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Abstract
Evasive LWE (Wee, Eurocrypt 2022 and Tsabary, Crypto 2022) is a recently introduced, popular

lattice assumption which has been used to tackle long-standing problems in lattice based cryptography.
In this work, we develop new counter-examples against Evasive LWE, in both the private and public-
coin regime, propose counter-measures that define safety zones, and finally explore modifications to
construct full compact FE/iO.

Attacks. Our attacks are summarized as follows.
• The recent work by Hseih, Lin and Luo [HLL23] constructed the first ABE for unbounded depth

circuits by relying on the (public coin) “circular” evasive LWE assumption, which incorporates
circularity into the Evasive LWE assumption. We provide a new attack against this assumption
by exhibiting a sampler such that the pre-condition is true but post-condition is false.

• We demonstrate a counter-example against public-coin evasive LWE which exploits the freedom
to choose the error distributions in the pre and post conditions. Our attack crucially relies on
the error in the pre-condition being larger than the error in the post-condition.

• The recent work by Agrawal, Kumari and Yamada [AKY24a] constructed the first functional
encryption scheme for pseudorandom functionalities (prFE) and extended this to obfuscation
for pseudorandom functionalities (prIO) [AKY24c] by relying on private-coin evasive LWE.
We provide a new attack against the stated assumption.

• The recent work by Branco et al. [BDJ+24] (concurrently to [AKY24c]) provides a construction
of obfuscation for pseudorandom functionalities by relying on private-coin evasive LWE. By
adapting the counter-example against [AKY24a], we provide an attack against this assumption.

• Branco et al. [BDJ+24] showed that there exist contrived, somehow “self-referential”, classes
of pseudorandom functionalities for which pseudorandom obfuscation cannot exist. We develop
an analogous result to the setting of pseudorandom functional encryption.

While Evasive LWE was developed to specifically avoid zeroizing attacks as discussed above, our
attacks show that in some (contrived) settings, the adversary may nevertheless obtain terms in the
zeroizing regime.

Counter-measures: Guided by the learning distilled from the above attacks, we develop counter-
measures to prevent against them. Our interpretation of the above attacks is that Evasive LWE, as
defined, is too general – we suggest restrictions to identify safe zones for the assumption, using which,
the broken applications can be recovered.

Variants to give full FE and iO. Finally, we show that certain modifications of Evasive LWE,
which respect the counter-measures developed above, yield full compact FE in the standard model.
We caution that the main goal of presenting these candidates is as goals for cryptanalysis to further
our understanding of this regime of assumptions.
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1 Introduction

A central goal in the theory of cryptography is to seek principled new assumptions to push the boundaries
of feasible functionalities. One of the most action-packed research areas in this context over the last
15 years has been that of encrypted computation. Starting with Gentry’s breakthrough work on Fully
Homomorphic Encryption [Gen09], which was based on a non-standard lattice problem (which was
subsequently shown to have problems, see for instance [CDPR16]), large strides have been taken in
developing creative new solutions for primitives in this domain. Typically, the first candidate of a primitive
is proposed from a new, non-standard assumption, subsequent to which, either (i) the construction and
proof provide insights into improving the assumption until finally (often over a sequence of works), we
obtain a construction from a well-understood assumption(s) or (ii) the assumption is subject to rigorous
cryptanalysis, vulnerabilities are uncovered (again, often over a sequence of works) leading to either a
stable assumption or, sometimes, only candidates with questionable/no security. Examples of (i) are
FHE [BV11, GSW13] and iO [JLS21], examples of (ii) where a stable assumption was found are ROM
[BR93, CGH04], NTRU [CS97, ABD16, PMS21, KF17] while an example where a secure candidate has
not yet been found post cryptanalysis is multilinear maps [GGH13] (although the situation is mitigated
somewhat by the weak multilinear map model [GMM+16a]). Along the way, we may also find applications
of these assumptions, or variants thereof, to primitives other than the one originally being sought.

The present work follows direction (ii) above, by undertaking a systematic study of one of the
most promising new lattice assumptions proposed in recent years – Evasive LWE [Wee22, Tsa22].
Originally proposed to give the first constructions to the long-standing problems of lattice-based broadcast
encryption [Wee22] and witness encryption [Tsa22, VWW22], evasive LWE has been instrumental
in making progress in several other challenging questions in lattice based cryptography, for instance
[HLL23, AKY24b, WW24, WWW22a, MPV24a]. There has also been some progress in cryptanalysis by
the very recent work of [BUW24].

In this work, we extend the study of Evasive LWE by developing several new counter-examples for
different versions of the assumption, distill our learning into counter-measures that define safety zones,
and finally, based on this new (as yet incomplete) understanding, explore modifications that allow us to
interpolate the realm of evasive LWE and the realm of, the typically much more challenging, Functional
Encryption (FE) and Indistinguishability Obfuscation (iO).

Functional Encryption and Friends. Functional encryption is a generalization of public key encryption
where a ciphertext is associated with a vector x, a secret key is associated with a circuit f and decryption
enables recovery of f (x) and nothing else. The related primitive of program obfuscation seeks to
garble programs while preserving their input-output behaviour. Indistinguishability Obfuscation (iO) is a
particular instance of obfuscation which provides the following indistinguishability-style guarantee: given
two circuits C0, C1 such that they have the same size and compute the same function, and an obfuscation
of one of them chosen at random, a bounded adversary cannot distinguish between the two cases. A
line of exciting works uncovered the power of iO, showing that it can be used to instantiate almost every
known cryptographic primitive [BGI+01, GGH+16, JLS21].

Another very important and much-studied primitive in the regime of encrypted computation is
Attribute Based Encryption (ABE). ABE is a special case of FE that enables fine grained access control
on encrypted data. In ABE, the ciphertext is associated with a public attribute x and a secret message m,
the secret key is associated with a circuit f , and decryption succeeds to output m if and only if f (x) = 1.
Security posits that an adversary should be unable to distinguish between an encryption of (m0, x) and
(m1, x), given secret keys for functions fi so long as fi(x) = 0 for all i. The restriction that the adversary
may only request non-decrypting keys makes ABE significantly easier to construct than the more general
FE, where the adversary can also request keys that decrypt challenge ciphertexts (so long as the output of
decryption does not reveal the challenge bit). Indeed, ABE for circuits has been known for over a decade
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from the very well-understood and widely believed Learning With Errors (LWE) problem. On the other
hand, FE for circuits has only been recently constructed [JLS21] and relies on multiple assumptions that
must work closely together to achieve the desired goals. Notably, one of the assumptions required for FE
is based on bilinear maps, which makes the construction insecure in the post-quantum regime. However,
even notwithstanding the question of quantum hardness, it is believed important to explore constructions
of FE from different assumptions.

Evasive LWE. The evasive LWE assumption was introduced independently by Wee [Wee22] and Tsabary
[Tsa22] to interpolate assumptions underlying lattice based iO on the one hand (which are considered
unstable) and solid assumptions like LWE on the other (which are very stable but afford limited power).
At a very high level, the main rationale for introducing the Evasive LWE assumption was the following:
all prior attacks on lattice based iO pertained to the so-called “zeroizing regime” where the adversary may
obtain a large number of equations in low norm secret values over the integers, which can then be somehow
solved to recover the secrets. Evasive LWE was defined to carefully sidestep the zeroizing regime in its
entirety – this was done by ensuring that the attacker only obtains large norm values which wraparound
the modulus. The hope was that this assumption would allow to make progress on some long-standing,
presumably “intermediate” level hard problems such as broadcast encryption from lattices without going
all the way to FE/iO. The evasive LWE assumption generated a lot of excitement in the community of
lattice based cryptography since it was simple and general and enabled progress on challenging problems
which had resisted progress for many years.
In more detail, the evasive LWE assumption roughly says that if(

B, P, sTB + e⊺B, sTP + e⊺P, aux
)
≈c
(

B, P, $, $, aux
)

where $ represents random, then(
B, P, sTB + e⊺B, B−1(P), aux

)
≈c
(

B, P, $, B−1(P), aux
)

Above B−1(P) refers to a low norm matrix, say K, such that BK = P mod q. Evidently, given
K = B−1(P) and sTB + e⊺B, the adversary can compute sTP + e⊺BK. Here, the error e⊺BK is not i.i.d,
unlike its counterpart e⊺P in the pre-condition. As discussed by Wee [Wee22], irregularities in the error
distribution can be very dangerous for LWE security, but the hope here is that the large masking term sTP
prevents any exploitation of this correlation.

An important distinction between variants of Evasive LWE are “public-coin” and “private-coin”,
where the former means that the randomness used by the sampler is made available to the adversary,
and the latter means that the sampler’s random coins need to be hidden from the adversary. So far,
counter-examples have been developed in the stronger private-coin setting but we did not know of any
attacks in the public-coin setting.

1.1 Our Results

In this work, we develop new counter-examples against Evasive LWE, in both the private and public-coin
regime, propose counter-measures that define safety zones, and finally explore modifications to construct
full compact FE/iO.

Attacks. Our attacks are summarized as follows.

• The recent work by Hseih, Lin and Luo [HLL23] constructed the first ABE for unbounded depth
circuits by relying on the (public coin) “circular” evasive LWE assumption, which incorporates
circularity into the Evasive LWE assumption. We provide a new attack against this assumption by
exhibiting a sampler such that the pre-condition is true but post-condition is false.
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• We demonstrate a counter-example against public-coin evasive LWE which exploits the freedom
to choose the error distributions in the pre and post conditions. Our attack crucially relies on the
error in the pre-condition being larger than the error in the post-condition. We remark that Wee’s
original work [Wee22] suggested using a larger error in the post-condition for a more conservative
assumption, but we are not aware of any attack that formalizes this intuition.

• The recent work by Agrawal, Kumari and Yamada [AKY24a] constructed the first functional
encryption scheme for pseudorandom functionalities (prFE) and extended this to obfuscation
for pseudorandom functionalities (prIO) [AKY24c] by relying on private-coin evasive LWE. We
provide a new attack against this assumption by exhibiting a sampler such that the pre-condition is
true but post-condition is false.

• The recent work by Branco et al. [BDJ+24] (concurrently to [AKY24c]) provides a construction of
obfuscation for pseudorandom functionalities by relying on private-coin evasive LWE. By adapting
the counter-example against [AKY24a], we can also attack their assumption by exhibiting a sampler
such that the pre-condition is true but post-condition is false.

• Branco et al. [BDJ+24] showed that there exist contrived, somehow “self-referential”, classes of
pseudorandom functionalities for which pseudorandom obfuscation cannot exist. We develop an
analogous result to the setting of pseudorandom functional encryption1.

While evasive LWE was developed to specifically avoid zeroizing attacks as discussed above, our attacks
show that in some (contrived) settings, the adversary may nevertheless obtain terms in the zeroizing
regime.

Counter-measures: Guided by the learning distilled from the above attacks, we develop counter-measures
to prevent against them. Our interpretation of the above attacks is that evasive LWE, as defined, is too
general – the attacks rely on malicious samplers that exploit the structure of P or the error distribution to
create problematic leakage. However, in the real world, the precise choices of parameters such as P and
error distributions are made by honest parties which makes it meaningful to restrain the assumption to
sidestep these barriers. We suggest restrictions to identify safe zones for the assumption, within which,
we conjecture that the assumption still holds and the broken applications can be recovered.

Variants to give full FE and iO: The study of attacks and counter-measures sheds light not only on the
weaknesses of evasive LWE but also on its strengths. To deepen our understanding of this regime of
assumptions, we explore variants and show that certain modifications of evasive LWE (which make it
“non-evasive”), that respect the counter-measures developed above, yield full compact FE in the standard
model. We caution that the main goal of presenting these candidates is as goals for cryptanalysis to further
our understanding of the assumption. While evidently evasive LWE is itself not on stable grounds yet, we
find it interesting to study how far it is from FE/iO.

2 Technical Overview

2.1 Attacks

Attack when Pre-Condition has Larger Error. We start with describing an attack against evasive
LWE in the public coin regime, since this is the simplest attack we present in this paper. Our attack
works in the setting where ∥eP∥ ≫ ∥e⊺BK∥. Intuitively, having this condition makes the assumption less

1Recall that while functional encryption implies obfuscation (even in the present setting [AKY24c]), this is with exponential
loss.
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reliable, since the post condition adversary can recover s⊺P + e⊺BK, which is with much smaller noise
than the pre-condition noise eP. Our attack here confirms this intuition by showing that there is a concrete
choice of parameters for which there is an explicit attack even in the public coin regime.

Our attack works in the setting where the modulus q is set to be q = pr for prime numbers p and r.
The sampler chooses random D ∈ [0, r− 1]n×ℓ and sets P = pD mod q and aux = D. Furthermore, in
this example, s is a short Gaussian vector. How to choose other parameters will become clear through the
discussion below. We first show that the precondition holds. Even given (B, P, aux = D), we have

(s⊺B + e⊺B, s⊺P + e⊺P) ≡ (s⊺B + e⊺B, s⊺(pD) + e⊺P) (1)
≈s (s⊺B + e⊺B, s⊺(pD) + s⊺D′ + e⊺P) where D′ ← [0, p− 1]n×ℓ (2)
≡ (s⊺B + e⊺B, s⊺F + e⊺P) where F← Zn×ℓ

q (3)

≈c (cB ← Zm
q , cP ← Zℓ

q) (4)

In the above, Equation (1) follows by definition, Equation (2) by the smudging argument, where we need
∥eP∥ ≫ ∥s⊺D′∥ so that e⊺P smudges s⊺D′, and Equation (3) from the fact that pD + D′ is distributed
uniformly at random over Zn×ℓ

q , and Equation (4) from the LWE assumption. We then observe that the
post-condition does not hold. Namely, we have to show that the following distributions are distinguishable:

(B, P, c⊺B = s⊺B + e⊺B, K, D) and (B, P, c⊺B ← Zm
q , K, D) where K← B−1(P).

In the above, B−1(P) denotes short Gaussian distribution whose output satisfies BK = P. To see this,
observe

c⊺BK = (s⊺B + e⊺B)K = ps⊺D + e⊺BK mod q.

holds when the given terms are from the LHS distribution. By taking modulo p of the above value, we get
e⊺BK mod p. For the attack to work, we take p large enough so that we have ∥e⊺BK∥ < p. This allows
us to recover e⊺BK over the integers, which in turn allows us to recover e⊺B by solving linear equations.
This completes the description of the attack. Recall that in order for the above attack to work, we need
∥e⊺BK∥ < p and ∥eP∥ ≫ ∥s⊺D′∥. Since each entry of D′ is chosen uniformly at random over [0, p− 1],
the norm of eP should be much larger than p. These imply that we need ∥eP∥ ≫ ∥e⊺BK∥ for the attack.
Please see Section 4.2.1 for more details.

Second Attack when Pre-Condition has Larger Error. One may argue that our first attack is contrived
because P falls into the ideal generated by p in Zq. By modifying the sampler, we also show another
example of an attack where P is uniformly random over Zn×ℓ

q . The counter-example works in a similar
setting where q = pr for prime p and r and s is short. In this example, the sampler chooses random
A ∈ Zn×m

q , D ∈ [0, r− 1]n×ℓ, and E ∈ {0, 1}m×ℓ. Then, it sets P = AE + pD and aux = (A, D, E).
This is a public coin sampler, since there is no hidden coin that the sampler uses that is not shown to
the adversary. We can see that AE is distributed uniformly at random by the leftover hash lemma and
thus so is P. In this example, pre-condition and post-condition adversary will be given additional term
of cA, which is either s⊺A + eA or random, similarly to the original formulation of evasive LWE by
Wee [Wee22]. We next show the precondition. Even given (B, P, aux = (A, D, E)), the following holds:

(s⊺B + e⊺B, s⊺A + e⊺A, s⊺P + e⊺P)
≡ (s⊺B + e⊺B, s⊺A + e⊺A, s⊺(pD + AE) + e⊺P) (5)
≈s (s⊺B + e⊺B, s⊺A + e⊺A, s⊺(pD + AE) + e⊺AE + e⊺P) (6)
= (s⊺B + e⊺B, c⊺A = s⊺A + e⊺A, s⊺(pD) + e⊺P + c⊺AE)
≈s (s⊺B + e⊺B, c⊺A = s⊺A + e⊺A, s⊺(pD) + s⊺D′ + e⊺P + c⊺AE) where D′ ← [0, p− 1]n×ℓ

≡ (s⊺B + e⊺B, c⊺A = s⊺A + e⊺A, s⊺F + e⊺P + c⊺AE) where F← Zn×ℓ
q

≈c (cB ← Zm
q , c⊺A ← Zm

q , cP ← Zℓ
q)
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In the above, Equation (5) follows by definition, Equation (6) by the smudging argument, where we need
∥e⊺P∥ ≫ ∥e

⊺
AE∥ so that e⊺P smudges e⊺AE. The rest of the indistinguishability follows smilarly to our

first counter-example. We then proceed to show that the post-condition distributions are distinguishable.
Namely, we show that the following distributions are distinguishable given (B, P, aux = (A, D, E)):

(c⊺B = s⊺B + e⊺B, c⊺A = s⊺A + e⊺A, K) and (c⊺B ← Zm
q , c⊺A ← Zm

q , K) where K← B−1(P).

For the attack, the distinguisher computes c⊺BK− c⊺AE. If the terms come from the LHS distribution
above, we have

c⊺BK− c⊺AE = (s⊺B + e⊺B)K− (s⊺A + e⊺A)E = s⊺(pD + AE) + e⊺BK− (s⊺A + e⊺A)E
= s⊺(pD)− e⊺AE + e⊺BK.

Similarly to the case of our first attack, by taking modulo p, we can separate the error term −e⊺AE + e⊺BK
over the integer, if we set the parameters so that ∥−e⊺AE + e⊺BK∥ < p. By solving the linear equation,
one can recover eA and eB if ℓ is sufficiently large. This allows the adversary to distinguish the above
distributions. Please see Section 4.2.2 for more details.

Attack against the AKY24 Sampler. Next we describe the attack against the sampler used by [AKY24a],
who propose the notion of pseudorandom functional encryption (prFE) and construct it from (certain
variant of) evasive LWE. From here on unless stated otherwise, we will consider arithmetic operation
on Zq for a prime q. To explain their core idea, we recall a variant of the GSW FHE construction
they use. In this variant, there are two types of ciphertexts. The first type of the ciphertext encrypts a
binary string x ∈ {0, 1}ℓ and is denoted by Epkfhe(x), where pkfhe is the public key of the FHE. The
second type of the ciphertext encrypts a vector y in ZL

q and is denoted by Epkfhe(y). Furthermore, the
first type ciphertext Epkfhe(x) can be converted into the second type ciphertext Epkfhe( f (x)) of f (x)
by a homomorphic computation with respect to a function f : {0, 1}ℓ → Z1×L

q . For the resulting
ciphertext (which is represented in a form of a matrix) and a secret key s corresponding to pkfhe, we have
s⊺Epkfhe( f (x)) = e⊺fhe + f (x), where e⊺fhe is some small noise. Note that the decryption is not able to
recover lower order bits of f (x) due to the noise, but it can still recover the higher order bit information of
f (x).

In their construction, a ciphertext ct(x) encrypting a message x consists of

c⊺B = s⊺B + e⊺B, c⊺A = s⊺(A− Epkfhe(x)⊗G) + e⊺A, X = Epkfhe(x). (7)

Notice that here, the secret key s for the FHE is used also as an LWE secret for other terms like cB and cA.
They show that one can compute a short-norm matrix H f and H f ,X such that (A−Epkfhe(x)⊗G)H f ,X =

AH f − Epkfhe( f (x)) following the idea from [BTVW17, HLL23]. This leads to the following equation:

c⊺AH f ,X = s⊺(AH f − Epkfhe( f (x))) + e⊺AH f ,X = s⊺AH f − e⊺fhe − f (x) + e⊺AH f ,X, (8)

where the second equality follows from s⊺Epkfhe( f (x)) = e⊺fhe + f (x). A secret sk f for a function f
consists of K← B−1(AH f ). Given the secret key, one can decrypt the ciphertext by computing

c⊺BK− c⊺AH f ,X = s⊺BK+ e⊺BK− (s⊺AH f − e⊺fhe− f (x)+ e⊺AH f ,X) = f (x)+ e⊺BK + e⊺fhe − e⊺AH f ,X.︸ ︷︷ ︸
small error

(9)
Similarly to the case of the FHE decryption, we can recover higher order bits of f (x) by removing the
error terms.
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We outline the security proof of their construction, since it is relevant to us. For simplicity, we restrict
to the case of single ciphertext and single secret key. The security of prFE stipulates that if f (x) looks
pseudorandom, then so is the ciphertext ct(x) even given sk = K. To show this, they invoke the evasive
LWE assumption with respect to P = AH f . The assumption implies that for proving the security, it
suffices to show the precondition, namely, pseudorandomness of c⊺B, c⊺A, X, and c⊺P = s⊺P + e⊺P, where
e⊺P is a fresh Gaussian noise. This is proven by the following hybrids.

Hyb0. In this hybrid, the adversary is given c⊺B, c⊺A, X = Epkfhe(x), and c⊺P = s⊺P + e⊺P.

Hyb1. In this hybrid, we change how cP is computed. Here, we compute cP as c⊺P = c⊺AH f ,X + f (x) + e⊺P.
By Equation (8), we have c⊺AH f ,X + f (x) + e⊺P = s⊺P− e⊺fhe + e⊺AH f ,X + e⊺P. Therefore, the
difference from the previous hybrid is in the error term. Since we take e⊺P large enough so that
it smudges the small error term −e⊺fhe + e⊺AH f ,X, this hybrid is statistically close to the previous
hybrid.

Hyb2. In this hybrid, we change c⊺B, c⊺A, and pkfhe to be random by using the LWE assumption. Note that
the public key pkfhe of GSW is actually an LWE sample with respect to the secret key s and thus
this is possible. This hybrid is indistinguishable from the previous one by the LWE assumption.

Hyb3. In this hybrid, we change X to be a random string. The GSW encryption is essentially the same as
Regev encryption [Reg09] and a random key is lossy [PW11]. Namely, the encryption under a
random key is a random string. Therefore, this hybrid is statistically indistinguishable from the
previous one.

Hyb4. In this game, we change cP to be a random string. This follows from the pseudorandomness of
f (x), which can be invoked since the information of x is not used anywhere else in the previous
hybrid.

We are ready to describe our counter-example. The sampler in our counter-example outputs prFE
ciphertexts of AKY encrypting random secret x and P is computed so that K = B−1(P) constitutes a
secret key for function f defined above. Namely, we set P = AH f . For the homomorphic evaluation of
the circuit f , we need some contrived implementation, which we will discuss later. We show that the
pre-condition distributions are indistinguishable, yet the post-condition distributions are distinguishable.
The precondition with respect to this sampler essentially requires that cB, cA defined as in Equation (7)
along with c⊺P = s⊺P + e⊺P is pseudorandom. This is exactly what we showed in the above discussion.

We now provide the description of the distinguisher for the post-condition. We note that the description
here is oversimplified but conveys the main intuition. The distinguisher is given cB, cA, X, and K and
tries to check whether cB, cA, and X are structured as in Equation (7) or random. The distinguisher
first computes v = c⊺BK − c⊺AH f ,X mod q. We need special contrived circuit implementation of f
for the attack to work, which will be explained soon. The distinguisher interprets v as a vector in
[−(q − 1)/2, (q − 1)/2]L by regarding the Zq element as an integer in [−(q − 1)/2, (q − 1)/2].
By Equation (9), if the terms are structured, we have v = f (x) + e⊺BK + e⊺fhe − e⊺AH f ,X. Our first
observation is that when f (x) ∈ ZL

q is pseudorandom, each entry of f (x) is unlikely to fall into
[−(q− 1)/2,−(q− 1)/2 + B] ∪ [(q− 1)/2− B, (q− 1)/2] for small B when it is represented as
a vector in [−(q − 1)/2, (q − 1)/2]L, where B is set so that we have

∥∥e⊺BK + e⊺fhe − e⊺AH f ,X
∥∥ <

B. Therefore, wraparound does not occur with overwhelming probability in the computation of
f (x) + (e⊺BK + e⊺fhe − e⊺AH f ,X) mod q and we are able to recover f (x) + e⊺BK + e⊺fhe − e⊺AH f ,X over
the integers, by representing v as a vector in [−(q− 1)/2, (q− 1)/2]L. If we were able to separate f (x)
from the error terms as is done in our first counter-example, the attack would have been very simple.
However, this is impossible since lower-order bits of f (x) are also pseudorandom and mask the error
terms.
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To overcome this issue, we borrow the idea from [HJL21] to correlate the least significant bit of
f (x) with e⊺fhe. Namely, we show that we can make f (x) ≡ e⊺fhe mod 2 if we choose a contrived circuit
implementation for the homomorphic computation of f . They induce such a correlation in the setting of
dual GSW FHE, while here, we show that similar correlation can also be constructed for the variant of GSW
that AKY use. Therefore, by taking v mod 2, we get e⊺BK− e⊺AH f ,X mod 2, since f (x) and e⊺fhe cancel
each other modulo 2. Then, the attacker tries to find ēA and ēB such that ē⊺BK− ē⊺AH f ,X = v mod 2. If
such ēA and ēB are found, it guesses that the given terms are structured and otherwise if not. From the
above description, in the structured case, such vectors can be always found since ēB = eB and ēA = eA
constitute a solution. We can also show that in the case when the given terms are random, then such
vectors cannot be found with overwhelming probability if we take L to be sufficiently large. Therefore,
this constitutes a valid attack. Please see Section 5.1 for more details.

Attack against the HLL23 Sampler. Here, we provide a counter-example against the evasive circular
LWE assumption introduced in [HLL23]. Their assumption is similar to that of AKY, but with the crucial
difference that there is no additional secret x2. Instead of the encryption X of x, the encryption S of s
is included in the pre- and post-condition distributions. Note that S is a circular ciphertext, since s is a
secret key corresponding to pkfhe. Namely, the evasive circular LWE assumption says that if

c⊺B = s⊺B + e⊺B, c⊺A = s⊺(A− S⊗G) + e⊺A, S = Epkfhe(s), c⊺P = s⊺P + eP

are pseudorandom, then so are c⊺B, c⊺A, and S even given K = B−1(P). In our counter-example here, we
regard (cB, cA, S) as an AKY ciphertext encrypting s and set P so that K constitutes a secret key for a
function f . We defer the discussion on how to instantiate f to later. The attack against the post-condition
is essentially the same as that for AKY, where the only difference is that x is replaced with s.

We now argue that the pre-condition holds, which requires some more work. For the precondition to
hold, we need a stronger property than just requiring f (s) to be pseudorandom. This is because s is used
also for the computation of other terms, for example in cA and S, unlike x in the case of AKY, where x is a
separate randomness chosen independently from other terms. Hence, we need that (cB, cA, S, pkfhe, f (s))
is jointly pseudorandom. Assuming we have such f , the precondition is proven by the following hybrids.
The main difference from the AKY counter-example is that here, we collapse Hyb2, Hyb3, and Hyb4 there
into a single hybrid using the property of f .

Hyb0. In this hybrid, the adversary is given c⊺B, c⊺A, S = Epkfhe(s), and c⊺P = s⊺P + e⊺P.

Hyb1. In this hybrid, we change how cP is computed. Here, we compute cP as c⊺P = c⊺AH f ,S + f (s) + e⊺P.
By Equation (8) (where x is replaced with s and X with S), we have c⊺AH f ,S + f (s) + e⊺P =
s⊺P− e⊺fhe + e⊺AH f ,S + e⊺P. Therefore, the difference from the previous hybrid is in the error term.
Since we take e⊺P large enough so that it smudges the small error term −e⊺fhe + e⊺AH f ,X, this hybrid
is statistically close to the previous hybrid.

Hyb2. In this hybrid, we change c⊺B, c⊺A, pkfhe, S, cP to be random. This follows by the joint pseudoran-
domness property of f , by observing that cP is obtained by adding f (s) to a known term.

To finish the description of the counter-example, it remains to find the implementation of such f . Simply
treating s as a random seed for general PRG will not work, since there is a leakage of s in the form
of LWE samples with respect to the secret s. In this setting, we do not know how to prove the joint
pseudorandomness that we require. A more promising approach is to make f randomized and define
f (s) to be an LWE instance with respect to some public matrix F, which describes the function f . If f
is allowed to be randomized, this works since ( f (s), cB, cA, pkfhe, S) forms LWE samples along with

2We observe that this difference stems from the difference between ABE in FE – in the former, x can be public and therefore
HLL does not need to hide it. OTOH, AKY constructs an FE and hence does need to hide it.
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circular encoding and thus the pseudorandomness of them follows from the circular LWE assumption.
However, since f is deterministic, this approach does not work.

Our solution is to define f (s) to be learning with rounding instance [BPR12] with respect to the
public matrix F and secret s. Namely, we define f (s) = ⌈(p/q)s⊺F⌉. The joint pseudorandomness
is proven by first arguing that ⌈(p/q)s⊺F⌉ = ⌈(p/q)(s⊺F + e)⌉ holds with high probability for small
noise e. Then, we replace s⊺F + e along with other LWE terms and the circular encoding S with random
values using the circular LWE assumption. This completes the proof, since ⌈(p/q)v⌉ for random vector
v will result in a random string in Zp for appropriately chosen p and q. Please see Section 4.1 for more
details.

Attack against the BDJMMPV24 Sampler. Next, we show a counter-example for the sampler used in
[BDJ+24]. For the sake of explanation, we describe a simplified version of their sampler in this overview.
However, the attack applies to the full-fledged version as well. They construct a primitive they call
pseudorandom obfuscation (PRO) and prove the security of the construction using evasive LWE. Roughly
speaking, this primitive allows us to obfuscate a PRF. Here, we consider a function f which takes as input
a key x of the PRF and outputs the truth table of the PRF under the key x. We assume that the truth
table of the PRF is represented as an element of Zk×κ

q . In our context, we set k and κ to be some huge
polynomials and thus the input space of the PRF is of polynomial size. For the primitive to be non-trivial,
we want the size of the obfuscation to be much smaller than the size of the truth table (i.e., O(kκ log q)).
The security of PRO says that if the truth table f (x) ∈ Zk×κ

q is pseudorandom, then so is the description
of the obfuscation.

To describe their sampler, we follow their notation that is different from AKY and HLL, where B is a
tall matrix of size m× n and the LWE sample with respect to it will be C = BS + E, where S ∈ Zn×κ

q
is an LWE secret and E is a noise term. Furthermore, we follow their syntax where the sampler does
not choose P ∈ Zk×n

q by itself. Instead, P is chosen uniformly at random outside of the control by the
sampler. The sampler takes as input P, chooses S by itself, and computes auxiliary information aux
depending on P and S, where aux is defined as follows:

aux =
(
A = PR + E + encode(s), X = Epkfhe(x), H = S + RF

)
.

In the above, x is a secret value, R is a random matrix, E is a matrix with low norm, and encode is an
encoding function with certain property that we will specify soon. The matrix F is a low norm matrix that
is computed by first evaluating the FHE ciphertext X with respect to the function f to obtain Epkfhe( f (x))
and then processing it so that

encode(s)F = f (x) + Efhe

holds for low norm Efhe. They show that the pre-condition holds for a slight modification of the above
sampler. We omit the details here.

We proceed to explain the distinguishing attack against the post-condition distribution. Namely, we
show that given D such that DB = P and aux, the following distribution is not pseudorandom

( B, P, C = BS + E, aux ).

Before giving an attack, we first observe the following equation:

AF + DC− PH = (PR + E + encode(s))F + D(BS + E)− P(S + RF)

= EF + DE + Efhe︸ ︷︷ ︸
small error

+ f (x).

One can see that the noisy version of the truth table f (x) is obtained by the above computation. Roughly
speaking, their obfuscation consists of (A, C, D, F, H, P) and the size of it is much smaller than that of
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the truth table itself. This is an approximate version of PRO in the sense that the lower-order bits cannot
be recovered. However, by embedding the information that we want to recover into the higher-order bits,
it can be made precise.

The distinguishing strategy is again similar to those for AKY and HLL, which uses contrived circuit
for the homomorphic computation to make a correlation between the encrypted value and the noise
appearing when we decrypt. Namely, we create a correlation such that f (x) ≡ Efhe mod 2 by a contrived
homomorphic operation for the underlying GSW FHE. If given terms are structured, we can recover
EF + DE + Efhe + f (x) over the integer by computing AF + DC− PH and representing it as a matrix
in [− ⌊q/2⌋ , ⌊q/2⌋]k×κ, similarly to the case of AKY and HLL. We then take modulus 2 for the resulting
term, which gives us EF + DE mod 2. Since F and D are public, we can recover E and E by solving the
linear system of equations. On the other hand, if the given terms are random, we can show that the linear
system of equations cannot be solved with high probability. This constitutes a valid distinguishing attack.
Please see Section 5.2 for more details.

Interpreting the Attacks. With the development of new attacks, the most pressing question that arises
is – are applications built from evasive LWE dead? Indeed, our work shows that in certain settings,
even public-coin versions of evasive LWE can be subject to attack. Does this mean we lose our only
candidates for lattice based broadcast encryption [Wee22], witness encryption [VWW22, Tsa22], ABE for
unbounded depth circuits [HLL23], ABE for Turing machines [AKY24b], multi-input ABE [ARYY23]
and such other painstakingly earned results, none of which are known outside Obfustopia?

To address this question, let us take a step back try to understand the high level learning obtained from
these attacks. Towards this, let us revisit the primary intuition of evasive LWE as formulated by Wee.
One way to interpret the original formulation of Wee’s evasive LWE is that it is really two assumptions
rolled into one3:

1. Preimages B−1(P) can only be used semi-honestly: Short Gaussian preimages K = B−1(P) can
only be used semi-honestly to compute samples sP + eK from sB + e and cannot be exploited in
any other way. Here, note that this condition implicitly demands that P is sufficiently “well-behaved”,
and in particular does not contain low norm linear dependencies that would permit “mix and match”
attacks of preimages [Agr17]4.

2. LWE with correlated error is “no worse” than standard LWE: By using B−1(P) as above, the
adversary can compute an LWE sample sP + eK with correlated, overdefined error as against i.i.d.
error. However, the intuition here is that this LWE with correlated noise can be conjectured “as
good as” LWE since the attacker should never be able to remove the large mask sP and therefore
should never obtain anything in the zeroizing regime.

We now study the two assumptions above in turn, as though they are separate. We observe that the
first assumption above has so far appeared sound – we do not know even a single attack that exploits K
to compute anything other than sP + eK, which is explicitly desired. All the problems come from the
second assumption, where an i.i.d error would have sufficed for some flooding argument (allowing the
pre-condition to be proven), but the correlated, overdefined error does not. Here, we observe that all our
attacks are oblivious to how sP + eK was constructed, and rely only on exploiting the correlated error.
So perhaps if we refine the second assumption to prevent vulnerabilities, we can hope to regain security.

In our judgment, a rigorous approach towards buttressing the second assumption is to enforce explicit
checks to ensure that the intuition that “LWE with correlated noise is secure” can be made to function

3These cannot be separated in general, needless to say.
4As an extreme example of badly behaved P = [P1, P2], suppose the adversary could obtain K1, K2 such that BK1 =

P1 mod q and BK2 = 2P1 mod q. Then, the adversary could compute a short trapdoor to B simply as 2K1 −K2, which is
clearly disastrous. However, such “pre-image combination” attacks are prevented by the requirement in the pre-condition, that
sP1, sP2 are jointly pseudorandom.
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for the settings required by the desired applications. We use the above understanding to guide our
development of counter-measures – we suggest safeguards to ensure that sP+ eK, given other information,
can indeed be safely replaced by sP + eiid, where eiid is fresh i.i.d error, in the application of evasive
LWE. Below, we summarize counter-measures guided by attacks, using which we believe that the original
intuition by Wee [Wee22] and Tsabary [Tsa22] can be recovered, so that the loss of the aforementioned
applications can be prevented.

Going forward, we hope that progress on understanding evasive LWE will lead to formulation of
simpler, safer assumptions that can be used to build the desired applications. We are optimistic that the
new constructions and new attacks will bring us closer to realizing advanced encrypted computation
from lattices from assumptions that satisfy all the desired desiderata – simplicity, instance-independence,
falsifiability, ease of cryptanalysis and good (at least better) performance in the “test of time”!

2.2 Counter-Measures

We begin by categorizing known attacks.

Attacks by withholding information about B or P: The work of [BUW24] presents attacks against
classes of evasive LWE where either B or P are not known to the adversary. In more detail, consider the
distinguisher of the pre-condition who receives the matrix B, but not P – in this case, the distinguisher of
the post-condition can easily recover P by simply computing B · B−1(P). This may create leakage in
scenarios where P contains secret information that was deliberately withheld from the adversary. The
case where B is not available to the distinguisher of the pre-condition but P is partially available is similar.
These attacks can be prevented by ensuring that the distinguisher in the pre-condition also has access to
complete information about B and P. The authors define “Private-coin Binding Evasive LWE” to capture
the setting where Samp is private-coin, and B, P are explicitly included in the joint distributions, and
conjecture this as a plausible class for Evasive LWE. Another counter-example that they define is when
Samp takes the matrix B as input – but in general, B is not touched by the sampler even in private coin
versions of Evasive LWE and we do not believe this is a real problem.

We observe that [BUW24] also defined three main families of evasive LWE assumptions where
these counterexamples do not apply. However, since our attacks fall within families they conjecture as
plausible, we refrain from using this classification in our work, and also refrain from providing a different
classification. Our opinion is that such a classification may be better made after the state of attacks on
Evasive LWE has stabilized.

Malicious sampler attacks: These attacks show that Evasive LWE, both public and private coin, does
not hold for arbitrary samplers, who may choose circuit implementations and error distributions in a
malicious way. A common theme that runs through these attacks (Sections 4.1, 4.2, 5.1 and 5.2) is that
they exploit flexibility in design of P, which in turn encodes some functionality F, so that the error in the
post-condition lends itself to manipulation that is not captured by the well-distributed i.i.d error in the
pre-condition. It is very interesting to us that even though the assumption of evasive LWE originated in
the desire to avoid the so-called “zeroizing regime” where attacks against iO candidates had traditionally
been found [CHL+15, MSZ16, CVW18, HJL21], the new attacks show that by constructing malicious
samplers, we can still end up in the zeroizing regime by cleverly manipulating the computation!

In more detail, according to Wee [Wee22], the “zeroizing regime” is where the adversary may obtain a
large number of equations in secret values over the integers, which can then be somehow solved to recover
the secrets (or more generally lead to leakage on secret values). The attacks we present in Sections 4.1,
4.2, 5.1 and 5.2 can be seen as zeroizing attacks since we can recover equations over the integers, notably
since there is no wraparound modulo q. This in particular, allows us to reduce the equations modulo some
small number, for instance mod 2 and obtain leakage. Note that if the equations are modulo q (i.e. there
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is wraparound modulo q), then computing modulo 2 is not well defined and does not (appear to) lead to
any leakage that can be exploited. Our attacks crucially exploit the flexibility of the sampler to strip away
large terms that cause wraparound modulo q and obtain equations over the integers.

We suggest the following approaches to mitigate this risk:

1. Restricting the Sampler. Based on the learning from the attacks, we can restrict the sampler as
follows.

- Controlling the Structure of P: Frequently, the structure of P is quite restricted for applications,
and moreover chosen by honest algorithms in the real world. As a notable example, for
functionality, both [HLL23] as well as [AKY24a] only need P to have a structure like AF
which is constructed using homomorphic evaluation of a public function on public matrices.
Moreover, in the real world, the circuit implementation of F is chosen by the key generator,
who is an honest party – this suggests it better models the real world if the adversary’s control
on the structure of P is removed/reduced. This can be achieved by making the circuit structure
in P, namely AF canonical using the universal circuit or randomized encodings.

