(Gap/S)ETH Hardness of SVP

Divesh Aggarwal and Noah Stephens-Davidowitz

National University of Singapore

December 15, 2017

Talk Outline

- A very brief introduction to lattices
- An introduction to the Exponential Time Hypotheses
- Hardness of SVP_p for $p \ge 2.14$ under SETH
- Summary of Other Results
- Conclusions and open questions

Talk Outline

- A very brief introduction to lattices
- An introduction to the Exponential Time Hypotheses
- Hardness of SVP_p for $p \ge 2.14$ under SETH
- Summary of Other Results
- Conclusions and open questions

Lattices

- A lattice is a set of points
- $\mathcal{L} = \{a_1v_1 + \dots + a_nv_n \mid a_i \text{ integers}\}.$ for some linearly independent vectors $v_1, \dots, v_n \in \mathbb{R}^d.$
- We call v₁,..., v_n a basis, n the rank, and d the dimension of the lattice L.

Basis is Not Unique

Good Basis: v'_1 , v'_2

Bad Basis: v1, v2

Divesh Aggarwal (NUS)

(Gap/S)ETH Hardness of SVF

Lattice Problems

• SVP: Given a lattice basis and a length r > 0, decide whether $\lambda_1 \le r$ or $\lambda_1 > r$, where λ_1 is the length of a shortest non-zero vector.

Lattice Problems

- SVP: Given a lattice basis and a length r > 0, decide whether $\lambda_1 \le r$ or $\lambda_1 > r$, where λ_1 is the length of a shortest non-zero vector.
- CVP: Given a basis of *L*, a vector *t* ∈ ℝⁿ and a length *r* > 0, decide whether dist(*t*, *L*) ≤ *r* or dist(*t*, *L*) > *r*, where dist(*t*, *L*) is the shortest distance of the vector *t* from the lattice.

ℓ_p norms

Typically, we define length in terms of the ℓ_p norm for some $1 \le p \le \infty$ defined as

$$\|\vec{x}\|_{p} := (|x_{1}|^{p} + |x_{2}|^{p} + \cdots + |x_{d}|^{p})^{1/p}$$

for finite *p* and

$$\|\vec{x}\|_{\infty} := \max |X_i|.$$

We write SVP_{*p*} for SVP in the ℓ_p norm.

The LLL Algorithm [LLL82]

- An efficient algorithm that outputs a "somewhat short" lattice vector
- Applications include:
 - Solving integer programs in a fixed dimension
 - Factoring polynomials over rationals
 - Finding integer relations:

 $5.709975946676696 \dots \stackrel{?}{=} 4 + 3\sqrt{5}$

 Attacking knapsack-based cryptosystems [LagOdl85] and variants of RSA [Has85,Cop01]

Lattices and Cryptography

- Lattices can also be used to create cryptosystems.
- This started with a breakthrough of Ajtai[Ajt96].
- Cryptography based on lattices has many advantages compared with 'traditional' cryptography like RSA:
 - It has strong, mathematically proven, security.
 - It is believed to be resistant to quantum computers.
 - In some cases, it is much faster.
 - It can do more, e.g., fully homomorphic encryption, which is one of the most important cryptographic primitives.

Lattice-based Crypto

- Public-key Encryption [Reg05,KTX07,PKW08]
- CCA-Secure PKE [PW08,Pei09].
- Identity-based Encryption [GPV08]
- Oblivious Transfer [PVW08]
- Circular Secure Encryption [ACPS09]
- Hierarchical Identity-based Encryption [Gen09,CHKP09,ABB09].
- Fully Homomorphic Encryption [Gen09,BV11,Bra12].
- And more...

Faster Algorithms for SVP – A Threat to Cryptography

Best Known Algorithms for SVP

	Norm	Time	Space
[Kan86]	Euclidean (ℓ_2)	п ^{О(n)}	poly(<i>n</i>)
[ADRS15,AS18]	Euclidean (ℓ_2)	2 ^{<i>n</i>+<i>o</i>(<i>n</i>)}	2 ^{<i>n</i>+<i>o</i>(<i>n</i>)}
[BN07,AJ08]	All norms	2 ⁰⁽ⁿ⁾	2 ⁰⁽ⁿ⁾

SVP is known to be NP-hard under randomized reductions [Ajt98].

- SVP is known to be NP-hard under randomized reductions [Ajt98].
- Implication: There is no polynomial time algorithm unless P = NP.

- SVP is known to be NP-hard under randomized reductions [Ajt98].
- Implication: There is no polynomial time algorithm unless P = NP.
- Does not rule out the possibility of a $2^{n/100}$ or a $2^{n^{1/10}}$ algorithm.

