Tuple Lattice Sieving

Damien Stehlé

ENS de Lyon

Based on joint work with S. Bai and T. Laarhoven, and on follow-up works of E. Kirshanova and G. Herold

lots of slides borrowed from G. Herold

The topic of this talk

Introduction

The Shortest Vector Problem (SVP)

Input: $\mathbf{B} \in \mathbb{Z}^{n \times n}$ full rank. **Output**: $\mathbf{s} \in \mathbf{B} \cdot \mathbb{Z}^n \setminus \mathbf{0}$ shortest.

Tuple Lattice Sieving 15/12/2017

The topic of this talk

The Shortest Vector Problem (SVP)

Input: $\mathbf{B} \in \mathbb{Z}^{n \times n}$ full rank. Output: $\mathbf{s} \in \mathbf{B} \cdot \mathbb{Z}^n \setminus \mathbf{0}$ shortest.

Why do we consider this problem?

- Solving SVP is the costly component in cryptanalysis of lattice-based cryptosystems.
- Practical limitations of SVP solvers should drive the choice of concrete cryptographic parameters.
- And solving SVP is useful in plenty of other contexts.

The topic of this talk

The Shortest Vector Problem (SVP)

Input: $\mathbf{B} \in \mathbb{Z}^{n \times n}$ full rank. Output: $\mathbf{s} \in \mathbf{B} \cdot \mathbb{Z}^n \setminus \mathbf{0}$ shortest.

Why do we consider this problem?

- Solving SVP is the costly component in cryptanalysis of lattice-based cryptosystems.
- Practical limitations of SVP solvers should drive the choice of concrete cryptographic parameters.
- And solving SVP is useful in plenty of other contexts!

The end goal...

Find which SVP solver is fastest for huge computational effort.

Which costs are we interested in

- 2⁸⁰ to 2¹⁶⁰ bit operations
- How much memory? Quantum resources?

Reminder: Proofs are over-rated

Cryptanalysts are fine with heuristics

- Heuristic correctness
- Heuristic run-time
- Approximate solutions

But it should work in practice!

The end goal...

Find which SVP solver is fastest for huge computational effort.

Which costs are we interested in?

- 2⁸⁰ to 2¹⁶⁰ bit operations.
- How much memory? Quantum resources?

Reminder: Proofs are over-rated

Cryptanalysts are fine with heuristics

- Heuristic correctness
- Heuristic run-time
- Approximate solutions

But it should work in practice!

The end goal...

Find which SVP solver is fastest for huge computational effort.

Which costs are we interested in?

- 2⁸⁰ to 2¹⁶⁰ bit operations.
- How much memory? Quantum resources?

Reminder: Proofs are over-rated!

Cryptanalysts are fine with heuristics

- Heuristic correctness
- Heuristic run-time
- Approximate solutions

But it should work in practice!

D. Stehlé Tuple Lattice Sieving 15/12/2017

... and where we are today

It is not even clear which family of algorithms is the best.

Personal belief: sieving algorithms may be starting to win.

tuple sieving helps closing the gap

Talk based on

- S. Bai, T. Laarhoven, D. Stehlé: Tuple lattice sieving. ANTS'16
- G. Herold, E. Kirshanova: Improved algorithms for the approximate k-list problem in Euclidean norm. PKC'17.
- G. Herold, E. Kirshanova, T. Laarhoven: Speed-ups and time-memory trade-offs for

... and where we are today

It is not even clear which family of algorithms is the best.

Personal belief: sieving algorithms may be starting to win.

tuple sieving helps closing the gap

Talk based on:

- S. Bai, T. Laarhoven, D. Stehlé: Tuple lattice sieving. ANTS'16.
- G. Herold, E. Kirshanova: Improved algorithms for the approximate k-list problem in Euclidean norm. PKC'17.
- G. Herold, E. Kirshanova, T. Laarhoven: Speed-ups and time-memory trade-offs for tuple lattice sieving. PKC'18.

