
Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Tuple Lattice Sieving

Damien Stehlé

ENS de Lyon

Based on joint work with S. Bai and T. Laarhoven,
and on follow-up works of E. Kirshanova and G. Herold

lots of slides borrowed from G. Herold

D. Stehlé Tuple Lattice Sieving 15/12/2017 1/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The topic of this talk

The Shortest Vector Problem (SVP)

Input: B ∈ Zn×n full rank.
Output: s ∈ B · Zn \ 0 shortest.

Why do we consider this problem?

Solving SVP is the costly component in cryptanalysis of
lattice-based cryptosystems.

Practical limitations of SVP solvers should drive the
choice of concrete cryptographic parameters.

And solving SVP is useful in plenty of other contexts!

D. Stehlé Tuple Lattice Sieving 15/12/2017 2/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The topic of this talk

The Shortest Vector Problem (SVP)

Input: B ∈ Zn×n full rank.
Output: s ∈ B · Zn \ 0 shortest.

Why do we consider this problem?

Solving SVP is the costly component in cryptanalysis of
lattice-based cryptosystems.

Practical limitations of SVP solvers should drive the
choice of concrete cryptographic parameters.

And solving SVP is useful in plenty of other contexts!

D. Stehlé Tuple Lattice Sieving 15/12/2017 2/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The topic of this talk

The Shortest Vector Problem (SVP)

Input: B ∈ Zn×n full rank.
Output: s ∈ B · Zn \ 0 shortest.

Why do we consider this problem?

Solving SVP is the costly component in cryptanalysis of
lattice-based cryptosystems.

Practical limitations of SVP solvers should drive the
choice of concrete cryptographic parameters.

And solving SVP is useful in plenty of other contexts!

D. Stehlé Tuple Lattice Sieving 15/12/2017 2/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The end goal...

Find which SVP solver is fastest for huge computational effort.

Which costs are we interested in?

280 to 2160 bit operations.

How much memory? Quantum resources?

Reminder: Proofs are over-rated!

Cryptanalysts are fine with heuristics

Heuristic correctness

Heuristic run-time

Approximate solutions

But it should work in practice!

D. Stehlé Tuple Lattice Sieving 15/12/2017 3/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The end goal...

Find which SVP solver is fastest for huge computational effort.

Which costs are we interested in?

280 to 2160 bit operations.

How much memory? Quantum resources?

Reminder: Proofs are over-rated!

Cryptanalysts are fine with heuristics

Heuristic correctness

Heuristic run-time

Approximate solutions

But it should work in practice!

D. Stehlé Tuple Lattice Sieving 15/12/2017 3/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The end goal...

Find which SVP solver is fastest for huge computational effort.

Which costs are we interested in?

280 to 2160 bit operations.

How much memory? Quantum resources?

Reminder: Proofs are over-rated!

Cryptanalysts are fine with heuristics

Heuristic correctness

Heuristic run-time

Approximate solutions

But it should work in practice!

D. Stehlé Tuple Lattice Sieving 15/12/2017 3/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

... and where we are today

It is not even clear which family of algorithms is the best.

Personal belief: sieving algorithms may be starting to win.

tuple sieving helps closing the gap

Talk based on:

S. Bai, T. Laarhoven, D. Stehlé: Tuple lattice sieving. ANTS’16.

G. Herold, E. Kirshanova: Improved algorithms for the approximate k-list problem in
Euclidean norm. PKC’17.

G. Herold, E. Kirshanova, T. Laarhoven: Speed-ups and time-memory trade-offs for
tuple lattice sieving. PKC’18.

D. Stehlé Tuple Lattice Sieving 15/12/2017 4/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

... and where we are today

It is not even clear which family of algorithms is the best.

Personal belief: sieving algorithms may be starting to win.

tuple sieving helps closing the gap

Talk based on:

S. Bai, T. Laarhoven, D. Stehlé: Tuple lattice sieving. ANTS’16.

G. Herold, E. Kirshanova: Improved algorithms for the approximate k-list problem in
Euclidean norm. PKC’17.

G. Herold, E. Kirshanova, T. Laarhoven: Speed-ups and time-memory trade-offs for
tuple lattice sieving. PKC’18.

D. Stehlé Tuple Lattice Sieving 15/12/2017 4/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Roadmap

1 Background

2 Solving SVP by sieving

3 Tuple sieving

4 Fast tuple sieving

D. Stehlé Tuple Lattice Sieving 15/12/2017 5/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Best known fully analyzed algorithms

SVP

Input: B ∈ Zn×n a basis matrix of Λ = B ∈ Zn.
Output: s ∈ Λ \ 0 shortest.