- Pre-Condition Error should not be Larger: The attack presented in Section 4.2 crucially
exploits the fact that the error in the pre-condition is larger than that in the post-condition.
Wee’s original paper introducing evasive LWE [Wee22] intuited that this should not be the
case and suggested choosing a larger error in the post-condition than in the pre-condition for
a more conservative assumption. Our attack formalizes this intuition and suggests this as a
check for safe-zone.

2. More Stringent Pre-Condition. Another approach is to make the pre-condition of evasive LWE
more stringent so that the error in the pre-condition is not chosen as i.i.d without discretion but
captures real world correlated error in some meaningful way. We formulate one such version in
Section 6, where an additional check is performed before the error in the pre-condition is replaced
by i.i.d. error. The extra check that we add can be seen as capturing the spirit of the “LWE with
correlated noise is secure” family of conjectures. Based on current knowledge, this extra check
serves to separate the schemes that can and cannot be broken (barring functionalities which suffer
from incompressibility style impossibilities). To be cautious, we suggest that it is prudent to wait
until attacks have stabilized before using this assumption to prove security of constructions.

Contrived functionality, or Incompressibility attacks: The attack by Branco et al. [BDJ+24][Sec
9] and that in Section 5.3 show that there exists a contrived “self-referential” functionality for which
pseudorandom obfuscation or compact functional encryption satisfying simulation style security cannot
exist. We believe these results are analogous to the impossibilities known for the random oracle model
[CGH04] or VBB obfuscation [BGI+01] and can be handled using the same philosophical approach as in
these settings.

It is well known that a true random oracle cannot exist – the work of Canetti, Goldreich and Halevi
[CGH04] showed that there exist signature and encryption schemes that are secure in the Random Oracle
Model, but for which any implementation of the random oracle results in insecure schemes. However,
despite the impossibility, it is widely believed that proving a cryptographic scheme secure in the Random
Oracle Model provides strong and meaningful evidence of its practical security. Similarly, the work of
Barak et al. [BGI+01] shows that virtual black box obfuscation is impossible in general by exhibiting
a specific functionality for which such strong security cannot exist (indeed the spirit of the subclass of
counter-examples being discussed here is very similar to the counter-example by [BGI+01]) but this
does not disallow constructing VBB obfuscation for specific functionalities [Wee05, CRV10]. The
pseudorandom functionalities that are useful for applications, such as computing blind garbled circuits
or FE ciphertexts, are quite natural and do not fall prey to such attacks. We believe that the proof from
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evasive LWE for these functionalities provides strong evidence for real world security of the schemes,
similar to proofs in the ROM. An intriguing future line of work would be to construct some variant of
evasive LWE that only admits constructions satisfying weaker security notions that are not known to be
generally impossible.

We additionally remark that the incompressibility style arguments underlying these counter-examples
do not apply in the single challenge setting. Translated into the evasive LWE assumption, single-challenge
means that S is a vector and not a matrix. Hence, one natural way to avoid these counter-examples is to
use evasive LWE in the single-challenge regime. We refer the reader to Section 6 for a more detailed
discussion.

2.3 Variants and Obfustopia

An important question in the light of the new attacks is: if evasive LWE does not respect the boundaries
of the non-zeroizing regime in any case, then how far are we from Obfustopia? The new attacks against
evasive LWE give insights not only into the weaknesses of evasive LWE but also into its strengths – we
ask if these strengths can be used to make progress to bridging the distance to Obfustopia. Towards this,
we demonstrate that additional strengthenings of evasive LWE imply compact functional encryption or
succinct randomized encodings which can be bootstrapped to iO using known results. The rationale
behind suggesting these variants is that the modifications (i) do not appear to worsen known weaknesses
further, (ii) can benefit from known strengths, and, (iii) while they certainly do introduce new regimes
of attack, notably the zeroizing regime, these can be handled using knowledge that the community
gained from existing lattice based iO candidates. We believe our candidates are of value, since we
only have a handful of candidates from lattices that can be conjectured secure in the standard model
[GMM+16b, AP20, BDGM20, WW21, GP21]5 and one in the pseudorandom oracle model [BDJ+24].
We emphasize that these variants are presented primarily as an invitation for cryptanalysis.

FE from Correlated Flooding, or “Fixed-Bit” Evasive LWE. Our starting point is the AKY FE
construction we introduced in Section 2.1. We recall that the ciphertext ct(x′) along with a secret key sk f ′

reveals f ′(x′) + error, where f ′(x′) ∈ ZL
q . Though the lower-order bits of f ′(x′) are not recoverable due

to the error term, the higher-order bits are still recoverable. Based on this observation, AKY construct
a prFE by embedding the decryption result into the higher order bits of f ′(x′). Namely, in order to
encrypt a message x, an encryptor chooses random seed sd of PRG and then computes ct(x, sd). In
order to generate a secret key for boolean circuit f whose output space is {0, 1}L, we consider a function
f ′ that takes as input (x, sd) and outputs ⌊q/2⌋ f (x) + PRG(sd), where the output of the PRG is in
[− ⌊q/4⌋ ,− ⌊q/4⌋]L, and generate sk f ′ . By decryption, we obtain ⌊q/2⌋ f (x) + PRG(sd) + error and
we are able to extract f (x) ∈ {0, 1}L from it6.

Our first observation is that if we do not care about security, their construction works even for arbitrary
functions, not limited to the functions with pseudorandom outputs. Let us examine where their security
proof breaks down if we do not enforce the pseudorandomness requirement for f and consider general f
instead. To do so, we try to prove the pseudorandomness of the pre-condition distribution c⊺B, c⊺A, X, and
c⊺P by using the same hybrids as those for AKY prFE. We observe that the transition from Hyb0 to Hyb3
follows from the same reasoning. However, in Hyb4, since f (x) is not guaranteed to be pseudorandom,
we cannot change cP into a random string. Nevertheless, we can assert something weaker: due to the
security of the PRG, we can change cP to be a random distribution over half the space of Zq. The evasive
LWE is not useful in this situation, since it says the indistinguishability of the post-condition distributions
only when s⊺P + e⊺P is pseudorandom over the whole space of Zq.

5Note that the assumptions underlying [WW21, GP21] can be broken but the constructions are still believed to be secure.
6We use a PRG here rather than a PRF for simplicity, since we are in the single key setting.
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Here, we consider a strengthening of the evasive LWE assumption that we call correlated flooding
a.k.a. fixed bit evasive LWE assumption. This assumption guarantees the security of the post-condition,
if the pre-condition distribution is half the space pseudorandom. Namely, it says that if(

B, P, sTB + e⊺B, sTP + e⊺P, aux
)
≈c
(

B, P, c⊺B ← $, t⊺ + d⊺, aux
)

where d represents a random vector with each entry being distributed over [− ⌊q/4⌋ , ⌊q/4⌋] and t is a
vector that can be efficiently and deterministically computed from aux, then

(
B, P, c⊺B = sTB + e⊺B, K← B−1(P), aux

)
≈c
(

B, P, c⊺B ← $, K←
[

B
c⊺B

]−1 ([ P
t⊺ + d⊺

])
aux
)
.

The additional restriction on K in the RHS that c⊺BK = t⊺ + d⊺ is necessary for the assumption to be
not trivially broken. To see this, we first observe that s⊺P and t⊺ are within distance q/4 in terms of the
infinity norm with high probability, since otherwise the pre-condition distributions are easy to distinguish.
Without the additional restriction, c⊺BK in the RHS will be random, which should not be within distance
q/4 from t⊺ with high probability, while (s⊺B + e⊺B)K = s⊺P + e⊺BK is within distance q/4 from t⊺

with high probability. Therefore, the post-condition distributions are distinguishable by computing c⊺BK
and seeing whether it is close to t or not.

This new assumption implies that the AKY prFE construction satisfies the standard indistinguishability
security notion for FE 7. However, we must be careful to restrict the sampler appropriately since we
showed that general samplers are susceptible to attack. We adopt two counter-measures. The first one is
to make the circuit used to perform the homomorphic computation canonical/fixed so that it evades the
contrived designs like the ones we used for the attack. Another counter-measure is to find a way to “throw
away” the leaky error thus breaking the correlation which led to the attack. This is possible by using a
modulus reduction technique suggested in (the revised version of) [AKY24a] (for fixing their scheme),
which allows to get rid of the problematic correlated noise by rounding it away. In more detail, we change
the homomorphic evaluation so that FHE decryption error e⊺fhe does not appear in the final decryption
equation (i.e., Equation (9)), even in the masked form.

Security. In terms of security, we analyze the new assumption for all known attacks in the literature. For
the distributions used in our particular construction, we show that the “fixed bit” evasive LWE assumption
implies regular evasive LWE. We currently do not know any additional attacks against the fixed bit version
as compared to regular evasive LWE – while the fixed bit version explicitly opens into the zeroizing
regime, attacks from prior work do not seem to apply and the new attacks developed in the present work
can be protected against using some of the ideas discussed above. Having said that, we emphasize again
that our chief goal in presenting this assumption and construction is to explore the distance of this family
of assumptions from obfustopia, and while we do not know attacks, it would be premature to claim
security. We invite the community to attack these assumptions. Please see Section 7 for more details.

SRE from Succinct LWE Sampler. Finally, we adapt our ideas to provide a succinct LWE sampler as
defined by Devdas et al. [DQV+21] (referred from now as DQVWW). Recall that DQVWW provided a
compiler to construct a succinct randomized encoding (SRE) from any succinct LWE sampler, which in
turn implies iO. Informally speaking, upon input a size parameter N, a succinct LWE sampler outputs a
seed, seedB∗ for LWE matrix A∗S∗ + E∗, such that the size of seedB∗ is sub-linear in size of B∗ ∈ ZM×K

q ,
where MK = N. The security definition of the succinct LWE sampler (SLS) is non-falsifiable. To
remedy this, DQVWW then defines a weak SLS with a falsifiable security definition and provides an
amplifier to lift any weak succinct LWE sampler to a succinct LWE sampler.

7Interestingly, single challenge security suffices and therefore the incompressibility attack from Section 5.3 does not apply.
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The starting point of our work is the observation that the prFE construction by [AKY24a] naturally
lends itself to building a weak SLS – the key idea is to generate K ciphertexts and M keys so that their
combinations output MK entries of the matrix B∗. In more detail, we use a PRF to generate the LWE
errors as follows. To generate E∗[i, j], we encrypt a PRF seed sdj and provide a key for PRF function
Fi, such that Fi(sdj) = PRF(sdj, i). We use the learning obtained via the attacks to ensure that the PRF
circuit implementation is chosen carefully so that security can be conjectured.

To compute A∗S∗[i, j] = A∗[i, ·]S∗[·, j], we use ideas from inner product functional encryption
(IPFE) – we hide S∗[·, j] inside an IPFE ciphertext, and provide the corresponding IPFE key for A∗[i, ·].
By using IPFE to generate the linear mask in the LWE sample being constructed, we ensure that no
contrived circuit attacks can apply. Next, it remains to tie the LWE mask and error together so that A∗S∗

and E∗ cannot be computed separately. To ensure this, we join the prFE and the IPFE keys into one key
that prevents piecewise decryption. For weak security, we formulate a falsifiable, instance independent
hardness assumption.

Security. The rationale behind the security here is the same as in the previously described “fixed-bit
evasive LWE”, namely heuristic evidence that can be formulated as a kind of computational flooding
conjecture. The advantage is that this assumption is instance independent and falsifiable. The disadvantage
is that it is fairly messy and does not easily lend itself to cryptanalysis. Nevertheless, we find it interesting
that the prFE construction of [AKY24a] based on evasive LWE can be used to compress B∗ as desired in
DQVWW and that it suggests a family of computational flooding conjectures which appear plausible.
Indeed, our hope is that even if the exact flooding conjecture we make turns out to be problematic, some
variant of it is likely to stand the test of time. Please see Section 8 for details.

2.4 Takeaways: Evasive versus Non-Evasive assumptions

We provide a very high level takeaway of the assumptions we discussed. For evasive LWE, we now know that
for the most general formulation, zeroizing attacks do apply but by adopting the suggested countermeasures,
the assumption can regain its “non-zeroizing” status. Thus, we hope that appropriately curtailed versions of
evasive LWE can still respect the intuition that “LWE with correlated error” (or more generally “correlated
flooding with mask”) is secure. This assumption can be used to build evasive functionalities like ABE
where the decryptor does not obtain any keys that decrypt the challenge ciphertext. Using this assumption
in its safe zone (which may still take some time to stabilize) gives us many important constructions that
are not known outside Obfustopia [Wee22, VWW22, Tsa22, HLL23, AKY24b, ARYY23].

Next we saw that by providing a controlled entry into the zeroizing regime, variants of the evasive
LWE assumption (having shed its “evasiveness”), can be used to build full fledged compact FE and iO
thus bridging the distance all the way to Obfustopia. This family of assumptions intuitively capture the
“(computational) correlated flooding” conjectures discussed previously, notably without the protection
of a large masking term that characterized the previous class. We believe that family of assumptions
provides a different and (in our opinion) principled way to approach iO.

3 Preliminaries

Notations. We use bold capital letters to denote a matrix and bold small letters to represent vectors. By
default, a vector v is a column vector and v⊺ is a row vector. ιi represents a unit vector with 1 at position i.
Throughout the paper, we use λ to denote the security parameter. For any x ∈ Zq, ⌊x⌋p ∈ Zp =

⌊
x · p

q

⌋
.

Sometimes, we regard an element in x ∈ Zq as an integer in [−q/2, q/2]. When we take an absolute
value |x| for x ∈ Zq, this operation means that first regarding x as an integer and then taking the absolute
value. For any function f , we write | f | to represent its size. For any set S, |S| denotes the number of
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elements in set S. For any vector v, we use v[ℓ; ℓ′] to denote the part of vector v starting from ℓ-th
element and ending at ℓ′-th element where ℓ, ℓ′ ∈ Zq. For any vector v, v[i, j] denotes the jth lowest
order bit of i-th element of v. For any matrix V, V[i, j] denotes the element at i-th row and j-th column,
V[i, ·] denotes the ith row of V and V[·, j] denotes the jth column of V. We consider the infinity norm:

∥v∥ = maxi|v[i]|, ∥V∥ = maxi ∑
j
|V[i, j]|

With slight overload of notation, we also define |v| = maxi|v[i]| and |V| = maxi,j|V[i, j]|. We
define the most-significant bit operator MSB : Zq → {0, 1} as

MSB(x) =

{
0, if x ∈ [−q/4, q/4)
1, otherwise

We slightly overload the notation and represent MSB of a vector v ∈ Zn
q as MSB(v) = (MSB(v[1]), . . . ,

MSB(v[n])).

3.1 Functional Encryption

Consider a function family {Fprm = { f : Xprm → Yprm}}prm for a parameter prm = prm(λ). Each
function f ∈ Fprm takes as input a string x ∈ Xprm and outputs f (x) ∈ Yprm.

Syntax. A functional encryption scheme FE for function family Fprm consists of four polynomial time
algorithms (Setup, KeyGen, Enc, Dec) defined as follows.

Setup(1λ, prm) → (mpk, msk). The setup algorithm takes as input the security parameter λ and a
parameter prm and outputs a public key mpk and a master secret key msk.

KeyGen(msk, f )→ sk f . The key generation algorithm takes as input the master secret key msk and a
function f ∈ Fprm and it outputs a functional secret key sk f .

Enc(mpk, x)→ ct. The encryption algorithm takes as input the public key mpk and an input x ∈ Xprm
and outputs a ciphertext ct ∈ CT , where CT is the ciphertext space.

Dec(sk f , ct)→ y. The decryption algorithm takes as input a functional secret key sk f and a ciphertext
ct and outputs y ∈ Yprm.

Definition 3.1 (Correctness). A FE scheme is said to be correct if for all prm, any input x ∈ Xprm and
function f ∈ Fprm, we have

Pr

[
(mpk, msk)← Setup(1λ, 1prm) , sk f ← KeyGen(msk, f ),

Dec
(
sk f , Enc(mpk, x)

)
= f (x)

]
= 1.

where the probability is taken over the coins of Setup, KeyGen, and Enc.

In this paper we will consider the standard indistinguishability based definition.

Definition 3.2 (Selective Security). A functional encryption scheme for function family {Fprm = { f :
Xprm → Yprm}}prm, parameter prm = prm(λ) is said to be selectively secure if for any PPT adversary
A the following holds

Pr

 AKeyGen(msk,·)(mpk, ct) = b :
(x0, x1)← A;
(mpk, msk)← Setup(1λ, prm);
b← {0, 1}; ct← Enc(mpk, xb)

 ≤ 1/2 + negl(λ),
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where each key query for a function f ∈ Fprm, queried by A to the KeyGen(msk, ·) oracle must satisfy
the condition that f (x0) = f (x1).

In this paper, we consider the weaker notion of very selective security where the adversary announces
all its function queries at the first step, together with the challenge messages.

Compactness. Intuitively, an FE scheme is compact if the length of its ciphertext does not depend
on the size of the circuit it supports [AJ15, BV18]. Formally, we say an FE scheme is compact if the
encryption algorithm runs in time poly(λ, |x|, log S) where x is the input and S is the size of the circuit.
The notion of weak compactness asks that the encryption algorithm run in time poly(λ, |x|) · S1−ϵ for
any constant ϵ ∈ (0, 1).

3.2 Functional Encryption for Pseudorandom Functionalities

In this section, we give the definition of functional encryption for pseudorandom functionalities prFE
[AKY24a]. Consider a function family {Fprm = { f : Xprm → Yprm}}prm for a parameter prm =
prm(λ). Each function f ∈ Fprm takes as input a string x ∈ Xprm and outputs f (x) ∈ Yprm. The Syntax
and correctness of prFE is the same as that of FE as in Section 3.1.

prCT security. [AKY24a] For a prFE scheme for function family {Fprm = { f : Xprm →
Yprm}}prm parameter prm = prm(λ), let Samp be a PPT algorithm that on input 1λ, outputs
( f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗) where Qkey is the number of key queries, Qmsg is the
number of message queries, and fi ∈ Fprm, xj ∈ Xprm for all i ∈ [Qkey], j ∈ [Qmsg]. We define the
following advantage functions:

Advpre
A0
(λ)

def
= Pr

[
A0(aux, { fi, fi(xj)}i∈[Qkey],j∈[Qmsg]) = 1

]
− Pr

[
A0(aux, { fi, ∆i,j ← Yprm}i∈[Qkey],j∈[Qmsg]) = 1

]
Advpost

A1
(λ)

def
= Pr

[
A1(mpk, aux, { fi, Enc(mpk, xj), sk fi}i∈[Qkey],j∈[Qmsg]) = 1

]
− Pr

[
A1(mpk, aux, { fi, δj ← CT , sk fi}i∈[Qkey],j∈[Qmsg]) = 1

]
where ( f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗)← Samp(1λ), (mpk, msk)← Setup(1λ, prm) and
CT is the ciphertext space. We say that a prFE scheme for function family Fprm satisfies prCT security if
for every PPT Samp there exists a polynomial Q(·) such that for every PPT adversary A1, there exists
another PPT A0 such that

Advpre
A0
(λ) ≥ Advpost

A1
(λ)/Q(λ)− negl(λ)

and time(A0) ≤ time(A1) ·Q(λ).

3.3 Indistinguishability Obfuscation

A uniform P.P.T machine iO is an indistinguishability obfuscator for a class of circuits {Cλ}λ∈N, if the
following conditions are satisfied:

1. Correctness. For all security parameters λ ∈ N, for any C ∈ Cλ and every input x from the
domain of C, we have that:

Pr
[
C′ ← iO(1λ, C) : C′(x) = C(x)

]
= 1

where the probability is taken over the coin-tosses of the obfuscator iO.
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2. Indistinguishability of Equivalent Circuits. For every ensemble of pairs of circuits {C0,λ, C1,λ}λ∈N

such that C0,λ(x) = C1,λ(x) for all x, we have that the following ensembles of pairs of distributions
are indistinguishable to any P.P.T Adv:{

C0,λ, C1,λ, iO(1λ, C0,λ)
} c≈

{
C0,λ, C1,λ, iO(1λ, C1,λ)

}
3.4 Instance Hiding Witness Encryption with Pseudorandom Ciphertext

Definition 3.3 (Witness Encryption). [GGSW13, BDJ+24] A witness encryption scheme for an NP
language L (with the corresponding witness relation R) consists of the following two polynomial-time
algorithms:

WE.Enc(1λ, stmt, µ)→ wct. 8 On input security parameter λ, an unbounded-length string stmt and
message µ ∈ {0, 1}, outputs ciphertext wct.

WE.Dec(wt, wct) = µ/⊥. On input an unbounded length string wt and ciphertext wct, it either outputs
message µ or the symbol ⊥.

These algorithms satisfy the following conditions:

• Correctness. For any security parameter λ, for any µ ∈ {0, 1}, for any stmt ∈ L, such that
R(stmt,L) holds i.e. stmt ∈ L, we have Pr

[
WE.Dec(wt, WE.Enc(1λ, stmt, µ)) = µ

]
= 1.

• Soundness. For any PPT adversary A, there exists a negligible function negl(·) such that for any
stmt /∈ L, we have: |Pr

[
A(WE.Enc(1λ, stmt, 0)) = 1

]
−Pr

[
A(WE.Enc(1λ, stmt, 1)) = 1

]
| ≤

negl(λ).

• Instance Hiding. For any PPT adversary A, there exists a negligible function negl(·) such that
for any µ ∈ {0, 1} and for any stmt, stmt′ /∈ L, we have: |Pr

[
A(WE.Enc(1λ, stmt, µ)) = 1

]
−

Pr
[
A(WE.Enc(1λ, stmt′, µ)) = 1

]
| ≤ negl(λ).

• Pseudorandom Ciphertext. For any PPT adversary A, there exists a negligible function negl(·)
such that for any stmt /∈ L and any µ ∈ {0, 1}, we have: |Pr

[
A(WE.Enc(1λ, stmt, µ)) = 1

]
−

Pr[A(U ) = 1]| ≤ negl(λ) where U is sampled uniformly from the ciphertext space.

3.5 Lattice Preliminaries

Here, we recall some facts on lattices that are needed for the exposition of our construction. Throughout
this section, n, m, and q are integers such that n = poly(λ) and m ≥ n⌈log q⌉. In the following, we
define a function ρσ as ρσ = exp(−π∥x/σ∥2

2), where ∥·∥2 is the Euclidean norm. We will overload
the notation to denote by ρσ(S) the summation of ρσ(x) over all x ∈ S for a countable set X. For a
countable set S, DS,γ refers to a distribution that outputs x ∈ S with probability ρσ(x)/ρ(S). In the
following, let SampZ(γ) be a sampling algorithm for the truncated discrete Gaussian distribution over Z

with parameter γ > 0 whose support is restricted to z ∈ Z such that |z| ≤
√

nγ. Namely, SampZ(γ) is
the truncated version of DZ,γ.

Let
g = (20, 21, . . . , 2

m
n+1−1)⊺ , G = In+1 ⊗ g⊺

be the gadget vector and the gadget matrix. For p ∈ Zn
q , we write G−1(p) for the m-bit vector

(bits(p[1]), . . . , bits(p[n + 1]))⊺, where bits(p[i]) are m/(n + 1) bits for each i ∈ [n + 1]. The
notation extends column-wise to matrices and it holds that GG−1(P) = P.

8In the main body, we drop the first input and implicitly assume 1λ as an input.
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Trapdoors. Let us consider a matrix A ∈ Zn×m
q . For all V ∈ Zn×m′

q , we let A−1(V) be an output
distribution of SampZ(γ)m×m′ conditioned on A ·A−1(V, γ) = V. A γ-trapdoor for A is a trapdoor
that enables one to sample from the distribution A−1(V, γ) in time poly(n, m, m′, log q) for any V. We
slightly overload notation and denote a γ-trapdoor for A by A−1

γ . The following properties had been
established in a long sequence of works [GPV08, CHKP10, ABB10a, ABB10b, MP12, BLP+13].

Lemma 3.4 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ′ for any τ′ ≥ τ.

2. Given A−1
τ , one can obtain [A∥B]−1

τ and [B∥A]−1
τ for any B.

3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A, A−1
τ0
) where A ∈ Zn×m

q

for some m = O(n log q) and is 2−n-close to uniform, where τ0 = ω(
√

n log q log m).

Useful Lemmata.

Lemma 3.5 (tail and truncation of DZ,γ ). There exists B0 ∈ Θ(
√

λ) such that

Pr
[

x ← DZ,γ : |x| > γB0(λ)
]
≤ 2−λ for all γ ≥ 1 and λ ∈N.

Let B ≥ 0, the distribution DZ,γ,≤B is sampled by first sampling x ← DZ,γ, then returning x if
|x| ≤ B, and 0 otherwise. Let γ ≥ 1 and B = γΘ(

√
λ), then DZ,γ,≤B is 2−Ω(λ)-close to DZ,γ.

Lemma 3.6 ([[Lyu12, Lemma 4.4]]). The following hold.

1. For any k > 0, Pr[|z| > kσ; z← DZ,σ] ≤ 2exp(−k2/2).

2. For any k > 1,
Pr
[
∥z∥ > kσ

√
m; z← DZm,σ

]
< kmexp(

m
2
(1− k2)).

Lemma 3.7. [PR06, Adapted from Lemma 2.11] For all but 2−n fraction of B ∈ Zn×m
q , we have

H∞(v) ≥ log(σ/λ)

where v← B−1
σ (u) for any vector u ∈ Zn

q .

Proof. By Lemma 2.10 of [PR06], for any c ∈ Rm and m-dimensional lattice Λ, we have ρσ(Λ + c) ∈
[σm det(Λ∗)(1− ϵ), σm det(Λ∗)(1 + ϵ)] if σ ≥ ηϵ(Λ), where ηϵ(Λ) is the smoothing parameter of
Λ w.r.t the parameter ϵ and det(Λ∗) is the determinant of the dual lattice Λ∗ of Λ.9 This also implies
1 ≤ ρτ(Λ + c) ≤ τm det(Λ∗)(1 + ϵ) for τ > ηϵ(Λ). These together imply that

DΛ+c,σ(v) =
ρσ(v)

ρσ(Λ + c)
≤ 1

σm det(Λ∗)(1− ϵ)
≤ (τ/σ)m · 1 + ϵ

1− ϵ
.

We then consider the lattice

Λ⊥(B) = {v ∈ Zm : Bv = u mod q}

and c ∈ Zm such that Bc = u mod q. We then observe that v follows the distribution DΛ+c,σ. Then, the
lemma follows since as shown in [GPV08], for τ = ω(log m), we have η2−n(Λ⊥(B)) < τ for all but
2−n fraction of B ∈ Zn×m

q . Taking τ = λ/2, the lemma follows.
9We refer to the definitions of the smoothing parameter, dual lattice, and its determinant to [PR06], since this is not necessary

for our purpose.
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Lemma 3.8 ([[ABB10a, Lemma 2.14 (Generalized Leftover Hash Lemma)]]). LetH = {h : X → Y}
be a 2-universal hash function family and f : X → Z be a function. Then for any random variable X
taking value in X , the distributions

(h, h(X), f (X)) and (h,U (Y), f (X))

are within statistical distance
√

2−H∞(X) · |Y||Z|, where U (Y) represents the uniform distribution
over Y . More generally, let X1, . . . XQ be independent random variables taking values in X and let
γ = mini∈[Q] H∞(Xi). Then, the distributions

(h, h(X1), . . . , h(XQ), f (X1), . . . , f (XQ)) and (h,U1(Y), . . . ,UQ(Y), f (X1), . . . , f (XQ))

are within statistical distance Q
√

2−γ · |Y||Z|.

We note that even in the special case where there is no side information of the form f (X), the above
lemma can be applied by setting f (X) = ⊥ for all X and |Z| = 1. In this case, we call the above lemma
“leftover hash lemma". We also note that the family {A ∈ Zn×m

q : r 7→ Ar}A is 2-universal for any
prime q. Furthermore, if we restrict the input space to be {0, 1}m, the same family is 2-universal for any
integer q.

Lemma 3.9 (Smudging Lemma [WWW22b]). Let λ be a security parameter. Take any a ∈ Z where
|a| ≤ B. Suppose γ ≥ Bλω(1). Then the statistical distance between the distributions {z : z← DZ,γ}
and {z + a : z← DZ,γ} is negl(λ).

Lemma 3.10. For γ ≥ cλω(1), {z mod 2 : z← DZ,γ} is statistically close to the uniform distribution
over {0, 1}.

Proof. By Lemma 3.9, {z : z ← DZ,γ} and {z + 1 : z ← DZ,γ} are statistically close. Therefore,
{z mod 2 : z ← DZ,γ} and {z + 1 mod 2 : z ← DZ,γ} are statistically close. This implies what we
want to show.

3.5.1 Hardness Assumptions

Assumption 3.11 (The LWE Assumption). Let n = n(λ), m = m(λ), and q = q(λ) > 2 be integers and
χ = χ(λ) be a distribution over Zq. We say that the LWE(n, m, q, χ) hardness assumption holds if for
any PPT adversary A we have

|Pr[A(A, s⊺A + e⊺)→ 1]− Pr[A(A, v⊺)→ 1]| ≤ negl(λ)

where the probability is taken over the choice of the random coins by the adversary A and A← Zn×m
q ,

s← Zn
q , e← χm, and v← Zm

q . We also say that LWE(n, m, q, χ) problem is subexponentially hard if
the above probability is bounded by 2−nϵ · negl(λ) for some constant 0 < ϵ < 1 for all PPT A.

As shown by previous works [Reg09, BLP+13], if we set χ = SampZ(γ), the LWE(n, m, q, χ)
problem is as hard as solving worst case lattice problems such as gapSVP and SIVP with approximation
factor poly(n) · (q/γ) for some poly(n). Since the best known algorithms for 2k-approximation of
gapSVP and SIVP run in time 2Õ(n/k), it follows that the above LWE(n, m, q, χ) with noise-to-modulus
ratio 2−nϵ is likely to be (subexponentially) hard for some constant ϵ.

Assumption 3.12 ((Circular) Small Secret LWE Assumption). [HLL23] Let n.m, m′, q, σ, σ′ be functions
of λ and

Afhe ← Zn×m
q , A0 ← Zn×m′

q , r← Dn
Z,σ,≤σλ, s← (r⊺,−1)⊺,

efhe ← Dm
Z,σ,≤σλ, e0 ← Dm′

Z,σ′,≤σ′λ, R← {0, 1}m×(n+1)⌈log2 q⌉m
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The circular small-secret LWE assumption csLWEn.m,m′,q,σ,σ′ states that{(
1λ,
(

Afhe
c⊺fhe = r⊺Afhe + e⊺fhe

)
, C =

(
Afhe

c⊺fhe = r⊺Afhe + e⊺fhe

)
R− bits(s)⊗G,

(
A0

c⊺0 = r⊺A0 + e⊺0

) )}
λ∈N

≈c


1λ,

(
Afhe

c⊺fhe ← Z1×m
q

)
, C← Z

n+1×(n+1)⌈log2 q⌉m
q︸ ︷︷ ︸

circular terms

,
(

A0

c⊺0 ← Z1×m′
q

) 


λ∈N

For the small-secret LWE assumption sLWEn.m,m′,q,σ,σ′ , the circular terms are removed from both
distributions.

Assumption 3.13 (Evasive LWE). [Wee22, ARYY23] Let n, m, t, m′, q ∈N be parameters and λ be a
security parameter. Let σpre, σ′pre, σpost and τ be parameters for Gaussian distributions. Let Samp be a
PPT algorithm that outputs

S ∈ Zm′×n
q , P ∈ Zn×t

q , aux ∈ {0, 1}∗

on input 1λ. For a PPT adversary A0,A1, we define the following advantage functions:

Advpre
A0
(λ)

def
= Pr

[
A0(B, P, SB + E, SP + E′, aux) = 1

]
− Pr

[
A0(B, P, C0, C′, aux) = 1

]
Advpost

A1
(λ)

def
= Pr

[
A1(B, P, SB + E′′, K, aux) = 1

]
− Pr[A1(B, P, C0, K, aux) = 1]

where (S, P, aux)← Samp(1λ), B← Zn×m
q , C0 ← Zm′×m

q , C′ ← Zm′×t
q ,

E← Dm′×m
Z,σpre

, E′ ← Dm′×t
Z,σ′pre

, E′′ ← Dm′×t
Z,σpost

,

K← B−1(P) with standard deviation τ

We say that the evasive LWE (EvLWE) assumption holds if for every PPT Samp and A1, there exists
another PPT A0 and a polynomial Q(·) such that

Advpre
A0
(λ) ≥ Advpost

A1
(λ)/Q(λ)− negl(λ).

We also consider a slight variant of the above, as is introduced by Wee [Wee22]. In this variant,
Samp(1λ) outputs A ∈ Zn×m

q along with (S, P, aux). Furthermore, the adversary is given A and
corresponding LWE challenge cA in the pre- and post-condition distributions. We have c⊺A = s⊺A + e⊺A
in the LHS distribution and cA ← Zm

q in the RHS distribution, where eA ← Dm
Z,σpost

in post-condition
and eA ← Dm

Z,σ′′pre
in pre-condition.

Public versus Private Coin. Evasive LWE has been studied both in the “public-coin” and “private-coin”
setting, where the former means that the randomness used by the sampler is made available to the
adversary, and the latter means that the sampler’s random coins need to be hidden from the adversary.
Here, note that it is necessary that the LWE secret S and error remain hidden from the adversary, whether
in the public or private coin setting. In the public-coin setting, these are generated randomly from the
appropriate distribution and are the only secrets not known to the adversary, whereas in the private coin
setting, there may be additional randomness that is not known to the adversary.
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3.6 GSW Homomorphic Encryption and Evaluation

We recall the format of the (leveled fully) homomorphic encryption due to [GSW13] and the correctness
property. We adapt the syntax from [HLL23].

Lemma 3.14. The leveled FHE scheme works as follows:

• The keys are

(public) Afhe =

(
Āfhe

s̄⊺Āfhe + e⊺fhe

)
∈ Z

(n+1)×m
q , (secret) s⊺ = (s̄⊺,−1),

where s̄ ∈ Zn,Āfhe ∈ Zn×m
q , and e⊺fhe ∈ Zm.

• A ciphertext of x ∈ {0, 1} is X = AfheR− xG ∈ Z
(n+1)×m
q , where R ∈ Zm×m

q is the encryption
randomness. The decryption equation is

s⊺X = −e⊺fheR− xs⊺G ∈ Zm
q ,

which can be used to extract x via multiplication by G−1(⌊q/2⌋ ιn+1).

Lemma 3.15. (homomorphic evaluation for vector-valued functions [HLL23]) For the scheme in Lemma
4, there is an efficient algorithm

MakeVEvalCkt(n, m, q, C) = VEvalC

that takes as input n, m, q and a vector-valued circuit C : {0, 1}L → Z1×m′
q and outputs a circuit

VEvalC(X1, ..., XL) = C,

taking L ciphertexts as input and outputting a new ciphertext C of different format.

• The depth of VEvalC is dO(log m log log q) + O(log2 log q) for C of depth d.

• Suppose Xℓ = AfheRℓ − x[ℓ]G for ℓ ∈ [L] with x ∈ {0, 1}L, then

C = AfheRC −
(

0n×m′

C(x)

)
∈ Z

(n+1)×m′
q ,

where
∥∥R⊺

C

∥∥ ≤ (m + 2)d ⌈log q⌉maxℓ∈[L]
∥∥R⊺

ℓ

∥∥. The new decryption equation is

s⊺C = −e⊺fheRC + C(x) ∈ Z1×m′
q .

We implement the above homomorphic computation in the following specific manner. Let us represent
each entry of C(x) by an element in [−⌊q/2⌋, ⌊q/2⌋]. We then let C(x)[u, v] ∈ {−1, 0, 1} be the
signed version of the v-th bit of C(x)[u], for u ∈ [m′] and v ∈ [0, w), w = ⌈log2 q⌉. Namely, we have
∑v∈[0,w) C(x)[u, v]2v = C(x)[u], where if C(x)[u] ∈ [− ⌊q/2⌋ ,−1], then C(x)[u, v] ∈ {−1, 0} and
C(x)[u, v] ∈ {0, 1} otherwise, for all u and v. Note that the parity of C(x)[u] represented as an element
in [−⌊q/2⌋, ⌊q/2⌋] equals to that of C(x)[u, 0].10

Then VEvalC computation firstly homomorphically computes GSW encryption of C(x)[u, v], which
is of the form Cu,v = AfheRC,u,v − C(x)[u, v]G. This is done by first computing the GSW encryption of

10We do not have this equality when we do not represent C(x)[u] in a signed form. This is because for an integer
x ∈ [− ⌊q/2⌋ ,−1], x mod 2 (i.e., the LSB of the signed form) does not equal to x + q mod 2 (i.e., the LSB of the non-signed
form) when q is an odd number.
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C[x] in non-signed binary form (i.e., C[x] is treated as an element in [0, q− 1] and is represented in a
binary form) using the GSW homomorphic evaluation and adding the sign by the homomorphic operation.

Then for each u ∈ [m′], it linearly aggregates {Cu,v}v∈[0,w−1] to get Cu = AfheRC,u −
(

0n×1

C(x)[u]

)
as

Cu = ∑v Cu,vG−1(2vιn+1). In particular,

RC,u = ∑
v

RC,u,vG−1(2vιn+1), and RC = (RC,1, . . . , RC,m′).

3.7 Homomorphic Evaluation Procedures

In this section we describe the properties of the attribute encoding and its homomorphic evaluation. We
adapt the syntax from [HLL23].

• For L-bit input, the public parameter is Aatt ∈ Z
(n+1)×(L+1)m
q .

• The encoding of x ∈ {0, 1}L is

s⊺(Aatt − (1, x⊺)⊗G) + e⊺att,

where s⊺ = (s̄⊺,−1) with s̄ ∈ Zn and e⊺att ∈ Z(L+1)m.

• There are efficient deterministic algorithms [BTVW17]

MEvalC(Aatt, C) = HC and MEvalCX(Aatt, C, x) = HC,x

that take as input Aatt, a matrix-valued circuit C : {0, 1}L → Zn+1×m′
q , and (for MEvalCX) some

x ∈ {0, 1}L, and output some matrix in Z(L+1)m×m′ .

– Suppose C is of depth d, then
∥∥H⊺

C

∥∥,
∥∥∥H⊺

C,x

∥∥∥ ≤ (m + 2)d ⌈log q⌉.

– The matrix encoding homomorphism is (Aatt − (1, x⊺)⊗G)HC,x = AattHC − C(x).

Dual-Use Technique and Extension. In [BTVW17], the attribute encoded with secret s⊺ is FHE
ciphertexts under key s⊺ (the same, "dual-use") and the circuit being MEvalCX’ed is some HEvalC. This
leads to automatic decryption. Let C be a vector-valued circuit, with co-domain Z1×m′

q , then VEvalC is
Z

(n+1)×m′
q -valued and

(s⊺(Aatt − (1, bits(X))⊗G) + e⊺att) ·HVEvalC ,X

(MEvalCX) = s⊺AattHVEvalC − s⊺VEvalC(X) + (e′)⊺

(VEval decryption ) = s⊺AattHVEvalC − C(x) + (e′′)⊺.

3.8 Succinct LWE Sampler: Definition and Amplification

In this section, we define the succinct LWE sampler as in [DQV+21].