- SVP is known to be NP-hard under randomized reductions [Ajt98].
- Implication: There is no polynomial time algorithm unless P = NP.
- Does not rule out the possibility of a $2^{n/100}$ or a $2^{n^{1/10}}$ algorithm.
 - This will still break cryptosystems in practice.
- Question: Can we show a 2^{cn} lower bound for some constant *c* under a reasonable complexity-theoretic assumption?

- SVP is known to be NP-hard under randomized reductions [Ajt98].
- Implication: There is no polynomial time algorithm unless P = NP.
- Does not rule out the possibility of a $2^{n/100}$ or a $2^{n^{1/10}}$ algorithm.
 - This will still break cryptosystems in practice.
- Question: Can we show a 2^{cn} lower bound for some constant *c* under a reasonable complexity-theoretic assumption?
 - YES (this talk)

Talk Outline

- A very brief introduction to lattices
- An introduction to the Exponential Time Hypotheses
- Hardness of SVP_p for $p \ge 2.14$ under SETH
- Summary of Other Results
- Conclusions and open questions

- 3-SAT: Given a formula ϕ in 3-CNF with *n* variables and *m* clauses, decide whether there is a satisfying assignment.
- 3-CNF: φ is a conjunction of clauses, with each clause being a disjunction of 3 literals variables or their negations

$$(x_1 \lor x_7 \lor \neg x_{17}) \land (x_{12} \lor \neg x_{15}) \land (\neg x_4 \lor x_6 \lor x_{12}) \cdots$$

- 3-SAT: Given a formula ϕ in 3-CNF with *n* variables and *m* clauses, decide whether there is a satisfying assignment.
- 3-CNF: φ is a conjunction of clauses, with each clause being a disjunction of 3 literals variables or their negations

$$(x_1 \lor x_7 \lor \neg x_{17}) \land (x_{12} \lor \neg x_{15}) \land (\neg x_4 \lor x_6 \lor x_{12}) \cdots$$

• Trivial algorithm: $\widetilde{O}(2^n)$ time.

- 3-SAT: Given a formula ϕ in 3-CNF with *n* variables and *m* clauses, decide whether there is a satisfying assignment.
- 3-CNF: φ is a conjunction of clauses, with each clause being a disjunction of 3 literals variables or their negations

$$(x_1 \lor x_7 \lor \neg x_{17}) \land (x_{12} \lor \neg x_{15}) \land (\neg x_4 \lor x_6 \lor x_{12}) \cdots$$

- Trivial algorithm: $\widetilde{O}(2^n)$ time.
- Smarter algorithm: Take any clause not satisfied so far, and branch on the evaluations of the variables satisfying the clause.

$$T(n) \leq \max(7 \cdot T(n-3), \ 3 \cdot T(n-2), \ T(n-1)) \leq 7^{n/3} < 2^{0.936n}$$

- 3-SAT: Given a formula ϕ in 3-CNF with *n* variables and *m* clauses, decide whether there is a satisfying assignment.
- 3-CNF: φ is a conjunction of clauses, with each clause being a disjunction of 3 literals variables or their negations

$$(x_1 \lor x_7 \lor \neg x_{17}) \land (x_{12} \lor \neg x_{15}) \land (\neg x_4 \lor x_6 \lor x_{12}) \cdots$$

- Trivial algorithm: $\widetilde{O}(2^n)$ time.
- Smarter algorithm: Take any clause not satisfied so far, and branch on the evaluations of the variables satisfying the clause.

$$T(n) \le \max(7 \cdot T(n-3), \ 3 \cdot T(n-2), \ T(n-1)) \le 7^{n/3} < 2^{0.936n}$$

Current Best: 2^{0.388n} [Her14].

- 3-SAT: Given a formula φ in 3-CNF with n variables and m clauses, decide whether there is a satisfying assignment.
- 3-CNF: φ is a conjunction of clauses, with each clause being a disjunction of 3 literals variables or their negations

$$(x_1 \lor x_7 \lor \neg x_{17}) \land (x_{12} \lor \neg x_{15}) \land (\neg x_4 \lor x_6 \lor x_{12}) \cdots$$

- Trivial algorithm: $\widetilde{O}(2^n)$ time.
- Smarter algorithm: Take any clause not satisfied so far, and branch on the evaluations of the variables satisfying the clause.

 $T(n) \leq \max(7 \cdot T(n-3), \ 3 \cdot T(n-2), \ T(n-1)) \leq 7^{n/3} < 2^{0.936n}$.

Current Best: 2^{0.388n} [Her14].

• For every k, we can solve k-SAT in $2^{(1-\varepsilon_k)n}$, but $\lim_{k\to\infty}\varepsilon_k = 0$.

