volume 8441 of LNCS, pages 477–495. Springer, 2014.
https://doi.org/10.1007/978-3-642-55220-5_27.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA
with fast trustless setup. In CCS, CCS ’18, pages 1179–1194. ACM, 2018.
https://doi.org/10.1145/3243734.3243859.

[GG20] Rosario Gennaro and Steven Goldfeder. One round threshold ECDSA with
identifiable abort. IACR Cryptol. ePrint Arch., 2020. https://eprint.
iacr.org/2020/540.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou.
Multi-input functional encryption. In EUROCRYPT, volume 8441 of
LNCS, pages 578–602. Springer, 2014. https://doi.org/10.1007/
978-3-642-55220-5_32.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. In FOCS, pages 40–49. IEEE Computer Society,
2013. https://doi.org/10.1109/FOCS.2013.13.

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-

431

https://falcon-sign.info/
https://falcon-sign.info/
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-030-45724-2_3
crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1145/3243734.3243859
https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/540
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1109/FOCS.2013.13

optimal DSA/ECDSA signatures and an application to bitcoin wallet
security. In ACNS, volume 9696 of LNCS, pages 156–174. Springer, 2016.
https://doi.org/10.1007/978-3-319-39555-5_9.

[GJLS21] Romain Gay, Aayush Jain, Huĳia Lin, and Amit Sahai. Indistinguishability
obfuscation from simple-to-state hard problems: New assumptions, new
techniques, and simplification. In EUROCRYPT, volume 12698 of
LNCS, pages 97–126. Springer, 2021. https://doi.org/10.1007/
978-3-030-77883-5_4.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod
Vaikuntanathan. Robustness of the learning with errors assumption. In ICS,
pages 230–240. Tsinghua University Press, 2010. http://hdl.handle.
net/1721.1/73191.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab
Roy, and Markus Schofnegger. Poseidon: A new hash function for
zero-knowledge proof systems. In USENIX Security, pages 519–535.
USENIX Association, 2021. https://www.usenix.org/conference/
usenixsecurity21/presentation/grassi.

[GKSŚ20] Adam Gągol, Jędrzej Kula, Damian Straszak, and Michał Świętek.
Threshold ecdsa for decentralized asset custody. Cryptology ePrint Archive,
2020. https://eprint.iacr.org/2020/498.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
In FOCS, pages 612–621. IEEE, 2017. https://doi.org/10.1109/
FOCS.2017.62.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
CHES, volume 7428 of LNCS, pages 530–547. Springer, 2012. https:
//doi.org/10.1007/978-3-642-33027-8_31.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular
security. In STOC, STOC ’21, pages 736–749. ACM, 2021. https:
//doi.org/10.1145/3406325.3451070.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In CCS,
pages 89–98. Springer, 2006. https://doi.org/10.1145/1180405.
1180418.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In STOC, pages 197–206.
ACM, 2008. http://doi.acm.org/10.1145/1374376.1374407.

432

https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/978-3-030-77883-5_4
https://doi.org/10.1007/978-3-030-77883-5_4
http://hdl.handle.net/1721.1/73191
http://hdl.handle.net/1721.1/73191
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://eprint.iacr.org/2020/498
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1145/3406325.3451070
https://doi.org/10.1145/3406325.3451070
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
http://doi.acm.org/10.1145/1374376.1374407

[GRS+11] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and
Dominique Unruh. Round optimal blind signatures. In CRYPTO, volume
6841 of LNCS, pages 630–648. Springer, 2011. https://doi.org/10.
1007/978-3-642-22792-9_36.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In CRYPTO, volume 8042 of LNCS, pages 75–92. Springer,
2013. https://doi.org/10.1007/978-3-642-40041-4_5.

[GV15] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry:
Efficient ABE for branching programs. In ASIACRYPT, volume 9452 of
LNCS, pages 550–574. Springer, 2015. https://doi.org/10.1007/
978-3-662-48797-6_23.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute
based encryption for circuits. In STOC, volume 62, pages 1–33. ACM,
2013. https://doi.org/10.1145/2824233.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate
Encryption for Circuits from LWE. In CRYPTO, volume 9216 of
LNCS, pages 503–523. Springer, 2015. https://doi.org/10.1007/
978-3-662-48000-7_25.

