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The topic of this talk

The Shortest Vector Problem (SVP)

Input: B ∈ Zn×n full rank.
Output: s ∈ B · Zn \ 0 shortest.

Why do we consider this problem?

Solving SVP is the costly component in cryptanalysis of
lattice-based cryptosystems.

Practical limitations of SVP solvers should drive the
choice of concrete cryptographic parameters.

And solving SVP is useful in plenty of other contexts!
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The end goal...

Find which SVP solver is fastest for huge computational effort.

Which costs are we interested in?

280 to 2160 bit operations.

How much memory? Quantum resources?

Reminder: Proofs are over-rated!

Cryptanalysts are fine with heuristics

Heuristic correctness

Heuristic run-time

Approximate solutions

But it should work in practice!
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... and where we are today

It is not even clear which family of algorithms is the best.

Personal belief: sieving algorithms may be starting to win.

tuple sieving helps closing the gap

Talk based on:

S. Bai, T. Laarhoven, D. Stehlé: Tuple lattice sieving. ANTS’16.

G. Herold, E. Kirshanova: Improved algorithms for the approximate k-list problem in
Euclidean norm. PKC’17.

G. Herold, E. Kirshanova, T. Laarhoven: Speed-ups and time-memory trade-offs for
tuple lattice sieving. PKC’18.
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Roadmap

1 Background

2 Solving SVP by sieving

3 Tuple sieving

4 Fast tuple sieving
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Best known fully analyzed algorithms

SVP

Input: B ∈ Zn×n a basis matrix of Λ = B ∈ Zn.
Output: s ∈ Λ \ 0 shortest.

Time
upper bound

Space
upper bound

Deterministic
or Probabilistic

via enumeration
[FiPo’83,Kan’83,HaSt’07]

nn/(2e)+o(n) Poly(n) Deterministic

via sieving
[AjKuSi’01, MiVo’10, PuSt’09]

22.247n+o(n) 21.325n+o(n) Probabilistic

via Voronoi cell
[MiVo’10]

22n+o(n) 2n+o(n) Deterministic

Gaussians
[ADRS’16,AS’17]

2n+o(n) 2n+o(n) Probabilistic
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Heuristic algorithms, prior to tuple sieving

Enumeration with pre-processing
[Kan’83] and extreme pruning [GNR’10].
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Heuristic algorithms, prior to tuple sieving

Enumeration with pre-processing
[Kan’83] and extreme pruning [GNR’10].

Sieving without perturbations
and with locality sensitive hash-
ing.

[Figure courtesy of T. Laarhoven]
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Tuple sieving

Beats the “Space = 20.207n” boundary.
While keeping a 2O(n) time complexity.
And this increases practical performance!
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In practice

Enumeration with extreme pruning and pre-processing.

SVP-challenge webpage (Darmstadt Crypto Group)

K. Kashiwabara, M. Fukase and T. Teruya,
up to n = 150 in ≈ 500 core years

Y. Aono and P. Nguyen,
up to n = 130 in ≈ 160 core days

lots of others, based on enumeration

T. Kleinjung, up to n = 116... using “sieving”
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D. Stehlé Tuple Lattice Sieving 15/12/2017 8/31



Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Roadmap

1 Background

2 Solving SVP by sieving

3 Tuple sieving

4 Fast tuple sieve
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The sieving algorithm [Figure courtesy of G. Herold]

0

L
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The sieving algorithm [Figure courtesy of G. Herold]
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Analysis of sieving

Correctness: fingers crossed!

For the cost, it suffices to bound the list size:

Time ≤ |L|2 · Poly(n).

It suffices to bound how many points there can be

with angle ≥ π/3 between each other
(else the point is passed to the next list)

with essentially the same Euclidean norm
(consider Poly coronas)
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Cost of sieving

It suffices to bound how many points there can be

with angle ≥ π/3 between each other

with essentially the same Euclidean norm

The fraction of the n-sphere Sn at angle ≤ π/3 from a given
point is ≈ (sin(π/3))−n.

Assuming that caps do not intersect much:

Memory ≤
√

4/3
n ≤ 20.208n

Time ≤ (4/3)n ≤ 20.416n
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D. Stehlé Tuple Lattice Sieving 15/12/2017 12/31



Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

Roadmap

1 Background

2 Solving SVP by sieving

3 Tuple sieving

4 Fast tuple sieve
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2-Sieve vs. k-Sieve

k-Sieve [BLS16]

Consider sums of k > 2 vectors at once

L L

L′
x1 ± x2

L L

. . .

L

L′
x1 ± x2 ± · · · ± xk

Aim

Each point is more useful ⇒ memory decreases

Finding useful tuples is more expensive ⇒ time increases
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The k-list problem

k-List problem (informal)

Input. k lists L1, . . . , Lk , whose entries are iid. uniformly
chosen vectors from the n-sphere Sn.
Task. Output all k-tuples (x1, . . . , xk) ∈ L1 × . . .× Lk st

‖x1 + . . . + xk‖ ≤ 1.