Divesh Aggarwal (NUS)

• Can we do significantly better, i.e., find a 2^{o(n)} algorithm for solving 3-SAT?

- Can we do significantly better, i.e., find a 2^{o(n)} algorithm for solving 3-SAT?
- Can we solve SAT in time α^n for $\alpha < 2$?

- Can we do significantly better, i.e., find a 2^{o(n)} algorithm for solving 3-SAT?
- Can we solve SAT in time α^n for $\alpha < 2$?
- At the moment, we are very very far from answering these questions.

- Can we do significantly better, i.e., find a 2^{o(n)} algorithm for solving 3-SAT?
- Can we solve SAT in time α^n for $\alpha < 2$?
- At the moment, we are very very far from answering these questions.

Definition (ETH and SETH: Informal Definitions)

ETH: 3-SAT cannot be solved in time $2^{o(n)}$.

SETH: For all $\varepsilon > 0$, there exists k > 0 such that k-SAT cannot be solved in $2^{(1-\varepsilon)n}$ time.

- Can we do significantly better, i.e., find a 2^{o(n)} algorithm for solving 3-SAT?
- Can we solve SAT in time α^n for $\alpha < 2$?
- At the moment, we are very very far from answering these questions.

Definition (ETH and SETH: Informal Definitions)

ETH: 3-SAT cannot be solved in time $2^{o(n)}$. SETH: For all $\varepsilon > 0$, there exists k > 0 such that k-SAT cannot be solved in $2^{(1-\varepsilon)n}$ time.

- Formulated by Impagliazzo, Paturi, and Zane in 2001.
- It is now a fairly standard assumption for fine-grained complexity theory.

Implication for SVP/CVP

- We would like to conclude lower bounds via reductions.
- A reduction from *k*-SAT to *L* and a very fast algorithm for *L* will imply a very fast algorithm for *k*-SAT.
- Closest Vector Problem
 - Standard NP-Hardness reductions are linear and will give a 2^{Ω(n)} bound under ETH.
 - A recent result showed a lower bound of 2ⁿ for almost all ℓ_p norms under SETH [BGS17].
- Shortest Vector Problem
 - ► The reduction from [Kho05] is a reduction from 3-SAT on n' variables to SVP on a lattice of rank $n = O(n'^3)$.
 - This implies a $2^{n^{1/3}}$ lower bound for SVP under ETH.
 - Other known NP Hardness reductions likely yield worse results.
 - Desired to find a reduction with n = O(n').

Talk Outline

- A very brief introduction to lattices
- An introduction to the Exponential Time Hypotheses
- Hardness of SVP_p for $p \ge 2.14$ under SETH
- Summary of Other Results
- Conclusions and open questions

• Using [BGS17], there is a lower bound of 2ⁿ under SETH.

- Using [BGS17], there is a lower bound of 2ⁿ under SETH.
- In order to prove hardness of SVP, we want a reduction from CVP to SVP.

- Using [BGS17], there is a lower bound of 2ⁿ under SETH.
- In order to prove hardness of SVP, we want a reduction from CVP to SVP.
- Naïve idea: Given a CVP_p instance (B, t, r), construct the SVP_p instance given by the basis of a lattice L* of the form

$$\mathbf{B}^* := egin{pmatrix} \mathbf{B} & ec{t} \ 0 & oldsymbol{s} \end{pmatrix}$$
 .

for some (small) parameter s (say s = 1) and $r^* = (r^p + s^p)^{1/p}$.

- Using [BGS17], there is a lower bound of 2ⁿ under SETH.
- In order to prove hardness of SVP, we want a reduction from CVP to SVP.
- Naïve idea: Given a CVP_ρ instance (B, t, r), construct the SVP_ρ instance given by the basis of a lattice L* of the form

$$\mathbf{B}^* := egin{pmatrix} \mathbf{B} & ec{t} \ 0 & oldsymbol{s} \end{pmatrix}$$
 ,

for some (small) parameter s (say s = 1) and $r^* = (r^p + s^p)^{1/p}$.

Is this a valid reduction?

- Using [BGS17], there is a lower bound of 2ⁿ under SETH.
- In order to prove hardness of SVP, we want a reduction from CVP to SVP.
- Naïve idea: Given a CVP_ρ instance (B, t, r), construct the SVP_ρ instance given by the basis of a lattice L* of the form

$$\mathbf{B}^* := egin{pmatrix} \mathbf{B} & ec{t} \ 0 & oldsymbol{s} \end{pmatrix} \; ,$$

for some (small) parameter *s* (say s = 1) and $r^* = (r^p + s^p)^{1/p}$.