Roadmap

Introduction

- Background
- Solving SVP by sieving
- Tuple sieving
- Fast tuple sieving

D. Stehlé Tuple Lattice Sieving 15/12/2017

6/31

Best known fully analyzed algorithms

SVP

 $\mathbf{B} \in \mathbb{Z}^{n \times n}$ a basis matrix of $\Lambda = \mathbf{B} \in \mathbb{Z}^n$. Input:

Output: $\mathbf{s} \in \Lambda \setminus \mathbf{0}$ shortest.

	Time upper bound	Space upper bound	Deterministic or Probabilistic
via enumeration [FiPo'83,Kan'83,HaSt'07]	$n^{n/(2e)+o(n)}$	Poly(n)	Deterministic
via sieving [AjKuSi'01, MiVo'10, PuSt'09]	2 ^{2.247n+o(n)}	2 ^{1.325n+o(n)}	Probabilistic
via Voronoi cell [MiVo'10]	2 ^{2n+o(n)}	$2^{n+o(n)}$	Deterministic
Gaussians [ADRS'16,AS'17]	$2^{n+o(n)}$	$2^{n+o(n)}$	Probabilistic

Heuristic algorithms, prior to tuple sieving

Enumeration with pre-processing [Kan'83] and extreme pruning [GNR'10].

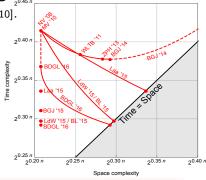
Heuristic algorithms, prior to tuple sieving

Enumeration with **pre-processing**

[Kan'83] and extreme pruning [GNR'10].

Sieving without perturbations and with locality sensitive hashing.

[Figure courtesy of T. Laarhoven]



Tuple sieving

Introduction

Beats the "Space = $2^{0.207n}$ " boundary. While keeping a $2^{O(n)}$ time complexity. And this increases practical performance!

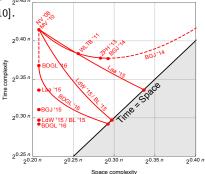
Heuristic algorithms, prior to tuple sieving

Enumeration with **pre-processing**

[Kan'83] and extreme pruning [GNR'10].

Sieving without **perturbations** and with **locality sensitive hashing**.

[Figure courtesy of T. Laarhoven]



Tuple sieving

Introduction

Beats the "Space = $2^{0.207n}$ " boundary. While keeping a $2^{O(n)}$ time complexity. And this increases practical performance!

Introduction

Enumeration with extreme pruning and pre-processing.

SVP-challenge webpage (Darmstadt Crypto Group)

- K. Kashiwabara, M. Fukase and T. Teruya, up to n=150 in ≈ 500 core years
- Y. Aono and P. Nguyen, up to n=130 in ≈ 160 core days
- lots of others, based on enumeration
- T. Kleinjung, up to n = 116... using "sieving"

Introduction

Enumeration with extreme pruning and pre-processing.

SVP-challenge webpage (Darmstadt Crypto Group)

- K. Kashiwabara, M. Fukase and T. Teruya, up to n=150 in ≈ 500 core years
- Y. Aono and P. Nguyen, up to n=130 in ≈ 160 core days
- lots of others, based on enumeration
- T. Kleinjung, up to n = 116... using "sieving"

D. Stehlé Tuple Lattice Sieving 15/12/2017

Introduction

Enumeration with extreme pruning and pre-processing.

SVP-challenge webpage (Darmstadt Crypto Group)

- K. Kashiwabara, M. Fukase and T. Teruya, up to n=150 in ≈ 500 core years
- Y. Aono and P. Nguyen, up to n=130 in ≈ 160 core days
- lots of others, based on enumeration
- T. Kleinjung, up to n = 116... using "sieving"

D. Stehlé Tuple Lattice Sieving 15/12/2017

Introduction

Enumeration with extreme pruning and pre-processing.