Time
upper bound

Space
upper bound

Deterministic
or Probabilistic

via enumeration
[FiPo’83,Kan’83,HaSt’07]

nn/(2e)+o(n) Poly(n) Deterministic

via sieving
[AjKuSi’01, MiVo’10, PuSt’09]

22.247n+o(n) 21.325n+o(n) Probabilistic

via Voronoi cell
[MiVo’10]

22n+o(n) 2n+o(n) Deterministic

Gaussians
[ADRS’16,AS’17]

2n+o(n) 2n+o(n) Probabilistic

D. Stehlé Tuple Lattice Sieving 15/12/2017 6/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Heuristic algorithms, prior to tuple sieving

Enumeration with pre-processing
[Kan’83] and extreme pruning [GNR’10].

D. Stehlé Tuple Lattice Sieving 15/12/2017 7/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Heuristic algorithms, prior to tuple sieving

Enumeration with pre-processing
[Kan’83] and extreme pruning [GNR’10].

Sieving without perturbations
and with locality sensitive hash-
ing.

[Figure courtesy of T. Laarhoven]
Ti
m
e
=
Sp
ac
e

●

●
● ●

●●●●

●●●●

●●

● ●

●●

NV
'08

M
V
'10

W
LT
B
'11

ZP
H
'13

BG
J '
14

BGJ
'14

Laa '15

Laa '15

LdW
'15

/ BL
'15

LdW '15 / BL '15

BGJ '15

BDGL '16

BDGL '16

BDGL '16

20.20 n 20.25 n 20.30 n 20.35 n 20.40 n
20.25 n

20.30 n

20.35 n

20.40 n

20.45 n

Space complexity

T
im
e
co
m
pl
ex
ity

Tuple sieving

Beats the “Space = 20.207n” boundary.
While keeping a 2O(n) time complexity.
And this increases practical performance!

D. Stehlé Tuple Lattice Sieving 15/12/2017 7/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Heuristic algorithms, prior to tuple sieving

Enumeration with pre-processing
[Kan’83] and extreme pruning [GNR’10].

Sieving without perturbations
and with locality sensitive hash-
ing.

[Figure courtesy of T. Laarhoven]
Ti
m
e
=
Sp
ac
e

●

●
● ●

●●●●

●●●●

●●

● ●

●●

NV
'08

M
V
'10

W
LT
B
'11

ZP
H
'13

BG
J '
14

BGJ
'14

Laa '15

Laa '15

LdW
'15

/ BL
'15

LdW '15 / BL '15

BGJ '15

BDGL '16

BDGL '16

BDGL '16

20.20 n 20.25 n 20.30 n 20.35 n 20.40 n
20.25 n

20.30 n

20.35 n

20.40 n

20.45 n

Space complexity

T
im
e
co
m
pl
ex
ity

Tuple sieving

Beats the “Space = 20.207n” boundary.
While keeping a 2O(n) time complexity.
And this increases practical performance!

D. Stehlé Tuple Lattice Sieving 15/12/2017 7/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

In practice

Enumeration with extreme pruning and pre-processing.

SVP-challenge webpage (Darmstadt Crypto Group)

K. Kashiwabara, M. Fukase and T. Teruya,
up to n = 150 in ≈ 500 core years

Y. Aono and P. Nguyen,
up to n = 130 in ≈ 160 core days

lots of others, based on enumeration

T. Kleinjung, up to n = 116... using “sieving”

D. Stehlé Tuple Lattice Sieving 15/12/2017 8/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

In practice

Enumeration with extreme pruning and pre-processing.

SVP-challenge webpage (Darmstadt Crypto Group)

K. Kashiwabara, M. Fukase and T. Teruya,
up to n = 150 in ≈ 500 core years

Y. Aono and P. Nguyen,
up to n = 130 in ≈ 160 core days

lots of others, based on enumeration

T. Kleinjung, up to n = 116... using “sieving”

D. Stehlé Tuple Lattice Sieving 15/12/2017 8/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

In practice

Enumeration with extreme pruning and pre-processing.