- Is this a valid reduction?
 - ▶ If the CVP instance is a YES instance ($\|\vec{v} \vec{t}\|_{\rho} \leq r$) then the SVP instance is a YES instance: $(\vec{v} \vec{t}, -s)$ is a short vector.

- Using [BGS17], there is a lower bound of 2ⁿ under SETH.
- In order to prove hardness of SVP, we want a reduction from CVP to SVP.
- Naïve idea: Given a CVP_ρ instance (B, t, r), construct the SVP_ρ instance given by the basis of a lattice L* of the form

$$\mathbf{B}^* := egin{pmatrix} \mathbf{B} & ec{t} \ 0 & m{s} \end{pmatrix} \; ,$$

for some (small) parameter s (say s = 1) and $r^* = (r^p + s^p)^{1/p}$.

- Is this a valid reduction?
 - ▶ If the CVP instance is a YES instance ($\|\vec{v} \vec{t}\|_{\rho} \leq r$) then the SVP instance is a YES instance: $(\vec{v} \vec{t}, -s)$ is a short vector.
 - If CVP instance is a NO instance, there might still be short vectors

$$(\vec{v}-k\cdot\vec{t}, -k\cdot s)^T$$

for $\vec{v} \in \mathcal{L}(\mathbf{B}), k \neq \pm 1$.

Sparsification Lemma [Khot05]

For prime q, and $\vec{z} \in \mathbb{Z}_q^n$, we write

$$\mathcal{L}_{ec{z}} = \mathcal{L}_{\mathbf{B}, ec{z}, q} := \{\mathbf{B}ec{y} \in \mathcal{L} \ : \ ec{y} \in \mathbb{Z}^n \ , \ \langle ec{z}, ec{y}
angle \equiv 0 mod q\} \ .$$

Theorem

Let $\vec{z} \in \mathbb{Z}_q^n$ be chosen uniformly at random. Consider lattice vectors $\vec{y}_1, \ldots, \vec{y}_N \in \mathcal{L}$ that are non-zero modulo q. Then,

$$\Pr\left[\forall i > 0, \ \vec{y}_i \notin \mathcal{L}_{\vec{z}}\right] \geq 1 - \frac{N}{q}$$

Furthermore, if for all distinct $i, j \in [N]$, \vec{y}_i is not an integer multiple of \vec{y}_j modulo q, then

$$\Pr\left[\exists i, \ \vec{y}_i \in \mathcal{L}_{\vec{z}}\right] \ge 1 - \frac{q}{N}$$

Sparsification Lemma [Khot05]

For prime q, and $\vec{z} \in \mathbb{Z}_q^n$, we write

$$\mathcal{L}_{ec{z}} = \mathcal{L}_{\mathbf{B}, ec{z}, q} := \{\mathbf{B}ec{y} \in \mathcal{L} \ : \ ec{y} \in \mathbb{Z}^n \ , \ \langle ec{z}, ec{y}
angle \equiv 0 mod q\} \ .$$

Theorem

Let $\vec{z} \in \mathbb{Z}_q^n$ be chosen uniformly at random. Consider lattice vectors $\vec{y}_1, \ldots, \vec{y}_N \in \mathcal{L}$ that are non-zero modulo q. Then,

$$\Pr\left[\forall i > 0, \ \vec{y}_i \notin \mathcal{L}_{\vec{z}}\right] \geq 1 - \frac{N}{q}$$

Furthermore, if for all distinct $i, j \in [N]$, \vec{y}_i is not an integer multiple of \vec{y}_j modulo q, then

$$\Pr\left[\exists i, \ \vec{y}_i \in \mathcal{L}_{\vec{z}}\right] \ge 1 - \frac{q}{N}$$

i.e., if $N \ll q$, then w.h.p. none of the vectors is in $\mathcal{L}_{\vec{z}}$,

and if $N \gg q$, then w.h.p. one of the vectors is in $\mathcal{L}_{\vec{z}}$.

How does the sparsification lemma help

- Given the CVP instance, we construct a lattice L^{*} and choose r^{*} > 0, such that N_{YES} ≫ N_{NO}, where
 - ► N_{YES} is a lower bound on the number of vectors in \mathcal{L}^* of length at most r^* if the input instance is a YES instance.
 - ► N_{NO} is an upper bound on the number of vectors in \mathcal{L}^* of length at most r^* if the input instance is a NO instance.

How does the sparsification lemma help

- Given the CVP instance, we construct a lattice L^{*} and choose r^{*} > 0, such that N_{YES} ≫ N_{NO}, where
 - ► N_{YES} is a lower bound on the number of vectors in \mathcal{L}^* of length at most r^* if the input instance is a YES instance.
 - ► N_{NO} is an upper bound on the number of vectors in \mathcal{L}^* of length at most r^* if the input instance is a NO instance.
- We then choose $q \approx \sqrt{N_{\text{YES}} \cdot N_{\text{NO}}}$ and sparsify the lattice.