SVP-challenge webpage (Darmstadt Crypto Group)

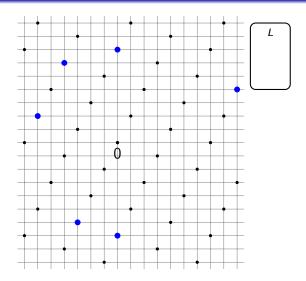
- K. Kashiwabara, M. Fukase and T. Teruya, up to n=150 in ≈ 500 core years
- Y. Aono and P. Nguyen, up to n=130 in ≈ 160 core days
- lots of others, based on enumeration
- T. Kleinjung, up to n = 116... using "sieving"

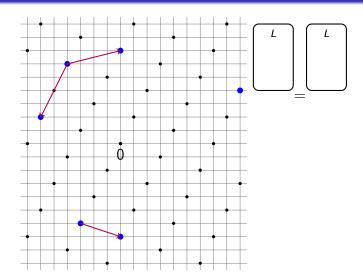
D. Stehlé Tuple Lattice Sieving 15/12/2017

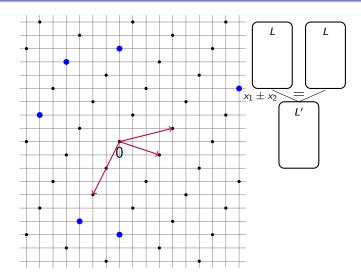
Roadmap

- Background
- Solving SVP by sieving
- Tuple sieving
- Fast tuple sieve

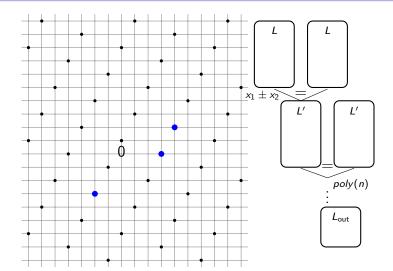
D. Stehlé Tuple Lattice Sieving 15/12/2017



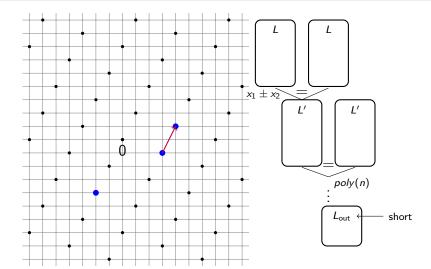




D. Stehlé Tuple Lattice Sieving 15/12/2017



D. Stehlé Tuple Lattice Sieving 15/12/2017



Analysis of sieving

Introduction

Correctness: fingers crossed!

For the cost, it suffices to bound the list size:

Time
$$\leq |L|^2 \cdot \mathcal{P}oly(n)$$
.

It suffices to bound how many points there can be

- with angle $\geq \pi/3$ between each other (else the point is passed to the next list)
- with essentially the same Euclidean norm (consider Poly coronas)

D. Stehlé Tuple Lattice Sieving 15/12/2017

Analysis of sieving

Introduction

Correctness: fingers crossed!

For the cost, it suffices to bound the list size:

Time
$$\leq |L|^2 \cdot \mathcal{P}oly(n)$$
.

It suffices to bound how many points there can be

- with angle $\geq \pi/3$ between each other (else the point is passed to the next list)
- with essentially the same Euclidean norm (consider Poly coronas)

D. Stehlé Tuple Lattice Sieving 15/12/2017

Cost of sieving

Introduction

It suffices to bound how many points there can be

- with angle $\geq \pi/3$ between each other
- with essentially the same Euclidean norm

The fraction of the *n*-sphere S_n at angle $\leq \pi/3$ from a given point is $\approx (\sin(\pi/3))^{-n}$.

Assuming that caps do not intersect much:

Memory
$$\leq \sqrt{4/3}^n \leq 2^{0.208n}$$

Time $\leq (4/3)^n \leq 2^{0.416n}$

D. Stehlé Tuple Lattice Sieving 15/12/2017

Cost of sieving

Introduction

It suffices to bound how many points there can be

- with angle $\geq \pi/3$ between each other
- with essentially the same Euclidean norm

The fraction of the *n*-sphere S_n at angle $\leq \pi/3$ from a given point is $\approx (\sin(\pi/3))^{-n}$.