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind
signatures from identification schemes. In EUROCRYPT, volume 11478
of LNCS, pages 345–375. Springer, 2019. https://doi.org/10.1007/
978-3-030-17659-4_12.

[HKLN20] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen.
Lattice-based blind signatures, revisited. In CRYPTO, volume 12171
of LNCS, pages 500–529. Springer, 2020. https://doi.org/10.1007/
978-3-030-56880-1_18.

[HKM18] Gottfried Herold, Elena Kirshanova, and Alexander May. On the asymptotic
complexity of solving LWE. Des. Codes Cryptogr., 86:55–83, 2018.
https://doi.org/10.1007/s10623-016-0326-0.

[HLS18] Andreas Hülsing, Tanja Lange, and Kit Smeets. Rounded gaussians
– fast and secure constant-time sampling for lattice-based crypto. In
PKC, volume 10770 of LNCS, pages 728–757. Springer, 2018. https:
//doi.org/10.1007/978-3-319-76581-5_25.

[HPRR20] James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi.
Isochronous gaussian sampling: From inception to implementation.
In PQCrypto, volume 12100 of LNCS, pages 53–71. Springer, 2020.

433

https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1145/2824233
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/s10623-016-0326-0
https://doi.org/10.1007/978-3-319-76581-5_25
https://doi.org/10.1007/978-3-319-76581-5_25

https://doi.org/10.1007/978-3-030-44223-1_4.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise
lattice algorithms using dynamical systems. In CRYPTO, volume 6841
of LNCS, pages 447–464. Springer, 2011. https://doi.org/10.1007/
978-3-642-22792-9_25.

[IKSA03] Subariah Ibrahim, Maznah Kamat, Mazleena Salleh, and Sh.R. Abdul Aziz.
Secure E-voting with blind signature. In NCTT, pages 193–197. IEEE,
2003. https://doi.org/10.1109/NCTT.2003.1188334.

[IW14] Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their
applications. In ICALP, volume 8572 of LNCS, pages 650–662. Springer,
2014. https://doi.org/10.1007/978-3-662-43948-7_54.

[JL99] W-S Juang and C-L Lei. Partially blind threshold signatures based on
discrete logarithm. Computer Communications, 22(1):73–86, 1999. https:
//doi.org/10.1016/S0140-3664(98)00214-X.

[JLMS19] Aayush Jain, Huĳia Lin, Christian Matt, and Amit Sahai. How to leverage
hardness of constant-degree expanding polynomials over R to build io. In
EUROCRYPT, volume 11476 of LNCS, pages 251–281. Springer, 2019.
https://doi.org/10.1007/978-3-030-17653-2_9.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital
signatures (extended abstract). In CRYPTO, volume 1294 of LNCS, pages
150–164. Springer, 1997. https://doi.org/10.1007/BFb0052233.

[JLS21] Aayush Jain, Huĳia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In STOC, pages 60–73. ACM, 2021.
https://doi.org/10.1145/3406325.3451093.

[JLS22] Aayush Jain, Huĳia Lin, and Amit Sahai. Indistinguishability Obfuscation
from LPN over Large Fields, DLIN, and constant depth PRGs. In
EUROCRYPT, volume 13275 of LNCS, pages 670–699. Springer, 2022.
https://doi.org/10.1007/978-3-031-06944-4_23.

[KDK11] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. Privacy-
friendly aggregation for the smart-grid. In PETS, volume 6794 of
LNCS, pages 175–191. Springer, 2011. https://doi.org/10.1007/
978-3-642-22263-4_10.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close.
In SODA, pages 937–941. ACM/SIAM, 2000. https://dl.acm.org/
doi/10.5555/338219.338661.