Modifying the naïve reduction

Consider the CVP instance (\mathbf{B}, \vec{t}, r) from [BGS17]. It has the form

$$\mathbf{B} = \begin{pmatrix} \Phi \\ I_n \end{pmatrix} \in \mathbb{R}^{d \times n}, \qquad \vec{t} = \begin{pmatrix} \vec{t}_1 \\ 1/2 \\ \vdots \\ 1/2 \end{pmatrix} \in \mathbb{R}^d,$$

for some $\Phi \in \mathbb{R}^{(d-n) \times n}$, $\vec{t}_1 \in \mathbb{R}^{d-n}$, and $r = \frac{(n+1)^{1/p}}{2}$.

Consider the lattice basis obtained by adding the gadget lattice $\mathbb{Z}^{n^{\dagger}}$.

$$\mathbf{B}^* = egin{pmatrix} \mathbf{B} & \mathbf{0} & ec{t} \ \mathbf{0} & \mathbb{Z}^{n^\dagger} & ec{t}^\dagger \ \mathbf{0} & \mathbf{0} & oldsymbol{s} \end{pmatrix} \in \mathbb{R}^{(d+n^\dagger) imes (n+n^\dagger+1)} \ ,$$

where $\vec{t}^{\dagger} = (1/2, \dots, 1/2) \in \mathbb{R}^{n^{\dagger}}$, and $r^* = \left(r^{\rho} + \frac{n^{\dagger}}{2^{\rho}} + s^{\rho}\right)^{1/\rho}$.

Recall

- Given the CVP instance, we wanted to construct a lattice \mathcal{L}^* and choose $r^* > 0$, such that $N_{\text{YES}} \gg N_{\text{NO}}$, where
 - ► N_{YES} is a lower bound on the number of vectors in \mathcal{L}^* of length at most r^* if the input instance is a YES instance.
 - N_{NO} is an upper bound on the number of vectors in \mathcal{L}^* of length at most r^* if the input instance is a NO instance.
- We then choose $q \approx \sqrt{N_{\text{YES}} \cdot N_{\text{NO}}}$ and sparsify the lattice.

We have constructed the lattice basis

$$\mathbf{B}^{*} = egin{pmatrix} \Phi & \mathbf{0} & ec{t}_{1} \ \mathbb{Z}^{n} & \mathbf{0} & ec{t}_{2} \ \mathbf{0} & \mathbb{Z}^{n^{\dagger}} & ec{t}^{\dagger} \ \mathbf{0} & \mathbf{0} & s \end{pmatrix},$$

where
$$\vec{t}_2 = (1/2, ..., 1/2) \in \mathbb{R}^n$$
, $\vec{t}^{\dagger} = (1/2, ..., 1/2) \in \mathbb{R}^{n^{\dagger}}$, and
 $r^* = \left(r^{\rho} + \frac{n^{\dagger}}{2^{\rho}} + s^{\rho}\right)^{1/\rho} \approx \frac{(n+n^{\dagger})^{1/\rho}}{2}.$

We have constructed the lattice basis

$$\mathbf{B}^{*} = egin{pmatrix} \Phi & \mathbf{0} & ec{t}_{1} \ \mathbb{Z}^{n} & \mathbf{0} & ec{t}_{2} \ \mathbf{0} & \mathbb{Z}^{n^{\dagger}} & ec{t}^{\dagger} \ \mathbf{0} & \mathbf{0} & s \end{pmatrix},$$

where $\vec{t}_2 = (1/2, ..., 1/2) \in \mathbb{R}^n$, $\vec{t}^{\dagger} = (1/2, ..., 1/2) \in \mathbb{R}^{n^{\dagger}}$, and $r^* = \left(r^{\rho} + \frac{n^{\dagger}}{2^{\rho}} + s^{\rho}\right)^{1/\rho} \approx \frac{(n+n^{\dagger})^{1/\rho}}{2}.$

Clearly, $N_{YES} \ge 2^{n^{\dagger}}$ (Choose 0/1 coefficients in the gadget lattice).