SVP-challenge webpage (Darmstadt Crypto Group)

K. Kashiwabara, M. Fukase and T. Teruya,
up to n = 150 in ≈ 500 core years

Y. Aono and P. Nguyen,
up to n = 130 in ≈ 160 core days

lots of others, based on enumeration

T. Kleinjung, up to n = 116... using “sieving”

D. Stehlé Tuple Lattice Sieving 15/12/2017 8/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

In practice

Enumeration with extreme pruning and pre-processing.

SVP-challenge webpage (Darmstadt Crypto Group)

K. Kashiwabara, M. Fukase and T. Teruya,
up to n = 150 in ≈ 500 core years

Y. Aono and P. Nguyen,
up to n = 130 in ≈ 160 core days

lots of others, based on enumeration

T. Kleinjung, up to n = 116... using “sieving”

D. Stehlé Tuple Lattice Sieving 15/12/2017 8/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Roadmap

1 Background

2 Solving SVP by sieving

3 Tuple sieving

4 Fast tuple sieve

D. Stehlé Tuple Lattice Sieving 15/12/2017 9/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The sieving algorithm [Figure courtesy of G. Herold]

0

L

D. Stehlé Tuple Lattice Sieving 15/12/2017 10/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The sieving algorithm [Figure courtesy of G. Herold]

0

L L

=

D. Stehlé Tuple Lattice Sieving 15/12/2017 10/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The sieving algorithm [Figure courtesy of G. Herold]

0

L L

=
L′

x1 ± x2

D. Stehlé Tuple Lattice Sieving 15/12/2017 10/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The sieving algorithm [Figure courtesy of G. Herold]

0

L L

=
L′

x1 ± x2

L′

=

...
poly(n)

Lout

D. Stehlé Tuple Lattice Sieving 15/12/2017 10/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The sieving algorithm [Figure courtesy of G. Herold]

0

L L

=
L′

x1 ± x2

L′

=

...
poly(n)

Lout short

D. Stehlé Tuple Lattice Sieving 15/12/2017 10/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Analysis of sieving

Correctness: fingers crossed!

For the cost, it suffices to bound the list size:

Time ≤ |L|2 · Poly(n).

It suffices to bound how many points there can be

with angle ≥ π/3 between each other
(else the point is passed to the next list)

with essentially the same Euclidean norm
(consider Poly coronas)

D. Stehlé Tuple Lattice Sieving 15/12/2017 11/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Analysis of sieving

Correctness: fingers crossed!

For the cost, it suffices to bound the list size:

Time ≤ |L|2 · Poly(n).

It suffices to bound how many points there can be

with angle ≥ π/3 between each other
(else the point is passed to the next list)

with essentially the same Euclidean norm
(consider Poly coronas)

D. Stehlé Tuple Lattice Sieving 15/12/2017 11/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Cost of sieving

It suffices to bound how many points there can be

with angle ≥ π/3 between each other

with essentially the same Euclidean norm

The fraction of the n-sphere Sn at angle ≤ π/3 from a given
point is ≈ (sin(π/3))−n.

Assuming that caps do not intersect much:

Memory ≤
√

4/3
n ≤ 20.208n

Time ≤ (4/3)n ≤ 20.416n

D. Stehlé Tuple Lattice Sieving 15/12/2017 12/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Cost of sieving

It suffices to bound how many points there can be

with angle ≥ π/3 between each other

with essentially the same Euclidean norm

The fraction of the n-sphere Sn at angle ≤ π/3 from a given
point is ≈ (sin(π/3))−n.

Assuming that caps do not intersect much:

Memory ≤
√

4/3
n ≤ 20.208n

Time ≤ (4/3)n ≤ 20.416n

D. Stehlé Tuple Lattice Sieving 15/12/2017 12/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Roadmap

1 Background

2 Solving SVP by sieving

3 Tuple sieving

4 Fast tuple sieve

D. Stehlé Tuple Lattice Sieving 15/12/2017 13/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

2-Sieve vs. k-Sieve

k-Sieve [BLS16]

Consider sums of k > 2 vectors at once

L L

L′
x1 ± x2

L L

. . .

L

L′
x1 ± x2 ± · · · ± xk

Aim

Each point is more useful ⇒ memory decreases

Finding useful tuples is more expensive ⇒ time increases

D. Stehlé Tuple Lattice Sieving 15/12/2017 14/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

2-Sieve vs. k-Sieve

k-Sieve [BLS16]

Consider sums of k > 2 vectors at once

L L

L′
x1 ± x2

L L

. . .