Syntax. A succinct LWE sampler is a tuple of PPT algorithms (SampCRSGen, LWEGen, Expand) with
the following syntax:

SampCRSGen(1λ, 1N , α): on input the security parameter λ, a size parameter N and a blowup factor α,
samples a common reference string crs, which include parameters params = (q, M, K, χ, B).

LWEGen(crs): samples (seedB∗ , A∗, S∗).

Expand(crs, seedB∗): is a deterministic algorithm that outputs a matrix B∗.
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Domains and Parameters. The outputs of LWEGen and Expand satisfy:

A∗ ∈ ZM×W
q , S∗ ∈ ZW×K

q , B∗ ∈ ZM×K
q

for some integer W. We require that N = MK, B = poly(N), χ is a B-bounded noise distribution and
q ≥ 8 · 2λ · α · B.

Correctness. We require that
|B∗ −A∗S∗| := β ≤ q/8

where crs← SampCRSGen(1λ, 1N , α), (seedB∗ , A∗, S∗)← LWEGen(crs) and B∗ = Expand(crs, seedB∗).
Furthermore, we require that A∗ is full-rank with overwhelming probability over the randomness of
SampCRSGen and LWEGen.

δ-Succinctness. We require the total bit length of the output of LWEGen is small. That is

bitlength(seedB∗ , A∗, S∗) ≤ Nδ · poly(λ, log q) = (MK)δ · poly(λ, log q)

where δ < 1 is a constant.

Definition 3.16 (LWE with respect to A∗). We require that

(coinscrs, coinsseed, A∗s′ + e′) ≈c (coinscrs, coinsseed, b)

where crs = SampCRSGen(1λ, 1N , α; coinscrs), (seedB∗ , A∗, S∗) ← LWEGen(crs; coinsseed), s′ ←
ZW

q and e′ ← χM.

Definition 3.17 (Strong security or strong β0-Flooding). Let D0, D1 be any two polynomial-time
samplable distributions such that (auxb, Zb) ← Db(A∗) satisfies Zb ∈ ZM×K

q , |Zb| ≤ β0 where
β0 · 2λ ≤ β and

(coinscrs, coinsseed, A∗S′ + Z0, aux0) ≈c (coinscrs, coinsseed, A∗S′ + Z1, aux1)

where crs = SampCRSGen(1λ, 1N , α; coinscrs), (seedB∗ , A∗, S∗)← LWEGen(crs; coinsseed), and S′ ←
ZW×K

q . Then,

(crs, seedB∗ , A∗, A∗S∗ + Z0, aux0) ≈c (crs, seedB∗ , A∗, A∗S∗ + Z1, aux1).

We will refer to the assumption on D0, D1 as the pre-condition for security, and the resulting indistin-
guishability the post-condition.

Definition 3.18 (Weak security or weak β0-Flooding). Let D0, D1 as follows.

Db : auxb = (B̂ := A∗Ŝ + Ê, C = A∗R + E− b ·G)

Zb = EG−1(B̂)− bÊ,

where

• SampCRSGen defines (q, M, K, χ, B) = params;

• LWEGen defines A∗ ∈ ZM×W
q ;

• B̂ ∈ ZM×K
q , Ŝ← ZW×K

q and Ê← [−Bflood, Bflood]
M×K where Bflood = (β0 + B) · 2λ;
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• C ∈ Z
M×M log q
q , R← Z

W×M log q
q and E← χ

M×M log q
q .

We say that the sampler (SampCRSGen, LWEGen, Expand) is weakly secure if

(crs, seedB∗ , A∗, A∗S∗ + Z0, aux0) ≈c (crs, seedB∗ , A∗, A∗S∗ + Z1, aux1).

Remark 3.19 (Alternate formulation of strong and weak security). Since the sampler allows us to compute
Expand(crs, seedB∗) = B∗ = A∗S∗ + E∗, the security post-condition can be equivalently stated as:

(crs, seedB∗ , A∗, E∗ − Z0, aux0) ≈c (crs, seedB∗ , A∗, E∗ − Z1, aux1). (10)

Theorem 3.20. [DQV+21] Let (SampCRSGen, LWEGen, Expand) be a weakly secure, δ-succinct
LWE sampler (Definition 3.18) and M2 ≤ Nδpoly(λ, log q). There exists an amplifier that amplifies
(SampCRSGen, LWEGen, Expand) to a secure δ-succinct LWE sampler (SampCRSGen, LWEGen, Expand),
satisfying strong security (Definition 3.17) with the parameters of Definition 3.18.

Theorem 3.21 ([DQV+21]). Let Fℓ,N,d = { f : {0, 1}ℓ → {0, 1}N} of depth-d circuits. Let
g(d) = O(d). Suppose there exists a succinct LWE sampler (SampCRSGen, LWEGen, Expand)
satisfying δ succinctness and β0-flooding (Definition 3.17) with β0 = BNg(d) and M2 = Nδpoly(λ, ℓ, d)
for M, B defined in SLS. Then there exists a succinct randomized encoding scheme (SRE) for Fℓ,N,d
satisfying δ-succinctness.

Theorem 3.22 ([AJ15, BV15, LPST16]). Assuming sub-exponentially secure succinct randomized
encoding (SRE) exist and subexponentially secure LWE, there exists an iO scheme.

4 Counter-Examples for Public-Coin Evasive LWE

4.1 Counter-Example for HLL’s Circular Evasive LWE

We first recall the assumption from [HLL23].

Assumption 4.1 (Evasive Circular Small-Secret LWE). Let n, m, m′, J, q be parameters. Let Samp(1λ; coinspub
Samp)

be a public coin sampler that, given randomness coinspub
Samp, outputs

Acirc ∈ Z
(n+1)×(LS+1)m
q , A′ ∈ Zn×m′

q , P ∈ Z
n×J
q , σ, σ′, σ−1, σpost, σpre, aux

where m ≥ O(n log q), σ−1 = ω(
√

n log q log m) and σpost ≥ σpre. Suppose

Afhe ← Zn×m
q , (B, B−1

σ−1
)← TrapGen(1n, 1m, q), K← B−1

σ−1
(P),

efhe ← Dm
Z,σ,≤σ

√
λ
, ecirc ← D(LS+1)m

Z,σ′,≤σ′
√

λ
, e′ ← Dm′

Z,σ′,≤σ′
√

λ
, eB ∈ Zm, eP ∈ ZJ ,

r← Dn
Z,σ,≤σ

√
λ
, R← {0, 1}m×((n+1)⌈log2 q⌉+1)m, Afhe =

((
Afhe

r⊺Afhe + e⊺fhe

))
s = (r⊺,−1)⊺, LS = (n + 1)((n + 1) ⌈log q⌉+ 1)m ⌈log q⌉
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where pi is the ith column of P. In the precondition, the entries of eB, eP are independent and follow
D

Z,σpre,≤σpre
√

λ and evcsLWESamp
pre states that

Dpre
0 :=





1λ, coinspub
Samp, aux, Acirc, A′, Afhe, B,

c⊺fhe = r⊺Afhe + e⊺fhe,
S = AfheR− (1, bits(s))⊗G,

c⊺circ = s⊺(Acirc − (1, bits(S))⊗G) + e⊺circ,

(c′)⊺ = r⊺A′ + (e′)⊺, c⊺B = r⊺B + e⊺B,
c⊺P = r⊺P + e⊺P




λ∈N

≈c Dpre
1 :=





1λ, coinspub
Samp, aux, Acirc, A′, Afhe, B,

c⊺fhe ← Z1×m
q ,

S← Z
(n+1)×((n+1)⌈log2 q⌉+1)m
q ,

c⊺circ ← Z
1×(LS+1)m
q ,

(c′)⊺ ← Z1×m′
q , c⊺B ← Z1×m

q ,

c⊺P ← Z
1×J
q




λ∈N

(11)

In the postcondition, the entries of eB, are independent and followD
Z,σpost,≤σpost

√
λ and evcsLWESamp

post
states that

Dpost
0 :=





1λ, coinspub
Samp, aux, Acirc, A′, Afhe, B,

c⊺fhe = r⊺Afhe + e⊺fhe,
S = AfheR− (1, bits(s))⊗G,

c⊺circ = s⊺(Acirc − (1, bits(S))⊗G) + e⊺circ,

(c′)⊺ = r⊺A′ + (e′)⊺, c⊺B = r⊺B + e⊺B, K




λ∈N

≈c Dpost
1 :=





1λ, coinspub
Samp, aux, Acirc, A′, Afhe, B,

c⊺fhe ← Z1×m
q ,

S← Z
(n+1)×((n+1)⌈log2 q⌉+1)m
q ,

c⊺circ ← Z
1×(LS+1)m
q ,

(c′)⊺ ← Z1×m′
q , c⊺B ← Z1×m

q , K




λ∈N

(12)

The evasive circular small-secret LWE assumption states that evcsLWESamp
pre implies evcsLWESamp

post
for all efficient sampler Samp.

Note 4.2. The above definition of evasive circular small secret LWE is slightly different from that
in [HLL23], where S encrypts bits(s) and c⊺circ is computed as r⊺(Acirc − (1, bits(S))⊗G) + e⊺circ.
However, it is easy to see that the two forms are equivalent, because given Afhe, Acirc, one can sample
R′ ← {0, 1}m×m, acirc ← Z

(LS+1)m
q and compute the extra block in S as AfheR′ −G, and the extra

additive term in c⊺circ as: −(a⊺circ − (1, bits(S))⊗G). Here, G and G represent the top n and the lat
rows of G, respectively.

4.1.1 Preliminaries for the attack

We will use the following lemmas adapted from [HJL21] to GSW encryption.
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Lemma 4.3 (Even-randomness gate for GSW). Let q be an odd number and ctx = AfheR− xG be a
GSW encryption of some x ∈ {0, 1}, where Afhe is the public key, |R[i, j]| ≤ B for some B ≤ q/(100m)
and let ct′x be the result of homomorphically evaluating the following two (arithmetic) gates:

1. g1(x) = 1
2 x and Eval(g1, ctx) = ctx ·G−1 ( 1

2 G
)
.

2. g2(x) = x + x and Eval(g2, ctx) = ctx + ctx,

where ctx is treated as a matrix in Z
(n+1)×m
q .11 That is, ct′x = Eval(g2, Eval(g1, ctx)). Then ct′x =

AfheR′− xG for some R′ ∈ Zm×m
q (here m = O(n log q)) for which every entry satisfies R′[i, j] = 2 · ri,j

for some ri,j ∈ Zq and i, j ∈ [m] with |ri,j| ≤ O(mB).

Proof. We first expand Eval(g1, ctx).

Eval(g1, ctx) = (AfheR− xG) ·G−1
(

1
2

G
)
= AfheRG−1

(
1
2

G
)
− xGG−1

(
1
2

G
)

= Afhe

(
RG−1

(
1
2

G
))
− x

2
G.

Then, Eval(g2, Eval(g1, ctx)) = Afhe

(
RG−1

(
1
2

G
))
− x

2
G + Afhe

(
RG−1

(
1
2

G
))
− x

2
G

= Afhe

(
2 · RG−1

(
1
2

G
))
− xG

Note that G−1 ( 1
2 G
)
∈ {0, 1}m×m, hence

∣∣(RG−1 ( 1
2 G
))

[i, j]
∣∣ ≤ O(Bm).

Lemma 4.4 (Multiplication-by-one gate for GSW). Let ct∗ = AfheR∗ −G be a GSW encryption for
constant 1, where |R∗[i, j]| ≤ q/10 for all i, j ∈ [m]. Let x ∈ {−1, 0, 1}, and let ctx = AfheR− xG
be the GSW encryption of x such that R[i, j] = 2 · ri,j where ri,j ∈ Z and |ri,j| ≤ q/(100m), for all
i, j ∈ [m]. Let g(x, y) = x · y. Then Eval(g, ctx, ct∗) = AfheR′ − x ·G12 where R′ ∈ Zm×m

q and
R′ = x · R∗ mod 2.

Proof. On expanding,

Eval(g, ctx, ct∗) = −(AfheR− xG)G−1(AfheR∗ −G)

= Afhe(−RG−1(AfheR∗ −G) + xR∗)− x ·G

Now, firstly, we note that each entry, RG−1(AfheR∗−G)[i, j] is small, i.e.,≤ (q/(100m)) ∗m = q/100.
Further we observe that since each entry R[i, j] is even, RG−1(AfheR∗−G)[i, j] = 0 mod 2, ∀ i, j ∈ [m].
Hence, we have R′ = x · R∗ mod 2.

Corollary 4.5. Let ct∗ = AfheR∗ −G be a GSW encryption of the constant 1, where |R∗[i, j]| ≤ q/10
for all i, j ∈ [m]. Let x ∈ {−1, 0, 1} and let ctx = AfheR− xG be a GSW encryption of x such that
|R[i, j]| ≤ q/poly(n, log q) for all i, j. Then, for g1, g2 as in Lemma 4.3 and g as in Lemma 4.4,

Eval(g, Eval(g2, Eval(g1, ctx)), ct∗) = AfheR′ − xG,

where R′ = xR∗ mod 2.
11Here, we specify the homomorphic evaluation circuit concretely, since there are multiple different homomorphic evaluation

circuits implementing the same operation on the encoded message.
12Here the GSW multiplicative homomorphism is computed by −C1G−1(C2) where C1 and C2 encrypts x1 and x2

respectively.

28



4.1.2 The Attack

Theorem 4.6. There exists an efficient evasive circular small-secret LWE (evcsLWE) sampler Samp as
defined in Assumption 4.1 such that the pre-condition holds, but the post-condition does not- i.e., there
exists a distinguisher Apost that distinguishes post-condition with non-negligible probability.

Proof. We first describe the contrived circuit used by our sampler. Let q, p, β̃, B, σ, σ′, σ−1, σpre, σpost, Q
be parameters. The parameters will be set after we describe the sampler.

Defining Evasive Circular small-secret LWE Sampler. The public coin sampler Samp of the evcsLWE
assumption, on input (1λ, coinspub

Samp = (coins, Acirc, A′)), does the following:

1. Let Fprm = { f : {1 ∈ {0, 1}} ×Zn+1 → [−q/2 + B, q/2− B]1×ℓ} be a family of functions
where f ∈ Fprm can be computed by a circuit of depth d(λ), prm = (n, 1ℓ(λ), 1d(λ)) and B is chosen
to be exponentially smaller than q/2. Choose { fi ∈ Fprm}i∈[Q] such that for r ← Dn

Z,σ,≤σ
√

λ
,

s⊺ = (r⊺,−1),



1λ,
(

Afhe
c⊺fhe = r⊺Afhe + e⊺fhe

)
,

C =

(
Afhe

c⊺fhe = r⊺Afhe + e⊺fhe

)
R− (1, bits(s))⊗G,(

A0
c⊺0 = r⊺A0 + e⊺0

)
,

{ fi, c⊺i = fi(1, s)}i∈[Q]


≈c



1λ,
(

Afhe
c⊺fhe ← Z1×m

q

)
,

C← Z
(n+1)×((n+1)⌈log2 q⌉+1)m
q ,(

A0

c⊺0 ← Z1×m′
q

)
,

{ fi, c⊺i ← Z1×ℓ
q }i∈[Q]


(13)

where Afhe ← Zn×m
q , A0 ← Zn×m′

q , R← {0, 1}m×((n+1)⌈log2 q⌉+1)m, efhe ← Dm
Z,σ,≤σ

√
λ
, e0 ←

Dm′
Z,σ′,≤σ′

√
λ
. A concrete example of the choice for such fi would be to index fi with a random matrix

Ai ← Z
(n+1)×ℓ′
q and define fi(1, s) as follows. Ignore the first bit, 1, and compute ⌊s⊺Ai⌋p in

binary and interpret it as a vector in Zℓ
q. Finally, map each such element x ∈ Zq (in the output vector)

such that x /∈ [−q/2 + B, q/2− B] to 0. Here, ℓ′ = ⌈ℓ(⌈log q⌉ / ⌈log p⌉)⌉ and q ≥ pλω(1)σ
(σ is LWE error bound and is defined later). Concretely, fi(1, s) = [GqG−1

p (⌊(s⊺Ai)
⊺⌋p)]B 13,

where Gq = Iℓ ⊗ (1, 2, 22, . . . , 2⌈log2 q⌉−1) and G−1
p (x ∈ Zp) represents bit decomposition of x,

resulting in a vector in {0, 1}⌈log p⌉ (similarly for a vector), and [x]B for any x ∈ Z∗q represents
truncating the range to [−q/2 + B, q/2 − B]∗ by mapping the out of range values to 0. In
Lemma 4.7, we show that indistinguishability in (13) indeed holds for this choice of fi. We observe
that such a function fi can be implemented by a circuit of depth d(λ) = poly(log q). Also, we
include these matrices, {Ai}i∈[Q], as a part of coinspub

Samp. Define the following circuit C′fi
(with

depth at most d + 3) implementing fi.

(a) Start with any circuit C fi (of depth at most d) outputting fi(1, s) (in binary) on input (1, s).
(b) Let C0 be a circuit which outputs the first bit of its input x. We further assume that the first bit

of x is always 1.

13to keep the notations simple, we set q and p in such a way that ℓ(⌈log q⌉ / ⌈log p⌉) is an integer.
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(c) To the output wire of C fi corresponding to the lowest-order bit of fi(1, s)[1], attach a new gate
which performs the correlation-inducing transformation described in Corollary 4.5, using the
output wire of C0 as the special “1” input. Inputs to C0 can be (1, bits(s)).

(d) To all the other output wires of C fi , attach a gate performing "even randomness" transformation
as in Lemma 4.3.

2. Samples a⊺circ ← Z
1×(LS+1)m
q and set Acirc =

(
Acirc
a⊺circ

)
.

3. Define the homomorphic evaluation circuit VEvalC′fi = MakeVEvalCkt(n, m, q, C′fi
). Compute

H fi
Acirc

= MEvalC(Acirc, VEvalC′fi ) ∈ Z
(LS+1)m×ℓ
q for all i ∈ [Q]. It then computes A fi =

Acirc ·H fi
Acirc
∈ Zn+1×ℓ

q for all i ∈ [Q] and sets P = [A f1 , . . . , A fQ ], where A fi is the matrix
formed by taking upper n rows of A fi .

4. Output
Acirc, A′, P ∈ Z

n×ℓ·Q
q , aux = ({ fi}i∈[Q]), σ, σ′, σ−1, σpost, σpre

where σ, σ′, σ−1, σpost, σpre are as defined later in parameter settings.

Proof of Equation (13).

Claim 4.7. Let { fAi ∈ Fprm}i∈[Q] be a set of functions such that fAi(1, s) = [GqG−1
p (⌊(s⊺Ai)

⊺⌋p)]B,
for all i ∈ [Q]; r← Dn

Z,σ,≤σ
√

λ
, s⊺ = (r⊺,−1). Then, for all PPT adversary A, the indistinguishability

in equation (13) holds assuming the hardness of circular small secret LWE (csLWE) assumption.

Proof. We rewrite equation (13) here, with the above definition of fi’s.14

D0 :=



1λ,
(

Afhe
c⊺fhe = r⊺Afhe + e⊺fhe

)
,

C =

(
Afhe

c⊺fhe = r⊺Afhe + e⊺fhe

)
R− (1, bits(s))⊗G,(

A0
c0

⊺ = r⊺A0 + (e′)⊺

)
,

{
(

Ai
a⊺i

)
, c⊺i = [GqG−1

p (
⌊
(r⊺Ai − a⊺i )

⊺⌋
p)]B}i∈[Q]


≈c D1 :=



1λ,
(

Afhe
c⊺fhe ← Z1×m

q

)
,

C← Z
(n+1)×((n+1)⌈log2 q⌉+1)m
q ,(

A0

c⊺0 ← Z1×m′
q

)
,

{
(

Ai
a⊺i

)
, c⊺i ← Z1×ℓ

q }i∈[Q]


,

where Ai ← Zn×ℓ′
q and ai ← Zℓ′

q . Let us define an intermediate distribution D′ between D0 and
D1, where c⊺i = [GqG−1

p (
⌊
r⊺Ai − a⊺i + e⊺i

⌋
p)]B, for ei ← Dℓ′

Z,σ,σ
√

λ
. Then D0 and D′ are statistically

indistinguishable because of the following arguments. First we observe that since ai ← Zℓ′
q , r⊺Ai − a⊺i is

also uniformly distributed over Z1×ℓ′
q . Then we observe that since ei ← Dℓ′

Z,σ,σ
√

λ
, ∥ei∥ ≤ σ

√
λ, and

hence,

Pr
(⌊

r⊺Ai − a⊺i
⌋

p ̸=
⌊
r⊺Ai − a⊺i + e⊺i

⌋
p

)
≤ σ
√

λp/q = negl(λ) due to the choice of p and q.

Thus, probability that (
⌊
r⊺Ai − a⊺i

⌋
p ̸=

⌊
r⊺Ai − a⊺i + e⊺i

⌋
p), for any i ∈ [Q] is at most Qσ

√
λp/q,

which is again negligible.

14With slight overload of notation, we denote fAi as
(

Ai
a⊺i

)
.
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Next, we show that if there exists an adversary A who can distinguish between D′ and D1 with
non-negligible advantage, then there is a reduction B that breaks csLWE security with non-negligible
advantage. The reduction is as follows.

1. On receiving 1λ from A, forward it to csLWE challenger.

2. The csLWE challenger samples β ← {0, 1}, Afhe,csLWE ← Zn×m
q , A0,csLWE ← Z

n×m′+ℓ′Q
q ,

r← Dn
Z,σ,≤σ

√
λ
, and returns(

1λ,
(

Afhe,csLWE
c⊺fhe,csLWE

)
, CcsLWE,

(
A0,csLWE
c⊺0,csLWE

))
,

where c⊺fhe,csLWE = r⊺Afhe,csLWE + e⊺fhe,csLWE, CcsLWE =

(
Afhe,csLWE

c⊺fhe,csLWE = r⊺Afhe,csLWE + e⊺fhe,csLWE

)
R−

bits(s)⊗G, and c⊺0,csLWE = r⊺A0,csLWE + e⊺0,csLWE, if β = 0, and c⊺fhe,csLWE ← Z1×m
q , c⊺0,csLWE ←

Z
1×m′+ℓ′Q
q and CcsLWE ← Z

(n+1)×(n+1)⌈log2 q⌉m
q , if β = 1. Then B does the following:

(a) Parse A0,csLWE = (A0, A1, . . . , AQ) where A0 ∈ Zn×m′
q and Ai ∈ Zn×ℓ′

q for all i ∈ [Q].
Also, parse c⊺0,csLWE = (c⊺0 , c⊺1 , . . . , c⊺Q) where c⊺0 ∈ Z1×m′

q and c⊺i ∈ Z1×ℓ′
q for all i ∈ [Q].

(b) For all i ∈ [Q], sample a⊺i ← Z1×ℓ′
q and set c̃⊺i = c⊺i − a⊺i .

(c) Compute and set c⊺i = [GqG−1
p (⌊c̃i⌋p)]B ∈ [−q/2 + B, q/2− B]1×ℓ.

(d) Set Afhe = Afhe,csLWE, c⊺fhe = c⊺fhe,csLWE.

(e) Sample R′ ← {0, 1}m×m, computes C′ =
(

Afhe
c⊺fhe

)
R′ −G and C = (C′, CcsLWE).

(f) Forward the following to A.(
1λ,
(

Afhe
c⊺fhe

)
, C,

(
A0
c⊺0

)
,
{(

Ai
a⊺i

)
, c⊺i

}
i∈[Q]

)

3. On receiving β′ from A, forward β′ to csLWE challenger.

We observe that if β = 0, then B simulates the distribution D′. When β = 1, then we observe that
C′ is statistically close to uniform distribution due to LHL, and thus B simulates the distribution D1,
except that in D1, c⊺i ← Z1×ℓ

q , while B returns c⊺i ∈ [−q/2 + B, q/2− B]1×ℓ. However, since B is
exponentially smaller than q/2, the two distributions are negligibly close. Hence, the advantage of B is
same as the advantage of A.

Parameter Setting. We recall the parameters from [HLL23] except p, β̃ and B, which we define and set
for our purpose.

q ∈ (215λ−1, 215λ], p ∈ (25λ−1, 25λ], β̃ = 2λ, B = 28λ, σ = 2λ,

σ′ = 22λ, σ−1 = 2λ, σpre = 26λ, σpost = 27λ, Q = λ + m + (LS + 1)m
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Counter-example Roadmap. Now, for our counter-example, we need to show that for (Acirc, A′, P, aux,
σ, σ′, σ−1, σpost, σpre) ← Samp(1λ; coinspub

Samp = (coins, Acirc, A′, {Ai}i∈[Q])) where aux =

({ fi}i∈[Q]),

1. (Pre-condition) For all PPT adversary Apre, the two distributions, Dpre
0 and Dpre

1 as defined in
Equation (11) are indistinguishable. We prove this in Claim 4.10.

2. (Attack against postcondition) There exists an adversary Apost who distinguishes the distributions,
Dpost

0 and Dpost
1 as in Equation (12) with non-negligible probability.

Distinguishing Algorithm/Attack Strategy. The adversary Apost holds the distribution Dpost
β for

β ← {0, 1}. Thus, if β = 0, c⊺B = r⊺B + e⊺B, S =

((
Afhe

r⊺Afhe + e⊺fhe

))
R − (1, bits(s)) ⊗ G,

c⊺circ = s⊺(Acirc − (1, bits(S))⊗G) + e⊺circ and if β = 1, c⊺B ← Zm
q , S ← Z

(n+1)×((n+1)⌈log2 q⌉+1)m
q ,

c⊺circ ← Z
(LS+1)m
q . It does the following:

1. For each i ∈ [Q], compute H fi
Acirc,S = MEvalCX(Acirc, VEvalC′fi , (1, bits(S))) and zi = c⊺B ·Ki −

c⊺circ ·H
fi
Acirc,S− a⊺circH fi

Acirc,S mod q where Ki ← B−1
σ−1

(A fi) and a⊺circ is the (n + 1)th row of Acirc.

2. Let L = (LS + 1)m. Apost defines the following set of linear equations (Equation (14)) in
variables eB[1], . . . , eB[m] and ecirc[1], . . . , ecirc[L] and outputs β′ = 0 if Equation (14) is solvable;
otherwise, outputs β′ = 1.

eB[1]K1[1, 1] + . . . + eB[m]K1[m, 1]− ecirc[1]H
f1
Acirc,S[1, 1]− . . .

−ecirc[L]H
f1
Acirc,S[L, 1] = z1[1] mod 2

eB[1]K2[1, 1] + . . . + eB[m]K2[m, 1]− ecirc[1]H
f2
Acirc,S[1, 1]− . . .

−ecirc[L]H
f2
Acirc,S[L, 1] = z2[1] mod 2

...
eB[1]KQ[1, 1] + . . . + eB[m]KQ[m, 1]− ecirc[1]H

fQ
Acirc,S[1, 1]− . . .

−ecirc[L]H
fQ
Acirc,S[L, 1] = zQ[1] mod 2

(14)

Next, we analyze the success probability of Apost.

Claim 4.8. Apost wins (i,e., β = β′) with at least 3/4− negl(λ) probability when Q ≥ λ + m + (LS +
1)m.

Proof. Let us first analyze the solvability of equations defined in Equation (14) for the two cases: β = 0
and β = 1.
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When β = 0, ∀i ∈ [Q],

zi = c⊺B ·Ki − c⊺circ ·H
fi
Acirc,S − a⊺circH fi

Acirc,S

= (r⊺B + e⊺B) ·Ki − (s⊺(Acirc − (1, bits(S))⊗G) + e⊺circ) ·H
fi
Acirc,S − a⊺circH fi

Acirc,S

= r⊺BKi + e⊺BKi − s⊺AcircH fi
Acirc

+ s⊺VEvalC′fi (1, bits(S))− e⊺circ ·H
fi
Acirc,S − a⊺circH fi

Acirc,S

= r⊺BKi + e⊺BKi − s⊺
(

Acirc
a⊺circ

)
H fi

Acirc
+ s⊺VEvalC′fi (1, bits(S))− e⊺circ ·H

fi
Acirc,S − a⊺circH fi

Acirc,S

= r⊺A fi + e⊺BKi − (r⊺,−1)

(
A fi

a⊺circH fi
Acirc,S

)
+ (r⊺,−1)

((
Afhe

r⊺Afhe + e⊺fhe

)
R fi −

(
0n×ℓ

fi(s)15

))
− e⊺circ ·H

fi
Acirc,S − a⊺circH fi

Acirc,S

= r⊺A fi + e⊺BKi − r⊺A fi + a⊺circH fi
Acirc,S − e⊺fheR fi + fi(s)− e⊺circ ·H

fi
Acirc,S − a⊺circH fi

Acirc,S

= e⊺B ·Ki + fi(s)− e⊺fheR fi − e⊺circH fi
Acirc,S

(15)

Here, we argue that zi mod q ∈ [−q/2, q/2] gives e⊺B · Ki + fi(s) − e⊺fheR fi − e⊺circH fi
Acirc,S over

the integer. This can be seen by observing fi(s) ∈ [−q/2 + B, q/2− B] and e⊺B · Ki − e⊺fheR fi −
e⊺circH fi

Acirc,S ∈ [−B, B], where the latter follows from |eB| ≤ σpre
√

λ, |B−1(P)| ≤ σ−1
√

λ, ∥efhe∥ ≤
σ
√

λ, ∥ecirc∥ ≤ σ′
√

λ, ∥R fi∥ ≤ (m + 2)d+3 ⌈log q⌉m, ∥H fi
Acirc,S∥ ≤ (m + 2)d+3 ⌈log q⌉ (from

Lemma 3.15 and Section 3.7), and our choice of B.
We prove in Claim 4.9 that with probability 1/2+ negl(λ), we have ∀i ∈ [Q], ( fi(s)− e⊺fheR fi)[1] =

0 mod 2. This gives us that with probability 1/2 + negl(λ),

∀i ∈ [Q], zi[1] = e⊺BKi[1]− e⊺circH fi
Acirc,S[1] mod 2.

Here, Ki[1] is the first column of Ki. Observe that this is the same as the set of equations defined in
Equation (14). Hence, in case of β = 0, Equation (14) is solvable with probability 1/2 + negl(λ). This
gives us

Pr
(

β′ = 0 | β = 0
)
= 1/2 + negl(λ). (16)

When β = 1,
∀i ∈ [Q], zi = c⊺B ·Ki − c⊺circ ·H

fi
Acirc,S − a⊺circ ·H

fi
Acirc,S ,

where cB ← Zm
q . Here, we argue that the distribution of {c⊺B ·Ki mod q}i∈[Q] is statistically close to

uniform distribution over (Z1×ℓ
q )Q, even given {Ki mod 2}i∈[Q]. To see this, we first observe that by

Lemma 3.7, each column of Ki[·, j] has min-entropy at least m log(σ−1/λ) > 2m except for negligible
probability over B and (Ki[·, j] mod 2) can be represented by a string of m-bits. We then apply the
generalized Leftover Hash Lemma (Lemma 3.8), which implies that the two distributions are within
statistical distance Q

√
2m · 2−2mq = negl(λ) by our choice of parameters. We therefore have that

{zi mod q}i∈[Q] is distributed uniformly at random over (Z1×ℓ
q )Q, even given {Ki mod 2}i. This, in

turn, implies {zi mod 2}i∈[Q] (which forms the RHS of equations in Equation (14)) is also statistically
close to a uniform distribution independent of {Ki mod 2}i when β = 1. Hence, Equation (14),
having m + (LS + 1)m number of variables, is unsolvable with overwhelming probability if Q >
λ + m + (LS + 1)m, since the RHS of the equation falls into the space for which there exists a solution
with probability at most 2m+(LS+1)m/2λ+m+(LS+1)m = 2−λ.

15Since fi(1, s) ignores its first bit input, 1, we write fi(s) in place of fi(1, s) at many places.
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This gives us
Pr
(

β′ = 1 | β = 1
)
≥ 1− negl(λ). (17)

Thus, from Equation (16) and Equation (17), we get Pr(β′ = β) ≥ 3/4− negl(λ).

Claim 4.9. ∀i ∈ [Q], ( fi(s)− e⊺fheR fi)[1] = 0 mod 2 with probability = 1/2 + negl(λ).

Proof. Let us start by analyzing the ẽ⊺fhe[1] = e⊺fheR fi error. Recall that R fi is the randomness in the

homomorphically evaluated encryption of fi(s) (of different form: AfheR fi −
(

0n×ℓ

fi(s)

)
), output by

VEvalC′fi circuit.

We recall from Section 3.6 that for any circuit C : {0, 1}L → Z1×ℓ
q , VEvalC on input X - a GSW

encryption of some x ∈ {0, 1}L - outputs AfheRC −
(

0n×ℓ

C(x)

)
. Let C(x)[u, v] ∈ {−1, 0, 1} be (the

signed version of) the v-th bit of C(x)[u], for u ∈ [ℓ] and v ∈ [0, w), w = ⌈log2 q⌉, then VEvalC
computation firstly homomorphically computes GSW encryption of C(x)[u, v], which is of the form
Cu,v = AfheRC,u,v − C(x)[u, v]G. Then for each u ∈ [ℓ], it linearly aggregates {Cu,v}v∈[0,w−1] to get

Cu = AfheRC,u −
(

0n×1

C(x)[u]

)
as Cu = ∑v Cu,vG−1(2vιn+1). In particular,

RC,u = ∑
v

RC,u,vG−1(2vιn+1), and RC = (RC,1, . . . , RC,ℓ).

Coming back to our analysis, (e⊺fheR fi)[1] = e⊺fheR fi,1 = e⊺fhe ∑w−1
v=0 R fi,1,v G−1(2vιn+1), where R fi,1

is the first column of R fi and R fi,1,v is the randomness in homomorphically computed GSW encryption of
the v-th bit of fi(s)[1]. Here v ∈ [0, w) where w = ⌈log2 q⌉. Since fi is implemented by C′fi

, in which
all the output bits pass through even randomness, except the lowest order bit of the first element, which
passes through the correlation inducing gate, we have

fi(s)[1]− (e⊺fheR fi)[1] mod 2

= fi(s)[1]− e⊺fheR fi,1,0 G−1(ιn+1)− e⊺fhe

w−1

∑
v=1

R fi,1,v G−1(2vιn+1) mod 2

= fi(s)[1]− e⊺fheR fi,1,0 G−1(ιn+1) mod 2 (due to Lemma 4.3)

= fi(s)[1, 0] +
w−1

∑
v=1

2v fi(s)[1, v]− e⊺fheR fi,1,0 G−1(ιn+1) mod 2

= fi(s)[1, 0]− e⊺fheR fi,1,0 G−1(ιn+1) mod 2

= fi(s)[1, 0]− fi(s)[1, 0]e⊺fheR∗G−1(ιn+1) mod 2 (due to Corollary 4.5)
= 0 mod 2, if e⊺fheR∗G−1(ιn+1) is odd

In the above, fi(s)[u, v] represents the v-th bit in the binary representation of fi(s)[u] and R∗ is
the randomness in the ciphertext of special "1" input used in Corollary 4.5. We then argue that
e⊺fheR∗G−1(ιn+1) is odd with probability negligibly close to 1/2. To see this, we first observe that each
entry of R∗ is distributed over {0, 1} uniformly at random and thus so is each entry of R∗G−1(ιn+1) mod 2.
In particular, this implies that R∗G−1(ιn+1) mod 2 is a non-zero vector with overwhelming probability.
We then observe that each entry of efhe mod 2 is statistically close to the uniform distribution over {0, 1}
by Lemma 3.10. Combining these facts, it follows that the distribution of e⊺fheR∗G−1(ιn+1) mod 2 is
statistically close to the uniform distribution over {0, 1}, as desired. Note that the term e⊺fheR∗G−1(ιn+1)
does not depend on i and hence, for all i ∈ [Q], the probability that fi(s)[1]− e⊺fheRC′Fi

[1] = 0 mod 2 is
1/2 + negl(λ). Hence, the proof.
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Proving the pre-condition. We now show that the pre-condition of evcsLWE holds with respect to the
above sampler defined in Section 4.1.2.

Claim 4.10. For (Acirc, A′, P, aux, σ, σ′, σ−1, σpost, σpre)← Samp(1λ; coinspub
Samp = (coins, Acirc, A′,

{Ai}i∈[Q])) where aux = ({ fi}i∈[Q]) and for a λ ∈N,

Dpre
0 :=



1λ, coinspub
Samp, aux, Acirc, A′, Afhe, B,

c⊺fhe = r⊺Afhe + e⊺fhe, S = AfheR− (1, bits(s))⊗G,
c⊺circ = s⊺(Acirc − (1, bits(S))⊗G) + e⊺circ,

(c′)⊺ = r⊺A′ + (e′)⊺, c⊺B = r⊺B + e⊺B,
c⊺P = r⊺P + e⊺P



≈c Dpre
1 :=



1λ, coinspub
Samp, aux, Acirc, A′, Afhe, B,

c⊺fhe ← Z1×m
q , S← Z

(n+1)×((n+1)⌈log2 q⌉+1)m
q ,

c⊺circ ← Z
1×(LS+1)m
q ,

(c′)⊺ ← Z1×m′
q , c⊺B ← Z1×m

q ,

c⊺P ← Z
1×J
q


(18)

where J = ℓ ·Q, sampler Samp is as defined in Section 4.1.2 and the vectors and matrices are sampled as
in Assumption 4.1.

Proof. We can write r⊺P + e⊺P = r⊺[A f1 , . . . , A fQ ] + [e⊺P,1, . . . , e⊺P,Q] where e⊺P,i is the ith block of e⊺P
with length ℓ . Hence, we can re-write Equation (18) as:

Dpre
0 :=



1λ, coinspub
Samp, aux, Acirc, A′, Afhe, B,

c⊺fhe = r⊺Afhe + e⊺fhe, S = AfheR− (1, bits(s))⊗G,
c⊺circ = s⊺(Acirc − (1, bits(S))⊗G) + e⊺circ,

(c′)⊺ = r⊺A′ + (e′)⊺, c⊺B = r⊺B + e⊺B,

{c⊺P,i = r⊺A fi + e⊺P,i}i∈[Q]



≈c Dpre
1 :=



1λ, coinspub
Samp, aux, Acirc, A′, Afhe, B,

c⊺fhe ← Z1×m
q , S← Z

(n+1)×((n+1)⌈log2 q⌉+1)m
q ,

c⊺circ ← Z
1×(LS+1)m
q ,

(c′)⊺ ← Z1×m′
q , c⊺B ← Z1×m

q ,

{c⊺P,i ← Z1×ℓ
q }i∈[Q]


(19)

We now prove Equation (19) by a series of hybrids Hyb0 to Hyb2 where Hyb0 is the Dpre
0 distribution

and Hyb2 is the Dpre
1 distribution of Equation (19). We prove that Hyb0 ≈ Hyb1 ≈ Hyb2.

Hyb1: This hybrid is same as Hyb0, except that for all i ∈ [Q], c⊺P,i can be computed as:

c⊺P,i = c⊺circ ·H
fi
Acirc,S + fi(s) + a⊺circ ·H

fi
Acirc,S + e⊺P,i

where eP,i ← Dℓ
Z,σpre,≤σpre

√
λ
. We claim that Hyb0 and Hyb1 are statistically indistinguishable. To

see this, note that from Equation (15),

c⊺circ ·H
fi
Acirc,S = r⊺A fi − a⊺circ ·H

fi
Acirc,S − fi(s) + e⊺fheR fi + e⊺circ ·H

fi
Acirc,S
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where R fi is the randomness in the homomorphically evaluated encryption (of different form) of
fi(s), output by VEvalC′fi . This implies,

c⊺P,i = c⊺circ ·H
fi
Acirc,S + fi(s) + a⊺circ ·H

fi
Acirc,S + e⊺P,i = r⊺A fi + ẽi

⊺ + e⊺P,i

where ẽi
⊺ = e⊺fheR fi + e⊺circ ·H

fi
Acirc,S.

