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Lattices

A lattice is a set of points

L = {a1v1 + · · ·+ anvn | ai integers}.

for some linearly independent vectors
v1, . . . , vn ∈ Rd .

We call v1, . . . , vn a basis, n the rank, and d is
the dimension of the lattice L.
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Basis is Not Unique

Good Basis: v ′1, v ′2

Bad Basis: v1, v2
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Lattice Problems

SVP: Given a lattice basis and a length r > 0 , decide whether λ1 ≤ r or λ1 > r ,
where λ1 is the length of a shortest non-zero vector.

CVP: Given a basis of L, a vector ~t ∈ Rn and a length r > 0 , decide whether
dist(~t ,L) ≤ r or dist(~t ,L) > r , where dist(~t ,L) is the shortest distance of the

vector ~t from the lattice.
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`p norms

Typically, we define length in terms of the `p norm for some 1 ≤ p ≤ ∞ defined as

‖~x‖p := (|x1|p + |x2|p + · · ·+ |xd |p)1/p

for finite p and
‖~x‖∞ := max |xi | .

We write SVPp for SVP in the `p norm.
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The LLL Algorithm [LLL82]

An efficient algorithm that outputs a “somewhat short" lattice vector

Applications include:

I Solving integer programs in a fixed dimension

I Factoring polynomials over rationals

I Finding integer relations:

5.709975946676696 . . . ?
= 4 + 3

√
5

I Attacking knapsack-based cryptosystems [LagOdl85] and variants of RSA
[Has85,Cop01]
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Lattices and Cryptography

Lattices can also be used to create cryptosystems.

This started with a breakthrough of Ajtai[Ajt96].

Cryptography based on lattices has many advantages compared with ‘traditional’
cryptography like RSA:

I It has strong, mathematically proven, security.

I It is believed to be resistant to quantum computers.

I In some cases, it is much faster.

I It can do more, e.g., fully homomorphic encryption, which is one of the
most important cryptographic primitives.
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Lattice-based Crypto

Public-key Encryption [Reg05,KTX07,PKW08]

CCA-Secure PKE [PW08,Pei09].

Identity-based Encryption [GPV08]

Oblivious Transfer [PVW08]

Circular Secure Encryption [ACPS09]

Hierarchical Identity-based Encryption [Gen09,CHKP09,ABB09].

Fully Homomorphic Encryption [Gen09,BV11,Bra12].

And more...
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Faster Algorithms for SVP – A Threat to Cryptography

Divesh Aggarwal (NUS) (Gap/S)ETH Hardness of SVP December 15, 2017 11 / 33



Best Known Algorithms for SVP

Norm Time Space

[Kan86] Euclidean (`2) nO(n) poly(n)

[ADRS15,AS18] Euclidean (`2) 2n+o(n) 2n+o(n)

[BN07,AJ08] All norms 2O(n) 2O(n)
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Hardness of SVP

SVP is known to be NP-hard under randomized reductions [Ajt98].

Implication: There is no polynomial time algorithm unless P = NP.

Does not rule out the possibility of a 2n/100 or a 2n1/10
algorithm.

I This will still break cryptosystems in practice.

Question: Can we show a 2cn lower bound for some constant c under a
reasonable complexity-theoretic assumption?

I YES (this talk)
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3-SAT and k -SAT
3-SAT: Given a formula φ in 3-CNF with n variables and m clauses, decide
whether there is a satisfying assignment.

3-CNF: φ is a conjunction of clauses, with each clause being a disjunction of 3
literals – variables or their negations

(x1 ∨ x7 ∨ ¬x17) ∧ (x12 ∨ ¬x15) ∧ (¬x4 ∨ x6 ∨ x12) · · ·

Trivial algorithm: Õ(2n) time.

Smarter algorithm: Take any clause not satisfied so far, and branch on the
evaluations of the variables satisfying the clause.

I

T (n) ≤ max(7 · T (n − 3) , 3 · T (n − 2) , T (n − 1)) ≤ 7n/3 < 20.936n .

Current Best: 20.388n [Her14].

For every k , we can solve k -SAT in 2(1−εk )n , but limk→∞εk = 0.
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ETH and SETH

Can we do significantly better, i.e., find a 2o(n) algorithm for solving 3-SAT?

Can we solve SAT in time αn for α < 2?

At the moment, we are very very far from answering these questions.

Definition (ETH and SETH: Informal Definitions)

ETH: 3-SAT cannot be solved in time 2o(n).

SETH: For all ε > 0, there exists k > 0 such that k -SAT cannot be solved in
2(1−ε)n time.