L

L′
x1 ± x2 ± · · · ± xk

Aim

Each point is more useful ⇒ memory decreases

Finding useful tuples is more expensive ⇒ time increases

D. Stehlé Tuple Lattice Sieving 15/12/2017 14/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

2-Sieve vs. k-Sieve

k-Sieve [BLS16]

Consider sums of k > 2 vectors at once

L L

L′
x1 ± x2

L L

. . .

L

L′
x1 ± x2 ± · · · ± xk

Aim

Each point is more useful ⇒ memory decreases

Finding useful tuples is more expensive ⇒ time increases

D. Stehlé Tuple Lattice Sieving 15/12/2017 14/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The k-list problem

k-List problem (informal)

Input. k lists L1, . . . , Lk , whose entries are iid. uniformly
chosen vectors from the n-sphere Sn.
Task. Output all k-tuples (x1, . . . , xk) ∈ L1 × . . .× Lk st

‖x1 + . . . + xk‖ ≤ 1.

(in our case: L1 = L2 = . . . = Lk = L)

List size (heuristically) determined by

|L| = |L|k · Pr
[
‖x1 ± . . .± xk‖ ≤ 1

]
Cost of naive algorithm: |L|k .

The k = 2 analysis can be extended [BLS16], but it’s not very insightful.

D. Stehlé Tuple Lattice Sieving 15/12/2017 15/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The k-list problem

k-List problem (informal)

Input. k lists L1, . . . , Lk , whose entries are iid. uniformly
chosen vectors from the n-sphere Sn.
Task. Output all k-tuples (x1, . . . , xk) ∈ L1 × . . .× Lk st

‖x1 + . . . + xk‖ ≤ 1.

(in our case: L1 = L2 = . . . = Lk = L)

List size (heuristically) determined by

|L| = |L|k · Pr
[
‖x1 ± . . .± xk‖ ≤ 1

]
Cost of naive algorithm: |L|k .

The k = 2 analysis can be extended [BLS16], but it’s not very insightful.

D. Stehlé Tuple Lattice Sieving 15/12/2017 15/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Configurations [HK17]

Task. Find x1, . . . , xk ∈ L1× . . .× Lk st. ‖x1 + . . .+ xk‖ ≤ 1.

We only care about the positions of the x1, . . . , xk relative
to each other.

Definition (Configuration)

The configuration C = C (x1, . . . , xk) of x1, . . . , xk ∈ Sn is
defined as the Gram matrix C = (〈xi , xj〉)i ,j .

Configuration C is positive semi-definite, with Cii = 1, and:

‖x1 + . . . + xk‖2 =
∑
i ,j

Ci ,j .

D. Stehlé Tuple Lattice Sieving 15/12/2017 16/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Configurations [HK17]

Task. Find x1, . . . , xk ∈ L1× . . .× Lk st. ‖x1 + . . .+ xk‖ ≤ 1.

We only care about the positions of the x1, . . . , xk relative
to each other.

Definition (Configuration)

The configuration C = C (x1, . . . , xk) of x1, . . . , xk ∈ Sn is
defined as the Gram matrix C = (〈xi , xj〉)i ,j .

Configuration C is positive semi-definite, with Cii = 1, and:

‖x1 + . . . + xk‖2 =
∑
i ,j

Ci ,j .

D. Stehlé Tuple Lattice Sieving 15/12/2017 16/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Distribution of Configurations

Wishart’28

Let x1, . . . , xk be iid uniform on Sn. Then the Gram matrix
C = (〈xi , xj〉)i ,j follows a distribution with pdf

Wn,k · det(C)
1
2

(n−k) dC = Õ
(

det(C)
n
2

)
dC ,

where Wn,k is a normalization constant.

The distribution of C is very concentrated.

D. Stehlé Tuple Lattice Sieving 15/12/2017 17/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Only one configuration matters!

The distribution of C is very concentrated.
⇒ Essentially all solutions come from a single C .

x1

x3

0

x2

-x1-x2-x3

Figure: The configuration of solutions is concentrated on the
configuration with maximal symmetry.