Let d′ = dVEvalC′fi
≤ d + 3. Then, we have, ∥efhe∥ ≤ σ

√
λ, ∥ecirc∥ ≤ σ′

√
λ , ∥R fi∥ ≤ (m +

2)d+3 ⌈log q⌉m, ∥H fi
Acirc,S∥ ≤ (m + 2)d+3 ⌈log q⌉ (from Lemma 3.15 and Section 3.7). Hence,

∥ẽi∥ ≤ m2σ
√

2λ(m + 2)d+3 ⌈log q⌉+ Lσ′
√

2λ(m + 2)d′+3 ⌈log q⌉ ≤ 2O(d log3 λ)σ′ ≤ 23λ (as
d = poly(log λ)). Further, since eP,i ← Dℓ

Z,σpre,≤σpre
√

λ
, where σpre ≤ 26λ and hence, by noise

flooding (Lemma 3.9), e⊺P,i ≈s e⊺P,i + ẽi
⊺ with a statistical distance of poly(λ)2−4λ. Therefore,

the statistical distance ∆ between Hyb0 and Hyb1 is:

∆(Hyb0, Hyb1) =
Q · poly(λ)

24λ

Hence, it suffices to show the pseudorandomness of the following distribution:
1λ, coinspub

Samp, aux, Acirc, Afhe, B, c⊺fhe = r⊺Afhe + e⊺fhe, S = AfheR− (1, bits(s))⊗G,

c⊺circ = s⊺(Acirc − (1, bits(S))⊗G) + e⊺circ,

(c′)⊺ = r⊺A′ + (e′)⊺, c⊺B = r⊺B + e⊺B, {ỹi = fi(s) + e⊺P,i}i∈[Q]


Hyb2: This hybrid is same as Hyb1, except that, we sample cfhe ← Zm

q , ccirc ← ZL
q , (c′)← Zm′

q , cB ←
Zm

q , S ← Z
(n+1)×((n+1)⌈log2 q⌉+1)m
q and ỹi ← Z1×ℓ

q , where L = (LS + 1)m. We prove that
Hyb1 ≈ Hyb2 via the following claim.

Claim 4.11. Hyb1 ≈c Hyb2, assuming the indistinguishability in Equation (13).

Proof. We show that if there exists an adversary A who can distinguish between the two hybrids
with non-negligible advantage, then there is a reduction B that can distinguish L.H.S and R.H.S of
Equation (13) with non-negligible advantage. The reduction is as follows.

1. On receiving 1λ from A, forward it to challenger of Equation (13).
2. Equation (13) challenger samples β ← {0, 1}, Afhe ← Zn×m

q , A ← Zn×L+m+m′
q , and

r← Dn
Z,σ,≤σ

√
λ
, and returns(

1λ,
(

Afhe
c⊺fhe

)
, C,

(
A
c⊺

)
, { fi, c⊺i }i∈[Q]

)
where c⊺fhe = r⊺Afhe + e⊺fhe, c⊺ = r⊺A + e⊺, C = AfheR− (1, bits(s))⊗G and {c⊺i =

fi(s)}i∈[Q] if β = 0; else c⊺fhe ← Z1×m
q , c⊺ ← Z1×L+m+m′

q , C← Z
(n+1)×((n+1)⌈log2 q⌉+1)m
q

and {c⊺i ← Z1×ℓ
q }i∈[Q], if β = 1. Here Afhe =

(
Afhe
c⊺fhe

)
. Then B does the following.

(a) Parse A = (A′circ, B, A′) where A′circ ∈ Zn×L
q , B ∈ Zn×m

q , A′ ∈ Zn×m′
q and c⊺ =

(c̃⊺circ, c⊺B, (c′)⊺) where c̃⊺circ ∈ Z1×L
q , c⊺B ∈ Z1×m

q , (c′)⊺ ∈ Z1×m′
q .
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(b) Sample coins. For all i ∈ [Q], samples eP,i ← Dℓ
Z,σpre,≤σpre

√
λ
. Set aux = { fi}i∈[Q] and

ỹi = c⊺i + e⊺P,i.

(c) Set S = C. Also set Acirc = A′circ + (1, bits(S)) ⊗ G, Acirc =

(
Acirc
a⊺circ

)
, where

acirc ← ZL
q , and c⊺circ = c̃⊺circ − (a⊺circ − (1, bits(S))⊗G), where G and G denotes the

first n rows and n + 1-th row of the gadget matrix G ∈ Z
(n+1)×m
q , respectively.

3. Forward the following to A.(
1λ, coins, aux, Acirc, Afhe, B, c⊺fhe, S, c⊺circ, (c′)⊺, c⊺B, ỹi}i∈[Q]

)
4. A outputs a bit β′. B forwards the bit β′ to the Equation (13) challenger.

We observe that if β = 0, then B simulates the distribution of Hybrid 1, and if β = 1, then
the distribution of Hybrid 2. The indistinguishability of Hyb1 and Hyb2 follows from the
indistinguishability of Equation (13).

Hence, we achieve the following distribution:
1λ, coins, aux, Acirc, A′, Afhe, B, c⊺fhe ← Z1×m

q , S← Z
(n+1)×(n+1)⌈log2 q⌉m
q ,

c⊺circ ← Z
1×(m(n+1)2⌈log2 q⌉2+1)m
q ,

(c′)⊺ ← Z1×m′
q , c⊺B ← Z1×m

q , {c⊺P,i ← Z1×ℓ
q }i∈[Q]

 (20)

where Afhe =

(
Afhe
c⊺fhe

)
. The distribution as in Equation (20) is the same as Dpre

1 as in Equation (19).

Hence, the proof.

4.2 Attacks when Pre-Condition Error is Larger

In this section, we develop new attacks that exploit the case where the error in the pre-condition is set
larger than the error in the post-condition.

4.2.1 Attack 1

Theorem 4.12. There exists an efficient and public-coin ELWE sampler Samp as defined in Assump-
tion 3.13 (with A and LWE sample with respect to it) such that the pre-condition holds under the LWE
assumption, but the post-condition does not- i.e., there exists a distinguisher Apost that distinguishes
post-condition with non-negligible probability.

Proof. We first define the sampler.
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Defining Evasive LWE Sampler. Let n, m, ℓ, p, q, r, B ∈ N be parameters and λ be the security
parameter. We assume that p and r are primes and q = pr. The public coin sampler Samp of the Evasive
LWE assumption is defined as follows.

1. Sample D← [0, r− 1]n×ℓ and set P = pD mod q.

2. Samples s← Dn
Z,σs

.

3. Output S = s⊺, P, and aux = D.

We can see that the sampler is public-coin, since the only randomness that should be kept secret is s.

Parameter Setting. We set the parameters as follows.

n = poly(λ), ℓ = n2, m = O(n log q), r > 29λ, p > 211λ, q = pr, B = 26λ,

σpost = 25λ, σpre = σ′pre = 215λ, σs = 22λ, τ = O
(√

(n + 1) log q
)

Here r and p are primes greater than 29λ and 211λ respectively.

Distinguishing Algorithm/Attack Strategy. The adversary Apost holds the distribution Dpost
β for

β← {0, 1}. Thus, for β = 0, c⊺B = s⊺B + e⊺B and for β = 1, c⊺B ← Z1×m
q . It does the following:

1. Compute a vector d⊺ def
= c⊺B · B−1(P) mod q.

2. Find (the unique) d1 ∈ [0, r− 1]n and d2 ∈ [0, p− 1]n such that d = pd1 + d2 mod q.

3. Find s0 ∈ [−(r− 1)/2, (r− 1)/2]n such that s⊺0D = d⊺
1 mod r.

4. Compute γ =
∥∥c⊺B − s⊺0B mod q

∥∥.

5. Output 1 if γ < B and 0 otherwise.

We observe that in the case of β = 0, we have

c⊺B · B
−1(P) = (s⊺B + e⊺B)B

−1(P) = ps⊺D + e⊺BB−1(P).

By our parameter setting,
∥∥e⊺BB−1(P)

∥∥ ≤ λσpostτm < p. We therefore have s⊺D = d1 mod r. Since
D is full rank over Zr with probability ∏n

i=0(1− 1/rℓ−i) ≥ 1− n/rℓ−n = 1− negl(λ), we have
s⊺ = s⊺0 mod r. By our choice of σs and B, we have ∥s∥ < r with overwhelming probability and thus
s0 = s holds over the integer. Therefore, γ = ∥eB∥ < B with overwhelming probability by our choice of
σpost. In the case of β = 1, we argue that such s does not exist with overwhelming probability. This can
be observed by the counting argument. For an arbitrarily fixed B, for each s0 ∈ Zn

q , there are (2B + 1)m

points whose distance from s⊺0B is within B in infinity norm. The probability that random cB is within
distance B is thus at most (2B + 1)m/qm. Taking union bound over s0, the probability that random cB is
within distance B from the span of B is at most qn(2B + 1)m/qm. By our choice of B, q, and m, this
probability is negligible. Summarizing the above discussion, the adversary distinguishes the distributions
with high advantage.

38



Proving the pre-condition. Here, we prove that the pre-condition with respect to the sampler holds. To
do so, we prove the pre-condition of Assumption 3.13 by a series of hybrids Hyb0 to Hyb3 where Hyb0 is the
Dpre

0 distribution and Hyb3 is the Dpre
1 distribution of (32). We prove that Hyb0 ≈c Hyb1 ≈c . . . ≈c Hyb3.

Hyb0: This is the Dpre
0 distribution. Namely, the adversary is given (B, P, c⊺B = s⊺B + e⊺B, c⊺P =

s⊺P + e⊺P, D).

Hyb1: This is identical to Hyb0 except that we replace the term c⊺P = s⊺P + e⊺P with s⊺P + s⊺D′ + e⊺P,
where D′ ← [0, p− 1]n×ℓ. By our choice of σpre, σs, and p, we have ∥eP∥ > λω(1)∥s⊺D′∥ and
thus e⊺P ≈s s⊺D′ + e⊺P. Therefore, this hybrid is statistically indistinguishable from the previous
one.

Hyb2 : In this hybrid, we further replace c⊺P and D. Here, we sample F← Zn×ℓ
q and set c⊺P = s⊺F + e⊺P

and D = ⌊F/p⌋ mod r. This hybrid is essentially the same as previous hybrid. To see this, it
suffices to see that the distribution of (P + D′ mod q, D mod r) = (pD + D′ mod q, D mod r)
in the previous hybrid is the same as (F mod q, ⌊F/p⌋ mod r) in this hybrid.

Hyb3: This is the Dpre
1 distribution. Compared with the previous hybrid, here we replace c⊺B and c⊺P with

random vectors with the same dimensions. The indistinguishability from the previous hybrid can
be shown by a straightforward reduction to LWE.

This completes the proof of the theorem.

4.2.2 Attack 2.

Our first attack is a bit unnatural in that each entry of P is in the ideal generated by p in Zq (i.e., a multiple
of p). Here, we show here another example for uniform P over Zn×ℓ

q .

Theorem 4.13. Let us consider a variant of ELWE as defined in Assumption 3.13. There exists an efficient
and public-coin ELWE sampler Samp such that the pre-condition holds under the LWE assumption, but
the post-condition does not- i.e., there exists a distinguisher Apost that distinguishes post-condition with
non-negligible probability. In this example, P is distributed uniformly over Zn×ℓ

q .

Proof. Let n, m, ℓ, p, q, r, B ∈N be parameters and λ be the security parameter. We assume that p and r
are primes and q = pr. The public coin sampler Samp of the Evasive LWE assumption is defined as
follows.

1. Sample A← Zn×m
q , D← [0, r− 1]n×ℓ, and E← {0, 1}m×ℓ and set P = AE + pD mod q.

2. Samples s← Dn
Z,σs

.

3. Output S = s⊺, P, A, and aux = (D, E).

We can see that the sampler is public-coin, since the only randomness that should be kept secret is s.

Parameter Setting. We set the parameter as follows.

n = poly(λ), ℓ = n2, m = O(n log q), r > 29λ, p > 211λ, q = pr, B = 26λ,

σpost = 25λ, σpre = 215λ, σ′pre = 212λ, σs = 22λ, τ = O
(√

m log q
)
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Distinguishing Algorithm/Attack Strategy. The adversary Apost holds the distribution Dpost
β for

β ← {0, 1}. Thus, for β = 0, c⊺A = s⊺A + e⊺A and c⊺B = s⊺B + e⊺B where eA, eB ← Dm
Z,σpost

, and for
β = 1, c⊺A, c⊺B ← Z1×m

q . It does the following:

1. Compute a vector d⊺ def
= c⊺B · B−1(P)− c⊺A · E mod q.

2. Find d1 ∈ [0, r− 1]n and d2 ∈ [0, p− 1]n such that d = pd1 + d2 mod q.

3. Find s0 ∈ [−(r− 1)/2, (r− 1)/2] such that s⊺0D = d⊺
1 mod r.

4. Compute γ =
∥∥c⊺B − s⊺0B mod q

∥∥.

5. Output 1 if γ < B and 0 otherwise.

We observe that in the case of β = 0, we have

c⊺B · B
−1(P)− c⊺A · E = (s⊺B + e⊺B)B

−1(P)− (s⊺A + e⊺A)E = ps⊺D + e⊺BB−1(P)− e⊺AE.

By our parameter setting,
∥∥e⊺BB−1(P)− e⊺AE

∥∥ ≤ mσpost
√

λ(τ
√

λ + 1) < p. We therefore have
s⊺D = d1 mod r. Since D is full rank over Zr with probability ∏n

i=0(1− 1/rℓ−i) ≥ 1− n/rℓ−n =
1− negl(λ), we have s⊺ = s⊺0 mod r. By our choice of σs and B, we have ∥s∥ < r with overwhelming
probability and thus s0 = s holds over the integer. Therefore, γ = ∥eB∥ < B with overwhelming
probability by our choice of σpost. Furthermore, in the case of β = 1, we argue that s0 such that∥∥c⊺B − s⊺0B mod q

∥∥ < B does not exist with overwhelming probability. This is shown by the same
argument as that of Theorem 4.12. Therefore, the above constitutes a valid adversary.

Proving the pre-condition. Here, we prove that the pre-condition with respect to the sampler holds.
To do so, we prove pre-condition of Assumption 3.13 by a series of hybrids Hyb0 to Hyb3 where
Hyb0 is the Dpre

0 distribution and Hyb3 is the Dpre
1 distribution of Equation (32). We prove that

Hyb0 ≈c Hyb1 ≈c . . . ≈c Hyb3.

Hyb0: This is the Dpre
0 distribution. Namely, the adversary is given (B, P, c⊺B = s⊺B + e⊺B, c⊺A =

s⊺A + e⊺A, c⊺P = s⊺P + e⊺P, A, D, E), where eA ← Dm
Z,σ′pre

, eB ← Dm
Z,σpre

and eP ← Dℓ
Z,σpre

.

Hyb1: This is identical to Hyb0 except that we replace the term c⊺P with c⊺AE + s⊺(pD + D′) + e⊺P, where
D′ ← [0, p− 1]n×ℓ. We have

c⊺AE + s⊺(pD + D′) + e⊺P = (s⊺A + e⊺A)E + s⊺(pD + D′) + e⊺P = s⊺P + e⊺AE + s⊺D′ + e⊺P

By our choice of σpre, σs, and p, we have ∥e⊺AE + s⊺D′∥ <
√

λ(mσ′pre + n(p− 1)σs) and thus
∥eP∥ > λω(1)∥e⊺AE + s⊺D′∥. This implies e⊺P ≈s e⊺P + e⊺AE + s⊺D′. Therefore, this hybrid is
statistically indistinguishable from the previous one.

Hyb2 : In this hybrid, we further replace cP and D. Here, we sample F← Zn×ℓ
q and set cP = s⊺F + e⊺P

and D = ⌊F/p⌋ mod r. This hybrid is essentially the same as previous hybrid. To see this, it
suffices to see that the distribution of (P mod q, D mod r) = (pD + D′ mod q, D mod r) in the
previous hybrid is the same as (F mod q, ⌊F/p⌋ mod r) in this hybrid.

Hyb3: This is the Dpre
1 distribution. Compared with the previous hybrid, here we replace cB and cP with

random vectors with the same dimensions. The indistinguishability from the previous hybrid can
be shown by a straightforward reduction to LWE.
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Proving that P is distributed uniformly at random over Zn×ℓ
q . We argue that P is distributed

uniformly at random over Zn×ℓ
q since so is AE. The latter can be shown by the leftover hash lemma

(Lemma 3.8), which can be applied since the function family {e 7→ Ae}A is 2-universal.

5 Counter-Examples for Private-Coin Evasive LWE

In this section, we present counter-examples for various versions of private coin Evasive LWE that have
appeared in the literature.

5.1 Counter-Example for AKY Assumption

Theorem 5.1. There exists an efficient ELWE sampler Samp as defined in Assumption 3.13 such that
the pre-condition holds, but the post-condition does not- i.e., there exists a distinguisher Apost that
distinguishes post-condition with non-negligible probability.

Proof. Our sampler uses a PRF with a contrived circuit implementation as described below.

PRF Circuit Description. Let PRF : {{1} × {0, 1}λ} × {0, 1}λ → [−q/4 + B, q/4− B]ℓ where B
is chosen to be exponentially smaller than q/416. Let CPRFr , with hardwired r, outputting PRF(sd, r) (in
binary) on input sd = (1, s̃d), be any circuit implementing PRF. We construct a modified circuit C′PRFr
implementing PRF as follows.

1. Let C0 be a circuit which outputs the first bit of its input x. Further assume that the first bit of x is
always 1.

2. To the output wire of CPRFr corresponding to the lowest-order bit of PRF(sd, r)[1], attach a new
gate which performs the correlation-inducing transformation described in Corollary 4.5, using the
output wire of C0 as the special “1” input. Inputs to C0 can be the bits of sd.

3. To all the other output wires of CPRFr , attach a gate performing "even randomness" transformation
as in Lemma 4.3.

Defining Evasive LWE Sampler. Let n, m, ℓ, Q, q ∈N be parameters and λ be the security parameter.
The private coin sampler Samp with private coins coinsSamp

priv = (sd, R, eatt, efhe, Afhe) of the Evasive
LWE assumption is defined as follows. The sampler is almost the same as the one used by AKY [AKY24a]
except that it uses contrived implementation of the PRF circuit. The sampler Samp on input 1λ does the
following:

1. Let {Fprm = { f : {0, 1}L → {0, 1}1×ℓ}}prm be a family of functions, where f ∈ Fprm can be
computed by a circuit of depth dep(λ) = poly(λ) and prm = (1L(λ), 1ℓ(λ), 1dep(λ)). Choose
{ fi ∈ Fprm}i∈[Q] and an input vector x ∈ {0, 1}L so that

(1λ, { fi, fi(x)}i∈[Q]) ≈c (1λ, { fi, ∆i}i∈[Q]),

where ∆i ← {0, 1}1×ℓ for i ∈ [Q]. A concrete example of the choice for such x and fi would be to
define x as a random PRF seed and fi(x) as the PRF value on input i w.r.t the key x.
Define the following circuit C′fi

implementing a scaled version of fi. That is, C′fi
takes x ∈ {0, 1}L

as input and outputs ⌊q/2⌉ fi(x). Start with any circuit C fi outputting ⌊q/2⌉ fi(x) (in binary) on

16Note that fixing the first bit of seed to 1 does not affect PRF security, since the actual computation can always ignore the first
bit.
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input x. To all the output wires of C fi , attach a gate performing "even randomness" transformation
as in Lemma 4.3. We can observe that C′fi

is of depth at most d + 3.

2. Samples {ri ← {0, 1}λ}i∈[Q], s̃d← {0, 1}λ and set sd = (1, s̃d).

3. Then it defines a function Fi = F[ fi, ri] with fi, ri hardwired as follows: On input (x, sd), compute
and output fi(x) ⌊q/2⌉+ PRF(sd, ri) ∈ Z1×ℓ

q . Let C′Fi
be a circuit that implements Fi and uses

circuits C′fi
and C′PRFri

to compute the respective components, and adds their outputs to get the
final output of C′Fi

.

4. Samples Aatt ← Z
(n+1)×(LX+1)m
q where LX = m(λ + L + 1)(n + 1) ⌈log q⌉. Define the

homomorphic evaluation circuit VEvalC′Fi
= MakeVEvalCkt(n, m, q, C′Fi

). Compute HFi
Aatt

=

MEvalC(Aatt, VEvalC′Fi
) ∈ Z

(LX+1)m×ℓ
q for all i ∈ [Q]. It then computes AFi = Aatt ·HFi

Aatt
for

all i ∈ [Q] and sets P = (AF1 , . . . , AFQ).

5. It then samples s̄← Dn
Z,σs

and set s = (s̄⊺,−1)⊺.

6. Sample Āfhe ← Zn×m
q , efhe ← Dm

Z,σfhe
, Rj ← {0, 1}m×m for all 1 ≤ j ≤ (L + λ + 1) and

compute a GSW encryption as follows.

Afhe :=
(

Āfhe
s̄⊺Āfhe + e⊺fhe

)
, X = AfheR− (x, sd)⊗G ∈ Z

(n+1)×m(λ+L+1)
q

where R = (R1, . . . , R(λ+L+1)). Let LX = m(λ + L + 1)(n + 1) ⌈log q⌉ be the bit length of X.

7. Sample eatt ← D(LX+1)m
Z,σatt

and compute c⊺att := s⊺(Aatt − (1, bits(X))17 ⊗G) + e⊺att.

8. Output

S = s⊺

aux = (X, c⊺att, f1, . . . , fQ, r1, . . . , rQ, Aatt)

P = (AF1 , . . . , AFQ).

Counter-example Roadmap. Now, we show a counterexample to Evasive LWE (Assumption 3.13)
with respect to the sampler specified above. This is proven by showing that the precondition distributions,
as defined in Assumption 3.13 are computationally indistinguishable, while the postcondition distributions
as defined in Assumption 3.13 are distinguishable.

Concretely, for our counter-example, we need to show that for (s⊺, aux, P) ← Samp(1λ), where
aux = (X, c⊺att, f1, . . . , fQ, r1, . . . , rQ, Aatt) and (B, B−1

τ )← TrapGen(1n+1, 1m log q, q),

1. (Precondition) For all PPT adversary Apre, the following two distributions, Dpre
0 and Dpre

1 are
indistinguishable.

Dpre
0 :=


B, P, c⊺ = s⊺B + e⊺B, s⊺P + (e′)⊺,

X = AfheR− (x, sd)⊗G,
c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att,

f1, . . . , fQ, r1, . . . , rQ, Aatt

 ≈ Dpre
1 :=


B, P, c⊺ ← Z

1×m log q
q , (c′)⊺ ← Z

1×ℓQ
q ,

X = AfheR− (x, sd)⊗G,
c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att,

f1, . . . , fQ, r1, . . . , rQ, Aatt

 ,

where, eB ← Dm log q
Z,σB

, e′ ← DℓQ
Z,σ1

. We prove this in claim 5.4.

17Note that AKY uses bits(1, X) in place of (1, bits(X)) to represent the same thing.
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2. (Attack against postcondition) There exists an adversary Apost who distinguishes the following
distributions, Dpost

0 and Dpost
1 with non-negligible probability:

Dpost
0 :=

B, P, c⊺ = s⊺B + e⊺B, K, X = AfheR− (x, sd)⊗G,
c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att,

f1, . . . , fQ, r1, . . . , rQ, Aatt



Dpost
1 :=

B, P, c⊺ ← Z
1×m log q
q , K, X = AfheR− (x, sd)⊗G,

c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att,
f1, . . . , fQ, r1, . . . , rQ, Aatt


where eB ← Dm log q

Z,σB
, Ki ← B−1

τ (AFi) and K = (K1, . . . , KQ).

Parameter Setting. We set our parameters the same as AKY.

β̃ = 2O(dep·log3 λ), q ∈ (28λ β̃, 28λ+1 β̃], n = poly(λ, dep), m = O(n log q),

τ = O
(√

(n + 1) log q
)

, B = 26λ β̃, σs = σfhe = σatt = σ = 22λ, σB = 25λ β̃,

σ1 = 24λ+O(1) β̃/poly(λ), Q = λ + mw + (LX + 1)m

Distinguishing Algorithm/Attack Strategy. The adversary Apost holds the distribution Dpost
β for

β← {0, 1}. Thus, for β = 0, c⊺ = s⊺B + e⊺B, and for β = 1, c⊺ ← Z
1×m log q
q . It does the following:

1. For each i ∈ [Q], compute HFi
Aatt,X = MEvalCX(Aatt, VEvalC′Fi

, (1, bits(X))) and

zi = c⊺ ·Ki − c⊺att ·H
Fi
Aatt,X mod q

2. For all i ∈ [Q] and j ∈ [ℓ], set yi,j = 0, if zi,j ∈ [−q/4, q/4) and yi,j = 1 otherwise, where zi,j is
the j-th element of zi. Now it subtracts y⊺

i ⌊q/2⌉18 from zi to get

∀i ∈ [Q], z̃i = zi − y⊺
i ⌊q/2⌉ mod q

= c⊺ ·Ki − c⊺att ·H
Fi
Aatt,X − y⊺

i ⌊q/2⌉ mod q

where y⊺
i = (yi,1, . . . , yi,ℓ).

3. Let w = ⌈log2 q⌉. Apost defines the following set of linear equations (Equation (21)) in variables
eB[1], . . . , eB[mw] and eatt[1], . . . , eatt[(LX + 1)m] and outputs β′ = 0 if (21) is solvable;
otherwise, output β′ = 1.

eB[1]K1[1, 1] + . . . + eB[mw]K1[mw, 1]− eatt[1]H
F1
Aatt,X[1, 1]− . . .

−eatt[(LX + 1)m]HF1
Aatt,X[(LX + 1)m, 1] = z̃1[1] mod 2

eB[1]K2[1, 1] + . . . + eB[mw]K2[mw, 1]− eatt[1]H
F2
Aatt,X[1, 1]− . . .

−eatt[(LX + 1)m]HF2
Aatt,X[(LX + 1)m, 1] = z̃2[1] mod 2

...
eB[1]KQ[1, 1] + . . . + eB[mw]KQ[mw, 1]− eatt[1]H

FQ
Aatt,X[1, 1]− . . .

−eatt[(LX + 1)m]HFQ
Aatt,X[(LX + 1)m, 1] = z̃Q[1] mod 2

(21)

18observe that y⊺i = fi(x) in case of β = 0.
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Analyzing success probability of Apost.

Claim 5.2. Apost wins (i,e., β = β′) with 3/4− negl(λ) probability when Q ≥ λ + mw + (LX + 1)m.

Proof. Let us first analyze the solvability of equations defined in (21) for the two cases: β = 0 and β = 1.

When β = 0,

∀i ∈ [Q], zi = c⊺ ·Ki − c⊺att ·H
Fi
Aatt,X

= (s⊺B + e⊺B) ·Ki − (s⊺(Aatt − (1, bits(X))⊗G) + e⊺att) ·H
Fi
Aatt,X

= s⊺BKi + e⊺BKi − s⊺AattH
Fi
Aatt

+ s⊺VEvalC′Fi
(bits(X))− e⊺attH

Fi
Aatt,X

= s⊺AFi + e⊺BKi − s⊺AFi + Fi(x, sd)− e⊺fheRC′Fi
− e⊺attH

Fi
Aatt,X

= e⊺BKi + fi(x) ⌊q/2⌉+ PRF(sd, ri)− e⊺fheRC′Fi
− e⊺attH

Fi
Aatt,X

(22)

where RC′Fi
is the randomness in the homomorphically evaluated encryption of Fi(x, sd). Let the depth of

CFi be d = poly(λ) and from Lemma 3.15, the depth of VEvalCFi
is

dVEvalCFi
= (dO(log m log log q) + O(log2 log q)).

The depth of circuit C′Fi
increases at most by constant O(1) from d due to the addition of even randomness

and correlation-inducing gate, and hence, it is d + O(1). The depth of VEvalC′Fi
is

dVEvalC′Fi

= ((d + O(1))O(log m log log q) + O(log2 log q)).

From Lemma 3.15 and parameter setting, we have

||RC′Fi
|| ≤ (m + 2)d+O(1) ⌈log q⌉maxℓ∈[L+λ+1]||R

⊺
ℓ ||

≤ (m + 2)d+O(1) ⌈log q⌉m

≤ (m + 2)d+O(1) ⌈log q⌉ ≤ β̃

and using the depth bound as in Section 3.7, we have∥∥∥HFi
Aatt,X

∥∥∥ ≤ (m + 2)
dVEvalC′Fi ⌈log q⌉ ≤ β̃

Now, from parameter setting, we have

||e⊺fheRC′Fi
+ e⊺attH

Fi
Aatt,X|| ≤ 22λ+1

√
λβ̃ ≤ 23λ β̃

and
||e⊺BKi − e⊺fheRC′Fi

− e⊺attH
Fi
Aatt,X|| ≤ 25λ+1

√
λβ̃ + 23λ β̃ < 26λ β̃ < B

Hence, ||PRF(sd, ri) + e⊺BKi − e⊺fheRC′Fi
− e⊺attH

Fi
Aatt,X|| < (q/4− B) + B = q/4 ,Apost will correctly

recover fi(x) i.e. y⊺
i = fi(x) and hence, we will have

∀i ∈ [Q],

z̃i = fi(x) ⌊q/2⌉+ PRF(sd, ri) + e⊺BKi − e⊺fheRC′Fi
− e⊺attH

Fi
Aatt,X − fi(x) ⌊q/2⌉

= PRF(sd, ri) + e⊺BKi − e⊺fheRC′Fi
− e⊺attH

Fi
Aatt,X ∈ [−q/4, q/4] over integer
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We prove in Claim 5.3 that ∀i ∈ [Q], PRF(sd, ri)[1]− e⊺fheRC′Fi
[1] = 0 mod 2 with probability ≥

1/2. This gives us that with probability ≥ 1/2,

∀i ∈ [Q], z̃i[1] = e⊺BKi[1]− e⊺attH
Fi
Aatt,X[1] mod 2.

Observe that this is the same as the set of equations defined in (21). Hence, in case of β = 0, (21) is
solvable with probability 1/2 + negl(λ). This gives us

Pr
(

β′ = 0 | β = 0
)
= 1/2 + negl(λ). (23)

When β = 1,
∀i ∈ [Q], zi = c⊺ ·Ki − c⊺att ·H

Fi
Aatt,X,

where c← Zmw
q .

Here, we argue that the distribution of {c⊺B ·Ki mod q}i∈[Q] is statistically close to uniform distribution
over (Z1×ℓ

q )Q, even given {Ki mod 2}i∈[Q]. To see this, we first observe that by Lemma 3.7, each
column of Ki[·, j] has min-entropy at least mw log(σ−1/λ) > 2mw except for negligible probability
over B and (Ki[·, j] mod 2) can be represented by a string of mw-bits. We then apply the generalized
Leftover Hash Lemma Lemma 3.8, which implies that the two distributions are within statistical distance
Q
√

2mw · 2−2mwq = negl(λ) by our choice of parameters. We therefore have that {zi mod q}i∈[Q]

is distributed uniformly at random over (Z1×ℓ
q )Q, even given {Ki mod 2}i. This, in turn, implies

{zi mod 2}i∈[Q] (which forms the RHS of equations in Equation (21)) is also statistically close to a uniform
distribution independent of {Ki mod 2}i when β = 1. Hence, Equation (21), having mw + (LX + 1)m
number of variables, is unsolvable with overwhelming probability if Q > λ + mw + (LX + 1)m, since
the RHS of the equation falls into the space for which there exists a solution with probability at most
2mw+(LX+1)m/2λ+mw+(LX+1)m = 2−λ.

This gives us
Pr
(

β′ = 1 | β = 1
)
≥ 1− negl(λ). (24)

Thus, from Equation (23) and (24), we get Pr(β′ = β) ≥ 3/4− negl(λ).

Claim 5.3. ∀i ∈ [Q], PRF(sd, ri)[1]− e⊺fheRC′Fi
[1] = 0 mod 2 with probability 1/2 + negl(λ).

Proof. Let us start by analyzing the ẽ⊺fhe[1] = e⊺fheRC′Fi
[1] error. Recall that RC′Fi

is the randomness in the

homomorphically evaluated encryption of Fi(x, sd) (of different form: AfheRC′Fi
−
(

0n×ℓ

Fi(x, sd)

)
), output

by VEvalC′Fi
circuit. Since Fi(x, sd) = fi(x) ⌊q/2⌉+PRF(sd, ri), we can write ẽ⊺fhe[1] = e⊺fheRC′Fi

[1] =

e⊺fheRC′fi
[1] + e⊺fheRC′PRFri

[1] because the additive property is preserved after homomorphic addition.

We recall from Section 3.6 that for any circuit C : {0, 1}L → Z1×ℓ
q , VEvalC on input X - a GSW

encryption of some x ∈ {0, 1}L - outputs AfheRC −
(

0n×ℓ

C(x)

)
. Let C(x)[u, v] ∈ {−1, 0, 1} be (the

signed version of) the v-th bit of C(x)[u] ∈ Zq, for u ∈ [ℓ] and v ∈ [0, w), w = ⌈log2 q⌉, then VEvalC
computation firstly homomorphically computes GSW encryption of C(x)[u, v], which is of the form
Cu,v = AfheRC,u,v − C(x)[u, v]G. Then for each u ∈ [ℓ], it linearly aggregates {Cu,v}v∈[0,w−1] to get

Cu = AfheRC,u −
(

0n×1

C(x)[u]

)
as Cu = ∑v Cu,vG−1(2vιn+1). In particular,

RC,u = ∑
v

RC,u,vG−1(2vιn+1), and RC = (RC,1, . . . , RC,ℓ).
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Coming back to our analysis, (e⊺fheRC′fi
)[1] = e⊺fheRC′fi

,1 = e⊺fhe ∑w−1
v=0 RC′fi

,1,vG−1(2vιn+1), where
RC′fi

,1 is the first column of RC′fi
and RC′fi

,1,v is the randomness in homomorphically computed GSW
encryption of the v-th bit of fi(x) ⌊q/2⌉ [1]. Since fi(x) ⌊q/2⌉ is implemented by C′fi

, which involves
the even randomness transformation (Lemma 4.3) on all its output bits, RC′fi

,1,v has all the entries as even
due to Lemma 4.3. This implies RC′fi

,1 has even entries, which in turn implies that (e⊺fheRC′fi
)[1] is even.

So, now our goal is to show that

PRF(sd, ri)[1]− (e⊺fheRC′PRFri
)[1] = 0 mod 2

Similar to above, we have (e⊺fheRC′PRFri
)[1] = e⊺fheRC′PRFri

,1 = e⊺fhe ∑w−1
v=0 RC′PRFri

,1,vG−1(2vιn+1).
Again, since in C′PRFri

all the output bits pass through even randomness, except the lowest order bit of
the first entry, which passes through the correlation inducing gate, we have

PRF(sd, ri)[1]− (e⊺fheRC′PRFri
)[1] mod 2

= PRF(sd, ri)[1]− e⊺fheRC′PRFri
,1,0G−1(ιn+1)− e⊺fhe

w−1

∑
v=1

RC′PRFri
,1,vG−1(2vιn+1) mod 2

= PRF(sd, ri)[1]− e⊺fheRC′PRFri
,1,0G−1(ιn+1) mod 2 (due to Lemma 4.3)

= PRF(sd, ri)[1, 0] +
w−2

∑
v=1

2vPRF(sd, ri)[1, v]− e⊺fheRC′PRFri
,1,0G−1(ιn+1) mod 2

= PRF(sd, ri)[1, 0]− e⊺fheRC′PRFri
,1,0G−1(ιn+1) mod 2

= PRF(sd, ri)[1, 0]− PRF(sd, ri)[1, 0]e⊺fheR∗G−1(ιn+1) mod 2
(due to Corollary 4.5)

= 0 mod 2, if e⊺fheR∗G−1(ιn+1) is odd.

In the above, PRF(sd, ri)[u, v] represents the v-th bit in the binary representation of PRF(sd, ri)[u]
and R∗ is the randomness in the ciphertext of special "1" input used in Corollary 4.5. We then argue
that e⊺fheR∗G−1(ιn+1) is odd with probability negligibly close to 1/2. To see this, we first observe
that each entry of R∗ is distributed over {0, 1} uniformly at random and thus so is each entry of
R∗G−1(ιn+1) mod 2. In particular, this implies that R∗G−1(ιn+1) mod 2 is a non-zero vector with
overwhelming probability.We then observe that each entry of efhe mod 2 is statistically close to the
uniform distribution over {0, 1} by Lemma 3.10. Combining these facts, it follows that the distribution of
e⊺fheR∗G−1(ιn+1) mod 2 is statistically close to the uniform distribution over {0, 1}, as desired. Note
that the term e⊺fheR∗G−1(ιn+1) does not depend on i and hence, for all i ∈ [Q], the probability that
PRF(sd, ri)[1]− e⊺fheRC′Fi

[1] = 0 mod 2 is 1/2 + negl(λ).Hence, the proof.

Proving the pre-condition. We now show that the pre-condition of ELWE holds with respect to the
above sampler defined in Section 5.1.

Claim 5.4. For (s⊺, aux, P)← Samp(1λ), where aux = (X, c⊺att, f1, . . . , fQ, r1, . . . , rQ, Aatt),

Dpre
0 :=


B, P, c⊺ = s⊺B + e⊺B, (c′)⊺ = s⊺P + (e′)⊺,

X = AfheR− (x, sd)⊗G,
c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att,

f1, . . . , fQ, r1, . . . , rQ, Aatt

 ≈ Dpre
1 :=


B, P, c⊺ ← Z

1×m log q
q , (c′)⊺ ← Z

1×ℓQ
q ,

X = AfheR− (x, sd)⊗G,
c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att,

f1, . . . , fQ, r1, . . . , rQ, Aatt


where Samp is as defined in Section 5.1, eB ← Dm log q

Z,σB
and e′ ← DℓQ

Z,σ1
.
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Proof. To prove this, we introduce one intermediate distribution Dpre
inter as

Dpre
inter :=


B, P, c⊺ ← Z

1×m log q
q , (c′)⊺ ← Z

1×ℓQ
q ,

X← Z
(n+1)×(m(λ+L+1))
q ,

c⊺att ← Z
1×(LX+1)m
q ,

f1, . . . , fQ, r1, . . . , rQ, Aatt


and then prove that Dpre

0 ≈ Dpre
inter and Dpre

inter ≈ Dpre
1 . This implies, Dpre

0 ≈ Dpre
1 .

Proof of Dpre
0 ≈ Dpre

inter
Note that the distribution Dpre

0 and Dpre
inter is exactly the same as the L.H.S and R.H.S distribution

(respectively) in equation (4) of the security proof of Functional Encryption for pseudorandom functionality
(prFE) construction as in [AKY24a]. Hence, almost the same security proof of prFE applies to the proof
of Claim 5.4. However, for completeness, we provide the full proof here.Since, (c′)⊺ = s⊺P + (e′)⊺ =
(s⊺AF1 + (eP,1)

⊺, . . . , s⊺AFQ + (eP,Q)
⊺) = {s⊺AFi + (eP,i)

⊺}i∈[Q] = {c
⊺
P,i}i∈[Q], it suffices to prove

the following Equation (25).