[KLX22] Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature

434

https://doi.org/10.1007/978-3-030-44223-1_4
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1109/NCTT.2003.1188334
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1016/S0140-3664(98)00214-X
https://doi.org/10.1016/S0140-3664(98)00214-X
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-642-22263-4_10
https://doi.org/10.1007/978-3-642-22263-4_10
https://dl.acm.org/doi/10.5555/338219.338661
https://dl.acm.org/doi/10.5555/338219.338661

schemes in the algebraic group model. In PKC, volume 13178 of
LNCS, pages 468–497. Springer, 2022. https://doi.org/10.1007/
978-3-030-97131-1_16.

[KM15] Veronika Kuchta and Mark Manulis. Rerandomizable threshold blind
signatures. In INTRUST, volume 9473, pages 70–89. Springer, 2015.
https://doi.org/10.1007/978-3-319-27998-5_5.

[KNYY20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi
Yamakawa. Adaptively secure inner product encryption from LWE. In
ASIACRYPT, pages 375–404. Springer, 2020. https://doi.org/10.
1007/978-3-030-64840-4_13.

[KS21] Kamil Kluczniak and Leonard Schild. Fdfb: Full domain functional
bootstrapping towards practical fully homomorphic encryption. arXiv
preprint arXiv:2109.02731, 2021. https://doi.org/10.48550/arXiv.
2109.02731.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption
supporting disjunctions, polynomial equations, and inner products. In
EUROCRYPT, volume 4965 of LNCS, pages 146–162. Springer, 2008.
https://doi.org/10.1007/978-3-540-78967-3_9.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic
encryption. In STOC, pages 1219–1234. ACM, 2012. https://doi.org/
10.1145/2213977.2214086.

[Lin16] Huĳia Lin. Indistinguishability obfuscation from constant-degree graded
encoding schemes. In EUROCRYPT, volume 9665 of LNCS, pages 28–57.
Springer, 2016. https://doi.org/10.1007/978-3-662-49890-3_2.

[Lin17a] Huĳia Lin. Indistinguishability Obfuscation from SXDH on 5-Linear Maps
and Locality-5 PRGs. In CRYPTO, volume 10401 of LNCS, pages 599–629.
Springer, 2017. https://doi.org/10.1007/978-3-319-63688-7_
20.

[Lin17b] Yehuda Lindell. Fast secure two-party ECDSA signing. In CRYPTO,
volume 10402 of LNCS, pages 613–644. Springer, 2017. https://doi.
org/10.1007/978-3-319-63715-0_21.

[LL20a] Huĳia Lin and Ji Luo. Compact adaptively secure ABE from 𝑘-Lin:
Beyond NC1 and towards NL. In EUROCRYPT, volume 12107 of
LNCS, pages 247–277. Springer, 2020. https://doi.org/10.1007/
978-3-030-45727-3_9.

435

https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-319-27998-5_5
https://doi.org/10.1007/978-3-030-64840-4_13
https://doi.org/10.1007/978-3-030-64840-4_13
 https://doi.org/10.48550/arXiv.2109.02731
 https://doi.org/10.48550/arXiv.2109.02731
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1007/978-3-030-45727-3_9

[LL20b] Huĳia Lin and Ji Luo. Succinct and adaptively secure ABE for ABP from
𝑘-lin. In ASIACRYPT, volume 12493 of LNCS, pages 437–466. Springer,
2020. https://doi.org/10.1007/978-3-030-64840-4_15.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact
knapsacks are collision resistant. In ICALP, volume 4052 of LNCS, pages
144–155. Springer, 2006. https://doi.org/10.1007/11787006_13.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with
practical distributed key generation and applications to cryptocurrency
custody. In CCS, pages 1837–1854. ACM, 2018. https://doi.org/10.
1145/3243734.3243788.

[LNP22a] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Efficient
lattice-based blind signatures via gaussian one-time signatures. In PKC,
volume 13178 of LNCS, pages 498–527. Springer, 2022. https://doi.
org/10.1007/978-3-030-97131-1_17.

[LNP22b] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-
based zero-knowledge proofs and applications: shorter, simpler, and more
general. In CRYPTO, volume 13508, pages 71–101. Springer, 2022.
https://doi.org/10.1007/978-3-031-15979-4_3.