D. Stehlé Tuple Lattice Sieving 15/12/2017 18/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Memory cost

For iid uniform x1, . . . , xk on Sn, we have

Pr[‖x1 + . . . + xk‖ ≤ 1] = Pr[∀i 6= j : 〈xi , xj〉 ≈ −1/k]

=
((k + 1)k−1

kk

) n
2
.

List size

For the balanced configuration, we need lists of size

|L| = Õ
((k

k
k−1

k + 1

) n
2
)
.

k = 2 : 20.207n k = 3 : 20.189n

D. Stehlé Tuple Lattice Sieving 15/12/2017 19/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Memory cost

For iid uniform x1, . . . , xk on Sn, we have

Pr[‖x1 + . . . + xk‖ ≤ 1] = Pr[∀i 6= j : 〈xi , xj〉 ≈ −1/k]

=
((k + 1)k−1

kk

) n
2
.

List size

For the balanced configuration, we need lists of size

|L| = Õ
((k

k
k−1

k + 1

) n
2
)
.

k = 2 : 20.207n k = 3 : 20.189n

D. Stehlé Tuple Lattice Sieving 15/12/2017 19/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

How to find the solutions?

The distribution of C is very concentrated.

Finding almost all solutions to the k-list problem is equivalent
to finding all x1, . . . , xk ∈ L1 × . . .× Lk st. C (x1, . . . , xk) is
close to the target concentration:

∀i 6= j : 〈xi , xj〉 = −1/k .

D. Stehlé Tuple Lattice Sieving 15/12/2017 20/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

How to find the solutions?

The distribution of C is very concentrated.

Finding almost all solutions to the k-list problem is equivalent
to finding all x1, . . . , xk ∈ L1 × . . .× Lk st. C (x1, . . . , xk) is
close to the target concentration:

∀i 6= j : 〈xi , xj〉 = −1/k .

D. Stehlé Tuple Lattice Sieving 15/12/2017 20/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

The Herold-Kirshanova algorithm

L1 L2 L3
. . . Lk

x1

Filter C1,2 Filter C1,3 Filter C1,k

L
(1)
2 L

(1)
3

. . . L
(1)
k

x2

Filter C2,3 Filter C2,k

L
(2)
3 L

(2)
k

D. Stehlé Tuple Lattice Sieving 15/12/2017 21/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Triple sieve beats double sieve!

Double sieve

Memory: 20.207n Time: 20.415n

Triple sieve

Memory: 20.189n Time: 20.397n

k = 4 is slower

Memory: 20.173n Time: 20.424n

D. Stehlé Tuple Lattice Sieving 15/12/2017 22/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Triple sieve beats double sieve!

Double sieve

Memory: 20.207n Time: 20.415n

Triple sieve

Memory: 20.189n Time: 20.397n

k = 4 is slower

Memory: 20.173n Time: 20.424n

D. Stehlé Tuple Lattice Sieving 15/12/2017 22/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Roadmap

1 Background

2 Solving SVP by sieving

3 Tuple sieving

4 Faster tuple sieve [HKL18]

D. Stehlé Tuple Lattice Sieving 15/12/2017 23/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Alternative target configurations

Increase the list size.
⇒ exponentially more good k-tuples.
⇒ We only need to find an exponential fraction of solutions.

Consider unbalanced configurations C that are easier to find.

D. Stehlé Tuple Lattice Sieving 15/12/2017 24/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Locality sensitive hashing and filtering

Clever lists

Pre-process L, such that it becomes easier to find all x2 ∈ L
with 〈x1, x2〉 ≈ c , for a given x1.

Locality sensitive hash functions and filters

Hash functions h ∈ H st:

Close points are likely to collide

Far away points are unlikely to collide

Filters: a point may end up in more than one bucket

D. Stehlé Tuple Lattice Sieving 15/12/2017 25/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Locality sensitive hashing and filtering

Clever lists

Pre-process L, such that it becomes easier to find all x2 ∈ L
with 〈x1, x2〉 ≈ c , for a given x1.

Locality sensitive hash functions and filters

Hash functions h ∈ H st:

Close points are likely to collide

Far away points are unlikely to collide

Filters: a point may end up in more than one bucket

D. Stehlé Tuple Lattice Sieving 15/12/2017 25/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Time-memory trade-offs with both techniques

D. Stehlé Tuple Lattice Sieving 15/12/2017 26/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

And in practice?

ListSieve vs GaussSieve

Variable configurations clearly help

Locality-sensitive filtering does not (yet?)