Dpre
0 :=


B, {AFi}i∈[Q], c⊺ = s⊺B + e⊺B, {cP,i = s⊺AFi + (e′i)

⊺}i∈[Q],

X = AfheR− (x, sd)⊗G,
c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att,

f1, . . . , fQ, r1, . . . , rQ, Aatt

 (25)

≈ Dpre
inter :=


B, {AFi}i∈[Q], c⊺ ← Z

1×m log q
q , {cP,i ← Z1×ℓ

q }i∈[Q],

X← Z
(n+1)×(m(λ+L+1))
q ,

c⊺att ← Z
1×(LX+1)m
q ,

f1, . . . , fQ, r1, . . . , rQ, Aatt


where e′i ← Dℓ

Z,σ1
for all i ∈ [Q]. We prove Equation (25) via the following sequence of hybrids.

Hyb0. This is L.H.S distribution of Equation (25).

Hyb1. This hybrid is same as Hyb0, except we compute c⊺P,i as

c⊺P,i = c⊺att ·H
Fi
Aatt,X + fi(x) ⌊q/2⌉+ PRF(sd, ri) + e⊺P,i

where eP,i ← Dℓ
Z,σ1

. We claim that Hyb1 and Hyb2 are statistically indistinguishable. To see this,
note that from Equation (22), we have :

c⊺att ·H
Fi
Aatt,X = s⊺AFi − fi(x) ⌊q/2⌉ − PRF(sd, ri) + e⊺Fi

where e⊺Fi
= e⊺fheRC′Fi

+ e⊺attH
Fi
Aatt,X. This implies,

c⊺P,i = c⊺att ·H
Fi
Aatt,X + fi(x) ⌊q/2⌉+ PRF(sd, ri) + e⊺P,i = s⊺AFi + e⊺Fi

+ e⊺P,i

where ||e⊺Fi
|| ≤ 23λ β̃ as proved in Claim 5.2.

Next, we note that ||e⊺Fi
|| ≤ 24λ+O(1)β/poly(λ) = ||eP,i||. Thus by noise flooding (Lemma 3.9)

we have e⊺Fi
+ e⊺P,i ≈s e⊺P,i with a statistical distance of negl(λ). Thus, it suffices to show the

pseudorandomness of the following distribution given f1, . . . , fQ, r1, . . . , rQ, Aatt.(
B, {AFi}i∈[Q], c⊺ = s⊺B + e⊺B, {F̃i = fi(x) ⌊q/2⌉+ PRF(sd, ri) + e⊺P,i}i∈[Q],

X = AfheR− (x, sd)⊗G, c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att

)
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Hyb2. This hybrid is same as Hyb1 except that, we sample c← Zmw
q , catt ← Zm

q and Afhe ← Z
(n+1)×m
q ,

where Afhe is the fhe public key used to compute X. We have Hyb1 ≈c Hyb2 using LWE.
To prove this, we show that if there exists an adversary A who can distinguish between the two
hybrids with non-negligible advantage, then there is a reduction B that breaks LWE security with
non-negligible advantage. The reduction is as follows.

1. On receiving security parameter from A, forward it to LWE challenger.
2. The LWE challenger samples β ← {0, 1}. It also samples ALWE ← Z

n×(mw+m+(LX+1)m)
q ,

s← Dn
Z,σs

and sets b⊺ = s⊺ALWE + e⊺fhe ∈ Z
1×(mw+m+(LX+1)m)
q if β = 0, else it samples

b⊺ ← Z
1×(mw+m+(LX+1)m)
q if β = 1. Sends (ALWE, b) to B.

3. B parses ALWE = (B′, Âfhe, A′att), where B′ ∈ Zn×mw
q , Âfhe ∈ Zn×m

q , A′att ∈ Z
n×((LX+1)m)
q

and b⊺ = (b⊺
B, b⊺

fhe, b⊺
att).

4. Choose { fi ∈ Fprm}i∈[Q] and an input vector x ∈ {0, 1}L.

5. Samples {ri ← {0, 1}λ}i∈[Q], s̃d← {0, 1}λ and set sd = (1, s̃d).

6. Samples b̂← Zmw
q and sets B =

(
B′

b̂⊺

)
and c⊺ := b⊺

B − b̂⊺.

7. Sets Afhe :=
(

Âfhe
b⊺

fhe

)
and computes X = AfheR− (x, sd)⊗G as in the construction.

8. Sets Āatt = A′att + (1, bits(X)) ⊗ Ḡ, Aatt =

(
Āatt
a⊺att

)
, where aatt ← Z

(LX+1)m
q , and

c⊺att = b⊺
att − (a⊺att − (1, bits(X))⊗G), where Ḡ and G denotes the first n rows and

n + 1-th row of the gadget matrix G ∈ Z
(n+1)×m
q , respectively.

9. Compute F̃i and {AFi}i∈[Q] as in hybrid 1.
10. Sends (B, {AFi}i∈[Q], c⊺, F̃i, X, c⊺att, f1, . . . , fQ, r1, . . . , rQ, Aatt) to A.
11. A outputs a bit β′. B forwards the bit β′ to the LWE challenger.

It is easy to see that if LWE challenger sent b⊺ = s̄⊺ALWE + e⊺LWE, then B simulated Hyb1 withA
else if LWE challenger sent random b← Z

mw+m+(LX+1)m
q then B simulated Hyb2 with A.

Thus, it suffices to show the pseudorandomness of the following distribution given f1, . . . , fQ, r1, . . . ,
rQ, Aatt.B, {AFi}i∈[Q], c⊺ ← Z

1×m log q
q , {F̃i = fi(x) ⌊q/2⌉+ PRF(sd, ri) + e⊺P,i}i∈[Q],

X = AfheR− (x, sd)⊗G, c⊺att ← Z
1×(LX+1)m
q


Hyb3. This hybrid is same as Hyb2 except that we sample X← Z

(n+1)×(m(λ+L+1))
q . We have Hyb2 ≈s

Hyb3 using leftover hash lemma. We now argue that AfheR is statistically close to a uniform
distribution over Z

(n+1)×(m(λ+L+1))
q . This can be seen by noting that, for a uniformly sampled

vector of length m where the entries are sampled from {0, 1}, the min-entropy is m. This
implies the min-entropy of each column of R is m. Furthermore, by the Leftover Hash Lemma
(Lemma 3.8), each entry of AfheR is statistically close to being uniformly distributed over Zq, with
statistical distance negl(λ). This implies that the same holds for X. Thus, it suffices to show the
pseudorandomness of the following distribution given f1, . . . , fQ, r1, . . . , rQ, Aatt.B, {AFi}i∈[Q], c⊺ ← Z

1×m log q
q , {F̃i = fi(x) ⌊q/2⌉+ PRF(sd, ri) + e⊺P,i}i∈[Q],

X← Z
(n+1)×(m(λ+L+1))
q , c⊺att ← Z

1×(LX+1)m
q
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Hyb4. This hybrid is the same as the previous one except that we replace PRF(sd, ·) with the real random
function R(·). Since sd is not used anywhere else, we can use the security of PRF to conclude that
this hybrid is computationally indistinguishable from the previous one.

Hyb5. This hybrid is same as the previous one except that we output a failure symbol if the set {ri}i∈[Q],
in aux, contains a collision. We prove that the probability with which there occurs a collision is
negligible in λ. To prove this it suffices to show that there is no i, i′ ∈ [Q] such that i ̸= i′ and
ri = ri′ . The probability of this happening can be bounded by Q2/2λ by taking the union bound
with respect to all the combinations of i, i′. Thus, the probability of outputting the failure symbol is
Q2/2λ, which is negl(λ).

Hyb6. In this hybrid we compute F̃i as

F̃i = fi(x) ⌊q/2⌉+ Ri + e⊺P,i

for all i ∈ [Q]. Namely, we use fresh randomness Ri ← [−q/4 + B, q/4− B]1×ℓ instead of
deriving the randomness by R(ri). We claim that this change is only conceptual. To see this,
we observe that unless the failure condition introduced in Hyb5 is satisfied, every invocation of
the function R is with respect to a fresh input, and thus, the output can be replaced with a fresh
randomness.
Thus, it suffices to show the pseudorandomness of the following distribution given f1, . . . , fQ, r1, . . . , rQ,
Aatt. B, {AFi}i∈[Q], c⊺ ← Z

1×m log q
q , {F̃i = fi(x) ⌊q/2⌉+ Ri + e⊺P,i}i∈[Q],

X← Z
(n+1)×(m(λ+L+1))
q , c⊺att ← Z

1×(LX+1)m
q


Hyb7. This hybrid is same as the previous one except we sample F̃i ← Zℓ

q for i ∈ [Q]. This follows from
the pseudorandomness of { fi(x)}i and the fact that B is exponentially smaller than q/4. To see
this note that we have

(1λ, { fi, fi(x)}i∈[Q]) ≈c (1λ, { fi, ∆i ← {0, 1}1×ℓ}i∈[Q])

which implies

(1λ, { fi, F̃i = fi(x) ⌊q/2⌉+ Ri + e⊺P,i}i∈[Q]) ≈c (1λ, { fi, F̃i ← Z1×ℓ
q }i∈[Q])

Hence, we achieve the following distributionB, {AFi}i∈[Q], c⊺ ← Z
1×m log q
q , {F̃i ← Z1×ℓ

q }i∈[Q], X← Z
(n+1)×(m(λ+L+1))
q ,

c⊺att ← Z
1×(LX+1)m
q , f1, . . . , fQ, r1, . . . , rQ, Aatt


which is the R.H.S distribution of Equation (25), hence the proof.

Proof of Dpre
inter ≈ Dpre

1
We prove Dpre

inter ≈ Dpre
1 via the following sequence of hybrids.

Hyb0. This is L.H.S distribution i.e. Dpre
inter.

Hyb1. This hybrid is same as Hyb0 except that we compute X = AfheR− (x, sd)⊗G ∈ Z
(n+1)×(m(λ+L+1))
q ,

where Afhe ← Z
(n+1)×m
q . We have Hyb0 ≈s Hyb1 using leftover hash lemma. We can argue that

the uniform distribution Z
(n+1)×(m(λ+L+1))
q is statistically close to AfheR using the same argument

as used to prove Hyb2 ≈ Hyb3 in proof of Dpre
0 ≈ Dpre

inter. Hence, we skip the indistinguishability
argument.
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Hyb2. This hybrid is same as Hyb1 except that we compute Afhe :=
(

Âfhe ← Zn×m
q

b⊺
fhe = s⊺ALWE + e⊺fhe

)
and

c⊺att = s⊺(Aatt− (1, bits(X))⊗G) + e⊺att. To prove this, we show that if there exists an adversary
A who can distinguish between the two hybrids with non-negligible advantage, then there is a
reduction B that breaks LWE security with non-negligible advantage. The reduction is as follows.

1. On receiving security parameter from A, forward it to LWE challenger.

2. The LWE challenger samples β ← {0, 1}. It also samples ALWE ← Z
n×(m+(LX+1)m)
q ,

s ← Dn
Z,σs

and sets b⊺ = s⊺ALWE + e⊺fhe ∈ Z
1×(m+(LX+1)m)
q if β = 1, else it samples

b⊺ ← Z
1×(m+(LX+1)m)
q if β = 0. Sends (ALWE, b) to B.

3. B parses ALWE = (Âfhe, A′att), where Âfhe ∈ Zn×m
q , A′att ∈ Z

n×(LX+1)m
q and b⊺ =

(b⊺
fhe, b⊺

att).
4. Choose { fi ∈ Fprm}i∈[Q] and an input vector x ∈ {0, 1}L.

5. Samples {ri ← {0, 1}λ}i∈[Q], s̃d← {0, 1}λ and set sd = (1, s̃d).

6. Sets Afhe :=
(

Âfhe
b⊺

fhe

)
and computes X = AfheR− (x, sd)⊗G as in the construction.

7. Sets Āatt = A′att + (1, bits(X)) ⊗ Ḡ, Aatt =

(
Āatt
a⊺att

)
, where aatt ← Z

(LX+1)m
q , and

c⊺att = b⊺
att − (a⊺att − (1, bits(X))⊗G), where Ḡ and G denotes the first n rows and

n + 1-th row of the gadget matrix G ∈ Z
(n+1)×m
q , respectively.

8. Sample B← Z
(n+1)×m log q
q , c⊺ ← Z

1×m log q
q , (c′)⊺ ← Z

1×ℓQ
q .

9. Compute {AFi}i∈[Q] as in hybrid 1.
10. Sends (B, {AFi}i∈[Q], c⊺, (c′)⊺, X, c⊺att, f1, . . . , fQ, r1, . . . , rQ, Aatt) to A.
11. A outputs a bit β′. B forwards the bit β′ to the LWE challenger.

It is easy to see that if LWE challenger sent random b ← Z
m+(LX+1)m
q then B simulated Hyb1

with A, else if LWE challenger sent b⊺ = s̄⊺ALWE + e⊺LWE, then B simulated Hyb2 with A.

Hence, Dpre
inter ≈ Dpre

1 . Hence, the proof.

5.2 Counter-Example for BDJMMPV Assumption

Assumption 5.5 (Evasive LWE [BDJ+24]). We recall the version of evasive LWE assumption considered
in BDJMMPV, which is adapted from [MPV24b] and [BUW24]. Let m, n, k, κ > 0 be integers and let q
be a modulus. Let τ, σ, σ′ > 0. Let Samp be an algorithm which takes 1λ and a matrix P ∈ Zk×n

q and
outputs a matrix S ∈ Zn×κ

q and auxiliary information aux. Let

D← Dk×m
Z,τ , B← Zm×n

q , P = D · B, (S, aux)← Samp(1λ, P),

E← Dm×κ
Z,σ , E′ ← Dk×κ

Z,σ′ , C← Zm×κ
q , C′ ← Zk×κ

q

For PPT distinguishes, Apre and Apost define the following functions:

Advpre
A0
(λ) =|Pr

[
A0(B, P, BS + E, PS + E′, aux) = 1

]
− Pr

[
A0(B, P, C, C′, aux) = 1

]
|

Advpost
A1

(λ) =|Pr[A1(B, P, BS + E, D, aux) = 1]− Pr[A1(B, P, C, D, aux) = 1]|
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We say that the evasive LWE assumption evLWE(q, m, n, k, κ, Samp, τ, σ, σ′) holds, if for every PPT
distinguisher A1, there exists a PPT distinguisher A0 and polynomial Q(λ) such that

Advpre
A0
(λ) ≥ Advpost

A1
(λ)/Q(λ)− negl(λ)

and time(A0) ≤ time(A1) ·Q(λ).

Remark 5.6. In this section, we stick to the notation used in [BDJ+24], where B is of size m× n and thus
“tall" matrix, whereas B is a “wide" matrix of size n×m in other sections.

Remark 5.7. We remark that this version of evasive LWE is different from that in [AKY24a] (considered
in Section 5.1). In this version the matrix P is a random matrix and cannot be controlled by the sampler
as it is provided to the sampler as an input. However, aux may contain contrived terms which are also
related to P and thus can still leak some information making it vulnerable to attacks. Indeed, we exploit
such a term in aux in our counterexample.

Theorem 5.8. There exists an efficient ELWE sampler Samp as defined in Assumption 5.5 such that
the pre-condition holds, but the post-condition does not- i.e., there exists a distinguisher Apost that
distinguishes the post-condition with non-negligible probability.

The sampler used for proving the theorem is almost the same as the one used in the construction of
exponentially efficient doubly pseudorandom obfuscation scheme (xdPRO) as in Section 4 of [BDJ+24],
except that it uses a contrived implementation of the PRF and f (as defined below) circuit and set q to be
an odd number rather than power of two.

Proof. Our sampler uses a PRF with a contrived circuit implementation, as described below.

PRF Circuit Description. Let PRF : {{1}× {0, 1}λ}× {0, 1}log(κ) → [−q/4+ B̂, q/4− B̂]k where
B̂ is chosen to be exponentially smaller than q/4. Let CPRFi , with hardwired i, outputting PRF(K′, i) (in
binary) on input K′ = (1, K′′), be any circuit implementing PRF. We construct a modified circuit C′PRFi
implementing PRF as follows.

1. Let C0 be a circuit that outputs the first bit of its input x. Further, assume that the first bit of x is
always 1.

2. To the output wire of CPRFi corresponding to the lowest-order bit of PRF(K′, i)[j] for all j ∈ [k],
attach a new gate which performs the correlation-inducing transformation described in Corollary 4.5,
using the output wire of C0 as the special “1” input. Inputs to C0 can be the bits of K′.

3. To all the other output wires of CPRFi , attach a gate performing "even randomness" transformation
as in Lemma 4.3.

Defining Evasive LWE Sampler. Let n, m, k, κ, η ∈ N be parameters, q be an odd number, and λ
be the security parameter. They will be set after the description of the sampler below. The private
coin sampler Samp with private coins coinsSamp

priv = (K′′, R, E, S, s, {Rfhe,ℓ}ℓ∈[η+1+λ], Afhe, efhe) of the
Evasive LWE assumption as in Assumption 5.5 is defined as follows. The sampler Samp on input (1λ, P),
where P ∈ Zk×n

q does the following:

1. Let {Fprm = { f : {0, 1}η × {0, 1}log(κ) → {0, 1}k}}prm be a family of functions, where f ∈
Fprm can be computed by a circuit of depth d(λ) = poly(λ) and prm = (1η(λ), 1k(λ), 1κ(λ), 1d(λ)).
Let KeySamp be a sampling algorithm that, on input 1λ, outputs key K ∈ {0, 1}η and auxiliary
information auxK dependent on K. Choose f ∈ Fprm so that

({ f (K, i)}i∈[κ], auxK) ≈c ({ui : ui ← {0, 1}k}i∈[κ], auxK),
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over the random choice of (K, auxK)← KeySamp(1λ). A concrete example of such KeySamp is
an algorithm that chooses random PRF key K and sets auxK = ⊥. The function f (K, i) is defined
to be a PRF value with respect to the key K and input i.
For all i ∈ [κ], let C fi , with hardwired i, outputting scaled version of fi(K) = f (K, i), i.e.
outputting ⌊q/2⌉ fi(K) (in binary) on input K, be any circuit implementing fi. We construct
a modified circuit C′fi

implementing fi as follows. To all the output wires of C fi , attach a gate
performing "even randomness" transformation as in Lemma 4.3. We can observe that C′fi

is of
depth at most d + 3.

2. Sample K′′ ← {0, 1}λ and set K′ = (1, K′′) and K = (K, K′).

3. Then it defines a function Fi with i hardwired as follows: On input K, compute and output
f (K, i) ⌊q/2⌉+ PRF(K′, i) ∈ Zk

q. Let C′Fi
be a circuit that implements Fi and uses circuits C′fi

and C′PRFi
to compute the respective components and adds their outputs to get the final output of

C′Fi
.

4. Sample s̄← Dn
Z,σs

and set s = (s̄⊺,−1)⊺.

5. Sample Āfhe ← Zn×m
q , efhe ← Dm

Z,σfhe
, Rfhe,ℓ ← {0, 1}m×m for all ℓ ∈ [η + λ+ 1] and compute

a GSW encryption as follows.

Afhe :=
(

Āfhe
s̄⊺Āfhe + e⊺fhe

)
, X = AfheRfhe − (K)⊗G ∈ Z

(n+1)×m(λ+η+1)
q

where Rfhe = (Rfhe,1, . . . , Rfhe,(λ+η+1)).

6. Parse s⊺ = (s1, . . . , sn,−1) ∈ Z1×n+1
q , sample R ← Z

n×(k+1)m
q and E ← Dk×(k+1)m

Z,ρ and

compute A = PR + E + (Ik, 0)⊗ (s1, . . . , sn,−1)⊗ g⊺ ∈ Z
k×(k+1)m
q where 0 ∈ Zk

q is all zero
column vector and Ik is the identity matrix with k rows and columns.

7. For i ∈ [κ]

• Define the homomorphic evaluation circuit VEvalC′Fi
= MakeVEvalCkt(n, m, q, C′Fi

).

• Compute XC′Fi
= VEvalC′Fi

(X). Thus, XC′Fi
= AfheRC′Fi

−
(

0n×k

C′Fi
(K)

)
∈ Zn+1×k

q , where

RC′Fi
is the randomness after homomorphic evaluation.

• Let fi ∈ Z
k(n+1)
q be the vectorization of XC′Fi

such that (Ik⊗ (s1, . . . , sn,−1)⊗g⊺)G−1(fi) ≈
C′Fi

(K). That is,

fi =
(

XC′Fi
[1, 1], . . . , XC′Fi

[n + 1, 1], XC′Fi
[1, 2], . . . , XC′Fi

[n + 1, 2], . . . , XC′Fi
[1, k], . . . , XC′Fi

[n + 1, k]
)⊺

.

• Sample ri ← {0, 1}m.

8. Set F = (G−1
r1
(f1), . . . , G−1

rκ
(fκ)) ∈ {0, 1}(k+1)m×κ. Here G−1

ri
(fi) =

(
f̃i
ri

)
where f̃i ∈

Z
k(n+1) log q
q is the unique vector with (Ik ⊗G)f̃i = fi.

9. Sample S← Zn×κ
q and set H = S + RF.

10. Output (S, aux) where aux = (H, Afhe, X, A, {ri}i∈[κ], auxK).
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Counter-example Roadmap. Now, for our counter-example, we need to show that for D← Dk×m
Z,τ , B←

Zm×n
q , P = D · B, (S, aux)← Samp(1λ, P) where aux = (H, Afhe, X, A, {ri}i∈[κ], auxK),

1. (Precondition) For all PPT adversary Apre, the following two distributions, Dpre
0 and Dpre

1 are
indistinguishable.

Dpre
0 := (B, P, C = BS+E, C′ = PS+E′, aux) ≈ Dpre

1 := (B, P, C← Zm×κ
q , C′ ← Zk×κ

q , aux),

where E← Dm×κ
Z,σ , E′ ← Dk×κ

Z,σ′ . We prove this in claim 5.12.

2. (Attack against postcondition) There exists an adversary who distinguishes the following distribu-
tions, Dpost

0 and Dpost
1 with non-negligible probability.

Dpost
0 := (B, P, C = BS + E, D, aux) and Dpost

1 := (B, P, C← Zm×κ
q , D, aux),

where E← Dm×κ
Z,σ .

We begin with Step 2. To prove this step, we introduce one extra distribution Dpost
2 as

Dpost
2 := (B, P← Zk×n

q , C← Zm×κ
q , D, aux = (H, aux′))

where (B, B−1
τ )← TrapGen(1m, 1n, q), D← B−1

τ (P),19 H← Zn×κ
q and aux′ = (Afhe, X, A, {ri}i∈[κ],

auxK), and then prove that,

(a) for all PPT adversary, the two distributions, Dpost
1 and Dpost

2 are statistically indistinguishable.
We prove this in Claim 5.9.

(b) there exists an adversary Apost who distinguishes the distributions, Dpost
0 and Dpost

2 with
non-negligible probability. We prove this in Claim 5.10.

This implies the adversary Apost distinguishes Dpost
0 and Dpost

1 with non-negligible probability.

Parameter Setting. We set our parameters the same as [BDJ+24], except that we explicitly define β̃, B̃
and explicitly set κ and k.

β̃ = 2O(d·log3 λ), B̃ = λσfhe β̃m, B̂ = B̃ + λmτσ + λm(k + 1)ρ,

σ = σ′ = 2λ(B̃ + λ(k + 1)mρ), q ∈ (2λκkB̂, 2λ+1κkB̂], n = poly(λ),

m = (n + 1) ⌈log2 q⌉ , k = m2, κ = m4

Proving Dpost
1 ≈s Dpost

2 . We show below that Dpost
1 ≈s Dpost

2 holds with respect to the above sampler
defined in Section 5.2.

Claim 5.9. For (S, aux)← Samp(1λ, P) where aux = (H, aux′), aux′ = (Afhe, X, A, {ri}i∈[κ], auxK),

Dpost
1 := (B, P, C← Zm×κ

q , D, H = S + RF, aux′)

≈s Dpost
2 := (B, P← Zk×n

q , C← Zm×κ
q , D, H← Zn×κ

q , aux′),

where in Dpost
1 , D ← Dk×m

Z,τ , B ← Zm×n
q , P = D · B, R ← Z

n×(k+1)m
q and in Dpost

2 , (B, B−1
τ ) ←

TrapGen(1m, 1n, q), D← B−1
τ (P).

19Here, we overload the notation and B−1
τ (P) denotes a distribution over short D such that DB = P, rather than BD = P.

This change is introduced due to our choice of the size of B in this section, where we choose B to be a tall matrix rather than the
wide matrix.
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Proof. We prove Claim 5.9 using a series of hybrids Hyb0, . . . , Hyb3 and proving that Hyb0 ≈ Hyb1 ≈
. . . ≈ Hyb3, where Hyb0 is the Dpost

1 distribution and Hyb3 is the Dpost
2 distribution.

Hyb1: This is identical to Hyb0 except that we sample matrix H as H← Zn×κ
q . In Hyb0, H is computed

by H = S + RF for a uniformly random S ← Zn×κ
q that is not used anywhere else. Therefore,

Hyb0 and Hyb1 are identically distributed.

Hyb2: This is identical to Hyb1 except that instead of uniformly sampling B← Zm×n
q , we compute it as

(B, B−1
τ )← TrapGen(1m, 1n, q). Therefore, the statistical indistinguishability between Hyb1 and

Hyb2 follows from Lemma 3.4.

Hyb3: This is identical to Hyb2 except that instead of first sampling D← Dk×m
Z,τ and setting P = D ·B, we

uniformly sample P← Zk×n
q and set D← B−1

τ (P). Therefore, the statistical indistinguishability
between Hyb2 and Hyb3 follows from the trapdoor sampling property (Section 3.5). Note that this
distribution is the same as Dpost

2 .

Distinguishing Algorithm/Attack Strategy for Dpost
0 and Dpost

2 . The adversary Apost holds the
distribution Dpost

0 if β = 0 and Dpost
2 if β = 1 for β← {0, 1}. Thus, for β = 0, P = DB, C = BS + E,

H = S + RF and for β = 1, P← Zk×n
q , C← Zm×κ

q , H← Zn×κ
q . It does the following:

1. For i ∈ [κ]

• Define the homomorphic evaluation circuit VEvalC′Fi
= MakeVEvalCkt(n, m, q, C′Fi

).

• Compute XC′Fi
= VEvalC′Fi

(X) = AfheRC′Fi
−
(

0n×k

C′Fi
(K)

)
∈ Zn+1×k

q .

• Compute fi ∈ Z
k(n+1)
q as the vectorization of XC′Fi

i.e.

fi =
(

XC′Fi
[1, 1], . . . , XC′Fi

[n + 1, 1], XC′Fi
[1, 2], . . . , XC′Fi

[n + 1, 2], . . . , XC′Fi
[1, k], . . . , XC′Fi

[n + 1, k]
)⊺

2. Compute F = (G−1
r1
(f1), . . . , G−1

rκ
(fκ)) where {ri}i∈[κ] ∈ aux.

3. Compute Y = AF + DC− PH ∈ Zk×κ
q and parse Y = (y1, . . . , yκ) column-wise.

4. For i ∈ [κ], compute zi = yi − ⌊q/2⌉MSB(yi)20.

5. Apost defines the following set of linear equations (Equation (26)) in variables, all elements of E, E
and outputs β′ = 0 if (26) is solvable; otherwise, output β′ = 1.{

E[j, 1]F[1, i] + . . . + E[j, (k + 1)m]F[(k + 1)m, i]+
D[j, 1]E[1, i] + . . . + D[j, m]E[m, i] = zi[j] mod 2

}
i∈[κ],j∈[k]

(26)

Analyzing success probability of Apost.

Claim 5.10. Apost wins (i,e., β = β′) with probability 3/4− negl(λ) when k(k + 1)m + mκ ≪ kκ.
20Observe that MSB(yi) = f (K, i) when β = 0
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Proof. Let us first analyze the solvability of equations defined in Equation (26) for the two cases: β = 0
and β = 1.

The Case of β = 0. When β = 0, for all i ∈ [κ], it holds that

((Ik, 0)⊗ (s1, . . . , sn,−1)⊗ g⊺)G−1
ri
(fi)

=


(s1g⊺, . . . , sng⊺,−g⊺) 0m . . . 0m 0m

0m (s1g⊺, . . . , sng⊺,−g⊺) . . . 0m 0m

...
... . . .

...
...

0m 0m ... (s1g⊺, . . . , sng⊺,−g⊺) 0m


k×(k+1)m

(
f̃i
ri

)
(k+1)m×1

=


(s1g⊺f̃i[1; log q] + . . . + sng⊺f̃i[(n− 1) log q + 1; n log q]− g⊺f̃i[n log q + 1; m])

...
(s1g⊺f̃i[(k− 1)m + 1; (k− 1)m + 1 + log q] + . . .

+sng⊺f̃i[km− 2 log q + 01; km− log q]− g⊺f̃i[km− log q + 1; km])


k×1

=


(s1fi[1] + . . . + snfi[n]− fi[n + 1])

...
(s1fi[(k− 1)(n + 1) + 1] + . . .

+snfi[k(n + 1)− 1]− fi[k(n + 1)])


k×1

(the equality follows from the property of G−1
ri

)

=


s⊺XC′Fi

[·, 1]
...

s⊺XC′Fi
[·, k]


k×1

=


C′Fi

(K)[1]− e⊺fhe(RC′Fi
[·, 1])

...
C′Fi

(K)[k]− e⊺fhe(RC′Fi
[·, k])


k×1

= F(K, i)− ẽi (by correctness of GSW)

where f̃i[ℓ; ℓ′] is the part of vector f̃i starting from ℓ-th element and ending at ℓ′-th element and

ẽi =


e⊺fhe(RC′Fi

[·, 1])
...

e⊺fhe(RC′Fi
[·, k])

 is the GSW decryption noise terms. Here, s⊺XC′Fi
[·, j] denotes the j-th column

of s⊺XC′Fi
with n + 1 rows. Therefore, for all i ∈ [κ],

AG−1
ri
(fi) = (PR + E + ((Ik, 0)⊗ (s1, . . . , sn,−1)⊗ g⊺))G−1

ri
(fi)

= PRG−1
ri
(fi) + EG−1

ri
(fi) + ((Ik, 0)⊗ (s1, . . . , sn,−1)⊗ g⊺)G−1

ri
(fi)

= PRG−1
ri
(fi) + EG−1

ri
(fi) + F(K, i)− ẽi

Hence, it holds that
AF = PRF + EF + (F(K, 1), . . . , F(K, κ))− Ẽ

where Ẽ = (ẽ1, . . . , ẽκ). Also, DC = D(BS + E) = DBS + DE = PS + DE and PH = P(S +
RF) = PS + PRF. Hence, we have

Y = AF + DC− PH = (F(K, 1), . . . , F(K, κ))− Ẽ + EF + DE (27)

Let Ê = −Ẽ + EF + DE = (ê1, . . . , êκ). Note that since E ← Dk×(k+1)m
Z,ρ , for each column E[·, i] of

E, we have ||E[·, i]|| ≤
√

λρ. Therefore, ||E · fi|| ≤
√

λ(k + 1)mρ. Similarly, since E ← Dm×κ
Z,σ , for

each column E[·, i] of E, ||E[·, i]|| ≤
√

λσ and every row D[j, ·] of D, ||D[j, ·]|| ≤
√

λτ. Therefore,
||D · E[·, i]|| ≤ λmτσ.
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Now for the error bound ẽi, we have the following. From Lemma 3.15 and parameter setting, we have,

||RC′Fi
|| ≤ (m + 2)d+O(1) ⌈log q⌉maxℓ∈[η+1+λ]||R

⊺
ℓ ||

≤ (m + 2)d+O(1) ⌈log q⌉m

≤ (m + 2)d+O(1) ⌈log q⌉ ≤ β̃

Now, from the parameter setting, we have

||ẽi|| ≤ max j∈[k]||e
⊺
fhe(RC′Fi

[·, j])||

≤ ||e⊺fheRC′Fi
||

≤
√

λσfhe β̃m ≤ B̃.

Therefore, by setting
B̂ = B̃ + λmτσ + λm(k + 1)ρ, we get ||êi|| ≤ B̂.

Now, from Equation (27), we have for i ∈ [κ], yi = ⌊q/2⌉ f (K, i) + PRF(K′, i) + êi. Since,
PRF(K′, i) ∈ [−q/4 + B̂, q/4 − B̂]k, we have PRF(K′, i) + êi ∈ [−q/4, q/4]k. Hence, we have
the following.

MSB(yi) = MSB(⌊q/2⌉ f (K, i) + PRF(K′, i) + êi) = f (K, i)

Now, for i ∈ [κ], zi = yi − ⌊q/2⌉MSB(yi) = PRF(K′, i) + êi = PRF(K′, i)− Ẽ[·, i] + EF[·, i] +
DE[·, i]. where Ẽ[·, i], EF[·, i], DE[·, i] denotes the ith column of Ẽ, EF, DE respectively. We prove in
Claim 5.11 that PRF(K′, i)[j]− Ẽ[j, i] = 0 mod 2 for all i ∈ [κ], j ∈ [k] with probability 1/2 + negl(λ).
This gives us that with probability 1/2 + negl(λ),

∀ i ∈ [κ], j ∈ [k], EF[j, i] + DE[j, i] = zi[j] mod 2 (28)

We can rewrite Equation (28) as Equation (29) below for all i ∈ [κ], j ∈ [k].

E[j, 1]F[1, i] + . . .+E[j, (k+ 1)m]F[(k+ 1)m, i] +D[j, 1]E[1, i] + . . .+D[j, m]E[m, i] = zi[j] mod 2
(29)

Observe that this is the same as the set of equations defined in (26). Hence, in case of β = 0, (26) is
solvable with probability 1/2 + negl(λ). This gives us

Pr
(

β′ = 0 | β = 0
)
= 1/2 + negl(λ). (30)

The Case of β = 1. When β = 1, for all i ∈ [κ], we have,

zi = yi−⌊q/2⌉MSB(yi) = AF[·, i]+DC[·, i]−PH[·, i]−⌊q/2⌉MSB(AF[·, i]+DC[·, i]−PH[·, i])

where P ← Zk×n
q , C ← Zm×κ

q , and H ← Zn×κ
q . We argue that Equation (29) is not solvable with

overwhelming probability in this case. This is shown by the following sequence of hybrids. We denote
the probability that Equation (29) is not solvable in Hybxx by Pr[Exx]. Hyb0 is the same as Dpost

1 and we
want to prove Pr[E0] = 1− negl(λ).

Hyb1: This hybrid is the same as Dpost
2 . As we have shown in Claim 5.9, Dpost

1 ≈s Dpost
2 and thus we

have |Pr[E0]− Pr[E1]| = negl(λ).

Hyb2: In this hybrid, we change the definition of zi as

zi = yi − 2e′i − ⌊q/2⌉MSB(yi − 2e′i) mod q
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for freshly chosen e′i ← Dk
Z,σ′ . We argue that the distribution of {zi mod 2}i is statistically close

to that of the previous hybrid. To see this, we first observe that for any y ∈ Zq outside of the
“boundary" [−q/4− B,−q/4 + B] ∪ [q/4− B, q/4 + B], we have MSB(y) = MSB(y− 2e′)
for any e′ such that |e′| < B/2. For such y and e′, we have

y− ⌊q/2⌉MSB(y) = y− ⌊q/2⌉MSB(y− 2e′) = y− 2e′ − ⌊q/2⌉MSB(y− 2e′) mod 2.

We then set B = 2σ′
√

λ. Then, we have |e′i| < B with overwhelming probability. Furthermore,
each yi is distributed uniformly at random over Zk

q, since P and H are independently and uniformly
sampled. Therefore, by the union bound, the probability that there exists i such that some
of yi’s entry falls into the boundary is negligible. Hence, we have yi − ⌊q/2⌉MSB(yi) =
yi − 2e′i − ⌊q/2⌉MSB(yi − 2e′i) mod 2 with overwhelming probability, as desired. This implies
|Pr[E1]− Pr[E2]| = negl(λ).

Hyb3: In this hybrid, we further change the definition of zi as

zi = y′i − ⌊q/2⌉MSB(y′i)

for y′i ← Zk
q. We argue that under the LWE assumption, we have |Pr[E2]− Pr[E3]| = negl(λ).

To show this, we consider the following reduction. The reduction algorithm is given an LWE
challenge (P, U), where U = PH + 2E′ if β = 0 and U← Zk×κ

q . Then, the reduction algorithm
chooses (B, B−1

τ )← TrapGen(1m, 1n, q), D← B−1
τ (P), and aux′ = (Afhe, X, A, {ri}i∈[κ], auxK)

by itself. Then, it defines

y′i = AF[·, i] + DC[·, i]−U[·, i]− ⌊q/2⌉MSB(AF[·, i] + DC[·, i]−U[·, i])

and zi based on the value. The it outputs 0 if Equation (29) is solvable and 1 otherwise.
We can see that the advantage of the adversary above is |Pr[E2]− Pr[E3]|. Therefore, unless the
LWE assumption is broken, we have that |Pr[E2]− Pr[E3]| ≤ negl(λ).

Hyb4: In this hybrid, zi is uniformly random in [−q/4, q/4]k for all i ∈ [κ]. It is easy to see that this
game is statistically close to the previous hybrid, since y′i is uniformly random.

We finally observe that {zi mod 2}i is statistically close to uniform distribution over {0, 1}k×κ.
Therefore, Equation (26), consisting of k(k + 1)m + mκ variables, is unsolvable with overwhelming

probability if k(k + 1)m + mκ ≪ kκ in Hyb4. Note that for our setting of parameters, this relation is
indeed satisfied. Therefore, we have Pr[E0] = 1− negl(λ) from the above discussion.

This gives us
Pr
(

β′ = 1 | β = 1
)
= 1− negl(λ). (31)

Thus, from Equation (30) and (31), we get Pr(β′ = β) ≈ 3/4.

Claim 5.11. ∀i ∈ [κ], j ∈ [k], PRF(K′, i)[j]− Ẽ[j, i] = 0 mod 2 with probability 1/2 + negl(λ).

Proof. The proof is similar to that of Claim 5.3. Let us start by analyzing the error Ẽ[j, i]. Note that
∀ i ∈ [κ], j ∈ [k], Ẽ[j, i] = e⊺fhe(RC′Fi

[·, j]) where RC′Fi
[·, j] is the randomness in the homomorphically

evaluated encryption of F(K, i)[j] (of different form: Afhe(RC′Fi
[·, j])−

(
0n×1

F(K, i)[j]

)
), output by VEvalC′Fi

circuit. Here, Afhe is the FHE public key used to compute X, i.e. the encryption of key K.
Recall that F(K, i)[j] = f (K, i) ⌊q/2⌉ [j]+PRF(K′, i)[j] and we can write Ẽ[j, i] = e⊺fhe(RC′Fi

[·, j]) =

e⊺fhe(RC′fi
[·, j]) + e⊺fhe(RC′PRFi

[·, j]) follows by the way we implemented the homomorphic addition.

57



Now, e⊺fhe(RC′fi
[·, j]) = e⊺fheRC′fi

,j = e⊺fhe ∑
log2 q−1
v=0 RC′fi

,j,vG−1(2vιn+1), where RC′fi
,j = RC′fi

[·, j] is
the jth column of RC′fi

and RC′fi
,j,v is the randomness in homomorphically computed GSW encryption of

the v-th bit of f (K, i) ⌊q/2⌉ [j]. Here v ∈ [0, log2 q). Since f (K, i) ⌊q/2⌉ is implemented by C′fi
, which

involves the even randomness transformation (Lemma 4.3) on all its output bits, RC′fi
,j,v has all the entries

as even due to Lemma 4.3. This implies RC′fi
,j has even entries, which in turn implies that e⊺fheRC′fi

,j is
even.