[LNPS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plançon, and
Gregor Seiler. Shorter lattice-based group signatures via “almost free”
encryption and other optimizations. In ASIACRYPT, volume 13093 of
LNCS, pages 218–248. Springer, 2021. https://doi.org/10.1007/
978-3-030-92068-5_8.

[LNS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In PKC,
volume 12710 of LNCS, pages 215–241. Springer, 2021. https://doi.
org/10.1007/978-3-030-75245-3_9.

[LNSW13] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved
zero-knowledge proofs of knowledge for the ISIS problem, and applications.
In PKC, volume 7778 of LNCS, pages 107–124. Springer, 2013. https:
//doi.org/10.1007/978-3-642-36362-7_8.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima,
and Brent Waters. Fully secure functional encryption: Attribute-based
encryption and (hierarchical) inner product encryption. In EUROCRYPT,
volume 6110 of LNCS, pages 62–91. Springer, 2010. https://doi.org/
10.1007/978-3-642-13190-5_4.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices

436

https://doi.org/10.1007/978-3-030-64840-4_15
https://doi.org/10.1007/11787006_13
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1007/978-3-030-97131-1_17
https://doi.org/10.1007/978-3-030-97131-1_17
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-030-92068-5_8
https://doi.org/10.1007/978-3-030-92068-5_8
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4

and learning with errors over rings. In EUROCRYPT, volume 6110
of LNCS, pages 1–31. Springer, 2010. https://doi.org/10.1007/
978-3-642-13190-5_1.

[LPS10] Vadim Lyubashevsky, Adriana Palacio, and Gil Segev. Public-key
cryptographic primitives provably as secure as subset sum. In TCC,
volume 5978 of LNCS, pages 382–400. Springer, 2010. https://doi.
org/10.1007/978-3-642-11799-2_23.

[LPSS14] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness
of 𝑘-LWE and applications in traitor tracing. In CRYPTO, volume 8616
of LNCS, pages 315–334. Springer, 2014. https://doi.org/10.1007/
978-3-662-44371-2_18.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75:565–599, 2015. https:
//doi.org/10.1007/s10623-014-9938-4.

[LSK+19] Huy Quoc Le, Willy Susilo, Thanh Xuan Khuc, Minh Kim Bui, and
Dung Hoang Duong. A blind signature from module lattices. In DSC,
pages 1–8, 2019.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More
efficient multilinear maps from ideal lattices. In EUROCRYPT, volume
8441 of LNCS, pages 239–256. Springer, 2014. https://doi.org/10.
1007/978-3-642-55220-5_14.

[LT19] Benoît Libert and Radu Titiu. Multi-client functional encryption for linear
functions in the standard model from LWE. In ASIACRYPT, volume 11923
of LNCS, pages 520–551. Springer, 2019. https://doi.org/10.1007/
978-3-030-34618-8_18.

[LV16] Huĳia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation
from ddh-like assumptions on constant-degree graded encodings. In FOCS,
pages 11–20. IEEE, 2016. https://doi.org/10.1109/FOCS.2016.11.

[LW11] Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based
encryption. In EUROCRYPT, volume 6632 of LNCS, pages 547–567.
Springer, 2011. https://doi.org/10.1007/978-3-642-20465-4_
30.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-
based encryption: Achieving full security through selective techniques.
In CRYPTO, volume 7417 of LNCS, pages 180–198. Springer, 2012.
https://doi.org/10.1007/978-3-642-32009-5_12.

437

https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1109/FOCS.2016.11
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-32009-5_12

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures. In ASIACRYPT, volume 5912 of
LNCS, pages 598–616. Springer, 2009. https://doi.org/10.1007/
978-3-642-10366-7_35.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In
EUROCRYPT, volume 7237 of LNCS, pages 738–755. Springer, 2012.
https://doi.org/10.1007/978-3-642-29011-4_43.

