An Embarrassingly Simple 2^n-Time Algorithm for SVP— And How We Hope to Improve It

Divesh Aggarwal Noah Stephens-Davidowitz

Aggarwal, Stephens-Davidowitz

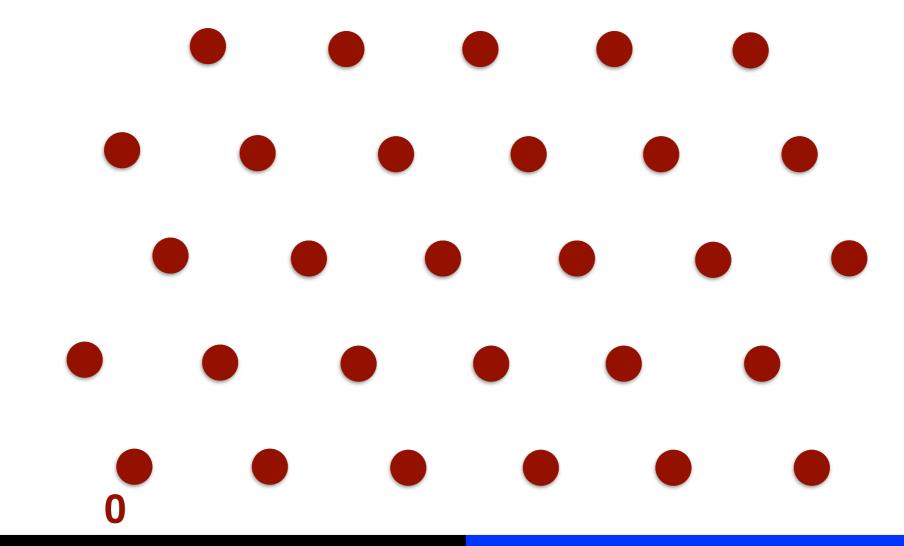
Game Plan

- Basics of sieving
- Embarrassingly simple algorithm: Sieving by averages
- Hope to simplify the proof of correctness
- Hope to make it faster