Assuming that caps do not intersect much:

Memory
$$\leq \sqrt{4/3}^n \leq 2^{0.208n}$$

Time $\leq (4/3)^n \leq 2^{0.416n}$

Roadmap

- Background
- Solving SVP by sieving
- Tuple sieving
- Fast tuple sieve

2-Sieve vs. *k*-Sieve

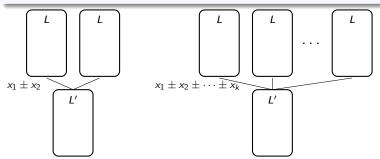
k-Sieve [BLS16]

Consider sums of k > 2 vectors at once

2-Sieve vs. k-Sieve

k-Sieve [BLS16]

Consider sums of k > 2 vectors at once



Aim

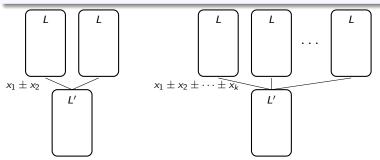
- Each point is more useful ⇒ memory decreases
- Finding useful tuples is more expensive \Rightarrow time increases

Introduction Background Solving SVP by sieving **Tuple sieve** Faster tuple sieve Conclusion

2-Sieve vs. k-Sieve

k-Sieve [BLS16]

Consider sums of k > 2 vectors at once



Aim

- Each point is more useful ⇒ memory decreases
- Finding useful tuples is more expensive \Rightarrow time increases

The *k*-list problem

Introduction

k-List problem (informal)

Input. k lists L_1, \ldots, L_k , whose entries are iid. uniformly chosen vectors from the n-sphere S_n .

Task. Output all k-tuples $(\mathbf{x}_1, \dots, \mathbf{x}_k) \in L_1 \times \dots \times L_k$ st

$$\|\mathbf{x}_1 + \ldots + \mathbf{x}_k\| \leq 1.$$

(in our case:
$$L_1 = L_2 = ... = L_k = L$$
)

• List size (heuristically) determined by

$$|L| = |L|^k \cdot \mathsf{Pr} ig[\|\mathbf{x}_1 \pm \ldots \pm \mathbf{x}_k\| \leq 1 ig]$$

• Cost of naive algorithm: $|L|^k$

The k=2 analysis can be extended [BLS16], but it's not very insightful.

D. Stehlé Tuple Lattice Sieving 15/12/2017

Conclusion

The *k*-list problem

Introduction

k-List problem (informal)

Input. k lists L_1, \ldots, L_k , whose entries are iid. uniformly chosen vectors from the n-sphere S_n .

Task. Output all k-tuples $(\mathbf{x}_1, \dots, \mathbf{x}_k) \in L_1 \times \dots \times L_k$ st

$$\|\mathbf{x}_1 + \ldots + \mathbf{x}_k\| \leq 1.$$

(in our case:
$$L_1 = L_2 = ... = L_k = L$$
)

List size (heuristically) determined by

$$|L| = |L|^k \cdot \mathsf{Pr} \big[\|\mathbf{x}_1 \pm \ldots \pm \mathbf{x}_k\| \le 1 \big]$$

• Cost of naive algorithm: $|L|^k$.

The k = 2 analysis can be extended [BLS16], but it's not very insightful.

Configurations [HK17]

Introduction

Task. Find
$$\mathbf{x}_1, \dots, \mathbf{x}_k \in L1 \times \dots \times L_k$$
 st. $\|\mathbf{x}_1 + \dots + \mathbf{x}_k\| \leq 1$.

We only care about the positions of the $\mathbf{x}_1, \dots, \mathbf{x}_k$ relative to each other.

Definition (Configuration)

The configuration $C = C(\mathbf{x}_1, \dots, \mathbf{x}_k)$ of $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathcal{S}_n$ is defined as the Gram matrix $C = (\langle \mathbf{x}_i, \mathbf{x}_i \rangle)_{i:i}$.

Configurations [HK17]

Introduction

Task. Find $\mathbf{x}_1, \dots, \mathbf{x}_k \in L1 \times \dots \times L_k$ st. $\|\mathbf{x}_1 + \dots + \mathbf{x}_k\| \leq 1$.

We only care about the positions of the $\mathbf{x}_1, \dots, \mathbf{x}_k$ relative to each other.