[Mau05] Ueli Maurer. Abstract models of computation in cryptography. In IMACC,
volume 3796 of LNCS, pages 1–12. Springer, 2005. https://doi.org/
10.1007/11586821_1.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems
- a cryptographic perspective. Springer, 2002. https://doi.org/10.
1007/978-1-4615-0897-7.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices:
Simpler, tighter, faster, smaller. In EUROCRYPT, volume 7237 of
LNCS, pages 700–718. Springer, 2012. https://doi.org/10.1007/
978-3-642-29011-4_41.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions
based on gaussian measures. SIAM Journal on Computing, 37(1):267–302,
2007. https://doi.org/10.1137/S0097539705447360.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key fhe. In EUROCRYPT, volume 9666 of LNCS, pages 735–763.
Springer, 2016. https://doi.org/10.1007/978-3-662-49896-5_
26.

[NIS17] Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process, 2017. https://csrc.nist.gov/
CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf.

[NPP22] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client
functional encryption with fine-grained access control. In ASIACRYPT,
volume 13791, pages 95–125. Springer, 2022. https://doi.org/10.
1007/978-3-031-22963-3_4.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In FOCS, pages 458–467. IEEE Computer
Society, 1997. https://doi.org/10.1109/SFCS.1997.646134.

[NV08] Phong Q. Nguyên and Thomas Vidick. Sieve algorithms for the shortest

438

https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-031-22963-3_4
https://doi.org/10.1007/978-3-031-22963-3_4
https://doi.org/10.1109/SFCS.1997.646134

vector problem are practical. Journal of Mathematical Cryptology, 2(2):181–
207, 2008. https://doi.org/10.1515/JMC.2008.009.

[Oka92] Tatsuaki Okamoto. Provably secure and practical identification schemes and
corresponding signature schemes. In CRYPTO, volume 740 of LNCS, pages
31–53. Springer, 1992. https://doi.org/10.1007/3-540-48071-4_
3.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional
encryption with general relations from the decisional linear assumption.
In CRYPTO, volume 6223 of LNCS, pages 191–208. Springer, 2010.
https://doi.org/10.1007/978-3-642-14623-7_11.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding
(hierarchical) inner product encryption. In EUROCRYPT, volume 7237
of LNCS, pages 591–608. Springer, 2012. https://doi.org/10.1007/
978-3-642-29011-4_35.

[PHVBS19] Dimitrios Papachristoudis, Dimitrios Hristu-Varsakelis, Foteini Baldimtsi,
and George Stephanides. Leakage-resilient lattice-based partially blind
signatures. IET Information Security, 13(6):670–684, 2019. https:
//doi.org/10.1049/iet-ifs.2019.0156.

[PP19] Thomas Pornin and Thomas Prest. More efficient algorithms for the
NTRU key generation using the field norm. In PKC, volume 11443 of
LNCS, pages 504–533. Springer, 2019. https://doi.org/10.1007/
978-3-030-17259-6_17.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In TCC, volume 3876 of
LNCS, pages 145–166. Springer, 2006. https://doi.org/10.1007/
11681878_8.

[Pre17] Thomas Prest. Sharper bounds in lattice-based cryptography using the
Rényi divergence. In ASIACRYPT, volume 10624 of LNCS, pages 347–374.
Springer, 2017. https://doi.org/10.1007/978-3-319-70694-8_
13.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital
signatures and blind signatures. J. Cryptol., 13:361–396, 2000. https:
//doi.org/10.1007/s001450010003.

[PSM17] Albrecht Petzoldt, Alan Szepieniec, and Mohamed Saied Emam Mohamed.
A practical multivariate blind signature scheme. In Financial Cryptography
and Data Security, volume 10322 of LNCS, pages 437–454. Springer, 2017.
https://doi.org/10.1007/978-3-319-70972-7_25.

439

https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1049/iet-ifs.2019.0156
https://doi.org/10.1049/iet-ifs.2019.0156
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/978-3-319-70694-8_13
https://doi.org/10.1007/978-3-319-70694-8_13
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/978-3-319-70972-7_25

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1–40, 2009. https:
//doi.org/10.1145/1568318.1568324.