D. Stehlé Tuple Lattice Sieving 15/12/2017 27/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Roadmap

1 Background

2 Solving SVP by sieving

3 Tuple sieving

4 Faster tuple sieve

D. Stehlé Tuple Lattice Sieving 15/12/2017 28/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Take-home message

The
√

4/3
n

memory barrier is broken.

Frodo’s paranoia [ADPS16]

“Because all those algorithms require classically building lists of size
√

4/3
n
, it is very

plausible that the best quantum SVP algorithm would run in time ≥ 20.2075n.”

One of the SVP scenarios considered for setting parameters in
lattice-based cryptography.

The lower bound may be correct, but the underlying
justification is invalidated by tuple sieve.

Sounder approaches:

Asymptotic cost of the best known algorithm

Extrapolation of well-understood practice
D. Stehlé Tuple Lattice Sieving 15/12/2017 29/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Take-home message

The
√

4/3
n

memory barrier is broken.

Frodo’s paranoia [ADPS16]

“Because all those algorithms require classically building lists of size
√

4/3
n
, it is very

plausible that the best quantum SVP algorithm would run in time ≥ 20.2075n.”

One of the SVP scenarios considered for setting parameters in
lattice-based cryptography.

The lower bound may be correct, but the underlying
justification is invalidated by tuple sieve.

Sounder approaches:

Asymptotic cost of the best known algorithm

Extrapolation of well-understood practice
D. Stehlé Tuple Lattice Sieving 15/12/2017 29/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Take-home message

The
√

4/3
n

memory barrier is broken.

Frodo’s paranoia [ADPS16]

“Because all those algorithms require classically building lists of size
√

4/3
n
, it is very

plausible that the best quantum SVP algorithm would run in time ≥ 20.2075n.”

One of the SVP scenarios considered for setting parameters in
lattice-based cryptography.

The lower bound may be correct, but the underlying
justification is invalidated by tuple sieve.

Sounder approaches:

Asymptotic cost of the best known algorithm

Extrapolation of well-understood practice
D. Stehlé Tuple Lattice Sieving 15/12/2017 29/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Take-home message

The
√

4/3
n

memory barrier is broken.

Frodo’s paranoia [ADPS16]

“Because all those algorithms require classically building lists of size
√

4/3
n
, it is very

plausible that the best quantum SVP algorithm would run in time ≥ 20.2075n.”

One of the SVP scenarios considered for setting parameters in
lattice-based cryptography.

The lower bound may be correct, but the underlying
justification is invalidated by tuple sieve.

Sounder approaches:

Asymptotic cost of the best known algorithm

Extrapolation of well-understood practice
D. Stehlé Tuple Lattice Sieving 15/12/2017 29/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

(When) will sieving outperform enumeration?

Sieving is trickier, at least with our current
comprehension

Practice and asymptotics do not match
Locality-sensitive hashing is too costly
Parallelism

For cryptanalysis, sieving is important via BKZ

One interested in projected sublattices of an already
quite reduced basis
[Duc17]: Sieving can handle these much faster

Or is enumeration just the best for cryptanalytic costs?

D. Stehlé Tuple Lattice Sieving 15/12/2017 30/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

(When) will sieving outperform enumeration?

Sieving is trickier, at least with our current
comprehension

Practice and asymptotics do not match
Locality-sensitive hashing is too costly
Parallelism

For cryptanalysis, sieving is important via BKZ

One interested in projected sublattices of an already
quite reduced basis
[Duc17]: Sieving can handle these much faster

Or is enumeration just the best for cryptanalytic costs?

D. Stehlé Tuple Lattice Sieving 15/12/2017 30/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

(When) will sieving outperform enumeration?

Sieving is trickier, at least with our current
comprehension

Practice and asymptotics do not match
Locality-sensitive hashing is too costly
Parallelism

For cryptanalysis, sieving is important via BKZ

One interested in projected sublattices of an already
quite reduced basis
[Duc17]: Sieving can handle these much faster

Or is enumeration just the best for cryptanalytic costs?

D. Stehlé Tuple Lattice Sieving 15/12/2017 30/31

Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

THANK YOU!

D. Stehlé Tuple Lattice Sieving 15/12/2017 31/31

	Introduction
	Background
	Solving SVP by sieving
	Tuple sieve
	Faster tuple sieve
	Conclusion