(in our case: L1 = L2 = . . . = Lk = L)

List size (heuristically) determined by

|L| = |L|k · Pr
[
‖x1 ± . . .± xk‖ ≤ 1

]
Cost of naive algorithm: |L|k .

The k = 2 analysis can be extended [BLS16], but it’s not very insightful.
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Configurations [HK17]

Task. Find x1, . . . , xk ∈ L1× . . .× Lk st. ‖x1 + . . .+ xk‖ ≤ 1.

We only care about the positions of the x1, . . . , xk relative
to each other.

Definition (Configuration)

The configuration C = C (x1, . . . , xk) of x1, . . . , xk ∈ Sn is
defined as the Gram matrix C = (〈xi , xj〉)i ,j .

Configuration C is positive semi-definite, with Cii = 1, and:

‖x1 + . . . + xk‖2 =
∑
i ,j

Ci ,j .
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Distribution of Configurations

Wishart’28

Let x1, . . . , xk be iid uniform on Sn. Then the Gram matrix
C = (〈xi , xj〉)i ,j follows a distribution with pdf

Wn,k · det(C )
1
2

(n−k) dC = Õ
(

det(C )
n
2

)
dC ,

where Wn,k is a normalization constant.

The distribution of C is very concentrated.
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Only one configuration matters!

The distribution of C is very concentrated.
⇒ Essentially all solutions come from a single C .

x1

x3

0

x2

-x1-x2-x3

Figure: The configuration of solutions is concentrated on the
configuration with maximal symmetry.
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Memory cost

For iid uniform x1, . . . , xk on Sn, we have

Pr[‖x1 + . . . + xk‖ ≤ 1] = Pr[∀i 6= j : 〈xi , xj〉 ≈ −1/k]

=
((k + 1)k−1

kk

) n
2
.

List size

For the balanced configuration, we need lists of size

|L| = Õ
(( k

k
k−1

k + 1

) n
2
)
.

k = 2 : 20.207n k = 3 : 20.189n
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How to find the solutions?

The distribution of C is very concentrated.

Finding almost all solutions to the k-list problem is equivalent
to finding all x1, . . . , xk ∈ L1 × . . .× Lk st. C (x1, . . . , xk) is
close to the target concentration:

∀i 6= j : 〈xi , xj〉 = −1/k .
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The Herold-Kirshanova algorithm

L1 L2 L3
. . . Lk

x1

Filter C1,2 Filter C1,3 Filter C1,k

L
(1)
2 L

(1)
3

. . . L
(1)
k

x2

Filter C2,3 Filter C2,k

L
(2)
3 L

(2)
k
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Triple sieve beats double sieve!

Double sieve

Memory: 20.207n Time: 20.415n

Triple sieve

Memory: 20.189n Time: 20.397n

k = 4 is slower

Memory: 20.173n Time: 20.424n
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Roadmap

1 Background

2 Solving SVP by sieving

3 Tuple sieving

4 Faster tuple sieve [HKL18]
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Alternative target configurations

Increase the list size.
⇒ exponentially more good k-tuples.
⇒ We only need to find an exponential fraction of solutions.

Consider unbalanced configurations C that are easier to find.
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Locality sensitive hashing and filtering

Clever lists

Pre-process L, such that it becomes easier to find all x2 ∈ L
with 〈x1, x2〉 ≈ c , for a given x1.

Locality sensitive hash functions and filters

Hash functions h ∈ H st:

Close points are likely to collide

Far away points are unlikely to collide

Filters: a point may end up in more than one bucket
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Time-memory trade-offs with both techniques

D. Stehlé Tuple Lattice Sieving 15/12/2017 26/31



Introduction Background Solving SVP by sieving Tuple sieve Faster tuple sieve Conclusion

And in practice?

ListSieve vs GaussSieve

Variable configurations clearly help

Locality-sensitive filtering does not (yet?)
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Roadmap

1 Background

2 Solving SVP by sieving

3 Tuple sieving

4 Faster tuple sieve
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Take-home message

The
√

4/3
n

memory barrier is broken.

Frodo’s paranoia [ADPS16]

“Because all those algorithms require classically building lists of size
√

4/3
n
, it is very

plausible that the best quantum SVP algorithm would run in time ≥ 20.2075n.”

One of the SVP scenarios considered for setting parameters in
lattice-based cryptography.

The lower bound may be correct, but the underlying
justification is invalidated by tuple sieve.

Sounder approaches:

Asymptotic cost of the best known algorithm

Extrapolation of well-understood practice
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lattice-based cryptography.

The lower bound may be correct, but the underlying
justification is invalidated by tuple sieve.

Sounder approaches:

Asymptotic cost of the best known algorithm

Extrapolation of well-understood practice
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(When) will sieving outperform enumeration?

Sieving is trickier, at least with our current
comprehension

Practice and asymptotics do not match
Locality-sensitive hashing is too costly
Parallelism

For cryptanalysis, sieving is important via BKZ

One interested in projected sublattices of an already
quite reduced basis
[Duc17]: Sieving can handle these much faster

Or is enumeration just the best for cryptanalytic costs?
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THANK YOU!
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