We have constructed the lattice basis

$$\mathbf{B}^{*} \;=\; egin{pmatrix} \Phi & \mathbf{0} & ec{t}_{1} \ \mathbb{Z}^{n} & \mathbf{0} & ec{t}_{2} \ \mathbf{0} & \mathbb{Z}^{n^{\dagger}} & ec{t}^{\dagger} \ \mathbf{0} & \mathbf{0} & s \end{pmatrix} \;,$$

where $\vec{t}_2 = (1/2, ..., 1/2) \in \mathbb{R}^n$, $\vec{t}^{\dagger} = (1/2, ..., 1/2) \in \mathbb{R}^{n^{\dagger}}$, and $r^* = \left(r^{\rho} + \frac{n^{\dagger}}{2^{\rho}} + s^{\rho}\right)^{1/\rho} \approx \frac{(n+n^{\dagger})^{1/\rho}}{2}.$

Clearly, $N_{\text{YES}} \ge 2^{n^{\dagger}}$ (Choose 0/1 coefficients in the gadget lattice).

Also, we can show that

$$N_{\text{NO}} \leq \text{poly}(n) \cdot N_{p} \left(\mathbb{Z}^{n+n^{\dagger}} \ , \ \ \frac{(n+n^{\dagger})^{1/p}}{2}
ight) \ ,$$

where $N_p(\mathcal{L}, r)$ denotes the number of vectors of length at most r in \mathcal{L} .

We have constructed the lattice basis

$$\mathbf{B}^{*} \;=\; egin{pmatrix} \Phi & \mathbf{0} & ec{t}_{1} \ \mathbb{Z}^{n} & \mathbf{0} & ec{t}_{2} \ \mathbf{0} & \mathbb{Z}^{n^{\dagger}} & ec{t}^{\dagger} \ \mathbf{0} & \mathbf{0} & s \end{pmatrix} \;,$$

where $\vec{t}_2 = (1/2, \dots, 1/2) \in \mathbb{R}^n$, $\vec{t}^{\dagger} = (1/2, \dots, 1/2) \in \mathbb{R}^{n^{\dagger}}$, and

- The last coefficient k odd is "like" k = 1 and does not give a vector of length less than r^* since it is a NO instance.
- The last coefficient k even is "like" k = 0, and only contributes for |k| < poly(n).

$$N_{
m NO} \leq {
m poly}(n) \cdot N_{
ho} \left(\mathbb{Z}^{n+n^{\dagger}} \ , \ \ rac{(n+n^{\dagger})^{1/
ho}}{2}
ight) \ ,$$

where $N_p(\mathcal{L}, r)$ denotes the number of vectors of length at most r in \mathcal{L} .

We have constructed the lattice basis

$$\mathbf{B}^{*} \;=\; egin{pmatrix} \Phi & \mathbf{0} & ec{t}_{1} \ \mathbb{Z}^{n} & \mathbf{0} & ec{t}_{2} \ \mathbf{0} & \mathbb{Z}^{n^{\dagger}} & ec{t}^{\dagger} \ \mathbf{0} & \mathbf{0} & oldsymbol{s} \end{pmatrix} \;,$$

where $\vec{t}_2 = (1/2, ..., 1/2) \in \mathbb{R}^n$, $\vec{t}^{\dagger} = (1/2, ..., 1/2) \in \mathbb{R}^{n^{\dagger}}$, and $r^* = \left(r^{\rho} + \frac{n^{\dagger}}{2^{\rho}} + s^{\rho}\right)^{1/\rho} \approx \frac{(n+n^{\dagger})^{1/\rho}}{2}$.

Clearly, $N_{\text{YES}} \ge 2^{n^{\dagger}}$ (Choose 0/1 coefficients in the gadget lattice).

Also, we can show that

$$N_{\text{NO}} \leq ext{poly}(n) \cdot N_{
ho} \left(\mathbb{Z}^{n+n^{\dagger}} \ , \ \ rac{(n+n^{\dagger})^{1/
ho}}{2}
ight) \ ,$$

where $N_p(\mathcal{L}, r)$ denotes the number of vectors of length at most r in \mathcal{L} .

We need to bound $N_{\rho}\left(\mathbb{Z}^{n+n^{\dagger}}, \frac{(n+n^{\dagger})^{1/\rho}}{2}\right)$ by $2^{n^{\dagger}}$.

Let $m = n + n^{\dagger}$. We need to bound $N_p\left(\mathbb{Z}^m, \frac{m^{1/p}}{2}\right)$. As an example, consider p = 2. Then, any vector with $m/4 \pm 1$'s, and 3m/4 0's has norm $\sqrt{m}/2$.