Definition (Configuration)

The configuration $C = C(\mathbf{x}_1, \dots, \mathbf{x}_k)$ of $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathcal{S}_n$ is defined as the Gram matrix $C = (\langle \mathbf{x}_i, \mathbf{x}_i \rangle)_{i,i}$.

Configuration C is positive semi-definite, with $C_{ii} = 1$, and:

$$\|\mathbf{x}_1+\ldots+\mathbf{x}_k\|^2=\sum_{i,j}C_{i,j}.$$

D. Stehlé Tuple Lattice Sieving 15/12/2017

Distribution of Configurations

Wishart'28

Introduction

Let $\mathbf{x}_1, \dots, \mathbf{x}_k$ be iid uniform on \mathcal{S}_n . Then the Gram matrix $C = (\langle \mathbf{x}_i, \mathbf{x}_i \rangle)_{i,i}$ follows a distribution with pdf

$$W_{n,k} \cdot \det(C)^{\frac{1}{2}(n-k)} dC = \widetilde{O}\left(\det(C)^{\frac{n}{2}}\right) dC$$
,

where $W_{n,k}$ is a normalization constant.

The distribution of C is very concentrated.

D. Stehlé Tuple Lattice Sieving 15/12/2017

Only one configuration matters!

The distribution of C is very concentrated.

 \Rightarrow Essentially all solutions come from a single C.

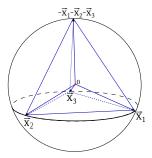


Figure: The configuration of solutions is concentrated on the configuration with maximal symmetry.

D. Stehlé Tuple Lattice Sieving 15/12/2017 18/31

Memory cost

Introduction

For iid uniform $\mathbf{x}_1, \dots, \mathbf{x}_k$ on \mathcal{S}_n , we have

$$\Pr[\|\mathbf{x}_1 + \ldots + \mathbf{x}_k\| \le 1] = \Pr[\forall i \ne j : \langle \mathbf{x}_i, \mathbf{x}_j \rangle \approx -1/k]$$
$$= \left(\frac{(k+1)^{k-1}}{k^k}\right)^{\frac{n}{2}}.$$

List size

For the balanced configuration, we need lists of size

$$|L| = \widetilde{O}\left(\left(\frac{k^{\frac{k}{k-1}}}{k+1}\right)^{\frac{n}{2}}\right).$$

$$k = 2 : 2^{0.207n}$$
 $k = 3 : 2^{0.189n}$

D. Stehlé Tuple Lattice Sieving 15/12/2017 19/31

Memory cost

Introduction

For iid uniform $\mathbf{x}_1, \dots, \mathbf{x}_k$ on \mathcal{S}_n , we have

$$\Pr[\|\mathbf{x}_1 + \ldots + \mathbf{x}_k\| \le 1] = \Pr[\forall i \ne j : \langle \mathbf{x}_i, \mathbf{x}_j \rangle \approx -1/k]$$
$$= \left(\frac{(k+1)^{k-1}}{k^k}\right)^{\frac{n}{2}}.$$

List size

For the balanced configuration, we need lists of size

$$|L| = \widetilde{O}\left(\left(\frac{k^{\frac{k}{k-1}}}{k+1}\right)^{\frac{n}{2}}\right).$$

$$k = 2 : 2^{0.207n}$$
 $k = 3 : 2^{0.189n}$

D. Stehlé Tuple Lattice Sieving 15/12/2017

How to find the solutions?

Introduction

The distribution of C is very concentrated.

Finding almost all solutions to the k-list problem is equivalent to finding all $\mathbf{x}_1, \ldots, \mathbf{x}_k \in L_1 \times \ldots \times L_k$ st. $C(\mathbf{x}_1, \ldots, \mathbf{x}_k)$ is close to the target concentration:

$$\forall i \neq i : \langle \mathbf{x}_i, \mathbf{x}_i \rangle = -1/k$$

D. Stehlé Tuple Lattice Sieving 15/12/2017 20/31

How to find the solutions?

Introduction

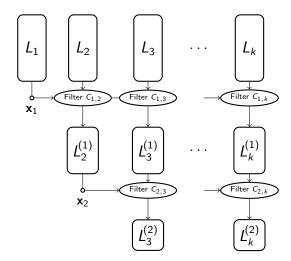
The distribution of C is very concentrated.