[Ros20] Mélissa Rossi. Extended Security of Lattice-Based Cryptography. PhD
thesis, Université PSL, 2020. https://www.di.ens.fr/~mrossi/
docs/thesis.pdf.

[Rüc10] Markus Rückert. Lattice-based blind signatures. In ASIACRYPT, volume
6477 of LNCS, pages 413–430. Springer, 2010. https://doi.org/10.
1007/978-3-642-17373-8_24.

[SBC+07] Elaine Shi, John Bethencourt, TH Hubert Chan, Dawn Song, and Adrian
Perrig. Multi-dimensional range query over encrypted data. In SP, pages
350–364. Springer, 2007. https://doi.org/10.1109/SP.2007.29.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66:181–199,
1994. https://doi.org/10.1007/BF01581144.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In EUROCRYPT, volume 1233 of LNCS, pages 256–266. Springer, 1997.
https://doi.org/10.1007/3-540-69053-0_18.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient
public key encryption based on ideal lattices. In ASIACRYPT, volume 5912
of LNCS, pages 617–635. Springer, 2009. https://doi.org/10.1007/
978-3-642-10366-7_36.

[Ste96] Jacques Stern. A new paradigm for public key identification. IEEE Trans.
Inf. Theory, 42(6):1757–1768, 1996. https://doi.org/10.1109/18.
556672.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In
EUROCRYPT, volume 3494 of LNCS, pages 457–473. Springer, 2005.
https://doi.org/10.1007/11426639_27.

[Tom19] Junichi Tomida. Tightly secure inner product functional encryption: Multi-
input and function-hiding constructions. In ASIACRYPT, volume 11923
of LNCS, pages 459–488. Springer, 2019. https://doi.org/10.1007/
978-3-030-34618-8_16.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from
LWE. In CRYPTO, volume 11692 of LNCS, pages 62–85. Springer, 2019.
https://doi.org/10.1007/978-3-030-26948-7_3.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In

440

https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://www.di.ens.fr/~mrossi/docs/thesis.pdf
https://www.di.ens.fr/~mrossi/docs/thesis.pdf
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1109/SP.2007.29
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1109/18.556672
https://doi.org/10.1109/18.556672
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-030-26948-7_3

CRYPTO, LNCS, pages 535–559. Springer, 2022. https://doi.org/10.
1007/978-3-031-15802-5_19.

[TT15] Katsuyuki Takashima and Atsushi Takayasu. Tighter security for efficient
lattice cryptography via the rényi divergence of optimized orders. In
ProvSec, volume 9451 of LNCS, pages 412–431. Springer, 2015. https:
//doi.org/10.1007/978-3-319-26059-4_23.

[TZ22] Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures
with exponential security. In EUROCRYPT, volume 13276 of
LNCS, pages 782–811. Springer, 2022. https://doi.org/10.1007/
978-3-031-07085-3_27.

[VWW23] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness
encryption and null-io from evasive lwe. In ASIACRYPT, volume 13791
of LNCS, pages 195–221. Springer, 2023. https://doi.org/10.1007/
978-3-031-22963-3_7.

[Wat12] Brent Waters. Functional encryption for regular languages. In CRYPTO,
volume 7417 of LNCS, pages 218–235. Springer, 2012. https://doi.
org/10.1007/978-3-642-32009-5_14.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In TCC,
volume 8349 of LNCS, pages 616–637. Springer, 2014. https://doi.
org/10.1007/978-3-642-54242-8_26.

[Wee17] Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups,
revisited. In TCC, volume 10677 of LNCS, pages 206–233. Springer, 2017.
https://doi.org/10.1007/978-3-319-70500-2_8.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive
lattice assumptions. In EUROCRYPT, volume 13276 of LNCS, pages
217–241. Springer, 2022. 10.1007/978-3-031-07085-3_8.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe
sampling. In EUROCRYPT, volume 12698, pages 127–156. Springer, 2021.
https://doi.org/10.1007/978-3-030-77883-5_5.