Let $m = n + n^{\dagger}$. We need to bound $N_p\left(\mathbb{Z}^m, \frac{m^{1/p}}{2}\right)$. As an example, consider p = 2. Then, any vector with $m/4 \pm 1$'s, and 3m/4 0's has norm $\sqrt{m}/2$. Thus,

$$N_2\left(\mathbb{Z}^m, \frac{\sqrt{m}}{2}
ight) \geq \binom{m}{m/4} \cdot 2^{m/4} > 2.086^m > 2^{n^{\dagger}}$$

Let $m = n + n^{\dagger}$. We need to bound $N_p\left(\mathbb{Z}^m, \frac{m^{1/p}}{2}\right)$. As an example, consider p = 2. Then, any vector with $m/4 \pm 1$'s, and 3m/4 0's has norm $\sqrt{m}/2$. Thus,

$$N_2\left(\mathbb{Z}^m, \frac{\sqrt{m}}{2}
ight) \geq \binom{m}{m/4} \cdot 2^{m/4} > 2.086^m > 2^{n^{\dagger}}$$

• The above is a reasonable estimate of $N_2\left(\mathbb{Z}^m, \frac{m^{1/p}}{2}\right)$. We show in the paper that $N_2\left(\mathbb{Z}^m, \frac{m^{1/2}}{2}\right) \approx 2.089^m$.

Let $m = n + n^{\dagger}$. We need to bound $N_p\left(\mathbb{Z}^m, \frac{m^{1/p}}{2}\right)$. As an example, consider p = 2. Then, any vector with $m/4 \pm 1$'s, and 3m/4 0's has norm $\sqrt{m}/2$. Thus,

$$N_2\left(\mathbb{Z}^m, \frac{\sqrt{m}}{2}
ight) \geq \binom{m}{m/4} \cdot 2^{m/4} > 2.086^m > 2^{n^{\dagger}}$$

- The above is a reasonable estimate of $N_2\left(\mathbb{Z}^m, \frac{m^{1/p}}{2}\right)$. We show in the paper that $N_2\left(\mathbb{Z}^m, \frac{m^{1/2}}{2}\right) \approx 2.089^m$.
- It is easy to see that $N_{\rho}\left(\mathbb{Z}^m, \frac{m^{1/\rho}}{2}\right)$ decreases with increase in ρ .

Let $m = n + n^{\dagger}$. We need to bound $N_p\left(\mathbb{Z}^m, \frac{m^{1/p}}{2}\right)$. As an example, consider p = 2. Then, any vector with $m/4 \pm 1$'s, and 3m/4 0's has norm $\sqrt{m}/2$. Thus,

$$N_2\left(\mathbb{Z}^m, \frac{\sqrt{m}}{2}
ight) \geq \binom{m}{m/4} \cdot 2^{m/4} > 2.086^m > 2^{n^{\dagger}}$$

- The above is a reasonable estimate of $N_2\left(\mathbb{Z}^m, \frac{m^{1/p}}{2}\right)$. We show in the paper that $N_2\left(\mathbb{Z}^m, \frac{m^{1/2}}{2}\right) \approx 2.089^m$.
- It is easy to see that $N_{\rho}\left(\mathbb{Z}^m, \frac{m^{1/\rho}}{2}\right)$ decreases with increase in ρ .
- So, we expect $N_p\left(\mathbb{Z}^m, \frac{m^{1/p}}{2}\right) \ll 2^m$, for a large enough p. If this is true, then we can choose $n^{\dagger} = C^{\dagger}n$ for a large enough constant C^{\dagger} to get

$$N_{
ho}\left(\mathbb{Z}^{n+n^{\dagger}}, \ rac{(n+n^{\dagger})^{1/
ho}}{2}
ight) \ \ll \ 2^{n^{\dagger}}$$

Estimating
$$N_p\left(\mathbb{Z}^m, \frac{m^{1/p}}{2}\right)$$

For any $\tau > 0$, we define

$$\Theta_{
ho}(au) := \sum_{z \in \mathbb{Z}} \exp(- au |z|^{
ho}) \; .$$

Notice that we can write $\Theta_{\rho}(\tau)^m$ as a summation over \mathbb{Z}^m ,

$$\Theta_{
ho}(au)^m \;=\; \sum_{ec{z}\in\mathbb{Z}^m} \exp(- au \|ec{z}\|_{
ho}^{
ho})\;.$$

In particular, for any radius r > 0 and $\tau > 0$, we have

$$\Theta_{p}(\tau)^{m} \geq \sum_{\substack{\vec{z} \in \mathbb{Z}^{m} \\ \|\vec{z}\|_{p} \leq r}} \exp(-\tau \|\vec{z}\|_{p}^{p}) \geq \exp(-\tau r^{p}) \cdot N_{p}(\mathbb{Z}^{m}, r, \vec{0}) .$$

Rearranging and taking the minimum over all $\tau > 0$, we see that

$$N_{\rho}(\mathbb{Z}^m, r) \leq \min_{\tau>0} \exp(\tau r^{\rho}) \cdot \Theta_{\rho}(\tau)^m$$
.