Finding almost all solutions to the k-list problem is equivalent to finding all $\mathbf{x}_1, \dots, \mathbf{x}_k \in L_1 \times \dots \times L_k$ st. $C(\mathbf{x}_1, \dots, \mathbf{x}_k)$ is close to the target concentration:

$$\forall i \neq j : \langle \mathbf{x}_i, \mathbf{x}_i \rangle = -1/k.$$

D. Stehlé Tuple Lattice Sieving 15/12/2017

The Herold-Kirshanova algorithm



D. Stehlé Tuple Lattice Sieving 15/12/2017

Triple sieve beats double sieve!

Double sieve

Memory: $2^{0.207n}$ Time: $2^{0.415n}$

Triple sieve

Memory: $2^{0.189n}$ Time: $2^{0.397n}$

k = 4 is slower

Memory: $2^{0.173n}$ Time: $2^{0.424n}$

D. Stehlé Tuple Lattice Sieving 15/12/2017 22/31

Triple sieve beats double sieve!

Double sieve

Memory: $2^{0.207n}$ Time: $2^{0.415n}$

Triple sieve

Memory: $2^{0.189n}$ Time: $2^{0.397n}$

k = 4 is slower

Memory: $2^{0.173n}$ Time: $2^{0.424n}$

D. Stehlé Tuple Lattice Sieving 15/12/2017

Roadmap

- Background
- Solving SVP by sieving
- Tuple sieving
- Faster tuple sieve [HKL18]

D. Stehlé Tuple Lattice Sieving 15/12/2017 23/31

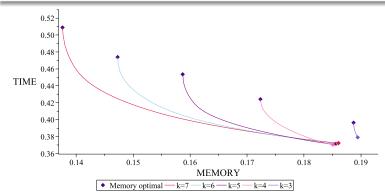
Alternative target configurations

Increase the list size.

Introduction

- \Rightarrow exponentially more good k-tuples.
- \Rightarrow We only need to find an exponential fraction of solutions.

Consider unbalanced configurations C that are easier to find.



D. Stehlé Tuple Lattice Sieving 15/12/2017

Locality sensitive hashing and filtering

Clever lists

Introduction

Pre-process L, such that it becomes easier to find all $\mathbf{x}_2 \in L$ with $\langle \mathbf{x}_1, \mathbf{x}_2 \rangle \approx c$, for a given \mathbf{x}_1 .

Locality sensitive hash functions and filters

Hash functions $h \in \mathcal{H}$ st:

- Close points are likely to collide
- Far away points are unlikely to collide

Filters: a point may end up in more than one bucket

D. Stehlé Tuple Lattice Sieving 15/12/2017 25/31

Locality sensitive hashing and filtering

Clever lists

Pre-process L, such that it becomes easier to find all $\mathbf{x}_2 \in L$ with $\langle \mathbf{x}_1, \mathbf{x}_2 \rangle \approx c$, for a given \mathbf{x}_1 .

Locality sensitive hash functions and filters

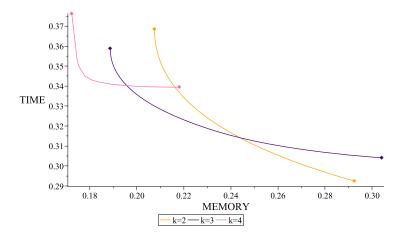
Hash functions $h \in \mathcal{H}$ st:

- Close points are likely to collide
- Far away points are unlikely to collide

Filters: a point may end up in more than one bucket

D. Stehlé Tuple Lattice Sieving 15/12/2017 25/31

Time-memory trade-offs with both techniques



Tuple Lattice Sieving 15/12/2017 26/31 Introduction

- ListSieve vs GaussSieve
- Variable configurations clearly help
- Locality-sensitive filtering does not (yet?)