Formulated by Impagliazzo, Paturi, and Zane in 2001.

It is now a fairly standard assumption for fine-grained complexity theory.
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Implication for SVP/CVP
We would like to conclude lower bounds via reductions.

A reduction from k -SAT to L and a very fast algorithm for L will imply a very fast
algorithm for k -SAT.

Closest Vector Problem

I Standard NP-Hardness reductions are linear and will give a 2Ω(n) bound
under ETH.

I A recent result showed a lower bound of 2n for almost all `p norms under
SETH [BGS17].

Shortest Vector Problem

I The reduction from [Kho05] is a reduction from 3-SAT on n′ variables to
SVP on a lattice of rank n = O(n′3).

I This implies a 2n1/3
lower bound for SVP under ETH.

I Other known NP Hardness reductions likely yield worse results.
I Desired to find a reduction with n = O(n′).
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A naïve reduction from CVP
Using [BGS17], there is a lower bound of 2n under SETH.

In order to prove hardness of SVP, we want a reduction from CVP to SVP.

Naïve idea: Given a CVPp instance (B,~t , r), construct the SVPp instance given
by the basis of a lattice L∗ of the form

B∗ :=

(
B ~t
0 s

)
,

for some (small) parameter s (say s = 1) and r∗ = (r p + sp)1/p.

Is this a valid reduction?

I If the CVP instance is a YES instance ( ‖~v −~t‖p ≤ r ) then the SVP
instance is a YES instance: (~v −~t ,−s) is a short vector.

I If CVP instance is a NO instance, there might still be short vectors

(~v − k ·~t , −k · s)T

for ~v ∈ L(B), k 6= ±1.
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Sparsification Lemma [Khot05]

For prime q, and ~z ∈ Zn
q , we write

L~z = LB,~z,q := {B~y ∈ L : ~y ∈ Zn , 〈~z, ~y〉 ≡ 0 mod q} .

Theorem

Let ~z ∈ Zn
q be chosen uniformly at random. Consider lattice vectors ~y1, . . . , ~yN ∈ L

that are non-zero modulo q. Then,

Pr
[
∀i > 0, ~yi /∈ L~z

]
≥ 1− N

q
,

Furthermore, if for all distinct i, j ∈ [N], ~yi is not an integer multiple of ~yj modulo q,
then

Pr
[
∃i, ~yi ∈ L~z

]
≥ 1− q

N
.

i.e., if N � q, then w.h.p. none of the vectors is in L~z ,

and if N � q, then w.h.p. one of the vectors is in L~z .
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How does the sparsification lemma help

Given the CVP instance, we construct a lattice L∗ and choose r∗ > 0, such
that NYES � NNO, where

I NYES is a lower bound on the number of vectors in L∗ of length at most
r∗ if the input instance is a YES instance.

I NNO is an upper bound on the number of vectors in L∗ of length at most
r∗ if the input instance is a NO instance.

We then choose q ≈
√

NYES · NNO and sparsify the lattice.
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Modifying the naïve reduction

Consider the CVP instance (B,~t , r) from [BGS17]. It has the form

B =

(
Φ
In

)
∈ Rd×n , ~t =


~t1

1/2
...

1/2

 ∈ Rd ,

for some Φ ∈ R(d−n)×n , ~t1 ∈ Rd−n, and r = (n+1)1/p

2 .

Consider the lattice basis obtained by adding the gadget lattice Zn† .

B∗ =

B 0 ~t
0 Zn† ~t†

0 0 s

 ∈ R(d+n†)×(n+n†+1) ,

where~t† = (1/2, . . . , 1/2) ∈ Rn† , and r∗ =
(

r p + n†
2p + sp

)1/p
.
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Recall

Given the CVP instance, we wanted to construct a lattice L∗ and choose
r∗ > 0, such that NYES � NNO, where

I NYES is a lower bound on the number of vectors in L∗ of length at most
r∗ if the input instance is a YES instance.

I NNO is an upper bound on the number of vectors in L∗ of length at most
r∗ if the input instance is a NO instance.

We then choose q ≈
√

NYES · NNO and sparsify the lattice.
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Our reduction
We have constructed the lattice basis

B∗ =


Φ 0 ~t1
Zn 0 ~t2
0 Zn† ~t†

0 0 s

 ,

where~t2 = (1/2, . . . , 1/2) ∈ Rn , ~t† = (1/2, . . . , 1/2) ∈ Rn† , and

r∗ =
(

r p + n†
2p + sp

)1/p
≈ (n+n†)1/p

2 .