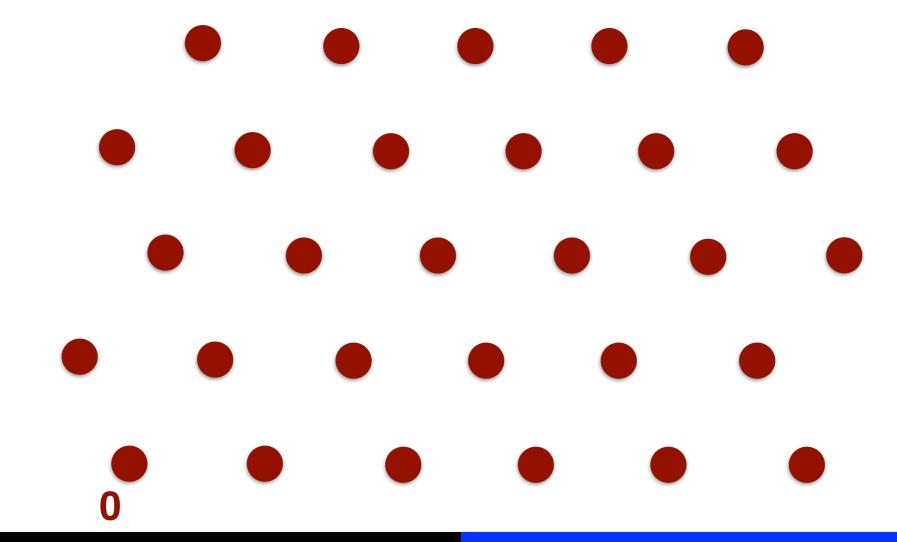
Aggarwal, Stephens-Davidowitz

• \mathcal{L} is a discrete set of vectors in \mathbb{R}^n

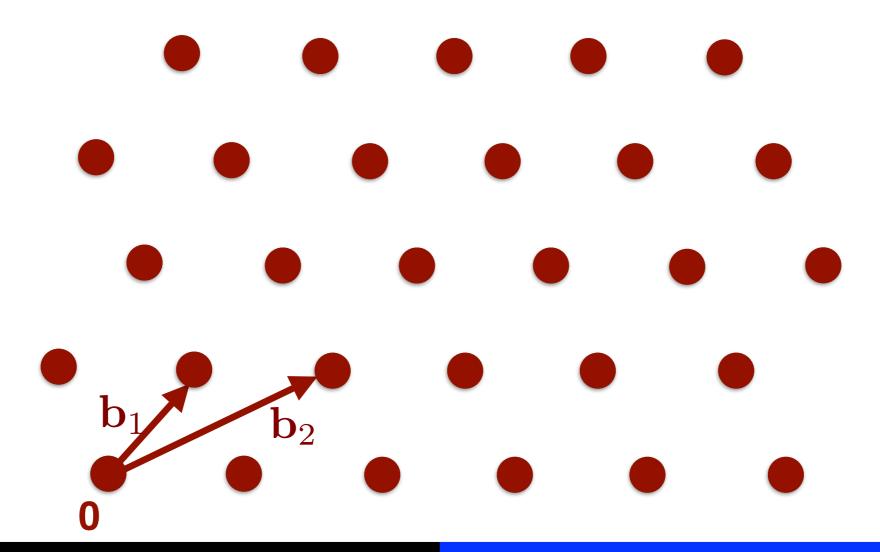
• \mathcal{L} is a discrete set of vectors in \mathbb{R}^n



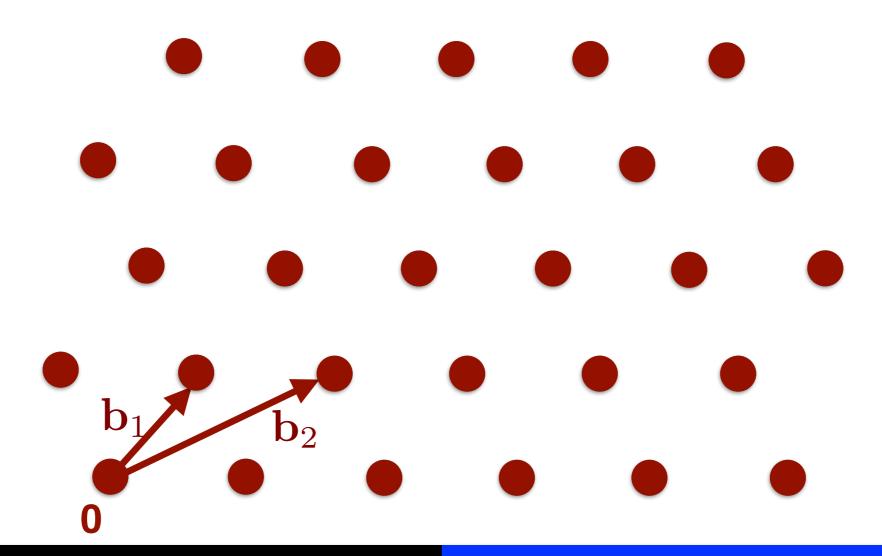
- \mathcal{L} is a discrete set of vectors in \mathbb{R}^n
- Specified by a basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$, linearly independent vectors



- \mathcal{L} is a discrete set of vectors in \mathbb{R}^n
- Specified by a basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$, linearly independent vectors

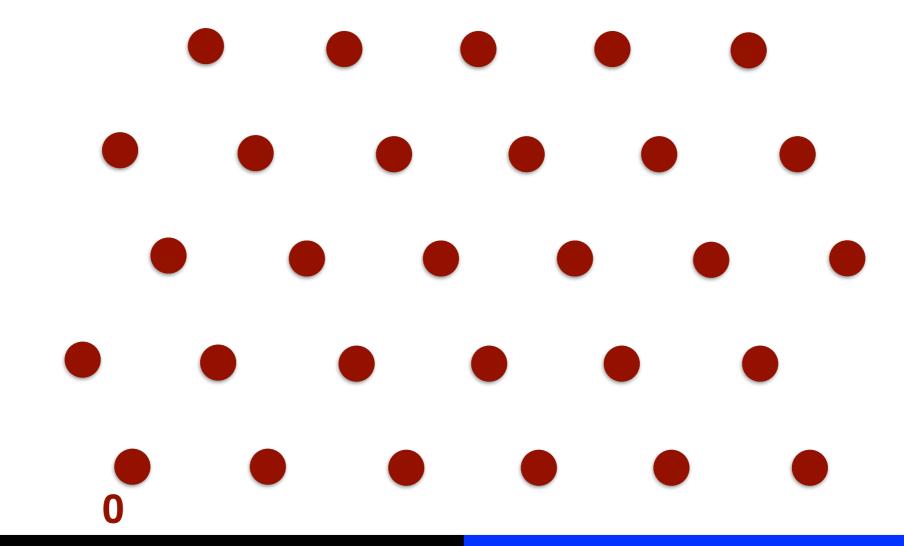


- \mathcal{L} is a discrete set of vectors in \mathbb{R}^n
- Specified by a basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$, linearly independent vectors
- $\mathcal{L} = \{a_1\mathbf{b}_1 + \cdots + a_n\mathbf{b}_n \mid a_i \in \mathbb{Z}\}$