D. Stehlé Tuple Lattice Sieving 15/12/2017 27/31

Roadmap

- Background
- Solving SVP by sieving
- Tuple sieving
- Faster tuple sieve

D. Stehlé Tuple Lattice Sieving 15/12/2017 28/31

Introduction

The $\sqrt{4/3}^n$ memory barrier is broken.

Frodo's paranoia [ADPS16

"Because all those algorithms require classically building lists of size $\sqrt{4/3}^n$, it is very plausible that the best quantum SVP algorithm would run in time $\geq 2^{0.2075n}$."

One of the SVP scenarios considered for setting parameters in lattice-based cryptography.

The lower bound may be correct, but the underlying justification is invalidated by tuple sieve.

Sounder approaches:

- Asymptotic cost of the best known algorithm
- Extrapolation of well-understood practice

D. Stehlé Tuple Lattice Sieving 15/12/2017 29/31

The $\sqrt{4/3}^n$ memory barrier is broken.

Frodo's paranoia [ADPS16]

"Because all those algorithms require classically building lists of size $\sqrt{4/3}^n$, it is very plausible that the best quantum SVP algorithm would run in time $\geq 2^{0.2075n}$."

One of the SVP scenarios considered for setting parameters in lattice-based cryptography.

The lower bound may be correct, but the underlying justification is invalidated by tuple sieve.

Sounder approaches:

- Asymptotic cost of the best known algorithm
- Extrapolation of well-understood practice

D. Stehlé Tuple Lattice Sieving 15/12/2017

The $\sqrt{4/3}^n$ memory barrier is broken.

Frodo's paranoia [ADPS16]

"Because all those algorithms require classically building lists of size $\sqrt{4/3}^n$, it is very plausible that the best quantum SVP algorithm would run in time $\geq 2^{0.2075n}$."

One of the SVP scenarios considered for setting parameters in lattice-based cryptography.

The lower bound may be correct, but the underlying justification is invalidated by tuple sieve.

Sounder approaches:

- Asymptotic cost of the best known algorithm
- Extrapolation of well-understood practice

D. Stehlé Tuple Lattice Sieving 15/12/2017

Introduction

The $\sqrt{4/3}^n$ memory barrier is broken.

Frodo's paranoia [ADPS16]

"Because all those algorithms require classically building lists of size $\sqrt{4/3}^n$, it is very plausible that the best quantum SVP algorithm would run in time $\geq 2^{0.2075n}$."

One of the SVP scenarios considered for setting parameters in lattice-based cryptography.

The lower bound may be correct, but the underlying justification is invalidated by tuple sieve.

Sounder approaches:

- Asymptotic cost of the best known algorithm
- Extrapolation of well-understood practice

D. Stehlé Tuple Lattice Sieving 15/12/2017

(When) will sieving outperform enumeration?

- Sieving is trickier, at least with our current comprehension
 - Practice and asymptotics do not match
 - Locality-sensitive hashing is too costly
 - Parallelism

Introduction

- For cryptanalysis, sieving is important via BKZ
 - One interested in projected sublattices of an already quite reduced basis
 - [Duc17]: Sieving can handle these much faster

Or is enumeration just the best for cryptanalytic costs?

D. Stehlé Tuple Lattice Sieving 15/12/2017

(When) will sieving outperform enumeration?

- Sieving is trickier, at least with our current comprehension
 - Practice and asymptotics do not match
 - Locality-sensitive hashing is too costly
 - Parallelism

Introduction

- For cryptanalysis, sieving is important via BKZ
 - One interested in projected sublattices of an already quite reduced basis
 - [Duc17]: Sieving can handle these much faster

Or is enumeration just the best for cryptanalytic costs?

D. Stehlé Tuple Lattice Sieving 15/12/2017

(When) will sieving outperform enumeration?

- Sieving is trickier, at least with our current comprehension
 - Practice and asymptotics do not match
 - Locality-sensitive hashing is too costly
 - Parallelism

Introduction

- For cryptanalysis, sieving is important via BKZ
 - One interested in projected sublattices of an already quite reduced basis
 - [Duc17]: Sieving can handle these much faster

Or is enumeration just the best for cryptanalytic costs?

D. Stehlé Tuple Lattice Sieving 15/12/2017

THANK YOU!