[WWW22] Brent Waters, Hoeteck Wee, and David J Wu. Multi-authority ABE
from lattices without random oracles. In TCC, volume 13747 of
LNCS, pages 651–679. Springer, 2022. https://doi.org/10.1007/
978-3-031-22318-1_23.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare
programs under LWE. In FOCS, pages 600–611. IEEE, 2017. https:
//doi.org/10.1109/FOCS.2017.61.

441

https://doi.org/10.1007/978-3-031-15802-5_19
https://doi.org/10.1007/978-3-031-15802-5_19
https://doi.org/10.1007/978-3-319-26059-4_23
https://doi.org/10.1007/978-3-319-26059-4_23
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-22963-3_7
https://doi.org/10.1007/978-3-031-22963-3_7
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-319-70500-2_8
10.1007/978-3-031-07085-3_8
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1007/978-3-031-22318-1_23
https://doi.org/10.1007/978-3-031-22318-1_23
https://doi.org/10.1109/FOCS.2017.61
https://doi.org/10.1109/FOCS.2017.61

[YAZ+19] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and
William Whyte. Efficient lattice-based zero-knowledge arguments with
standard soundness: Construction and applications. In CRYPTO, volume
11692 of LNCS, pages 147–175. Springer, 2019. https://doi.org/10.
1007/978-3-030-26948-7_6.

[YL19] Xun Yi and Kwok-Yan Lam. A new blind ECDSA scheme for bitcoin
transaction anonymity. In Asia-CCS, pages 613–620. ACM, 2019. https:
//doi.org/10.1145/3321705.3329816.

[ZDH20] Ruiyu Zhu, Changchang Ding, and Yan Huang. Practical MPC+ FHE with
applications in secure multi-partyneural network evaluation. IACR Cryptol.
ePrint Arch., 2020. https://eprint.iacr.org/2020/550.

[ZSS20] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. COSAC: compact
and scalable arbitrary-centered discrete Gaussian sampling over integers.
In PQCrypto, volume 12100 of LNCS, pages 284–303. Springer, 2020.
https://doi.org/10.1007/978-3-030-44223-1_16.

442

https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1145/3321705.3329816
https://doi.org/10.1145/3321705.3329816
https://eprint.iacr.org/2020/550
https://doi.org/10.1007/978-3-030-44223-1_16

CURRICULUM VITAE

NAME Anshu Yadav

DATE OF BIRTH 01 July 1987

EDUCATION QUALIFICATIONS

2018 MS by Research
Institution Indian Institute of Technology, Bombay

Specialization Computer Science and Engineering

2012 M.Tech.
Institution DAIICT, Gandhinagar

Specialization Information and Communication Technology

2010 B.Tech.
Institution BBDNITM, Lucknow

Specialization Computer Science and Engineering

443

DOCTORAL COMMITTEE

Chairperson Prof. Balaram Ravindran
CSE Department, IIT Madras

Guide Prof. Shweta Agrawal
CSE Department, IIT Madras

Members Prof. John Augustine
CSE Department, IIT Madras

Prof. Aishwarya Thiruvengadam
CSE Department, IIT Madras

Dr. Nishanth Chandran
Microsoft Research, India

445

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	NOTATION
	INTRODUCTION
	Motivation
	Overview of the thesis
	Distributed Data
	Distributed Authority

	Organisation of the Thesis

	PRELIMINARIES
	Lattices and Discrete Gaussians
	Hardness Assumptions
	Lattice Trapdoors

	Public Key Encryption
	Digital Signature
	Pseudorandom Function
	Some Useful Lemmas

	MULTI-INPUT ATTRIBUTE BASED AND PREDICATE ENCRYPTION
	Introduction
	Our Results
	Technical Overview
	Preliminaries
	Single User Attribute Based Encryption
	Lockable Obfuscation
	Batch Inner Product Functional Encryption
	Lattice Preliminaries
	kpABE Scheme by Boneh et al.
	Bilinear Map Preliminaries

	Multi-Input Attribute Based and Predicate Encryption
	Strong Security for k-ABE and k-PE
	Generalization to Multi-Slot Message Scheme