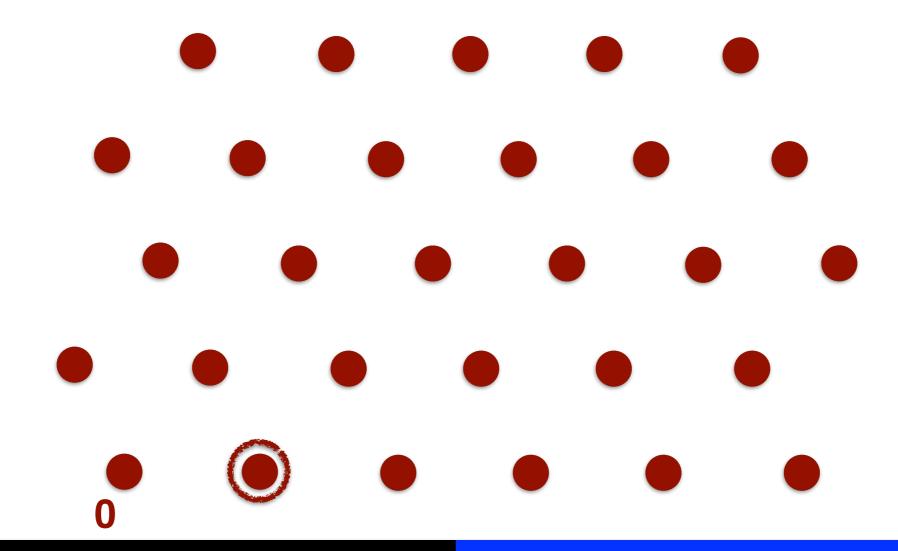


Aggarwal, Stephens-Davidowitz

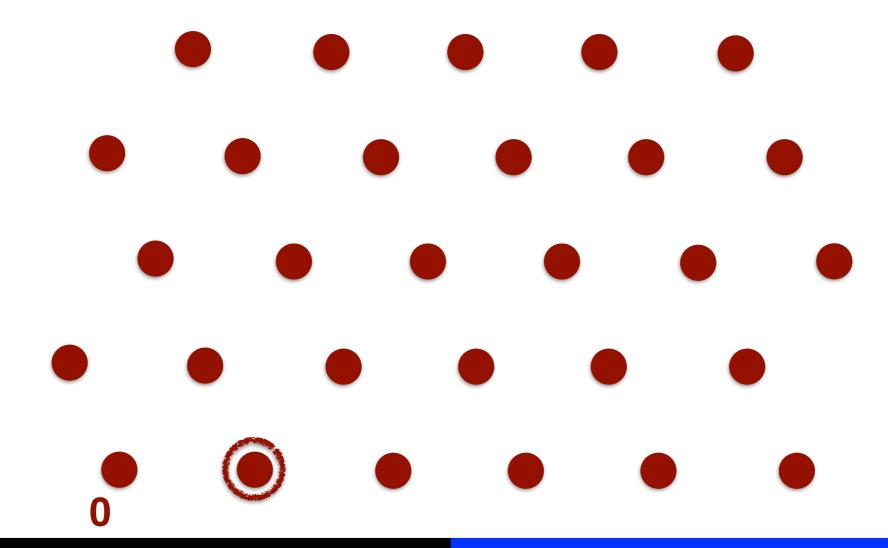
• $SVP(\mathcal{L}) = shortest non-zero \mathbf{y} \in \mathcal{L}$