Clearly, NYES ≥ 2n† (Choose 0/1 coefficients in the gadget lattice).

Also, we can show that

NNO ≤ poly(n) · Np

(
Zn+n† ,

(n + n†)1/p

2

)
,

where Np(L, r) denotes the number of vectors of length at most r in L.

We need to bound Np

(
Zn+n† , (n+n†)1/p

2

)
by 2n† .
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The last coefficient k odd is “like" k = 1 and does not give a vector of length
less than r∗ since it is a NO instance.

The last coefficient k even is “like" k = 0, and only contributes for |k | < poly(n).
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Finishing the proof
Let m = n + n†. We need to bound Np

(
Zm , m1/p

2

)
. As an example, consider p = 2.

Then, any vector with m/4 ±1’s, and 3m/4 0’s has norm
√

m/2.

Thus,

N2

(
Zm ,

√
m

2

)
≥

(
m

m/4

)
· 2m/4 > 2.086m > 2n† .

The above is a reasonable estimate of N2

(
Zm , m1/p

2

)
. We show in the paper

that N2

(
Zm , m1/2

2

)
≈ 2.089m.

It is easy to see that Np

(
Zm , m1/p

2

)
decreases with increase in p.

So, we expect Np

(
Zm , m1/p

2

)
� 2m, for a large enough p. If this is true, then

we can choose n† = C†n for a large enough constant C† to get

Np

(
Zn+n† ,

(n + n†)1/p

2

)
� 2n†
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Estimating Np

(
Zm , m1/p

2

)
For any τ > 0, we define

Θp(τ) :=
∑
z∈Z

exp(−τ |z|p) .

Notice that we can write Θp(τ)m as a summation over Zm,

Θp(τ)m =
∑
~z∈Zm

exp(−τ‖~z‖p
p) .

In particular, for any radius r > 0 and τ > 0, we have

Θp(τ)m ≥
∑
~z∈Zm
‖~z‖p≤r

exp(−τ‖~z‖p
p) ≥ exp(−τ r p) · Np(Zm, r ,~0) .

Rearranging and taking the minimum over all τ > 0, we see that

Np(Zm, r) ≤ min
τ>0

exp(τ r p) ·Θp(τ)m .

We show that this bound is quite tight. We cannot compute this analytically, but can
estimate this numerically to any precision.
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The final result: SETH Hardness

We get that for “almost" all p ≥ 2.14 , under randomized SETH, there is no algorithm
for SVPp that runs in time better than 2n/Cp . The following shows the dependence of
Cp on p.

2 4 6 8 10
p

1.5
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C_p
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p
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Gap-ETH Hardness

Max-3-SATη: This is a promise problem. Given a formula φ in 3-CNF with n
variables and m clauses

YES instance: There is a satisfying assignment

NO instance: Every assignment satisfies at most η fraction of the clauses.

The following definition is due to [MR16,Din16]. It is fast becoming a standard
assumption.

Definition (Gap-ETH: Informal Definition)
Gap-ETH: There exist η ∈ (0, 1) such that Max-3-SATη cannot be solved in time

2o(n).
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Our Results under Gap-ETH

For any p > 2, there is no 2o(n)-time algorithm for SVPp under Gap-ETH
Assumption.

I For this, we show that for any p > 2, there exists a vector ~t and r > 0
such that

Np(Zn,~t , r) ≥ exp(n) · Np(Zn,~0, r) .

There is no 2o(n)-time algorithm for SVP2 under Gap-ETH Assumption and the
assumption that there exists a family of lattices with exponential kissing number.

I For this, we show that if there is a family of lattices with exponential kissing
number, then for any n, there exists an n-dimensional lattice L , a vector
~t , and r > 0 such that

N2(L,~t , r) ≥ exp(n) · N2(L,~0, r) .
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Conclusions and Open Questions

Under SETH, we show that for “almost" all p, SVPp cannot be solved in 2n/Cp

time.

I Question 1: Improve the constant Cp, possibly by using a different gadget
lattice.

I Question 2: Remove the “almost", possibly via a direct reduction from
k -SAT.

Under Gap-ETH, we show that for all p > 2, SVPp cannot be solved in 2o(n) time.

I Question 3: Can we show this under the more standard ETH.

Under Gap-ETH and the assumption that the lattice has exponential kissing
number, we show that SVP2 cannot be solved in 2o(n) time.

I Question 4: Replace Gap-ETH with ETH.

I Question 5: Remove the assumption about exponential kissing number.
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Questions?
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