	Two-Input ABE for NC1 from Pairings and LWE
	Construction
	Security

	Two-Input ABE for NC1 in Standard Model
	Assumption
	Construction
	Security

	Compiling TEXT to TEXT via Lockable Obfuscation
	Construction
	Security

	Two-Input PE with Stronger Security
	Construction
	Security

	Three-Input ABE from Pairings and Lattices
	Construction
	Discussion of Security

	Two-Input ABE for Polynomial Circuits using BV22
	Construction

	CONSTANT INPUT ATTRIBUTE BASED ENCRYPTION FROM EVASIVE AND TENSOR LWE
	Introduction
	Our Results
	Technical Overview
	Preliminaries
	Multi-Input Attribute Based Encryption
	Lattice Preliminaries
	Tensors

	Assumptions and New Implications
	Evasive LWE
	Tensor LWE
	New Implications for Tensor LWE
	New Implications from LWE

	Two-input ABE from Evasive and Tensor LWE
	Construction
	Security

	Multi-Input ABE for Any Constant Arity
	Construction for NC1 Circuits
	Security
	A Construction for P

	ATTRIBUTE-BASED MULTI-INPUT FE (AND MORE) FOR ATTRIBUTE-WEIGHTED SUMS
	Introduction
	Our Results
	New Applications

	Technical Overview
	Preliminaries
	Computation Models
	Basic Cryptographic Notions
	Variants of Functional Encryption

	Attribute-Based FE for Attribute-Weighted Sums with Inner Product
	Construction
	Security

	Attribute-Based MIFE for Attribute-Weighted Sums
	Construction
	Security
	Amplifying security against Any Keys

	Multi-Client FE for Attribute-Weighted Sums
	Construction
	Security

	Dynamic Decentralized FE for Attribute Weighted Sums
	Definition
	Construction
	Security

	Appendix
	Detailed Comparison with Prior Work
	Multi-Party Functional Encryption
	Dynamic Multi-Party Functional Encryption
	Capturing our primitives in the MPFE framework

	ROUND-OPTIMAL LATTICE-BASED THRESHOLD SIGNATURES
	Introduction
	Our Results
	Technical Overview
	Preliminaries
	Threshold Signatures
	Fully Homomorphic Encryption (FHE)
	Threshold Fully Homomorphic Encryption
	Multi-data Homomorphic Signature
	Rényi Divergence
	Secret Sharing
	Lattice preliminaries

	More Efficient Threshold Signatures from Lattices
	Optimizing the Boneh et al scheme using the Rényi Divergence
	Unforgeability
	Robustness
	On the Optimality of Our Flooding

	Instantiating Threshold Signatures: Rejection-Free Lyubashevsky
	Construction
	Security
	Optimality of Flooding

	Threshold Signatures with Adaptive Security
	Construction for Partially Adaptive Unforgeability
	Unforgeability
	Robustness

	Fully Adaptive Unforgeability in the Preprocessing Model
	Construction
	Unforgeability
	Robustness

	Threshold Signatures for t-out-of-N access structures
	Construction
	Unforgeability
	Robustness
	Construction for adaptive unforgeability

	PRACTICAL, ROUND-OPTIMAL LATTICE-BASED BLIND SIGNATURES
	Introduction
	Our Results.
	Our Techniques
	Preliminaries
	Blind Signatures
	Non-Interactive Zero Knowledge Arguments

	Starting Point: Instantiating Fischlin's Blind Signature
	Construction
	Unforgeability
	Blindness
	Efficiency Estimate

	Two Round Blind Signature from One-More-ISIS
	The One-More-ISIS Assumption
	Construction
	Unforgeability
	Blindness
	Concrete Instantiation
	Security Analysis of One-More-ISIS

	Appendix
	Full-fledged Blindness
	Construction
	Unforgeability
	Blindness

	CONCLUSIONS AND FUTURE DIRECTIONS
	BIBLIOGRAPHY
	CURRICULUM VITAE
	DOCTORAL COMMITTEE