So, now our goal is to show that

PRF(K′, i)[j]− e⊺fhe(RC′PRFi
[·, j]) = 0 mod 2

Similar to above, we have e⊺fhe(RC′PRFi
[·, j]) = e⊺fheRC′PRFi

,j = e⊺fhe ∑w−1
v=0 RC′PRFi

,j,vG−1(2vιn+1).
Again, since in C′PRFi

all the output bits pass through even randomness, except the lowest order bit of
the jth entry of the output, for all j ∈ [k], which passes through the correlation inducing gate, we have

PRF(K′, i)[j]− e⊺fhe(RC′PRFi
[·, j]) mod 2

= PRF(K′, i)[j]− e⊺fheRC′PRFi
,j,0G−1(ιn+1)− e⊺fhe

log2 q−1

∑
v=1

RC′PRFi
,j,vG−1(2vιn+1) mod 2

= PRF(K′, i)[j]− e⊺fheRC′PRFi
,j,0G−1(ιn+1) mod 2 (due to Lemma 4.3)

= PRF(K′, i)[j, 0] +
log2 q−2

∑
v=1

2vPRF(K′, i)[j, v]− e⊺fheRC′PRFi
,j,0G−1(ιn+1) mod 2

= PRF(K′, i)[j, 0]− e⊺fheRC′PRFi
,j,0G−1(ιn+1) mod 2

= PRF(K′, i)[j, 0]− PRF(K′, i)[j, 0](e⊺fheR∗G−1(ιn+1)) mod 2
(due to Corollary 4.5)

= 0 mod 2, if (e⊺fheR∗G−1(ιn+1)) is odd.

In the above, PRF(K′, i)[j, v] ∈ {−1, 0, 1} represents the v-th (signed) bit in the binary representation
of PRF(K′, i)[j] and R∗ is the randomness in the ciphertext of special "1" input used in Corollary 4.5.
Note that (e⊺fheR∗G−1(ιn+1)) is odd with probability negligibly close to 1/2 using the same argument
as in Claim 5.3. Also, note that the term (e⊺fheR∗G−1(ιn+1)) does not depend on i, j and hence, for
all i ∈ [κ], j ∈ [k], the probability that PRF(K′, i)[j]− e⊺fhe(RC′PRFi

[·, j]) = 0 mod 2 is 1/2 + negl(λ).
Hence, the proof.

Proving the pre-condition. We now show that the pre-condition of Evasive LWE as in Assumption 5.5
holds with respect to the above sampler defined in Section 5.2.

Claim 5.12. For (S, aux)← Samp(1λ, P) where aux = (H, Afhe, X, A, {ri}i∈[κ], auxK),

Dpre
0 := (B, P, C = BS + E, C′ = PS + E′, aux) ≈ Dpre

1 := (B, P, C← Zm×κ
q , C′ ← Zk×κ

q , aux)
(32)

where D← Dk×m
Z,τ , B← Zm×n

q , P = D · B, E← Dm×κ
Z,σ , E′ ← Dk×κ

Z,σ′ .

Proof. The proof of this claim is similar to the proof of pre-condition of evasive LWE used in the security
proof of exponentially efficient doubly pseudorandom obfuscation scheme (xdPRO) as in Section 4 of
[BDJ+24]. However, for completeness, we provide the proof here. We prove Claim 5.12 by a series of
hybrids Hyb0 to Hyb11 where Hyb0 is the Dpre

0 distribution and Hyb11 is the Dpre
1 distribution of (32).

We prove that Hyb0 ≈ Hyb1 ≈ . . . ≈ Hyb11.
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Hyb0: This is the Dpre
0 distribution. We recall the distribution here.

1. Sample B← Zm×n
q , D← Dk×m

Z,τ and set P = D · B.

2. Choose (K, auxK) ← KeySamp(1λ), sample K′′ ← {0, 1}λ and set K′ = (1, K′′) and
K = (K, K′).

3. Samples s̄← Dn
Z,σs

and set s = (s̄⊺,−1)⊺.
4. Sample Āfhe ← Zn×m

q , efhe ← Dm
Z,σfhe

, Rfhe,ℓ ← {0, 1}m×m for all ℓ ∈ [η + λ + 1] and
compute a GSW encryption as follows.

Afhe :=
(

Āfhe
s̄⊺Āfhe + e⊺fhe

)
, X = AfheRfhe − (K)⊗G ∈ Z

(n+1)×m(λ+η+1)
q

where Rfhe = (Rfhe,1, . . . , Rfhe,(λ+η+1)).

5. Parse s⊺ = (s1, . . . , sn,−1) ∈ Z
1×(n+1)
q , sample R← Z

n×(k+1)m
q and E← Dk×(k+1)m

Z,ρ and

compute A = PR + E + (Ik, 0)⊗ (s1, . . . , sn,−1)⊗ g⊺ ∈ Z
k×(k+1)m
q where 0 ∈ Zk

q is all
zero column vector and Ik is the identity matrix with k rows and columns.

6. For i ∈ [κ]

• Define the homomorphic evaluation circuit VEvalC′Fi
= MakeVEvalCkt(n, m, q, C′Fi

).

• Compute XC′Fi
= VEvalC′Fi

(X). Hence, XC′Fi
= AfheRC′Fi

−
(

0n×k

C′Fi
(K)

)
∈ Zn+1×k

q .

• Let fi ∈ Z
k(n+1)
q be the vectorization of XC′Fi

i.e.

fi =
(

XC′Fi
[1, 1], . . . , XC′Fi

[n + 1, 1], XC′Fi
[1, 2], . . . , XC′Fi

[n + 1, 2], . . . , XC′Fi
[1, k],

. . . , XC′Fi
[n + 1, k]

)⊺
• Sample ri ← {0, 1}m.

7. Set F = (G−1
r1
(f1), . . . , G−1

rκ
(fκ)).

8. Sample S← Zn×κ
q and set H = S + RF.

9. Set aux = (H, Afhe, X, A, {ri}i∈[κ], auxK).

10. Compute C = BS + E where E← Dm×κ
Z,σ .

11. Compute C′ = PS + E′ where E′ ← Dk×κ
Z,σ′ .

12. Output (B, P, C, C′, aux).

Hyb1: This is same as Hyb0 except the way we compute P. Instead of sampling D← Dk×m
Z,τ and setting

P = D · B, we sample P uniformly at random i.e. P← Zk×n
q . We now prove that Hyb0 ≈s Hyb1.

We prove that (B, DB) ≈s (B, P) where D← Dk×m
Z,τ , B← Zm×n

q , P← Zk×n
q . This can be seen

by observing that, by Lemma 3.6, the min-entropy of each row of D is at least m. Hence, by the
Leftover Hash Lemma (Lemma 3.8), each entry of DB, is statistically close to being uniformly
distributed over Zq.

Hyb2: This is same as Hyb1 except the way we compute H, C, C′. Instead of choosing S uniformly at
random, sample H← Zn×κ

q and set S = H− RF. Now,

• compute U = BR + E∗ where E∗ ← Dm×(k+1)m
Z,ρ .
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• compute C = BH−UF + E∗F + E where E← Dm×κ
Z,σ .

• compute C′ = PH−AF+(F(K, 1), . . . , F(K, κ))+EF+ Ẽ+E′ where E′ ← Dk×κ
Z,σ′ where

Ẽ is such that ((Ik, 0)⊗ (s1, . . . , sn,−1)⊗ g⊺)F = (F(K, 1), . . . , F(K, κ)) + Ẽ.

It is easy to see that Hyb1 and Hyb2 are identically distributed. When we substitute S = H−RF in
C and C′, we get C = BS+ E = B(H−RF) + E = BH−UF+ E∗F+ E and C′ = PS+ E′ =
P(H−RF) + E′ = PH− PRF+ E′ = PH− (AF− (F(K, 1), . . . , F(K, κ))− Ẽ− EF) + E′ =
PH−AF + (F(K, 1), . . . , F(K, κ)) + EF + Ẽ + E′. Therefore, Hyb1 ≈s Hyb2.

Hyb3: This is same as Hyb2 except the way we compute C, C′. In this hybrid, we compute C =
BH − UF + E where E ← Dm×κ

Z,σ and C′ = PH − AF + (F(K, 1), . . . , F(K, κ)) + E′ where
E′ ← Dk×κ

Z,σ′ . Note that by GSW noise bound setting, we have ||Ẽ|| ≤ B̃, from the analysis of β = 0
case in Claim 5.10, we have ||EF|| ≤ λ(k + 1)mρ and ||E∗F|| ≤ λ(k + 1)mρ and by parameter
setting we have σ = σ′ ≥ 2λ(B̃ + λ(k + 1)mρ), we have E∗F + E ≈s E and EF + Ẽ + E′ ≈s E′.
Therefore, Hyb2 ≈s Hyb3.

Hyb4: This is same as Hyb3 except the way we compute A, U. In this hybrid, we sample A← Z
k×(k+1)m
q

and U← Z
m×(k+1)m
q . We now prove that Hyb3 ≈c Hyb4. LetA be the adversary that distinguishes

between Hyb3 and Hyb4. Then we construct a reduction B that acts as an adversary against LWE.
B does the following.

• Challenger of LWE samples β← {0, 1} and sends (V, Z = VR + E), where E =

(
E′

E∗

)
if

β = 0 and (V, Z← Z
k+m×(k+1)m
q ) if β = 1. Here V← Zk+m×n

q .

• Parse V =

(
P
B

)
and Z =

(
A′

U

)
.

• Choose (K, auxK) ← KeySamp(1λ), sample K′′ ← {0, 1}λ and set K′ = (1, K′′) and
K = (K, K′).

• Samples s̄← Dn
Z,σs

and set s = (s̄⊺,−1)⊺.
• Sample Āfhe ← Zn×m

q , efhe ← Dm
Z,σfhe

, Rfhe,ℓ ← {0, 1}m×m for all ℓ ∈ [η + λ + 1] and
compute a GSW encryption as follows.

Afhe :=
(

Āfhe
s̄⊺Āfhe + e⊺fhe

)
, X = AfheRfhe − (K)⊗G ∈ Z

(n+1)×m(λ+η+1)
q

where Rfhe = (Rfhe,1, . . . , Rfhe,(λ+η+1)).
• Set A = A′ + (Ik, 0)⊗ s⊺ ⊗ g⊺.
• For i ∈ [κ]

– Define the homomorphic evaluation circuit VEvalC′Fi
= MakeVEvalCkt(n, m, q, C′Fi

).

– Compute XC′Fi
= VEvalC′Fi

(X).

– Let fi ∈ Z
k(n+1)
q be the vectorization of XC′Fi

.

– Sample ri ← {0, 1}m.
• Set F = (G−1

r1
(f1), . . . , G−1

rκ
(fκ)).

• Sample H← Zn×κ
q .

• Set aux = (H, Afhe, X, A, {ri}i∈[κ], auxK).
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• Compute C = BH−UF + E where E← Dm×κ
Z,σ .

• Compute C′ = PH−AF + (F(K, 1), . . . , F(K, κ)) + E′ where E′ ← Dk×κ
Z,σ′ .

• Output (B, P, C, C′, aux) to A.
• On receiving β′ from A, outputs β′.

It is straightforward to see that if β = 0, then B simulated Hyb3 as A = A′ + (Ik, 0)⊗ s⊺ ⊗ g⊺ =
PR + E′ + (Ik, 0)⊗ s⊺ ⊗ g⊺ and U = BR + E∗, else it simulated Hyb4 as A = A′ + (Ik, 0)⊗
s⊺ ⊗ g⊺ is uniformly random and U is uniformly random. Hence, Hyb3 ≈c Hyb4 by the hardness
of LWE.

Hyb5: This is same as Hyb4 except that we compute X as X = AfheRfhe − (0η+λ+1)⊗G. We now
prove that Hyb4 ≈c Hyb5. LetA be the adversary that distinguishes between Hyb4 and Hyb5. Then
we construct a reduction B that breaks the IND-CPA security of the GSW FHE scheme. B does the
following.

• Sample P← Zk×n
q , B← Zm×n

q .

• Choose (K, auxK) ← KeySamp(1λ), sample K′′ ← {0, 1}λ and set K′ = (1, K′′) and
K = (K, K′).

• B sends the messages, K and 0η+λ+1 to the challenger of GSW.
• Challenger of GSW FHE scheme samples β ← {0, 1} and sends (Afhe, X = AfheRfhe −
(K)⊗G) if β = 0 and (Afhe, X = AfheRfhe − (0η+λ+1)⊗G) if β = 1.

• Sample A← Z
k×(k+1)m
q , U← Z

m×(k+1)m
q .

• For i ∈ [κ]

– Define the homomorphic evaluation circuit VEvalC′Fi
= MakeVEvalCkt(n, m, q, C′Fi

).

– Compute XC′Fi
= VEvalC′Fi

(X).

– Let fi ∈ Z
k(n+1)
q be the vectorization of XC′Fi

.

– Sample ri ← {0, 1}m.
• Set F = (G−1

r1
(f1), . . . , G−1

rκ
(fκ)).

• Sample H← Zn×κ
q .

• Set aux = (H, Afhe, X, A, {ri}i∈[κ], auxK).
• Compute C = BH−UF + E where E← Dm×κ

Z,σ .

• Compute C′ = PH−AF + (F(K, 1), . . . , F(K, κ)) + E′ where E′ ← Dk×κ
Z,σ′ .

• Output (B, P, C, C′, aux) to A.
• On receiving β′ from A, outputs β′.

It is straightforward to see that if β = 0, then B simulated Hyb4, else it simulated Hyb5. Hence,
Hyb4 ≈c Hyb5 by the IND-CPA security of the GSW FHE scheme.

Hyb6: This is same as Hyb5 except the we sample C′ as C′ ← Zk×κ
q . Note that for f ∈ Fprm,

({ f (K, i)}i∈[κ], auxK) ≈c ({ui : ui ← {0, 1}k}i∈[κ], auxK),

which implies

({⌊q/2⌉ f (K, i) + PRF(K′, i) + E′[·, i]}i∈[κ], auxK) ≈c ({c̃i : c̃i ← Zk
q}i∈[κ], auxK),

where ||E′[·, i]|| ≤
√

λσ′ ≤ B̂ and B̂ is exponentially smaller than q. Therefore, Hyb5 ≈c Hyb6.
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Hyb7: This is same as Hyb6 except that in this hybrid, we sample C ← Zm×κ
q . We prove that

Hyb6 ≈c Hyb7 using the hardness of LWE. Let A be the adversary that distinguishes between
Hyb6 and Hyb7. Then we construct a reduction B that acts as an adversary against LWE. B does
the following.

• Challenger of LWE samples β ← {0, 1} and sends (V, Z = TV + E ∈ Zm×κ
q ), if β = 0

and (V, Z← Zm×κ
q ) if β = 1. Here V← Z

(n+1)×κ
q .

• Sample U′ ← Z
m×(k+1)m
q .

• Sample P← Zk×n
q , B← Zm×n

q .
• Samples s̄← Dn

Z,σs
and set s = (s̄⊺,−1)⊺.

• Sample Āfhe ← Zn×m
q , efhe ← Dm

Z,σfhe
, Rfhe,ℓ ← {0, 1}m×m for all ℓ ∈ [η + λ + 1] and

compute a GSW encryption as follows.

Afhe :=
(

Āfhe
s̄⊺Āfhe + e⊺fhe

)
, X = AfheRfhe − (0η+λ+1)⊗G ∈ Z

(n+1)×m(λ+η+1)
q

where Rfhe = (Rfhe,1, . . . , Rfhe,(λ+η+1)).

• Sample A← Z
k×(k+1)m
q

• For i ∈ [κ]

– Define the homomorphic evaluation circuit VEvalC′Fi
= MakeVEvalCkt(n, m, q, C′Fi

).

– Compute XC′Fi
= VEvalC′Fi

(X).

– Let fi ∈ Z
k(n+1)
q be the vectorization of XC′Fi

.

• Set aux = (H, Afhe, X, A, {ri}i∈[κ], auxK).

• Compute C′ ← Zk×κ
q .

• For i ∈ [k], set ri = G−1(V[·, i]) where V[·, i] is the ith column of V.
• Set F = (G−1

r1
(f1), . . . , G−1

rκ
(fκ)).

• Sample H← Zn×κ
q .

• Compute C = BH + Z + U′F.
• Output (B, P, C, C′, aux) to A.
• On receiving β′ from A, outputs β′.

Since, V is uniformly random, ri are i.i.d uniformly random. Now when Z = TV + E, we
have Z + U′F = TV + E + U′F = (0m×km, TG)F + E + U′F = ((0m×km, TG) + U′)F + E =
UF + E. Here U = (0m×km, TG) + U′ is uniformly random. Hence, in this case, we have
C = BH + Z + U′F = BH + UF + E which is identitcal to distribution of C in Hyb6.
When Z← Zm×κ

q , we have C← Zm×κ
q . Therefore, Hyb6 ≈c Hyb7 by the hardness of LWE.

Hyb8: This is same as Hyb7 except that we undo the changes made in Hyb5. In this hybrid, we compute
c← Enc(Afhe, K). Hyb7 ≈c Hyb8 by the IND-CPA security of the GSW FHE scheme. We skip
the indistinguishability argument as it is the same as that of Hyb4 ≈ Hyb5.

Hyb9: This is same as Hyb8 except that we undo the changes made in Hyb4. We compute A as: Parse
s = (s1, . . . , sn,−1) ∈ Zn+1

q , sample R ← Z
n×(k+1)m
q and E ← Dk×(k+1)m

Z,ρ and compute

A = PR + E + (Ik, 0)⊗ (s1, . . . , sn,−1)⊗ g⊺ ∈ Z
k×(k+1)m
q . Hyb8 ≈c Hyb9 by the hardness of

LWE. We skip the indistinguishability argument as it is the same as that of Hyb3 ≈ Hyb4.
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Hyb10: This is same as Hyb9 except that we undo the changes made in Hyb2. In this hybrid, we sample
S ← Zn×κ

q and set H = S + RF. Hyb9 and Hyb10 are identically distributed. We skip the
indistinguishability argument as it is the same as that of Hyb1 ≈ Hyb2.

Hyb11: This is same as Hyb10 except that we undo the changes made in Hyb1. We sample D← Dk×m
Z,τ

and set P = D · B. We have Hyb10 ≈ Hyb11 from Lemma 3.6 and Lemma 3.8. We skip the
indistinguishability argument as it is the same as that of Hyb0 ≈ Hyb1.

The distribution as in Hyb11 is the same as Dpre
1 . Hence, the proof.

5.3 Extending BDJMMPV PRO Counterexample to Multi-Challenge PRFE

In this section, we adapt the counterexamples from [BDJ+24] against the existence of PRO for all function
families to show that there exist pseudorandom function families for which multi-challenge PRFE is not
possible. Similar to [BDJ+24] we construct the counterexample in two steps:

1. Counterexample in the presence of auxiliary input. In this section, we show that for all
pseudorandom function families there exists auxiliary information, with respect to which, a
multi-challenge PRFE cannot be constructed.

Theorem 5.13. Assuming the existence of sub-exponentially secure, instance hiding witness
encryption for NP, for every function family Fprm = { f : Xprm → Yprm}, where prm consist
of polynomially bounded functions of λ21, including bound s = s(λ) on the size of the circuits
computing any function in the family, satisfying

{ fi}i∈[Qk ], { fi(xj)}i∈[Qk ],j∈[Qc] ≈c { fi}i∈[Qk ], {ui,j ← Y}i∈[Qk ],j∈[Qc], (33)

where xj’s are chosen in such a way that they have enough entropy, there exists a dependent auxiliary
input aux, such that there does not exist any PRFE scheme satisfying prCT security.

Proof. Consider any pseudorandom function family F - for example, a PRF family, with the
input of the form xj = (K, j), and function fi(xj) = PRF(K, (i, j)). Suppose PRFE =
(PRFE.Setup, PRFE.Enc, PRFE.KeyGen, PRFE.Dec) be any functional encryption scheme for
F , with ciphertext of size at most pc(λ, s) and secret key of length at most pk(λ, s), where pc, pk
and p are some polynomials. Let prm′ = (pc, pk, Qc, Qk).
Then, to prove the above theorem, we need to define an efficient sampler that outputs (aux, { fi}i∈[Qk ],
{xi}i∈[Qk ]), such that

(a) (Pre-condition holds) For all PPT adversary A

Dpre
0 := (aux, { fi}i∈[Qk ], { fi(xj)}i∈[Qk ],j∈[Qc])

≈c Dpre
1 := (aux, { fi}i∈[Qk ], {ui,j ← Y}i∈[Qk ],j∈[Qc]) (34)

(b) (Distinguisher for post condition) Define a distinguisher for

Dpost
0 := (aux, { fi}i∈[Qk ], {ctj}j∈[Qc], {ski}i∈[Qk ]),

Dpost
1 := (aux, { fi}i∈[Qk ], {uj ← CT }j∈[Qc], {ski}i∈[Qk ]), (35)

where (fmpk, fmsk) ← PRFE.Setup(1λ, prm), ctj = PRFE.Enc(fmpk, xj) and ski =
PRFE.KeyGen(fmsk, fi), for i ∈ [Qk], j ∈ [Qc], and CT is the ciphertext space of PRFE.

21We drop the subscript prm when not explicitly needed, to keep the notations simple.
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Defining the sampler Samp. Samp(1λ) does the following:

(a) Let Qk and Qc are such that (log |Y|)QkQc > (Qk pk + Qc pc + 1) + λ.
Define the following NP relation

Lprm′ = {(y1,1, . . . , y1,Qc , . . . , yQk ,1, . . . , yQk ,Qc) | ∃ct1, . . . , ctQc , sk1, . . . skQk s.t. (36)
∀ i ∈ [Qk], j ∈ [Qc], yi,j = PRFE.Dec(ski, ctj) and |ctj| ≤ pc and |ski| ≤ pk }.

Thus, the length of any witness can be at most Qk pk + Qc pc. Here, we assume that PRFE
master public key, fmpk, is also a part of the ciphertexts.

(b) Choose f1, . . . , fQk ∈ Fprm, and x1, . . . , xQc ← X , such that the indistinguishability in (33)
holds. For example, for the PRF example above, fi is the PRF function with i hardwired and
xj can be (K, j), where K is chosen uniformly from the PRF key space.

(c) Let stmt = ( f1(x1), . . . f1(xQc), . . . , fQk(x1), . . . , fQk(xQc)).
(d) Define aux = (WE.Enc(stmt, 0), WE.Enc(stmt, 1)).
(e) Output (aux, f1, . . . , fQk , x1, . . . , xQc).

Analyzing the post condition. We first prove the following claim that we will need to moti-
vate/analyze the distinguisher’s strategy.

Claim 5.14. In the absence of ct1, . . . , ctQc or any other terms dependent on {xj}j∈[Qc], for all PPT
adversary A,

({ fi}i∈[Qk ], {ski}i∈[Qk ], WE.Enc(stmt, 0)) ≈c ({ fi}i∈[Qk ], {ski}i∈[Qk ], WE.Enc(stmt, 1))

Proof. We prove the above claim via the following hybrids.

Hyb0: In this hybrid, A gets WE.Enc(stmt, 0).
Hyb1: In this hybrid, stmt is replaced with stmt′, where stmt′ = (u1,1, . . . u1,Qc , . . . , uQk ,1, . . . uQkQc),

where ui,j ← {0, 1}ℓ for all i ∈ [Qk], j ∈ [Qc]. That is, A gets WE.Enc(stmt′, 0).
Indistinguishability follows from pseudorandomness of Fprm. In particular, if A can distin-
guish between the two hybrids, then we can construct a reduction B against pseudorandomness
of F as follows.
(a) Upon input ({ fi}i∈[Qk ], {ci,j}i∈[Qk ],j∈[Qc]), where ci,j = fi(xj), for some xj ∈ X , if

β = 0, else ci,j ← Y , sample (fmpk, fmsk) ← PRFE.Setup(1λ, prm). Compute
ski = PRFE.KeyGen(fmsk, fi), for i ∈ [Qk] . Set stmt = (c1,1, . . . , cQc,Qk).

(b) Send ({ fi}i∈[Qk ], {ski}i∈[Qk ], WE.Enc(stmt, 0)) to A.
(c) In the end, A outputs its guess bit β′. B also outputs β′.
Clearly, if β = 0, B simulates Hyb0, else Hyb1 with A. Hence, B wins with the same
advantage as that of A.

Hyb2: In this hybrid, A is given WE.Enc(stmt′, 1).
Indistinguishability follows from the soundness of WE scheme, since for a randomly chosen
set of {ci,j}i∈[Qk ],j∈[Qc], the probability of this being in Lprm′ is negligible. This follows
from the standard counting argument as follows: since any witness can be of length at most
Qc pc + Qk pk, total number of possible witness is at most 2Qc pc+Qk pk+1. Further, since PRFE
decryption is a deterministic operation, there can be at most 2Qc pc+Qk pk+1 members in the
language Lprm′ . On the other hand, total number of choices for {ci,j ∈ Y}i∈[Qk ],j∈[Qc] is
2(log |Y|)QkQc . Hence, by the choice of the parameters, for a randomly chosen set of {ci,j}i,j,
this being inside the language is ≤ 2−λ.
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Hyb4: In this hybrid, A gets WE.Enc(stmt, 1).
Indistinguishability, again follows from pseudorandomness of F , similar to the indistinguisha-
bility between Hyb0 and Hyb1.

Based on the above claim, the strategy for the distinguisher, Apost, for the post condition is:

(a) Given (aux = (wct0, wct1), { fi}i∈[Qk ], {ctj}j∈[Qc], {ski}i∈[Qk ]), where
ctj = PRFE.Enc(fmpk, xj), if challenge bit β = 0, and ctj ← CT , if β = 1.

(b) Define wt = (ct1, . . . , ctQc , sk1, . . . , skQk).
(c) Compute (µ0, µ1), where µb = WE.Dec(wt, wctb), for b ∈ {0, 1}.
(d) If (µ0, µ1) = (0, 1), then output β′ = 0, else return β′ = 1.

With the above strategy, the adversary outputs β′ = β with probability ≈ 7/8. This is
because if β = 0, then Pr(β′ = 0) = 1 due to the correctness of WE. When β = 1,
then the probability that (µ0, µ1) = (0, 1) ≤ 1/4 due to the above claim. In more de-
tail, Claim 5.14 implies that for a random ct1, . . . , ctQc , wt = (ct1, . . . , ctQc , sk1, . . . , skQk),
Pr[WE.Dec(wt, wct0) = 0] = Pr[WE.Dec(wt, wct1) = 0] = (p ≤ 1, say). Because, otherwise
Apost could distinguish the L.H.S. and R.H.S in the claim, by sampling the random WE ciphertexts
itself. Thus, Pr[WE.Dec(wt, wct0) = 1] = Pr[WE.Dec(wt, wct1) = 1] = (1− p). This implies
that Pr[(µ0, µ1) = (0, 1)] = p(1− p) ≤ 1/4. Hence Pr(β′ = 1) ≥ 3/4. This gives us the above
probability of winning.

Analyzing the pre-condition

Claim 5.15. For all PPT adversary A, Dpre
0 ≈ Dpre

1 , where Dpre
0 and Dpre

1 are as defined in
equation (34).

Proof. We prove the above claim via the following hybrids.

Hyb0: This is Dpre
0 . That is, A gets ((wct0, wct1), { fi}i∈[Qk ], {yi,j = fi(xj)}i∈[Qk ],j∈[Qc]), where

wctb = WE.Enc(stmt, b) for stmt = (y1,1, . . . , yQk ,Qc) and b ∈ {0, 1}.
Hyb1: In this hybrid, yi,j ← Y for all i ∈ [Qk], j ∈ [Qc]. stmt and hence, wct0 and wct1 are also

computed using random yi,j’s.
The indistinguishability between the two hybrids follows from the pseudorandomness of F .

Hyb2: In this hybrid, the challenger samples {ui,j ← Y}i∈[Qk ],j∈[Qc] (independent of yi,j’s
which are also sampled randomly) and sets stmt = (u1,1, . . . , uQk ,Qc), and computes
wctb = WE.Enc(stmt, b) for b ∈ {0, 1}.
Indistinguishability between the two hybrids follows from the instance hiding property of
WE because both (y1,1, . . . , yQk ,Qj) and (u1,1, . . . , uQk ,Qj) are not in Lprm′ with 1− negl(λ)
probability by the same argument as in the proof of claim 5.14 ( in the step Hyb1 ≈ Hyb2).

Hyb3: In this hybrid, stmt is again set to ( f1(x1), . . . , fQk(xQc)) and wctb = WE.Enc(stmt, b)
for b ∈ {0, 1}.
Since {ui,j ← Y}i∈[Qk ],j∈[Qc] are independent of {yi,j ← Y}i∈[Qk ],j∈[Qc], the indistinguisha-
bility between the two hybrids again follow from the pseudorandomness of F .

Finally, the proof completes by observing that Hyb3 corresponds to the distribution Dpre
1 .
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This completes the proof of theorem 5.13.

2. Counterexample without auxiliary input: To remove the auxiliary input aux, the idea is to
output the WE ciphertexts as FE decryptions. However, since WE ciphertext can be polynomial
in its witness size, we cannot perform its computation inside any circuit for which PRFE key is
provided. This is because then PRFE ciphertext size and key size (pc an pk in above discussions)
will be polynomial in Qk and Qc and we will not be able to apply incompressibility arguments
as before. Instead, the sampler itself computes the WE ciphertext, wct, itself, as before, but now
instead of providing it as aux, it divides wct into blocks of fixed lengths and encrypts each block
into different PRFE ciphertexts, and provides an additional PRFE key for a function which simply
outputs a part of its input. For this, to be able to argue the indistinguishability in the pre-condition,
we need pseudorandomness of WE ciphertexts. This can be achieved by combining (plain) WE
with compute-and-compare/lockable obfuscation [WZ17, GKW17]. Note that even though this
increases the total number of PRFE ciphertexts, not all of them will be a part of the witness. Hence,
we will still be able to apply the incompressibility argument as before.
We prove the following theorem.

Theorem 5.16. Assuming the existence of instance hiding WE with pseudorandom ciphertexts,
there exists for all λ, a pseudorandom function family Fprm = { f : Xprm → Yprm} as defined in
equation (33), for which there does not exist a PRFE scheme satisfying prCT security. Here prm
consists of some fixed polynomials in λ.

Proof. To prove the above theorem, we need to define a function class Fprm such that for any
PRFE scheme PRFE for Fprm there exists an efficient sampler Samp that on input (1λ) outputs
({ fi}i∈[Q′k ], {xj}j∈[Q′c]), for some Q′k and Q′c, we will set later, such that

(a) (Pre-condition holds) For all PPT adversary A,

Dpre
0 := ({ fi}i∈[Q′k ], { fi(xj)}i∈[Q′k ],j∈[Q′c]) ≈c Dpre

1 := ({ fi}i∈[Q′k ], {ui,j ← Y}i∈[Q′k ],j∈[Q′c])
(37)

(b) (Distinguisher for post condition) Define a distinguisher for

Dpost
0 := ({ fi}i∈[Q′k ], {ctj}j∈[Q′c], {ski}i∈[Q′k ]), Dpost

1 := ({ fi}i∈[Q′k ], {uj ← CT }j∈[Q′c], {ski}i∈[Q′k ]),

where (fmpk, fmsk)← PRFE.Setup(1λ), ctj = PRFE.Enc(fmpk, xj) and ski = PRFE.KeyGen(fmsk, fi),
for i ∈ [Q′k], j ∈ [Q′c], and CT is the ciphertext space of PRFE.

Defining the sampler. We first describe the ingredients needed to define our sampler.

• Let PRF : K × (Zq ×Zq) → Y be a pseudorandom function that can be computed by
circuits of size sF, where K is the PRF key space.

• Set s = sF.
• Let Fs be a family of pseudorandom functions computable by circuits of size at most s.

Let PRFE be any PRFE scheme for Fs. Let pc = pc(λ, s) and pk = pk(λ, s), for some
polynomials pk and pc, be the bound on the sizes of the ciphertexts and the secret keys,
respectively, of PRFE scheme.

• Let WE be a witness encryption scheme for the language defined in equation (36), wrt the
above PRFE. Thus, witness is of size at most Qc pc + Qk pk. Let pw = pw(Qc pc + Qk pk) be
the bound on the size of the ciphertexts of WE. Thus, pw > Qc, Qk.
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We are now ready to define our sampler, Samp.

Samp(1λ):

• Let Qk and Qc be such that

(log |Y|)QkQc > pcQc + pkQk + λ + 1. (38)

• Let Qw = 2pw/ log |Y|. To keep the notations simple, we assume that log |Y| divides 2pw,
else we can use padding. Also, since pw = poly(λ, log |Y|, Qc, Qk), we assume Qw > Qc.
In the otherwise case, we could set Qw to be the maximum of Qc and 2pw/ log |Y|.

• Set Q′k = Qk + 1 and Q′c = Qw.
• For i ∈ [Qk], define function fi : K×Zq ×Y → Y , such that fi(K, j, c) = PRF(K, (i, j)).
• Define fQk+1 to be a selector function, g such that g(K, j, c) = c. Note that g is a simple

function whose size is smaller than the PRF function and hence, lies in Fs.
• Sample K ← K and do the following:

(a) For all i ∈ [Qk] and j ∈ [Qc], compute yi,j = PRF(K, (i, j)).
(b) Set stmt = (y1,1, . . . , yQk ,Qc).
(c) Compute wct0 = WE.Enc(stmt, 0) and wct1 = WE.Enc(stmt, 1). Set wct =

(wct0, wct1). Let wl be the l-th block of wct, where each block is of length log |Y| bits.
(d) For j ∈ [Qw], set xj = (K, j, wj).

• Output ({ f1, . . . , fQk , g}, {x1, . . . , xQw}).

Distinguisher’s strategy for post condition. Let , Apost be the distinguisher. It is given
({ fi}i∈[Qk ]∪{g}, {ctj}j∈[Qw], {ski}i∈[Qk ]∪{skg}) , where {ski = PRFE.KeyGen(fmsk, fi)}i∈[Qk ],
skg = PRFE.KeyGen(fmsk, g) and {ctj = PRFE.Enc(fmpk, xj)}j∈[Qw], if the challenge bit β = 0,
else {ctj ← CT }j∈[Qw], where (fmpk, fmsk)← PRFE.Setup(1λ), CT is the ciphertext space of
PRFE. Apost does the following:

(a) For l ∈ [Qw], compute w̃l = PRFE.Dec(skg, ctl); .
(b) Set w̃ct = (w̃1, . . . , w̃Qw) and parse it as w̃ct = (w̃ct0, w̃ct1).

(c) Set witness w̃it = (ct1, . . . , ctQc , sk1, . . . , skQk).

(d) Compute b0 = WE.Dec(w̃it, w̃ct0) and b1 = WE.Dec(w̃it, w̃ct1).
(e) If (µ0, µ1) = (0, 1), output β′ = 0,

Else, if any of the above steps fails, or if (µ0, µ1) ̸= (0, 1), output β′ = 1.

Analyzing the distinguisher Apost. When β = 0, it is easy to see by inspection, that Apost

gets (µ0, µ1) = (0, 1) in Step 2d. In particular, firstly, we observe that Apost correctly recovers
WE encryptions of 0 and 1 as w̃ct = (w̃ct0, w̃ct1) due to the correctness of PRFE. Next, we
observe that w̃it formed by first Qc ciphertexts and Qk keys indeed form a valid witness since for
all i ∈ [Qk], j ∈ [Qc], PRFE.Dec(ski, cj) = PRF(K, (i, j)) = yi,j due to the correctness of PRFE.
Hence, by correctness of WE, WE.Dec(w̃it, w̃ct0) = 0 and WE.Dec(w̃it, w̃ct1) = 1. Hence, it
outputs β′ = 0 = β with probability close to 1.
In case of β = 1, since all the Qw ciphertexts are uniformly random, firstly it is unlikely that w̃it
formed by (random) cj’s (along with Qk keys) will form a valid witness for WE ciphertext computed
by Apost. Even if it does, bits 0 and 1 are information theoretically hidden by these ciphertexts.
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Hence, Pr[(µ0, µ1) = (0, 1)] ≤ 1/4. Thus, Apost outputs β′ = 0 with probability at most 1/4.
That is, Pr(β′ = 1|β = 1) ≥ 3/4. This gives overall success probability of adversary close to at
least 7/8.

Analyzing the feasibility of equation (38). We note that the both input and output length of
functions in Fs are independent of either Qc and Qk. Thus, s = sF is independent of Qk and
Qc since it simply computes a PRF. This implies that both pk and pc, which depend on s, are
independent of Qc and Qk as well. Hence, it is possible to set the values of Qc and Qk such that
the equation (38) is satisfied.

Analyzing the pre-condition We prove the following claim.

Claim 5.17. For all PPT adversary Apre, Dpre
0 ≈c Dpre

1 , where Dpre
0 and Dpre

1 are as defined in
equation (37)

Proof. We prove the claim via the following hybrids.

Hyb0: This is Dpre
0 . That is, Apre gets ({ fi}i∈[Qk ] ∪ {g}, {yi,j}i∈[Qk ],j∈[Qw], {y′l}l∈[Qw]), where

yi,j = PRF(K, (i, j)) and y′l = g(K, l, wl) = wl which is the l-th block of wct =
(wct0.wct1) = (WE.Enc(stmt, 0), WE.Enc(stmt, 0)) for stmt = (y1,1, . . . , yQk ,Qc).

Hyb1: In this hybrid, yi,j ← Y for all i ∈ [Qk], j ∈ [Qw]. Note that this also changes the
computation of wct0 and wct1, which are now computed with respect to the statement formed
by these (random) yi,j’s for i ∈ [Qk], j ∈ [Qc].
Indistinguishability from the previous hybrid follows directly from the pseudorandomness of
PRF.

Hyb2: In this hybrid, y′j, for all j ∈ [Qw] is sampled uniformly randomly. In particular, the
challenger samples wct = (wct0, wct1) randomly, which implies y′j’s are random. Observe
that this is the same hybrid as Dpre

1 .
Indistinguishability from the previous hybrid follows by firstly observing that stmt =
(y1,1, . . . , yQk ,Qc), for {yi,j ← Y}i∈[Qk ],j∈[Qc], used in Hyb1, is not in the language with
probability (1− negl(λ)), due to the same arguments as in the proof of claim 5.14. Hence,
the indistinguishability follows due to pseudorandomness of WE ciphertexts.

6 Counter-Measures

In this section we describe our understanding and implications of all known attacks in the literature,
together with counter-measures to prevent them. Attacks by withholding information about B or P
[BUW24] were discussed in Section 2 and can be prevented by ensuring that both B and P are known to
the adversary. All other attacks we are aware of can be broadly categorized as:

1. Malicious sampler attacks: Attacks presented in Sections 4.1, 4.2, 5.1 and 5.2.

2. Contrived functionality attacks: Attack by Branco et al. [BDJ+24][Sec 9] and that in Section 5.2.

We discuss the learning from these attacks and suggest counter-measures against each of these below.
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6.1 Malicious Sampler Attacks

The counter-examples in Sections 4.1, 4.2, 5.1 and 5.2 show that Evasive LWE, both public and private
coin, does not hold for arbitrary samplers, who may choose circuit implementations and error distributions
in a malicious way so as to make the post-condition false even when the pre-condition is true. Since the
intuition was discussed in Section 2, we proceed to detail the counter-measures.