We show that this bound is quite tight. We cannot compute this analytically, but can estimate this numerically to any precision.

Divesh Aggarwal (NUS)

The final result: SETH Hardness

We get that for "almost" all $p \ge 2.14$, under randomized SETH, there is no algorithm for SVP_p that runs in time better than $2^{n/C_p}$. The following shows the dependence of C_p on p.

Talk Outline

- A very brief introduction to lattices
- An introduction to the Exponential Time Hypotheses
- Hardness of SVP_p for $p \ge 2.14$ under SETH
- Summary of Other Results
- Conclusions and open questions

Gap-ETH Hardness

Max-3-SAT_{η}: This is a promise problem. Given a formula ϕ in 3-CNF with *n* variables and *m* clauses

- YES instance: There is a satisfying assignment
- NO instance: Every assignment satisfies at most η fraction of the clauses.

Gap-ETH Hardness

Max-3-SAT_{η}: This is a promise problem. Given a formula ϕ in 3-CNF with n variables and m clauses

- YES instance: There is a satisfying assignment
- NO instance: Every assignment satisfies at most η fraction of the clauses.

The following definition is due to [MR16,Din16]. It is fast becoming a standard assumption.

Definition (Gap-ETH: Informal Definition)

Gap-ETH: There exist $\eta \in (0, 1)$ such that Max-3-SAT $_{\eta}$ cannot be solved in time $2^{o(n)}$.

Our Results under Gap-ETH

- For any p > 2, there is no 2^{o(n)}-time algorithm for SVP_p under Gap-ETH Assumption.
 - For this, we show that for any p > 2, there exists a vector t and r > 0 such that

 $N_{\rho}(\mathbb{Z}^n, \vec{t}, r) \geq exp(n) \cdot N_{\rho}(\mathbb{Z}^n, \vec{0}, r)$.

 There is no 2^{o(n)}-time algorithm for SVP₂ under Gap-ETH Assumption and the assumption that there exists a family of lattices with exponential kissing number.

Our Results under Gap-ETH

- For any p > 2, there is no 2^{o(n)}-time algorithm for SVP_p under Gap-ETH Assumption.
 - For this, we show that for any p > 2, there exists a vector t and r > 0 such that

 $N_{\rho}(\mathbb{Z}^n, \vec{t}, r) \geq exp(n) \cdot N_{\rho}(\mathbb{Z}^n, \vec{0}, r)$.

- There is no 2^{o(n)}-time algorithm for SVP₂ under Gap-ETH Assumption and the assumption that there exists a family of lattices with exponential kissing number.
 - For this, we show that if there is a family of lattices with exponential kissing number, then for any *n*, there exists an *n*-dimensional lattice *L*, a vector *t*, and *r* > 0 such that

$$N_2(\mathcal{L}, \vec{t}, r) \geq exp(n) \cdot N_2(\mathcal{L}, \vec{0}, r)$$
.

Talk Outline

- A very brief introduction to lattices
- An introduction to the Exponential Time Hypotheses
- Hardness of SVP_p for $p \ge 2.14$ under SETH
- Summary of Other Results
- Conclusions and open questions

Conclusions and Open Questions

- Under SETH, we show that for "almost" all p, SVP_p cannot be solved in 2^{n/C_p} time.
 - ▶ Question 1: Improve the constant *C*_p, possibly by using a different gadget lattice.
 - Question 2: Remove the "almost", possibly via a direct reduction from k-SAT.

Conclusions and Open Questions

- Under SETH, we show that for "almost" all p, SVP_p cannot be solved in 2^{n/C_p} time.
 - Question 1: Improve the constant C_{ρ} , possibly by using a different gadget lattice.
 - Question 2: Remove the "almost", possibly via a direct reduction from k-SAT.
- Under Gap-ETH, we show that for all p > 2, SVP_p cannot be solved in $2^{o(n)}$ time.
 - Question 3: Can we show this under the more standard ETH.

Conclusions and Open Questions

- Under SETH, we show that for "almost" all p, SVP_p cannot be solved in 2^{n/C_p} time.
 - Question 1: Improve the constant C_{ρ} , possibly by using a different gadget lattice.
 - Question 2: Remove the "almost", possibly via a direct reduction from k-SAT.
- Under Gap-ETH, we show that for all p > 2, SVP_p cannot be solved in $2^{o(n)}$ time.
 - Question 3: Can we show this under the more standard ETH.
- Under Gap-ETH and the assumption that the lattice has exponential kissing number, we show that SVP₂ cannot be solved in 2^{o(n)} time.
 - Question 4: Replace Gap-ETH with ETH.
 - Question 5: Remove the assumption about exponential kissing number.

Questions?