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Game Plan

• Basics of sieving 
• Embarrassingly simple algorithm: Sieving by averages 
• Hope to simplify the proof of correctness 
• Hope to make it faster 
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Lattices
•    is a discrete set of vectors in 
• Specified by a basis               , linearly independent vectors
•                                                                               . 
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Pros

• Very natural technique. 
• Clearly “makes progress” at 

each step. 
• Can be made to work.

Cons

• Hard to analyze. 
• What is the distribution of the 

vectors at each step? 
• How common are collisions?

Sieving
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Perturbation [AKS01]

Perturbation [NV08, PS09, MV10, …]

Heuristic
(no proof of 
correctness)

[NV08, Laa15, BDGL15, 
BLS16, …]

Sieving by Averages
(Discrete Gaussian) [ADRS15, AS17]

Sieving by Averages
(Discrete Gaussian)

[ADRS15] 
(only approx. decision 

SVP)

???? Fast! [FuturePeople18]

2O(n)

2n+o(n)

2n/2+o(n)

Sieving Algorithms

22.5n
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0

The average of two lattice vectors will typically not be in the lattice…
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When do we have                      ?

We have                     if and only if              are in the 
same coset of       .  

(Note that there are      cosets.)

y1 + y2

2
2 L

2L
y1,y2

2n

Sieving by Averages
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Sieving by Averages

1. Start with many vectors sampled from some nice 
distribution. 

2. For each coset of       , group the vectors within the 
coset into disjoint pairs (randomly). 

3. Take the average of each pair. 
4. Repeat this procedure on the averages.

2L
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Cons

• Completely ignores geometry 
of the lattice!

• Not even clear that the vectors 
tend to get shorter…

• Seemingly can’t do better than      
.       .    time and space. 

Pros

• Ignoring the geometry makes 
the distribution of vectors 
easier to analyze.

- In [ADRS15], we 
combined this with 
careful rejection sampling 
to solve SVP.

• It actually just works! [AS17]
- No rejection sampling or 

perturbation needed!
- Yields the fastest known 

algorithm for SVP!

Sieving by Averages
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Seriously…

The fastest known SVP algorithm* [AS17]:

1. Start with              not-too-short lattice 
vectors (sampled from the discrete 
Gaussian).

2. Do this “sieving by averages” thing.
3. Output the shortest non-zero vector that 

you see.

* with a known proof of correctness.
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…

Cosets
1

Rejection  
Sampling

…

…
Take 

Averages

Why Does This Work?

ADRS15: If the input is distributed nicely (Gaussian) and the 
rejection sampling is done appropriately, then the output will be 

distributed nicely (a narrower Gaussian).
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…
Take 

Averages

Why Does This Work?

AS17: If the input is distributed nicely (Gaussian) within each 
coset, then the averages will be distributed nicely (a narrower 

Gaussian) within each coset.
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The ADRS15 Algorithm

…

1

Take 
Averages

…

Had we done 
rejection sampling:

…

Why Does This Work?

Rejection sampling only reweights the cosets in the output 
distribution. If we don’t do rejection sampling, we just get more 

vectors from each coset.

The rejection sampling procedure from ADRS15 was pointless!
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Why Does This Work?

Formal proof: The probability of seeing any vector when we run this 
simple algorithm is always greater than the probability of seeing it 
when we run the ADRS15 rejection sampling algorithm.

Moral explanation: Because                                                      for 
symmetric distributions.        

E[kx+ yk2] = E[kxk2 + 2hx,yi+ kyk2]
= E[kxk2] + E[kyk2] + 2E[hx,yi]



SVP and CVP from Discrete Gaussian SamplingAggarwal, Dadush, Regev, Stephens-DavidowitzAggarwal, Stephens-Davidowitz Embarrassingly Simple SVP

Why Does This Work?

Formal proof: The probability of seeing any vector when we run this 
simple algorithm is always greater than the probability of seeing it 
when we run the ADRS15 rejection sampling algorithm.

Moral explanation: Because                                                      for 
symmetric distributions.        

E[kx+ yk2] = E[kxk2 + 2hx,yi+ kyk2]
= E[kxk2] + E[kyk2] + 2E[hx,yi]
= E[kxk2] + E[kyk2]
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The expected squared norm of our vectors drops by a factor of two at 
every step.

• Start with vectors with                   .               .
• “Sieve by averages”          times to get samples with                                 .

Why Does This Work?

If we could get a reasonable bound on the probability of seeing the 
zero vector, then we could show that this algorithm solves 

(approximate) SVP.

If we could show “anything non-trivial” about this distribution, then we 
could (probably) show that this algorithm solves (approximate) SVP.
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Why We Care

A bit of a lie.

We know how to “remove the rejection sampling procedure” from the main  
[ADRS15] algorithm (the              -time algorithm for SVP). 

If we could do this for the                -time algorithm, then it would provably 
solve SVP (at least approximately)!

2n+o(n)

2n/2+o(n)
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Being Less Greedy 
(and making no progress…)

The expected squared norm of our vectors drops by a factor of two at 
every step.

Greedy

The expected squared norm will drop by a factor of four, but the output 
vectors will be in        .

If we double the vectors to put them in    , the final expected squared 
norm will be unchanged…

The running time will be roughly                            .|L/2L0|+ |L0/L|
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A “Tower” of Lattices

The expected squared norm will drop by a factor of     .

If we multiply the output vectors by     to put them in    , the final 
expected squared norm will drop by          .

The running time will be roughly                        .
X

i

|Li/2Li+1|

We can take                                         to get an algorithm with this running time.|L
i

/2L
i+1| = 2n/2+o(n)
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What We Know About  
This Faster Algorithm

• There exists a rejection sampling procedure like in [ADRS15] that 
provably yields a correct algorithm [RS15].

- Don’t know how to implement it when the vectors get short.

• The analysis that we used in [AS17] to “remove the rejection sampling” 
does not seem to work for this faster algorithm.

• The “expected squared norm analysis” still works.
- “Anything non-trivial about distribution”       faster SVP algorithm!
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Parting Thoughts

• Are there other interesting sieving procedures?

• Can we close the gap between search and decision (approximate) SVP?
- Can someone please tell me something about this distribution?!

• Can we close the gap between provable and heuristic algorithms?

• Can we close the gap between asymptotically faster algorithms and 
enumeration?
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Thanks!