Controlling the Structure of P. Since a primary source of vulnerability is allowing adversarial control
on the structure of P, a natural counter-measure is to limit such control. Here, note that in the real world,
the circuit implementation of F is chosen by the key generator, who is an honest party – this suggests it
better models the real world if the adversary’s control on the structure of P is removed/reduced.

Observe that for functionality, we want to support matrices P which have the structure of AF where F
represents the FHE evaluation circuit for the function f , where f is input to key generation. Here, an
important point is that while f is chosen by the adversary, the circuit implementation of F can be made
canonical and put outside the control of the adversary. We suggest two approaches below.

One approach is to use randomized encodings (RE) [IK02]. The usage of RE in the design of FE
schemes is popular – it dates back to [GVW12] and has been used extensively since then, for instance
in [JLS22]. Typically, RE is used in FE constructions to reduce the degree of the function. In our case
however, we use RE to control the structure of the circuit. In more detail, the key generator for f does
the following: let F represent the FHE evaluation circuit corresponding to f and let F̃(·, r) denote the
randomized encoding of F. The key generator samples r, computes F̃(·, r) and outputs the function secret
key for this circuit 22. The encryptor, given input x, computes the ciphertext as before. Correctness of
the FE is inherited from the correctness of randomized encodings. If we use Yao’s garbled circuits to
instantiate the randomized encoding, then F̃ involves computing SKE encryptions whose circuit can be
fixed in the scheme. Thus, even if the attacker chooses f in some highly structured, adversarial manner,
the function F̃ will have a fixed structure that the adversary cannot manipulate.

Another approach is to use the universal circuit [Val76] to restrict the structure of F and hence P.
Recall that a universal circuit (UC) is a circuit that can be programmed to simulate any Boolean circuit
up to a given size. That is, a universal circuit U takes as input the bit representation of F in addition to
an input x, and produces as output U(F, x) = F(x). Since a universal circuit has fixed structure, this
prevents the adversary from embedding contrived dependencies into P. We observe that technically, there
is also a fixed arithmetic computation that must be performed after the Boolean computation. Namely, we
convert the Boolean output to Zq, divide the outcome by a constant and round to integer, and then multiply
a constant again. However, these operations are fixed computation and the circuit structure remains fixed.

Error Size in Pre-Condition. The attack presented in Section 4.2 crucially exploits the fact that the
error in the pre-condition is larger than that in the post-condition. Wee’s original paper introducing
evasive LWE [Wee22] intuited that this should not be the case and suggested choosing a larger error in the
post-condition than in the pre-condition for a more conservative assumption. However, to the best of our
knowledge, no attack was known to concretely exploit such a setting of parameters before our work. A
natural fix to prevent such difficulties is to ensure that the error in the post-condition is as large or larger
than that in the pre-condition.

Modifying Evasive LWE. Here, we suggest a more stringent version of evasive LWE with the goal of
ensuring that the broken schemes fail to admit a proof under this modified assumption, while the unbroken
ones do admit such a proof. We illustrate this using the scheme of AKY [AKY24a] – the analysis for
[BDJ+24] is similar.

22Note that r need not be hidden in our setting as we do not require the security properties of randomized encodings.

69



Assumption 6.1 (Stringent Evasive LWE). Let n, m, t, m′, q ∈ N be parameters and λ be a security
parameter. Let χ, χ′ and χ′′ be parameters for Gaussian distributions. Let Samp be a PPT algorithm that,
on input 1λ, outputs

P ∈ Zn×t
q , aux ∈ {0, 1}∗

The modified Evasive LWE assumption says that, for every PPT Samp,

If, (i)(P, SP + EK′, K′, aux)
c≈ (P, SP + E′, K′, aux) and

(ii)(B, P, SB + E, SP + E′, aux)
c≈ (B, P, C0, C′, aux)

Then, (B, P, SB + E, K, aux)
c≈ (B, P, C0, K, aux)

where (P, aux)← Samp(1λ), B← Zn×m
q , C0 ← Zm′×m

q , C′ ← Zm′×t
q ,

E← Dm′×m
Z,χ , K′ ← Dm×t

Z,χ′′ , E′ ← Dm′×t
Z,χ′ , S← Zm′×n

q

K← B−1(P) with standard deviation χ′′.

In the single-challenge setting, m′ = 1 whereas in the multi-challenge setting, m′ can be an arbitrary
polynomial in the security parameter.

Intuitively, we added an extra condition to check whether it is safe to replace the correlated error with
i.i.d error given auxiliary information. We discuss the reasoning behind this in detail below, using AKY
as the running example.

Why Evasive LWE is too strong as stated: As seen in Section 5.1, in the AKY construction, the term
s⊺P + e⊺P, given aux, can be simplified to:

∀i ∈ [Q], zi = c⊺ ·Ki − c⊺att ·H
Fi
Aatt,X

= (s⊺B + e⊺B) ·Ki − (s⊺(Aatt − (1, bits(X))⊗G) + e⊺att) ·H
Fi
Aatt,X

= s⊺BKi + e⊺BKi − s⊺AattH
Fi
Aatt

+ s⊺VEvalC′Fi
(bits(X))− e⊺attH

Fi
Aatt,X

= s⊺AFi + e⊺BKi − s⊺AFi + Fi(x, sd)− e⊺fheRC′Fi
− e⊺attH

Fi
Aatt,X

= fi(x) ⌊q/2⌉+ PRF(sd, ri) + e⊺BKi︸ ︷︷ ︸
Noise by ELWE

− e⊺fheRC′Fi
− e⊺attH

Fi
Aatt,X︸ ︷︷ ︸

Evaluation Noise

The usage of evasive LWE allows to replace the error e⊺BKi by a fresh i.i.d noise term e⊺Pi
in the

pre-condition. Thus, when analyzing the distribution in the pre-condition, this i.i.d noise term is used to
break the correlation between PRF(sd, ri) and e⊺fheRC′Fi

and flood the leakage contained in the latter term.
Subsequently, one can argue that fi(x) ⌊q/2⌉+ PRF(sd, ri) is pseudorandom over the entire space as
required by the proof.

However, in the real world, as shown in Claim 5.3, the circuit representation used to compute AFi

can be chosen so that ∀i ∈ [Q], PRF(sd, ri)[1]− e⊺fheRC′Fi
[1] = 0 mod 2 with probability ≥ 1/2. Since

fi(x) is known by correctness, letting z̃i = zi − fi(x) ⌊q/2⌉, we get:

z̃i = fi(x) ⌊q/2⌉+ PRF(sd, ri) + e⊺BKi − e⊺fheRC′Fi
− e⊺attH

Fi
Aatt,X − fi(x) ⌊q/2⌉

Then, due to Claim 5.3, we get that with probability ≥ 1/2,

∀i ∈ [Q], z̃i[1] = e⊺BKi[1]− e⊺attH
Fi
Aatt,X[1] mod 2.

This in turn, leads to the attack. The core issue is that e⊺BKi does not have enough entropy since Ki is
very wide and known publicly, hence it does not do a good job at flooding.
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How the Modification Helps. Note that given the extra check in the pre-condition, we would need to
explicitly check that the distribution s⊺AFi + e⊺K′i (for random e⊺, K′i) can be conjectured computationally
indistinguishable from the distribution s⊺AFi + e⊺Pi

for i.i.d e⊺Pi
in the presence of aux. For a contrived

choice of AFi , we have seen that this conjecture does not hold – this would prevent the proof from going
through. Similarly, when the pre-condition error is chosen larger as in the attack of Section 4.2, the above
check will fail.

The AKY fix. Subsequent to these attacks, AKY fixed their construction so as to perform a modulus
reduction step which gets rid of the problematic evaluation noise and replaces it with some rounding noise
which cannot be correlated with the PRF output as before. We discuss why the revised AKY construction
does admit a proof under the stricter assumption above.

In more detail, in the revised AKY construction, the term s⊺P + e⊺P (after simplification using aux as
discussed above) in the real world now becomes:

PRF(sd, ri) + e⊺B ·K− (M · e⊺s,high + e⊺s,low + M · errhigh + errlow)

where errhigh, errlow ∈ {0, 1}ℓ is rounding error, e⊺s,high = s⊺
⌊

Ahigh
M

⌋
−
⌊

s⊺ Ahigh
M

⌋
and e⊺s,low =

s⊺
⌊

Alow
M

⌋
−
⌊

s⊺ Alow
M

⌋
, and Ahigh, Alow are public matrices which do not encode any secrets.

Importantly, note that the evaluation error (M · e⊺s,high + e⊺s,low + M · errhigh + errlow) cannot be
arbitrarily made to depend on the PRF seed/value and can be conjectured to be flooded by PRF(sd, ri)
by setting the parameters appropriately. We emphasize the subtle circularity: the error depends on s
which is used to hide the PRF seed in the FHE ciphertext, and the PRF output is used to flood the error,
so we cannot claim that the new error is independent of the PRF seed. However, we can conjecture
computational flooding since the new error seems very hard to exploit by the adversary.

Assuming computational flooding as above, the correlated evasive noise e⊺BKi is not required to break
any dependence between the PRF output and the FHE evaluation noise and fi(x) ⌊q/2⌉+ PRF(sd, ri)
can be conjectured to be pseudorandom as desired in the original formulation of evasive LWE. In this
setting, we can replace e⊺B ·K by i.i.d error in the pre-condition and a proof under this assumption better
captures the real world.

HLL Assumption. We note that the modified evasive LWE also captures the insecurity of the evasive
circular LWE assumption used in [HLL23] by the same argument as above. In particular, we can see that
the first condition of the pre-condition does not hold because of the same reason as [AKY24a]. This can
be seen by replacing fi(x) ⌊q/2⌉+ PRF(sd, ri) with fi(s) in the above analysis. However, the scheme of
[HLL23] can be shown to satisfy the stricter pre-condition defined above, and is indeed not broken by the
attack. Intuitively, this is because in the scheme of [HLL23], the attacker never recovers any value in the
zeroizing regime, and hence cannot exploit the problematic correlations. Thus, the modified assumption
separates the broken and unbroken schemes, by admitting a proof for the latter and denying a proof for the
former.

The Hope. The strengthening suggested above would insert an extra check for when a “correlated
flooding with mask” term (say LWE with correlated error) can be conjectured indistinguishable to a
“i.i.d flooding with mask” term (say LWE) and would perform the replacement only if this appears safe.
The extra check would fail for the attack scenarios discussed in the present work, such as the “malicious
sampler” attacks as well as “pre-condition error is larger” attacks, cautioning about insecurity. While this
extra check introduces new “flooding with mask” style conjectures, it captures more closely the subtleties
in the noise distributions of these constructions and appears to admit a proof only for constructions that
are secure.
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Currently, the vulnerabilities of evasive LWE are still being discovered but our hope is that as
we stabilize in our understanding of counter-examples against evasive LWE, we can find meaningful
strengthening of the pre-condition so that the security of the scheme is better fitted with the assumption.

6.2 Contrived Functionality Attacks.

The attack by Branco et al. [BDJ+24][Sec 9] and that in Section 5.2 show that there exists a contrived
“self-referential” functionality for which pseudorandom obfuscation or compact functional encryption
satisfying simulation style security cannot exist. We believe this result is analogous to the impossibilities
known for the random oracle model [CGH04] or VBB obfuscation [BGI+01] and can be handled
using the same high level approach as in these settings, as discussed in Section 2. The pseudorandom
functionalities that are useful for applications, such as computing blind garbled circuits or FE ciphertexts
[AKY24a, AKY24c], are quite natural and do not fall prey to such attacks. We believe that the proof from
evasive LWE for these functionalities provides strong evidence for real world security of the schemes,
similar to proofs in the ROM.

We additionally remark that the incompressibility style arguments underlying these counter-examples
do not apply in the single challenge setting. Translated into the evasive LWE assumption, single-challenge
means that S is a vector and not a matrix. Hence, one principled way to avoid these counter-examples is
to use evasive LWE in the single-challenge regime.

7 Compact Functional Encryption from Correlated Flooding (or Fixed-Bit
Evasive LWE)

In this section, we study a new modification of evasive LWE, which we call correlated flooding (or fixed-bit
evasive LWE23). Intuitively, the idea in evasive LWE is that if the term SP + E′ in the pre-condition can be
proven pseudorandom over the entire space (given other terms), then the post-condition can be conjectured
secure. In this section, we show, perhaps somewhat surprisingly, that if SP + E′ is pseudorandom not
over the entire space but only over half the space, then it can be used to build full fledged FE for P.

We remark that the term “correlated flooding” is generic and meant to capture the intuition that a
flooding term, carefully generated using a PRF so as to avoid problematic dependencies, can be conjectured
to flood some leaky noise terms revealed during decryption. While fixed-bit evasive LWE is a more
intuitive name (to us), we believe it is misleading to have the word “evasive” in the assumption since
it explicitly allows the adversary to compute values in the zeroizing regime. The construction closely
follows the outline of the construction of compact FE for pseudorandom functionalities by [AKY24a].

7.1 Correlated Flooding (or Fixed-Bit Evasive LWE) Assumption

Assumption 7.1 (Correlated Flooding). Let n, m, t, n′, q ∈N be parameters and λ be a security parameter.
Let χ and χ′ be parameters for Gaussian distributions. Let Samp be a PPT algorithm that outputs

S ∈ Zn′×n
q , P ∈ Zn×t

q , aux ∈ {0, 1}∗

on input 1λ. We define the following advantage functions:

Advpre
A0

(λ)
def
= Pr

[
A0(B, SB + E, SP + E′, aux) = 1

]
− Pr

[
A0(B, C0, T + C′, aux) = 1

]
Advpost

A1
(λ)

def
= Pr[A1(B, SB + E, K, aux) = 1]− Pr

[
A1(B, C0, K′, aux) = 1

]
23As we describe next, the randomness in pre-condition is only over half the space, thus fixing a bit (MSB) to zero.

72



where T ∈ Zn′×t
q is a matrix computed by an efficient deterministic algorithm Compute as T def

=
Compute(aux) and

(S, P, aux)← Samp(1λ), B← Zn×m
q , C0 ← Zn′×m

q , C′ ← [−q/4, q/4]n
′×t

E← Dn′×m
Z,χ , E′ ← Dn′×t

Z,χ′

K← B−1(P) with standard deviation O(
√

m log(q)),

K′ ←
[

B
C0

]−1 ([ P
T + C′

])
with standard deviation O(

√
m log(q))

We say that the correlated flooding assumption holds for a particular Samp if for every PPT adversary
A1, there exists another PPT A0 and a polynomial Q(·) such that

Advpre
A0

(λ) ≥ Advpost
A1

(λ)/Q(λ)− negl(λ).

Note that if each entry of C′ is sampled from Zq, the above assumption corresponds to the evasive
LWE assumption. We also note that when n′ is large enough (say, n′ > m), there is no K′ satisfying the

equation
[

B
C0

]
K′ =

[
P

T + C′

]
. The assumption is defined only for small n′. In our case, we use the

assumption only for the case of n′ = 1. Indeed, for such small n′, the attack from Section 5.3, which
requires large n′ no longer applies.

Adapting Lemma from ARYY23. Next, we adapt a lemma from [ARYY23] to Correlated Flooding
assumption.

Lemma 7.2. Let n, m, t, n′, q ∈N be parameters and λ be a security parameter. Let χ and χ′ be Gaussian
parameters. Let Samp be a PPT algorithm that outputs

S ∈ Zn′×n
q , aux = (aux1, aux2) ∈ S × {0, 1}∗ and P ∈ Zn×t

q

for some set S . Furthermore, we assume that there exists a public deterministic poly-time algorithm
Reconstruct that allows to derive P from aux2, i.e. P = Reconstruct(aux2).

We introduce the following advantage functions:

Advpre′

A (λ)
def
= Pr

[
A(B, SB + E, SP + E′, aux1, aux2) = 1

]
− Pr

[
A(B, C0, T + C′, c, aux2) = 1

]
Advpost′

A (λ)
def
= Pr[A(B, SB + E, K, aux1, aux2) = 1]− Pr

[
A(B, C0, K′, c, aux2) = 1

]
where T ∈ Zn′×t

q is a matrix computed by an efficient deterministic algorithm Compute as

T def
= Compute(c, aux2) and

(S, aux = (aux1, aux2), P)← Samp(1λ), B← Zn×m
q ,

C0 ← Zn′×m
q , C′ ← [−q/4, q/4]n

′×t, c← S , E← Dn′×m
Z,χ , E′ ← Dn′×t

Z,χ

K← B−1(P) with standard deviation O(
√

m log(q))

K′ ←
[

B
C0

]−1 ([ P
T + C′

])
(39)

Then, under the Correlated Flooding Assumption (cited above in Assumption 7.1) with respect to
Samp, if Advpre′

A (λ) is negligible for any PPT adversary A, so is Advpost′

A (λ) for any PPT adversary A.

73



Proof. The proof follows the same outline as Lemma 3.4 of [ARYY23] but we detail it for completeness.
By the assumption, we have (B, SB + E, SP + E′, aux1, aux2) ≈c (B, C0, T + C′, c, aux2). This in
particular implies (aux1, aux2) ≈c (c, aux2) since we discard the terms making the task of distinguishing
the distributions harder. This further implies (B, C0, T + C′, aux1, aux2) ≈c (B, C0, T + C′, c, aux2)
since adding terms (B, C0, T + C′) where B, C0, C′ are uniformly random and T can be computed
efficiently from the given terms, T = Compute(aux1, aux2) on the L.H.S and T = Compute(c, aux2)
on the R.H.S, does not make the task of distinguishing the distributions easier. We therefore establish
(B, SB + E, SP + E′, aux1, aux2) ≈c (B, C0, T + C′, aux1, aux2). Applying the correlated flooding
assumption with respect to Samp defined in the statement, we have (B, SB + E, K, aux1, aux2) ≈c
(B, C0, K′, aux1, aux2). To complete the proof, it suffices to show

(B, C0, K′, aux1, aux2) ≈c (B, C0, K′, c, aux2),

where K′ is sampled as Equation (39) with T being T = Compute(aux1, aux2) on the L.H.S and
T = Compute(c, aux2) on the R.H.S. To show this, we recall that the precondition implies (aux1, aux2) ≈c
(c, aux2). We then observe that (B, C0, K′) can be sampled publicly given aux2. This suffices to complete
the proof, since having extra terms that can be computed efficiently from the given terms does not make

the task of distinguishing the distributions easier. To sample (B, C0, K), we first sample
[

B
C0

]
with the

trapdoor as
([

B
C0

]
, τ

)
← TrapGen(1n+n′ , 1m, q), then we compute P = Reconstruct(aux2) and T

and finally sample K′ by using the trapdoor.

In Section 7.3.1 we show that if we restrict ourselves to the particular samplers we consider for the
security proof of our FE in the following section (Section 7.2), fixed-bit evasive LWE implies evasive
LWE.

New Attacks? Note that the original intuition for evasive LWE was that pseudorandomness of SP + E′

over the entire space will ensure that zeroizing attacks do not apply. However, as we saw in previous
sections, zeroizing attacks can be developed in certain cases even for evasive LWE and one must apply
counter-measures to ensure safety against these. Given the countermeasures, if one conjectures security
of vanilla evasive LWE, then can the same countermeasures also provide evidence for security in the
half-space regime?

We currently do not know any additional attack strategies on this variant of the assumption as
compared to the standard evasive LWE assumption. We already studied countermeasures for attacks
against evasive LWE in Section 6, here we examine other avenues of attack that have been studied in the
literature and discuss why they do not seem to apply to our setting.

• Attacks against Tensor Structure: The work of Jain et al. (JLLS) [JLLS23] attacked the tensor
structure which was used crucially in the construction of Devdas et al. [DQV+21]. In particular,
JLLS showed that Kilian randomization on highly tensored matrices does not kill the tensor structure,
and this structure can be exploited for attacks. This attack does not appear to apply to our setting
since we do not rely on tensors.

• Linearization and Sum-Of-Squares. Linearization attacks, as the name suggests, are attacks where
a system of high degree polynomial equations are linearized and then solved using standard
techniques like Gaussian elimination. The sum-of-squares paradigm has been used to develop
attacks [LV17, BBKK18, BHJ+19] against general expanding families of low-degree polynomials
over the reals. These attacks do not seem to apply to the current setting because there aren’t enough
equations for the former class of attacks and the latter class of attacks requires low degree equations
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over the reals, whereas our PRF computation does not suffer any degree restriction, since we do not
use pairings.

• Attack against Gay-Pass Scheme. The Gay-Pass assumption [GP21] asserts that if an encryption
scheme is CPA secure when the adversary has access to certain leakage on the encryption randomness
(called “Shielded Randomness Leakage”), then additionally publishing an encrypted key cycle does
not hurt security. Counterexamples developed against this conjecture [HJL21] do not apply to our
setting since the specific structure of their assumption is very different from ours.

7.2 Construction of Compact FE

In this section we provide our construction of functional encryption for function family FL(λ),ℓ(λ),d(λ) =

{ f : {0, 1}L → {0, 1}1×ℓ}, where the depth of a function f ∈ F is at most d(λ) = poly(λ).

Ingredients. Below, we list the ingredients for our construction.

1. A pseudorandom function PRF : {0, 1}λ × {0, 1}λ → [−q/4 + B, q/4− B]1×ℓ that can be
evaluated by a circuit of depth at most dep(λ) = poly(λ). Here B is chosen to be superpolynomially
smaller than q/4. We note that for our choice of B the statistical distance between the uniform
distribution over [−q/4, q/4] and [−q/4 + B, q/4− B] is negligible.

Setup(1λ, 1L)→ (mpk, msk). The setup algorithm does the following.

− Set LX = m(λ + L)(n + 1) ⌈log q⌉, sample Aatt ← Z
(n+1)×(LX+1)m
q and (B, B−1

τ ) ←
TrapGen(1n+1, 1mw, q), where w ∈ O(log q).

− Fix a constant C ∈ Z such that C divides q, and satisfies the constraints given by parameter
settings provided later.

− Output mpk := (Aatt, B, C)24 and msk := B−1
τ .

KeyGen(msk, f )→ sk f . The key generation algorithm does the following.

− Sample r← {0, 1}λ and define function F = F[ f , r] with f , r hardwired as follows.
On input (x, sd), compute and output f (x) ⌊q/2⌉+ PRF(sd, r) ∈ Z1×ℓ

q .
Using the fact that the PRF computation and f (x) can be computed by a circuit of depth at most
dep(λ) = poly(λ), the function F can be computed by a circuit of depth d = poly(dep).

− Define functions Fhigh and Flow such that F(x, sd) = C · Fhigh(x, sd) + Flow(x, sd). Observe
that both C · Fhigh and Flow can also be computed by a circuit of depth d = poly(dep).

− Define the homomorphic evaluation circuit VEvalFhigh = MakeVEvalCkt(n, m, q, C · Fhigh) and
VEvalFlow = MakeVEvalCkt(n, m, q, C · Flow). From Lemma 3.15, the depth of both VEvalFhigh

and VEvalFlow is dO(log m log log q) + O(log2 log q).

− Compute HFhigh
Aatt

= MEvalC(Aatt, VEvalFhigh) ∈ Z
(LX+1)m×ℓ
q ,

HFlow
Aatt

= MEvalC(Aatt, VEvalFlow) ∈ Z
(LX+1)m×ℓ
q .

− Compute AFhigh = Aatt ·H
Fhigh
Aatt

and AFlow = Aatt ·HFlow
Aatt

.

− Compute AF = C ·
⌊

AFhigh

C

⌋
+

⌊
AFlow

C

⌋
and sample K← B−1

τ (AF).

24All the algorithms take mpk implicitly.
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− Output sk f = (K, r).

Enc(mpk, x)→ ct. The encryption algorithm does the following.

− Sample s̄← Dn
Z,σs

and set s = (s̄⊺,−1)⊺.
− Sample eB ← Dmw

Z,σB
and compute c⊺B := s⊺B + e⊺B.

− Sample sd ← {0, 1}λ, Āfhe ← Zn×m
q , efhe ← Dm

Z,σfhe
, Ri ← {0, 1}m×m for all 1 ≤ i ≤

(λ + L) and compute a GSW encryption as follows.

Afhe :=
(

Āfhe
s̄⊺Āfhe + e⊺fhe

)
, X = AfheR− (x, sd)⊗G ∈ Z

(n+1)×m(λ+L)
q

where R = (R1, . . . , R(λ+L)). Let LX = m(λ + L)(n + 1) ⌈log q⌉ be the bit length of X.
− Compute a BGG+ encoding as follows.

eatt ← D(LX+1)m
Z,σatt

, c⊺att := s⊺(Aatt − (1, bits(X))⊗G) + e⊺att

− Output ct = (cB, catt, X).

Dec(sk f , ct)→ y. The decryption algorithm does the following.

− Parse sk f = (K, r) and ct = (cB, catt, X).

− Compute HFhigh
Aatt,X = MEvalCX(Aatt, VEvalFhigh , X) and HFlow

Aatt,X = MEvalCX(Aatt, VEvalFlow , X).

− Compute z := c⊺B ·K−
(

C ·
⌊

c⊺att ·H
Fhigh
Aatt,X

C

⌋
+

⌊
c⊺att ·HFlow

Aatt,X

C

⌋)
.

− For i ∈ [ℓ], set yi = 0, if zi ∈ [−q/4, q/4) and yi = 1 otherwise, where zi is the i-th bit of z.
− Output y = (y1, . . . yℓ).

Parameters. We set our parameters as follows.

β = 2O(dep·log3 λ), q = 210λβ, n = poly(λ, dep), m = O(n log q), τ = O
(√

(n + 1) log q
)

,

C = 24λβ, B = 29λβ, σfhe = σatt = σs = σ = 22λ, σB = 28λβ, σ1 = 27λβλω(1).

Efficiency. Using the above set parameters, we have

|mpk| = L · poly(dep, λ), |sk f | = ℓ · poly(dep, λ), |ct| = L · poly(dep, λ).

7.2.1 Correctness.

We analyse the correctness of our scheme below.

− First, we note that

c⊺att ·H
Fhigh
Aatt,X = (s⊺(Aatt − (1, bits(X))⊗G) + e⊺att)H

Fhigh
Aatt,X

= s⊺AattH
Fhigh
Aatt
− s⊺VEvalFhigh(bits(X)) + e⊺attH

Fhigh
Aatt,X

= s⊺AFhigh − C · Fhigh(x, sd) + e⊺fheRFhigh + e⊺attH
Fhigh
Aatt,X

= s⊺AFhigh − C · Fhigh(x, sd) + e⊺Fhigh
.

where VEvalFhigh(bits(X)) = AfheRFhigh −
(

0n×ℓ

Fhigh(x, sd)

)
and e⊺Fhigh

= e⊺fheRFhigh + e⊺attH
Fhigh
Aatt,X.
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− Similarly, c⊺att ·HFlow
Aatt,X = s⊺AFlow − C · Flow(x, sd) + e⊺Flow

,

where VEvalFlow(bits(X)) = AfheRFlow −
(

0n×ℓ

Flow(x, sd)

)
and e⊺Flow

= e⊺fheRFlow + e⊺attH
Flow
Aatt,X.

− Following analyses hold for both b = high and b = low.
By Lemma 3.15, ∥∥∥R⊺

Fb

∥∥∥ ≤ (m + 2)d ⌈log q⌉ ·maxi∈[λ+L]
∥∥R⊺

i

∥∥
≤ (m + 2)d ⌈log q⌉ ·m
≤ (m + 2)d+1O(log q) ≤ β.

and using the depth bound from Section 3.7, we have,∥∥∥(HFb
Aatt

)⊺∥∥∥ ≤ (m + 2)
dVEvalFb ⌈log q⌉ ≤ 2d·O(log λ) ≤ β.

where dVEvalFb
denotes the depth of the circuit VEvalFb . Thus ∥eFb∥ ≤ 22λ+1

√
λβ ≤ 23λβ

− Based on above, we have ,

C ·
⌊

c⊺att ·H
Fhigh
Aatt,X

C

⌋
= C ·

⌊
s⊺AFhigh − C · Fhigh(x, sd) + e⊺Fhigh

C

⌋
(40)

= C ·
⌊

s⊺AFhigh + e⊺Fhigh

C

⌋
− C · Fhigh(x, sd)

= C ·
⌊

s⊺AFhigh

C

⌋
− C · Fhigh(x, sd)+C · ẽ⊺h,

where ∥ẽ⊺h∥ ≤ 1, since
∥∥eFhigh

∥∥ ≤ 23λβ < C

By similar analysis,⌊
c⊺att ·HFlow

Aatt,X

C

⌋
=

⌊
s⊺AFlow − C · Flow(x, sd) + e⊺Flow

C

⌋
(41)

=

⌊
s⊺AFlow + e⊺Flow

C

⌋
− Flow(x, sd)

=

⌊
s⊺AFlow

C

⌋
− Flow(x, sd)+ẽ⊺l ,

where ∥ẽ⊺l ∥ ≤ 1, since ∥eFlow∥ ≤ 23λβ < C
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− Using the above, the Step 7.2 of decryption outputs

z = c⊺B ·K−
(

C ·
⌊

c⊺att ·H
Fhigh
Aatt,X

C

⌋
+

⌊
c⊺att ·HFlow

Aatt,X

C

⌋)
(42)

= s⊺AF + e⊺BK−
(

C ·
⌊

s⊺AFhigh

C

⌋
− C · Fhigh(x, sd) +

⌊
s⊺AFlow

C

⌋
− Flow(x, sd)

)
−C · ẽ⊺h + ẽ⊺l

= s⊺
(

C ·
⌊

AFhigh

C

⌋
+

⌊
AFlow

C

⌋)
+ e⊺BK−

(
C · s⊺

⌊
AFhigh

C

⌋
+ s⊺

⌊
AFlow

C

⌋)
+ C · Fhigh(x, sd) + Flow(x, sd) + C · e⊺s,high + e⊺s,low−C · ẽ⊺h + ẽ⊺l

= F(x, sd) + C · e⊺s,high + e⊺s,low−C · ẽ⊺h + ẽ⊺l + e⊺BK

(since F(x, sd) = C · Fhigh(x, sd) + Flow(x, sd))
= f (x) ⌊q/2⌉+ PRF(sd, r) + C · e⊺s,high + e⊺s,low−C · ẽ⊺h + ẽ⊺l + e⊺BK

In the above, e⊺s,high = s⊺
⌊

AFhigh

C

⌋
−
⌊

s⊺AFhigh

C

⌋
and e⊺s,low = s⊺

⌊
AFlow

C

⌋
−
⌊

s⊺AFlow

C

⌋
are errors

due to rounding. Let us analyze the sizes of these errors.

e⊺s,high = s⊺
⌊

AFhigh

C

⌋
−
⌊

s⊺AFhigh

C

⌋
= s⊺

⌊
AFhigh

C

⌋
−
⌊

s⊺
((

AFhigh

C
−
⌊

AFhigh

C

⌋)
+

⌊
AFhigh

C

⌋)⌋
= s⊺

⌊
AFhigh

C

⌋
−
⌊

s⊺
(

AFhigh

C
−
⌊

AFhigh

C

⌋)⌋
− s⊺

⌊
AFhigh

C

⌋

= −

s⊺
(

AFhigh

C
−
⌊

AFhigh

C

⌋)
︸ ︷︷ ︸

<1


=⇒

∥∥∥e⊺s,high

∥∥∥ ≤ n · ∥s∥

Similarly,

e⊺s,low = s⊺
⌊

AFlow

C

⌋
−
⌊

s⊺AFlow

C

⌋
= s⊺

⌊
AFlow

C

⌋
−
⌊

s⊺
((

AFlow

C
−
⌊

AFlow

C

⌋)
+

⌊
AFlow

C

⌋)⌋
= s⊺

⌊
AFlow

C

⌋
−
⌊

s⊺
(

AFlow

C
−
⌊

AFlow

C

⌋)⌋
− s⊺

⌊
AFlow

C

⌋

= −

s⊺
(

AFlow

C
−
⌊

AFlow

C

⌋)
︸ ︷︷ ︸

<1


=⇒

∥∥∥e⊺s,low

∥∥∥ ≤ n · ∥s∥

− Thus, from our parameter setting, we have
∥∥∥PRF(sd, r) + C · e⊺s,high + e⊺s,low−C · ẽ⊺h + ẽ⊺l + e⊺BK

∥∥∥ ≤
∥PRF(sd, r)∥+C

∥∥∥e⊺s,high

∥∥∥+ ∥∥∥e⊺s,low

∥∥∥+C∥ẽ⊺h∥+ ∥ẽ
⊺
l ∥+ ∥e

⊺
BK∥ < (q/4− B) + B < q/4. In par-
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ticular, C
∥∥∥e⊺s,high

∥∥∥+ ∥∥∥e⊺s,low

∥∥∥+C∥ẽ⊺h∥+ ∥ẽ
⊺
l ∥+ ∥e

⊺
BK∥ ≤ Cn∥s∥+ n∥s∥+C + 1+ λσBτmw =

(C + 1)(n∥s∥+ 1) + λσBτmw ≤ 28λ+O(log λ)β < B. Hence, from Step 4 of decryption we have
that Dec outputs f (x) correctly with probability 1.

7.3 Proof of Security of Compact FE

Theorem 7.3. Suppose correlated flooding assumption (Assumption 7.1) for the sampler defined in Figure
1 and LWE (Assumption 3.11) holds. Then there exists a FE scheme satisfying VerSel-INDr security.

Proof. Suppose the adversaryA with randomness coinsA queries for challenge inputs x0, x1 and functions
f1, . . . , fQ. To prove the very selective security as per Definition 3.2, we want to show that

D0 :=

auxA, mpk = (Aatt, B, C), c⊺B = s⊺B + e⊺B,
c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att,

X = AfheR− (xb, sd)⊗G, {Ki, ri}i∈[Q]

 ≈c D1 :=


auxA, mpk = (Aatt, B, C), cB ← Zmw

q ,

catt ← Z
(LX+1)m
q

X← Z
(n+1)×m(λ+L)
q , {K′i, ri}i∈[Q]


(43)

where b is the challenge bit chosen by the challenger and auxA = ( f1, . . . , fQ, x0, x1, coinsA, r1, . . . , rQ, Aatt).
On the R.H.S, K′i is generated as

K′i ←
[

B
c⊺B

]−1 ([ AFi

t⊺i + c′i
⊺

])
, t⊺i = C ·

⌊
c⊺att ·H

Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉ , c′i ← [−q/4, q/4]ℓ.

Here, for i ∈ [Q], we have ri ← {0, 1}λ, Fi = F[ fi, ri] and AFi = C ·
⌊

AFi,high

C

⌋
+

⌊
AFi,low

C

⌋
as defined

in the construction. Showing Equation (43) suffices to prove the theorem, as the distribution on the
right-hand side is independent of b, which can be seen by observing that fi(x0) = fi(x1) due to the
constraints imposed on the adversary.
We prove the security in two steps.

1. Step 1. We first show that to prove Equation (43), it suffices to prove aux, B, c⊺B = s⊺B + e⊺B, X = AfheR− (xb, sd)⊗G,

c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att, {c
⊺
1,i = s⊺AFi + e⊺1,i}i∈[Q]

 (44)

≈c

aux, B, c⊺B ← Zmw
q , X← Z

(n+1)×m(λ+L)
q ,

c⊺att ← Z
1×(LX+1)m
q , {c⊺1,i = C ·

⌊
c⊺att ·H

Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉︸ ︷︷ ︸

=t⊺i

+(c′i)
⊺}i∈[Q]


(45)

where aux = ( f1, . . . , fQ, x0, x1, coinsA, r1, . . . , rQ, Aatt, C) and e1,i ← Dℓ
Z,σ1

.

2. Step 2. We prove Equation (44) ≈c Equation (45).
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Samp(1λ, coinspriv
Samp = (sd, R, b))

Do the following:

− Invoke the adversary A with coinsA to obtain f1, . . . , fQ, x0, x1.

− Fix a constant C as defined in the Setup algorithm.

− Sample s̄← Dn
Z,σs

, and set s = (s̄⊺,−1)⊺.

− Sample Āfhe ← Zn×m
q , Aatt ← Z

(n+1)×(LX+1)m
q ,

− Sample r1, . . . , rQ ← {0, 1}λ,

− Sample efhe ← Dm
Z,σfhe

, eatt ← D((LX+1)m)
Z,σatt

,

− Compute X =

(
Āfhe

s̄⊺Āfhe + e⊺fhe

)
R− (xb, sd)⊗G, c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att

− Define {Fi}i∈[Q] and compute AF1 , . . . , AFQ as defined in KeyGen algorithm.

Set S = s⊺

aux1 =
(
X, c⊺att

)
aux2 = ( f1, . . . , fQ, x0, x1, coinsA, r1, . . . , rQ, Aatt, C)
P = [AF1 || . . . ||AFQ ]

Compute(aux) = T = [t⊺1∥ · · · ∥t
⊺
Q], where for all i ∈ [Q],

t⊺i = C ·

 c⊺att ·H
Fi,high
Aatt,X

C

+

 c⊺att ·H
Fi,low
Aatt,X

C

+ fi(xb) ⌊q/2⌉

Figure 1: Description of the Sampler.

Step 1. We invoke correlated flooding assumption (Lemma 7.2) assumption for a matrix B with the private
coin sampler Samp with coinspriv

Samp = (sd, R, b) for the L.H.S of Equation (43). The sampler Samp on
input 1λ outputs (S, P, aux = (aux1, aux2)) defined as in Figure 1.

By applying correlated flooding assumption w.r.t Samp, it suffices to show Equation (44) ≈c
Equation (45) to prove Equation (43).

Step 2. Here, we prove Equation (44) ≈c Equation (45) by considering the following sequence of hybrids.

Hyb0. This is the distribution as specified in Equation (44).

Hyb1. This hybrid is same as Hyb0, except that we abort the security game and output ⊥ if the set
{ri}i∈[Q] contains a collision. For any i and j with i ̸= j, we have ri = rj with probability 2−λ. By
the union bound over all combinations of i and j, the probability that the collision occurs can be
bounded by Q2/2λ, which is negligible.

Hyb2. This hybrid is same as Hyb1, except we compute

c⊺1,i = C ·
⌊

c⊺att ·H
Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉+ PRF(sd, ri) + e⊺1,i.

We claim that Hyb1 and Hyb2 are statistically indistinguishable. To see this, note that:
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− We have

C ·
⌊

c⊺att ·H
Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋

= C ·
⌊

s⊺AFi,high

C

⌋
− C · Fi,high(xb, sd)+C · ẽ⊺i,h +

⌊
s⊺AFi,low

C

⌋
− Fi,low(xb, sd)+ẽ⊺i,l, (from (40) and (41))

= s⊺C ·
⌊

AFi,high

C

⌋
+ s⊺

⌊
AFi,low

C

⌋
− Fi(xb, sd) + e⊺i , (from (42))

= s⊺AFi − fi(xb)− PRF(sd, ri) + e⊺i

In the above, ei = C · ei,s,high + ei,s,low + C · ẽ⊺i,h + ẽ⊺i,l, where the error components on R.H.S.
are as defined in the correctness.

This implies, s⊺AFi = C ·
⌊

c⊺att ·H
Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉+PRF(sd, ri)−

e⊺i , where
∥∥e⊺i
∥∥ ≤ 26λ+O(log λ)β.

− Thus,

(in Hyb1) c⊺1,i = s⊺AFi + e⊺1,i

= C ·
⌊

c⊺att ·H
Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉+ PRF(sd, ri)− e⊺i + e⊺1,i.

(in Hyb2) c⊺1,i = C ·
⌊

c⊺att ·H
Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉+ PRF(sd, ri) + e⊺1,i.

− The statistical indistinguishability then follows by observing that e⊺1,i ≈s −e⊺i + e⊺1,i by noise
flooding (Lemma 3.9) since ∥ei∥ ≤ 27λβ which gets flooded by e1,i ← DZ,σ1 , where
σ1 = 27λβλω(1) for our parameter setting.

It suffices to show that the following distribution is indistinguishable from Equation (45)

aux, B, c⊺B = s⊺B + e⊺B, X = AfheR− (xb, sd)⊗G,

c⊺att = s⊺(Aatt − (1, bits(X))⊗G) + e⊺att,{
c⊺1,i = C ·

⌊
c⊺att ·H

Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉+ PRF(sd, ri) + e⊺1,i

}
i∈[Q]


Hyb3. This hybrid is same as Hyb2 except we sample cB ← Zmw

q , catt ← Z
(LX+1)m
q and Afhe ←

Z
(n+1)×m
q , where Afhe is the fhe public key used to compute X. We have Hyb2 ≈c Hyb3 using

LWE. We show that if there exists an adversaryA who can distinguish between the two hybrids with
non-negligible advantage, then there is a reduction B that breaks LWE security with non-negligible
advantage. The reduction is as follows.

1. The LWE challenger sends ALWE ∈ Z
n×(mw+m+(LX+1)m)
q and b ∈ Z

mw+m+(LX+1)m
q to B.

2. B parses ALWE = (B′, Āfhe, A′att), where B′ ∈ Zn×mw
q , Āfhe ∈ Zn×m

q , A′att ∈ Z
n×(LX+1)m
q

and b⊺ = (b⊺
B, b⊺

fhe, b⊺
att), and does the following.
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− Samples b← Zmw
q and sets c⊺B := b⊺

B − b⊺.

− Sets Afhe :=
(

Āfhe
b⊺

fhe

)
and computes X = AfheR− (xb, sd)⊗G as in the construction.

− Sets Āatt = A′att + ((1, bits(X))⊗G, Aatt =

(
Āatt
a⊺att

)
, where aatt ← Z

(LX+1)m
q , and

c⊺att = b⊺
att − (a⊺att − (1, bits(X))⊗G), where G and G denote the first n and the last

rows, respectively, of gadget matrix G ∈ Z
(n+1)×m
q .

− Sends (cB, X, catt) to A.
3. A outputs a bit β′. B forwards the bit β′ to the LWE challenger.

We note that if the LWE challenger sent b = tALWE + eLWE, then B simulated Hyb2 with A else
if LWE challenger sent random b← Z

mw+m+(LX+1)m
q then B simulated Hyb3 with A.

To see the latter case, we note that if b← Z
mw+m+(LX+1)m
q then it implies bB ← Zmw

q , bfhe ←
Zm

q , batt ← Z
(LX+1)m
q . This implies the following.

− Randomness of bB implies the randomness of c⊺B := b⊺
B − b⊺.

− Randomness of bfhe implies Afhe ← Z
(n+1)×m
q .

− Randomness of batt implies randomness of c⊺att = b⊺
att −

(
a⊺att − (1, bits(X))⊗ ι⊺n+1 ⊗ g

)
.

Thus it suffices to show that the following distribution is indistinguishable from Equation (45)
aux, B, cB ← Zmw

q , X = AfheR− (xb, sd)⊗G, catt ← Z
(LX+1)m
q ,

{
c⊺1,i = C ·

⌊
c⊺att ·H

Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉+ PRF(sd, ri) + e⊺1,i

}
i∈[Q]


Hyb4. This hybrid is same as Hyb3 except we sample X ← Z

(n+1)×m(λ+L)
q . We have Hyb3 ≈s Hyb4

using Leftover Hash Lemma (LHL). By LHL we have that AfheR is statistically close to uniform.
Thus X = AfheR− (xb, sd)⊗G is statistically close to uniform due to randomness from AfheR.
Thus it suffices to show that the following distribution is indistinguishable from Equation (45)

aux, B, cB ← Zmw
q , X← Z

(n+1)×m(λ+L)
q , catt ← Zm

q ,

{
c⊺1,i = C ·

⌊
c⊺att ·H

Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉+ PRF(sd, ri) + e⊺1,i

}
i∈[Q]


Hyb5.This hybrid is same as the previous hybrid except we change all the PRF values computed using

sd to random. It is straightforward to see that Hyb4 and Hyb5 are indistinguishable due to the
security of PRF. Thus it suffices to show that the following distribution is indistinguishable from
Equation (45)

aux, B, cB ← Zmw
q , X← Z

(n+1)×m(λ+L)
q , catt ← Zm

q ,

{
c⊺1,i = C ·

⌊
c⊺att ·H

Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉+ Ri + e⊺1,i

}
i∈[Q]


where Ri ← [−q/4 + B, q/4− B]1×ℓ for all i ∈ [Q].
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Hyb6. In this hybrid we compute c⊺1,i = C ·
⌊

c⊺att ·H
Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉ +

(c′1,i)
⊺ for i ∈ [Q]. Hyb5 ≈s Hyb6. To see this note that for i ∈ [Q]

− for our choice of B the statistical distance between the uniform distribution over [−q/4, q/4]
and [−q/4 + B, q/4− B] is negligible. Thus c′1,i ≈s Ri where c′1,i ← [−q/4, q/4]1×ℓ and
Ri ← [−q/4 + B, q/4− B]1×ℓ.

− Next, from our parameter setting, we have ∥e1,i∥ ≤ 1
22λ ×

q
4 .

− We have Ri ≈s Ri + e⊺1,i by noise flooding (Lemma 3.9).

Thus we have the following distribution
aux, B, cB ← Zmw

q , X← Z
(n+1)×m(λ+L)
q , catt ← Zm

q ,

{c⊺1,i = C ·
⌊

c⊺att ·H
Fi,high
Aatt,X

C

⌋
+

⌊
c⊺att ·H

Fi,low
Aatt,X

C

⌋
+ fi(xb) ⌊q/2⌉+ (c′1,i)

⊺}i∈[Q]


which is the distribution in Equation (45). Hence, the proof.

7.3.1 Connection to Evasive LWE

Here, we briefly discuss the connection between evasive and fixed-bit evasive LWE for our specific
application. In particular, we show that if we restrict ourselves to the particular samplers we consider for
the security proof (Section 7.3) of our FE (Section 7.2), fixed-bit evasive LWE implies evasive LWE.

To see this, we start with a pre-condition sampler of evasive LWE that outputs P that is induced by
({xi}i, { f j}j) such that { f j(xi)}i,j is pseudorandom (even given the auxiliary information). By the same
argument as the security proof of our FE in Section 7.3, it follows that even given ({xi}i, { f j}j), SP + E′

is half-space pseudorandom. This implies the indistinguishability of the post-condition distributions
by the fixed-bit evasive LWE, namely, T + C′ is half-space pseudorandom. However, we can actually
show that T + C′ is pseudorandom over the entire space, not only half-space random, since “the most
significant bit" { f j(xi)}i,j is also pseudorandom. The post-condition distributions of the fixed-bit evasive
LWE with T + C′ being random correspond to those of evasive LWE, as desired.

8 iO via Weak Succinct LWE Sampling

In this section, we provide our candidate construction of weak succinct LWE sampler (SampCRSGen, LWEGen,
Expand). Since the intuition was discussed in Section 2, we proceed directly to the construction.

8.1 Construction.

Let F = {F : {0, 1}λ ×Zq → [−q/8 + β̃, q/8− β̃]}, where β̃ is set such that it is exponentially
smaller than q, be a family of PRF functions where F ∈ F can be computed by a circuit of depth
dep(λ) = poly(λ). We construct weak succinct LWE sampler (SampCRSGen, LWEGen, Expand) as
below.

SampCRSGen(1λ, 1N , α; coinscrs): On input the security parameter λ, a size parameter N, a blow up
factor α and random coins used to sample crs (coinscrs), the SampCRSGen algorithm does the
following.
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1. Derive parameters params = (q, M, K, W, χ, B) as in parameter setting. Let n = poly(λ)
and m = O((n + 1) log q).

2. Fix a constant C ∈ Z such that C divides q.

3. Sample A ← Z
(n+1)×W⌈log q⌉
q and Asd ← Z

(n+1)×(Lsd+1)m
q , where we set Lsd = (n +

1)λm ⌈log q⌉.
4. Output crs = (C, A, Asd, params).

LWEGen(crs; coinsseed): On input common reference string crs and random coins used to sample seedB∗ ,
coinsseed, parsed as (A∗, coins), where A∗ ← ZM×W

q , the LWEGen algorithm does the following:

1. Sample S∗ ← ZW×K
q and Āfhe ← Zn×m

q .

2. Sample (B, B−1
τ )← TrapGen(1n+1, 1mw, q) where w ∈ O(log q).

3. For i ∈ [K], compute encodings as follows:
(a) Sample t̄i ← Dn

Z,σt
and set ti = (t̄⊺i ,−1)⊺.

(b) Sample eB,i ← Dmw
Z,σB

and compute c⊺B,i = t⊺i B + e⊺B,i ∈ Z1×mw
q .

(c) Sample PRF seed sdi ∈ {0, 1}λ.
(d) Compute FHE ciphertext for PRF seed: Sample efhe,i ← Dm

Z,σfhe
, Ri ← {0, 1}m×mλ

and compute a GSW encryption as follows.

Afhe,i :=
(

Āfhe
t̄⊺i Āfhe + e⊺fhe,i

)
, ŝdi = Afhe,iRi − sdi ⊗G ∈ Z

(n+1)×mλ
q .

We have that Lsd = (n + 1)λm ⌈log q⌉ is the bit length of ŝdi.
(e) Compute a BGG+ encoding of ŝdi as follows.

esd,i ← D(Lsd+1)m
Z,σsd

, c⊺sd,i = t⊺i (Asd − (1, bits(ŝdi))⊗G) + e⊺sd,i ∈ Z
1×(Lsd+1)m
q

(f) Compute IPFE encodings as follows.

ei ← D
W log q
Z,σIPFE

, c⊺i = t⊺i A + e⊺i + ((S∗[·, i])⊺ ⊗ g⊺) ∈ Z
1×W log q
q

(g) Set cti = (cB,i, csd,i, ŝdi, ci).
4. For j ∈ [M], compute function keys as follows:

(a) Let Fj ∈ F be a PRF function with hardwired input j such that Fj(x) = F(x, j). Let

Fj(x) := C · Fhigh,j(x) + Flow,j(x)

where x ∈ {0, 1}λ, Fhigh,j(x) ∈ [0, q/C] and Flow,j(x) ∈ [0, C− 1]. Using the fact that
the PRF computation and hence Fj(x) can be computed by a circuit of depth at most
dep(λ) = poly(λ), the function Fhigh,j(x) and Flow,j(x) can also be computed by a
circuit of depth d ≤ poly(dep).

(b) Define the homomorphic evaluation circuit VEvalFhigh,j = MakeVEvalCkt(n, m, q, C ·
Fhigh,j) and VEvalFlow,j = MakeVEvalCkt(n, m, q, C · Flow,j). From Lemma 3.15, the
depth of both VEvalFhigh,j and VEvalFlow,j is dO(log m log log q) + O(log2 log q).

(c) Compute hFhigh,j,Asd = MEvalC(Asd, VEvalFhigh,j) ∈ Z
(Lsd+1)m
q ,

hFlow,j,Asd = MEvalC(Asd, VEvalFlow,j) ∈ Z
(Lsd+1)m
q
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(d) Compute aFhigh,j = Asd · hFhigh,j,Asd and aFlow,j = Asd · hFlow,j,Asd .
(e) Compute

aFj,err = C ·
⌊aFhigh,j

C

⌋
+

⌊aFlow,j

C

⌋
∈ Zn+1

q

(f) Let amask,j = A ·G−1((A∗[j, ·])⊺) ∈ Zn+1
q

(g) Sample kj ← B−1
τ

(
aFj,err + amask,j

)
.

5. Set seedB∗ = ({cti}i∈[K], {kj}j∈[M], A∗).
6. Output (seedB∗ , A∗, S∗).

Expand(crs, seedB∗): On input common reference string crs and seedB∗ , parse crs = (C, A, Asd, params)
and seedB∗ = ({cB,i, csd,i, ŝdi, ci}i∈[K], {kj}j∈[M], A∗) and do the following.

1. For all i ∈ [K], j ∈ [M],
(a) Compute cmask,i,j = c⊺i ·G−1((A∗[j, ·])⊺).
(b) Compute hFhigh,j,Asd,ŝdi

= MEvalCX(Asd, VEvalFhigh,j , ŝdi)

hFlow,j,Asd,ŝdi
= MEvalCX(Asd, VEvalFlow,j , ŝdi)

(c) Compute cFj,err,i = C

⌊
c⊺sd,ihFhigh,j,Asd,ŝdi

C

⌋
+

⌊
c⊺sd,ihFlow,j,Asd,ŝdi

C

⌋
.

(d) Compute zi,j = cmask,i,j + cFj,err,i − c⊺B,ikj

2. Set and output B∗ =

 z1,1 z2,1 . . . zK,1
...

...
...

...
z1,M z2,M . . . zK,M


Parameters and Constraints. We set our parameters as follows.

β̂ = 2O(dep·log3 λ), n = poly(λ, dep), m = O(n log q), τ = O
(√

(n + 1) log q
)

, σB = 24λβ

σt = σfhe = σsd = σIPFE = 22λ, β̃ = O((W + C) · σIPFE + σB)poly(λ), C = 23λ β̃, q = 27λ β̃

Constraints.

• N = MK (constraint of the sampler).

• (K + M)(1 + 2W) ≤ Nδ, for some constant δ < 1 (for δ-succinctness).

• M2 ≤ Nδpoly(λ, log q) (for SRE succinctness).

Correctness. We now analyze the correctness of our weak succinct LWE sampler.

Claim 8.1. Let β = q/8. Then the weak succinct LWE sampler (SampCRSGen, LWEGen, Expand) as
described above satisfies correctness as in Section 3.8.

Proof. To prove the claim, we start by analyzing individual term as below and then aggregate them to get
B∗.
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• We first start by analyzing the term cmask,i,j for all i ∈ [K], j ∈ [M].

cmask,i,j = c⊺i ·G
−1((A∗[j, ·])⊺)

= (t⊺i A + e⊺i + ((S∗[·, i])⊺ ⊗ g⊺)) ·G−1((A∗[j, ·])⊺)
= t⊺i AG−1((A∗[j, ·])⊺) + e⊺i G−1((A∗[j, ·])⊺) + ((S∗[·, i])⊺ ⊗ g⊺))G−1((A∗[j, ·])⊺)
= t⊺i amask,j + e⊺i G−1((A∗[j, ·])⊺) + ⟨S∗[·, i], A∗[j, ·]⟩

(as AG−1((A∗[j, ·])⊺) = amask,j from construction.)
= t⊺i amask,j + e⊺i G−1((A∗[j, ·])⊺) + ⟨A∗[j, ·], S∗[·, i]⟩

(46)

• Next, we analyze the term c⊺sd,ihFhigh,j,Asd,ŝdi
for all i ∈ [K], j ∈ [M].

c⊺sd,ihFhigh,j,Asd,ŝdi
= (t⊺i (Asd − (1, bits(ŝdi))⊗G) + e⊺sd,i)hFhigh,j,Asd,ŝdi

= t⊺i AsdhFhigh,j,Asd − t⊺i VEvalFhigh,j(ŝdi) + e⊺sd,ihFhigh,j,Asd,ŝdi

= t⊺i aFhigh,j − C · Fhigh,j(sdi) + e⊺fhe,irFhigh,j,i + e⊺sd,ihFhigh,j,Asd,ŝdi

= t⊺i aFhigh,j − C · Fhigh,j(sdi) + eFhigh,j,i

(47)

where VEvalFhigh,j(ŝdi) = Afhe,irFhigh,j,i−
(

0n

C · Fhigh,j(sdi)

)
and eFhigh,j,i = e⊺fhe,irFhigh,j,i + e⊺sd,ihFhigh,j,Asd,ŝdi

.

• Similar to analysis of Equation (47), we have for all i ∈ [K], j ∈ [M],

c⊺sd,ihFlow,j,Asd,ŝdi
= t⊺i aFlow,j − C · Flow,j(sdi) + eFlow,j,i

where VEvalFlow,j(ŝdi) = Afhe,irFlow,j,i−
(

0n

C · Flow,j(sdi)

)
and eFlow,j,i = e⊺fhe,irFlow,j,i + e⊺sd,ihFlow,j,Asd,ŝdi

.

• We have following analysis for both µ = high and µ = low.
By Lemma 3.15 , we have |rFµ,j,i| ≤ (m+ 2)d ⌈log q⌉maxk∈[λ]||R

⊺
i,k|| ≤ (m+ 2)d ⌈log q⌉m ≤ β̂.

and using depth bound from Section 3.7,
|hFµ,jAsd,ŝdi

| ≤ (m + 2)
dVEvalFµ,j ⌈log q⌉ ≤ 2dO(log λ) ≤ β̂.

Next, we have |eFµ,j,i| ≤ |e
⊺
fhe,irFµ,j,i + e⊺sd,ihFµ,j,Asd,ŝdi

| ≤ |e⊺fhe,irFµ,j,i| + |e
⊺
sd,ihFµ,j,Asd,ŝdi

| ≤
√

λσfhe β̂m +
√

λσsd β̂(Lsd + 1)m ≤ 23λ β̂.

• Now, for all i ∈ [K], j ∈ [M],

C

⌊
c⊺sd,ihFhigh,j,Asd,ŝdi

C

⌋
= C

⌊
t⊺i aFhigh,j − C · Fhigh,j(sdi) + eFhigh,j,i

C

⌋

= C

⌊
t⊺i aFhigh,j − C · Fhigh,j(sdi)

C

⌋
+ C · ẽh,j,i

where |ẽh,j,i| ≤ 1, since |eFhigh,j,i| ≤ 23λ β̂ < 23λ β̃ = C

= C

⌊
t⊺i aFhigh,j

C

⌋
− C · Fhigh,j(sdi) + C · ẽh,j,i
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By similar analysis, for all i ∈ [K], j ∈ [M],⌊
c⊺sd,ihFlow,j,Asd,ŝdi

C

⌋
=

⌊
t⊺i aFlow,j − C · Flow,j(sdi) + eFlow,j,i

C

⌋

=

⌊
t⊺i aFlow,j − C · Flow,j(sdi)

C

⌋
+ ẽl,j,i

where |ẽl,j,i| ≤ 1, since |eFlow,j,i| ≤ 23λ β̂ < 23λ β̃ = C

=

⌊
t⊺i aFlow,j

C

⌋
− Flow,j(sdi) + ẽl,j,i

• For all i ∈ [K], j ∈ [M],

cFj,err,i = C

⌊
c⊺sd,ihFhigh,j,Asd,ŝdi

C

⌋
+

⌊
c⊺sd,ihFlow,j,Asd,ŝdi

C

⌋
(48)

= C

⌊
t⊺i aFhigh,j

C

⌋
− C · Fhigh,j(sdi) + C · ẽh,j,i +

⌊
t⊺i aFlow,j

C

⌋
− Flow,j(sdi) + ẽl,j,i

= Ct⊺i

⌊aFhigh,j

C

⌋
+ Ceti ,Fhigh,j − C · Fhigh,j(sdi) + C · ẽh,j,i + t⊺i

⌊aFlow,j

C

⌋
+ eti ,Flow,j

− Flow,j(sdi) + ẽl,j,i

= t⊺i

(
C
⌊aFhigh,j

C

⌋
+

⌊aFlow,j

C

⌋)
− C · Fhigh,j(sdi)− Flow,j(sdi) + Ceti ,Fhigh,j

+ C · ẽh,j,i + eti ,Flow,j + ẽl,j,i

= t⊺i aFj,err − Fj(sdi) + Ceti ,Fhigh,j + C · ẽh,j,i + eti ,Flow,j + ẽl,j,i

where aFj,err =
(

C
⌊ aFhigh,j

C

⌋
+
⌊ aFlow,j

C

⌋)
from construction and C · Fhigh,j(sdi) + Flow,j(sdi) =

Fj(sdi) by definition of Fj. We will now analyze error eti ,Fhigh,j and eti ,Flow,j .

− We have from above

eti ,Fhigh,j = t⊺i

⌊aFhigh,j

C

⌋
−
⌊

t⊺i aFhigh,j

C

⌋

= t⊺i

⌊aFhigh,j

C

⌋
−
⌊

t⊺i

((aFhigh,j

C
−
⌊aFhigh,j

C

⌋)
+

⌊aFhigh,j

C

⌋)⌋
= t⊺i

⌊aFhigh,j

C

⌋
−
⌊

t⊺i

(aFhigh,j

C
−
⌊aFhigh,j

C

⌋)⌋
− t⊺i

⌊aFhigh,j

C

⌋

= −

t⊺i

(aFhigh,j

C
−
⌊aFhigh,j

C

⌋)
︸ ︷︷ ︸

<1


=⇒ |eti ,Fhigh,j | ≤ n|ti|
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− Similarly,

eti ,Flow,j = t⊺i

⌊aFlow,j

C

⌋
−
⌊

t⊺i aFlow,j

C

⌋

= t⊺i

⌊aFlow,j

C

⌋
−
⌊

t⊺i

((aFlow,j

C
−
⌊aFlow,j

C

⌋)
+

⌊aFlow,j

C

⌋)⌋
= t⊺i

⌊aFlow,j

C

⌋
−
⌊

t⊺i

(aFlow,j

C
−
⌊aFlow,j

C

⌋)⌋
− t⊺i

⌊aFlow,j

C

⌋

= −

t⊺i

(aFlow,j

C
−
⌊aFlow,j

C

⌋)
︸ ︷︷ ︸

<1


=⇒ |eti ,Flow,j | ≤ n|ti|

• For all i ∈ [K], j ∈ [M],

c⊺B,ikj = (t⊺i B + e⊺B,i)kj

= t⊺i BB−1
τ

(
aFj,err + amask,j) + e⊺B,ikj

= t⊺i aFj,err + t⊺i amask,j + e⊺B,ikj

(49)

• From Equation (46), (48), and (49), we have for all i ∈ [K], j ∈ [M],

zi,j = c⊺mask,i,j + c⊺Fj,err,i − c⊺B,ikj

= t⊺i amask,j + e⊺i G−1((A∗[j, ·])⊺) + ⟨A∗[j, ·], S∗[·, i]⟩+ t⊺i aFj,err − Fj(sdi)+

Ceti ,Fhigh,j + C · ẽh,j,i + eti ,Flow,j + ẽl,j,i −
(

t⊺i aFj,err + t⊺i amask,j + e⊺B,ikj

)
= ⟨A∗[j, ·], S∗[·, i]⟩+ e∗i,j

where e∗i,j = e⊺i G−1((A∗[j, ·])⊺)− Fj(sdi) + Ceti ,Fhigh,j + C · ẽh,j,i + eti ,Flow,j + ẽl,j,i − e⊺B,ikj.
We have |e⊺i G−1((A∗[j, ·])⊺)+Ceti ,Fhigh,j +C · ẽh,j,i + eti ,Flow,j + ẽl,j,i− e⊺B,ikj| ≤

√
λσIPFEW log q+

(C + 1)(n
√

λσt + 1) + λσBτmw ≤ O((W + C)σIPFE + σB)poly(λ) = β̃ where σt = σIPFE by
our parameter setting.
Since, |Fj(sdi)| ≤ q

8 − β̃, we have |e∗i,j| ≤
q
8 .

Finally, we have

B∗ =

 z1,1 z2,1 . . . zK,1
...

...
...

...
z1,M z2,M . . . zK,M



=⇒ B∗ =

 ⟨A
∗[1, ·], S∗[·, 1]⟩+ e∗1,1 ⟨A∗[1, ·], S∗[·, 2]⟩+ e∗2,1 . . . ⟨A∗[1, ·], S∗[·, K]⟩+ e∗K,1

...
...

...
...

⟨A∗[M, ·], S∗[·, 1]⟩+ e∗1,M ⟨A∗[M, ·], S∗[·, 2]⟩+ e∗2,M . . . ⟨A∗[M, ·], S∗[·, K]⟩+ e∗K,M


This implies B∗ = A∗S∗ + E∗ and |B∗ −A∗S∗| = |e∗i,j| ≤

q
8 . Hence, the proof.

Claim 8.2. Suppose there exists δ < 1 such that (K + M)(1 + 2W) ≤ Nδ. Then, weak succinct LWE
sampler (SampCRSGen, LWEGen, Expand) as described above is δ-succinct.
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Proof.

bitlength(seedB∗ , A∗, S∗) = bitlength(({cti}i∈[K], {kj}j∈[M], A∗), A∗, S∗)

= bitlength(({cB,i, csd,i, ŝdi, ci}i∈[K], {kj}j∈[M], A∗), A∗, S∗)

=
(
K(mw + (Lsd + 1)m + (n + 1)mλ + W log q) + Mmw + 2MW + WK

)
log q

≤
(
Kpoly(λ, log q) + KWpoly(log q) + Mpoly(λ, log q)

+ 2MW log q + WK log q
≤ (K + 2KW + M + 2MW)poly(λ, log q)
≤ (K + M)(1 + 2W)poly(λ, log q)

≤ Nδ · poly(λ, log q)

Hence, the proof.

Next, we show that our construction satisfies Definition 3.16.

Claim 8.3. Assuming LWE(M, W, q, χ) holds, where χ is uniform distribution over [−B, B],

D0 := (coinscrs, coinsseed, b = A∗s′ + e′) ≈c D1 := (coinscrs, coinsseed, b← ZM
q )

where s′ ← ZW
q , e′ ← χM, coinscrs are the random coins used to sample (A, Asd) and coinsseed =

(A∗, coins)where coins are the random coins used to sample (B, S∗, Āfhe, eB,i, {t̄i, sdi, efhe,i, Ri, esd,i, ei}i∈[K])

such that crs = SampCRSGen(1λ, 1N , α; coinscrs), (seedB∗ , A∗, S∗)← LWEGen(crs; coinsseed).

Proof. To prove this claim, we show that if there exists an adversary A who can distinguish between D0
and D1 with non-negligible advantage, then there is a reduction B that breaks LWE(M, W, q, χ) security
with non-negligible advantage. The reduction is as follows.

1. On receiving 1λ from A, forward it to LWE challenger.

2. The LWE challenger samples β ← {0, 1}, A∗ ← ZM×W
q , s′ ← ZW

q , and returns (A∗, b) to B
where b = A∗s′ + e′ if β = 0 and b← ZM

q if β = 1.

3. Sample random coinscrs and coins, set coinsseed = (A∗, coins).

4. Output (coinscrs, coinsseed, b) to A.

5. On receiving β′ from A, forward β′ to LWE challenger.

It is easy to see that if β = 0, then B simulated D0 and if β = 1, then B simulated D1. Hence, the
proof.

8.2 Security Conjecture

Finally, we state our conjecture that the above construction satisfies weak security or weak β0-Flooding as
stated in Definition 3.18.

Conjecture 8.4 (Conjectured security). Assuming LWE(M, W, q, χ), our construction of SLS given by
(SampCRSGen, LWEGen, Expand) satisfies weak β0 flooding (Definition 3.18), for β0 = αB.

Conjecture 8.5 (Standalone β0 flooding). We define following conjecture, which implies weak security of
our construction of weak SLS given by (SampCRSGen, LWEGen, Expand).
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• Let M, K, χ, B, β, σ̃, σB, Bflood be parameters. We will specify the constraints on these parameters
later.

• Let PRF : {0, 1}λ ×Zq → [−q/8 + β̃, q/8− β̃] be a secure PRF.

• Let F = {Fj : {0, 1}λ → [−q/8 + β̃, q/8− β̃]; j ∈ Zq} be a family of functions such that for
j ∈ Zq, Fj(sdi) = PRF(sdi, j) for some i ∈ Zq.

• Let C be a constant such that C divides q. For any function, Fj ∈ F , let Fj = C · Fhigh,j + Flow,j.

• Let MEvalC and VEval be as defined in Section 3.7. Then,

For

{Fj ∈ F}j∈[M], Lsd = (n + 1)λm ⌈log q⌉ , L = W ⌈log q⌉+ m(Lsd + 1) + m,

(B, B−1
τ )← TrapGen(1n+1, 1mw, q), A2 ← Z

(n+1)×(Lsd+1)m
q , A1 ← Z

(n+1)×W⌈log q⌉
q ,

A3 ← Zn×m
q , Ã := (A1, A2, A3), A∗ ← ZM×W

q ,

VEvalFhigh,j = MakeVEvalCkt(n, m, q, C · Fhigh,j), VEvalFlow,j = MakeVEvalCkt(n, m, q, C · Flow,j),

hFhigh,j = MEvalC(A2, VEvalFhigh,j) ∈ Z
(Lsd+1)m
q , hFlow,j = MEvalC(A2, VEvalFlow,j) ∈ Z

(Lsd+1)m
q

Hhigh = (hFhigh,1 , . . . , hFhigh,M), Hlow = (hFlow,1 , . . . , hFlow,M)

Ahigh = A2 ·Hhigh, Alow = A2 ·Hlow,

Aerr = C ·
⌊

Ahigh
C

⌋
+

⌊
Alow

C

⌋
, Amask = A1G−1((A∗)⊺), P = Aerr + Amask,

{t̄i ← Dn
Z,σt
}i∈[K], {ti = (t̄⊺i ,−1)⊺}i∈[K], T⊺ = (t1, . . . , tK),

Ŝ← ZW×K
q , Ê← [−Bflood, Bflood]

M×K, B̂ = A∗Ŝ + Ê,

C̃← ZK×L
q , CB ← ZK×mw

q ,

Ẽ← DK×L
Z,σ̃ , EB ← DK×mw

Z,σB
, E← χm×m log q,

aux = (C, F1, . . . , FM, M, K, χ, B, β, σ̃, σB, Bflood),

the following two distributions are indistinguishable

D0 := (Ã, B, A∗, B̂, TÃ + Ẽ, TB + EB, B−1
τ (P), aux)

D1 := (Ã, B, A∗, B̂, C̃ , CB , B−1
τ (P), aux) (50)

The rationale for security of the above is heuristic, and derived from the conjectured security of the
“fixed bit” evasive LWE assumption. Essentially the assumption performs computational flooding by
generating a flooding term using a well chosen PRF and uses ideas of modulus reduction discussed before
to heuristically ensure that there are no exploitable dependencies between the error being flooded and the
error used to perform the flooding.

Parameters.
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Setting Constraint/explanation

β = q/8 β ≤ q/8

B < β/((α + 1) · 22λ) B is LWE error. β0 = αB. β ≥ β0 · 2λ.
For this setting, β floods Bflood, i.e. E∗ floods Ê.

β0 = αB β0 = αB

Bflood = (β0 + B)2λ Bflood = (β0 + B)2λ

σB, σ̃ are LWE noises
χ̄ is B̄ bounded distribution.

Lemma 8.6. Assuming Conjecture 8.4 and subexponential LWE, there exists an iO.

Proof. The lemma follows from results in [DQV+21] that shows following series of implications: a
δ-succinct weak SLS implies δ–succinct (strong) SLS (Theorem 3.20) which in turn implies succinct
randomized encoding (SRE) (Theorem 3.21) Finally, the proof completes by invoking Theorem 3.22
which says that assuming subexponential SRE, there exists an iO.

Lemma 8.7. Assuming Conjecture 8.5 and subexponential LWE, there exists an iO.

Proof. The proof follows in two steps: (i) observing that assuming Conjecture 8.5 our construction of weak
SLS satisfies weak security (weak β0 flooding), (ii) weak SLS implies iO from the proof of lemma 8.6.
We now prove Step (i). For this, we first observe that to prove weak SLS security (Equation (10)), we
need to prove Equation (51).

D0 :=

 C, A, Asd, params,
{

c⊺B,i, ŝdi, c⊺sd,i, c⊺i ,
}

i∈[K]
,

{kj}j∈[M], A∗, E∗ − EG−1(B̂), B̂ = A∗Ŝ + Ê, C = A∗R + E


≈c D1 :=

 C, A, Asd, params,
{

c⊺B,i, ŝdi, c⊺sd,i, c⊺i ,
}

i∈[K]
,

{kj}j∈[M], A∗, E∗ − EG−1(B̂) + Ê, B̂ = A∗Ŝ + Ê, C = A∗R + E−G

 (51)

where in both D0 and D1 for all i ∈ [K], c⊺B,i = t⊺i B + e⊺B,i, ŝdi = Afhe,iRi − sdi ⊗ G, c⊺sd,i =

t⊺i (Asd − (1, bits(ŝdi))⊗G) + e⊺sd,i, c⊺i = t⊺i A + e⊺i + ((S∗[·, i])⊺ ⊗ g⊺) and

Afhe,i :=
(

Āfhe ← Zn×m
q

a⊺fhe,i = t̄⊺i Āfhe + e⊺fhe,i

)
.

We prove Equation (51) using a sequence of hybrids Hyb0, . . . , Hyb12 and prove that Hyb0 ≈ Hyb1 ≈
. . . ≈ Hyb12, where Hyb0 is the D0 distribution and Hyb12 is the D1 distribution of Equation (51).

Hyb0. This is the D0 distribution.

Hyb1. This is the same as Hyb0 except that we sample C ← Z
M×M log q
q . Hyb0 ≈c Hyb1 by a

straightforward reduction to LWE. This is because A∗ ← ZM×W
q , R is not used anywhere else and

E← χM×M log q where χ is B bounded.

Hyb2. This is the same as Hyb1 except that we compute for all i ∈ [K], c⊺B,i ← Z1×mw
q , a⊺fhe,i ←

Z1×m
q , c⊺sd,i ← Z

1×(Lsd+1)m
q , ĉ⊺i ← Z

1×W log q
q . Then we set Afhe,i =

(
Afhe,i ← Zn×m

q
a⊺fhe,i

)
and
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c⊺i = ĉ⊺i + ((S∗[·, i])⊺⊗ g⊺). The rest of the components are computed as in Hyb1. Hyb1 ≈c Hyb2
by a straightforward reduction to Conjecture 8.5.

Hyb3. This is the same as Hyb2 except that we compute ŝdi ← Z
(n+1)×mλ
q for all i ∈ [K]. Hyb2 ≈ Hyb3

using leftover hash lemma. Since the proof is the same as proof of Hyb2 ≈ Hyb3 in proof of
precondition as in Section 5.1, we skip the indistinguishability argument.

Hyb4. This is the same as Hyb3 except that we compute c⊺i ← Z
1×W log q
q for all i ∈ [K]. Since,

ĉ⊺i ← Z
1×W log q
q and ĉ⊺i is not used anywhere else, c⊺i ← Z

1×W log q
q . Hence, Hyb3 ≈ Hyb4.

At this point, we restate the distribution as in Hyb4 for clarity.

DHyb4
:=

C, A, Asd, params,

 c⊺B,i ← Z1×mw
q , ŝdi ← Z

(n+1)×mλ
q ,

c⊺sd,i ← Z
1×(Lsd+1)m
q , c⊺i ← Z

1×W log q
q ,


i∈[K]

,

{kj}j∈[M], A∗, E∗ − EG−1(B̂), B̂ = A∗Ŝ + Ê, C← Z
M×M log q
q


Hyb5. This is the same as Hyb4 except that instead of computing each element of E∗ as PRF(sdi, j) for

all i ∈ [K], j ∈ [M], we sample U∗ ← DM×K
Z,σF

. The indistinguishability between Hyb4 and Hyb5
follows from the PRF security. Hence, we get the following distribution.

DHyb5
:=

C, A, Asd, params,

 c⊺B,i ← Z1×mw
q , ŝdi ← Z

(n+1)×mλ
q ,

c⊺sd,i ← Z
1×(Lsd+1)m
q , c⊺i ← Z

1×W log q
q ,


i∈[K]

,

{kj}j∈[M], A∗, U∗ − EG−1(B̂), B̂ = A∗Ŝ + Ê, C← Z
M×M log q
q


Hyb6. This is the same as Hyb5 except that we add Ê to U∗ − EG−1(B̂). Since, β > (β0 + B)23λ =

22λBflood, U∗ floods Ê. Therefore, U∗ − EG−1(B̂) ≈s U∗ − EG−1(B̂) + Ê. Hence, Hyb5 ≈
Hyb6 by noise flooding.

Hyb7. This is the same as Hyb6 except that we undo the changes made in Hyb5. We compute each
element of E∗ as PRF(sdi, j) for all i ∈ [K], j ∈ [M]. The indistinguishability between Hyb6 and
Hyb7 follows from the PRF security.

Hyb8. This is the same as Hyb7 except that we undo the changes made in Hyb4. We compute c⊺i =

ĉ⊺i + ((S∗[·, i])⊺ ⊗ g⊺) for all i ∈ [K]. Since, ĉ⊺i ← Z
1×W log q
q and ĉ⊺i is not used anywhere else,

c⊺i = ĉ⊺i + ((S∗[·, i])⊺ ⊗ g⊺) is also uniformly distributed in Z
1×W log q
q . Hence, Hyb7 ≈ Hyb8.

Hyb9. This is the same as Hyb8 except that we undo the changes made in Hyb3. Here we compute
ŝdi = Afhe,iRi− sdi⊗G where Afhe,i ← Z

(n+1)×m
q for all i ∈ [K]. We skip the indistinguishability

argument as this is the same as Hyb3 ≈ Hyb2.

Hyb10. This is the same as Hyb9 except that we undo the changes made in Hyb2. Here we compute
for all i ∈ [K], c⊺B,i = t⊺i B + e⊺B,i, Afhe,i = t̄⊺i Āfhe + e⊺fhe,i, c⊺sd,i = t⊺i (Asd − (1, bits(ŝdi))⊗G) +

e⊺sd,i, c⊺i = t⊺i A + e⊺i + ((S∗[·, i])⊺ ⊗ g⊺). Hyb9 ≈c Hyb10 assuming Conjecture 8.5. Hence, we
get the following distribution.

DHyb10
:=


C, A, Asd, params,


c⊺B,i = t⊺i B + e⊺B,i, ŝdi = Afhe,iRi − sdi ⊗G,

c⊺sd,i = t⊺i (Asd − (1, bits(ŝdi))⊗G) + e⊺sd,i,

c⊺i = t⊺i A + e⊺i + ((S∗[·, i])⊺ ⊗ g⊺),


i∈[K]

,

{kj}j∈[M], A∗, E∗ − EG−1(B̂) + Ê, B̂ = A∗Ŝ + Ê, C← Z
M×M log q
q
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where Afhe,i :=
(

Āfhe ← Zn×m
q

t̄⊺i Āfhe + e⊺fhe,i

)
.

Hyb11. This is the same as Hyb10 except that we subtract G from C. Hyb10 ≈ Hyb11 as subtracting G
which is independent term from C, does not make the task of distinguishing any easier.

Hyb12. This is the same as Hyb11 except that we compute C = A∗R + E−G. Hyb11 ≈ Hyb12 using a
straightforward reduction to LWE. Hence, we get the following distribution.

DHyb12
:=


C, A, Asd, params,


c⊺B,i = t⊺i B + e⊺B,i, ŝdi = Afhe,iRi − sdi ⊗G,

c⊺sd,i = t⊺i (Asd − (1, bits(ŝdi))⊗G) + e⊺sd,i,

c⊺i = t⊺i A + e⊺i + ((S∗[·, i])⊺ ⊗ g⊺),


i∈[K]

,

{kj}j∈[M], A∗, E∗ − EG−1(B̂) + Ê, B̂ = A∗Ŝ + Ê, C = A∗R + E−G


where Afhe,i :=

(
Āfhe ← Zn×m

q
t̄⊺i Āfhe + e⊺fhe,i

)
.

Note that DHyb12 = D1. Hence, the proof.
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