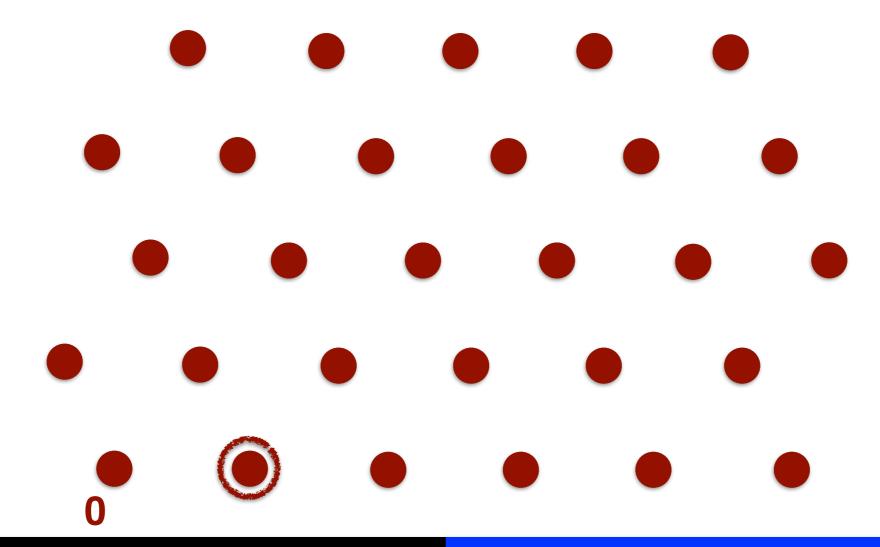
• $SVP(\mathcal{L}) = shortest non-zero \mathbf{y} \in \mathcal{L}$



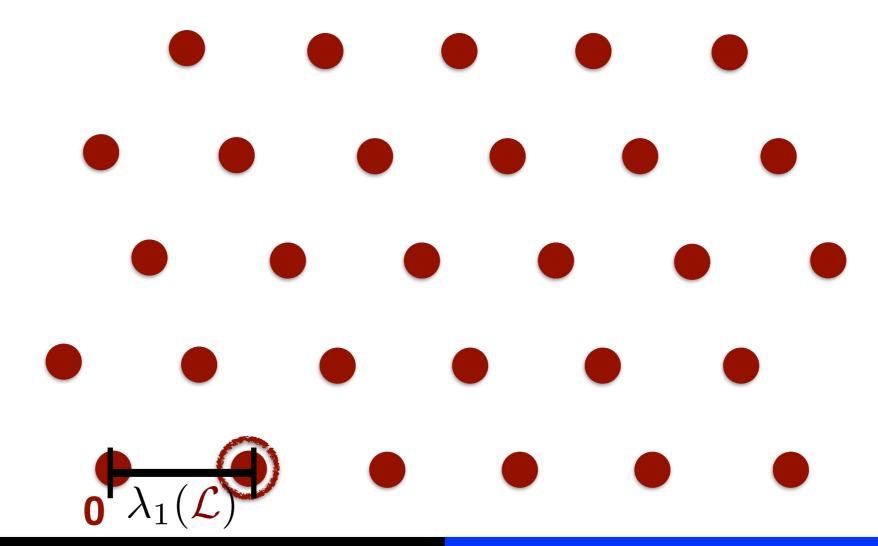
- $SVP(\mathcal{L}) = shortest non-zero \mathbf{y} \in \mathcal{L}$
- NP-hard (even to approximate).



- $SVP(\mathcal{L}) = shortest non-zero \mathbf{y} \in \mathcal{L}$
- NP-hard (even to approximate).
- $\lambda_1(\mathcal{L}) = ||\mathsf{SVP}(\mathcal{L})||$



- $SVP(\mathcal{L}) = shortest non-zero \mathbf{y} \in \mathcal{L}$
- NP-hard (even to approximate).
- $\lambda_1(\mathcal{L}) = ||\mathsf{SVP}(\mathcal{L})||$



0

Aggarwal, Stephens-Davidowitz

0

Aggarwal, Stephens-Davidowitz

Aggarwal, Stephens-Davidowitz

Pros

Aggarwal, Stephens-Davidowitz

Pros

- Very natural technique.
- Clearly "makes progress" at each step.
- Can be made to work.

Cons

- Very natural technique.
- Clearly "makes progress" at each step.
- Can be made to work.

<u>Pros</u>

- Very natural technique.
- Clearly "makes progress" at each step.
- Can be made to work.

<u>Cons</u>

- Hard to analyze.
- What is the distribution of the vectors at each step?
- How common are collisions?

Aggarwal, Stephens-Davidowitz

Perturbation	$2^{O(n)}$	[AKS01]
--------------	------------	---------

Perturbation	$2^{O(n)}$	[AKS01]
Perturbation	$2^{2.5n}$	[NV08, PS09, MV10,]

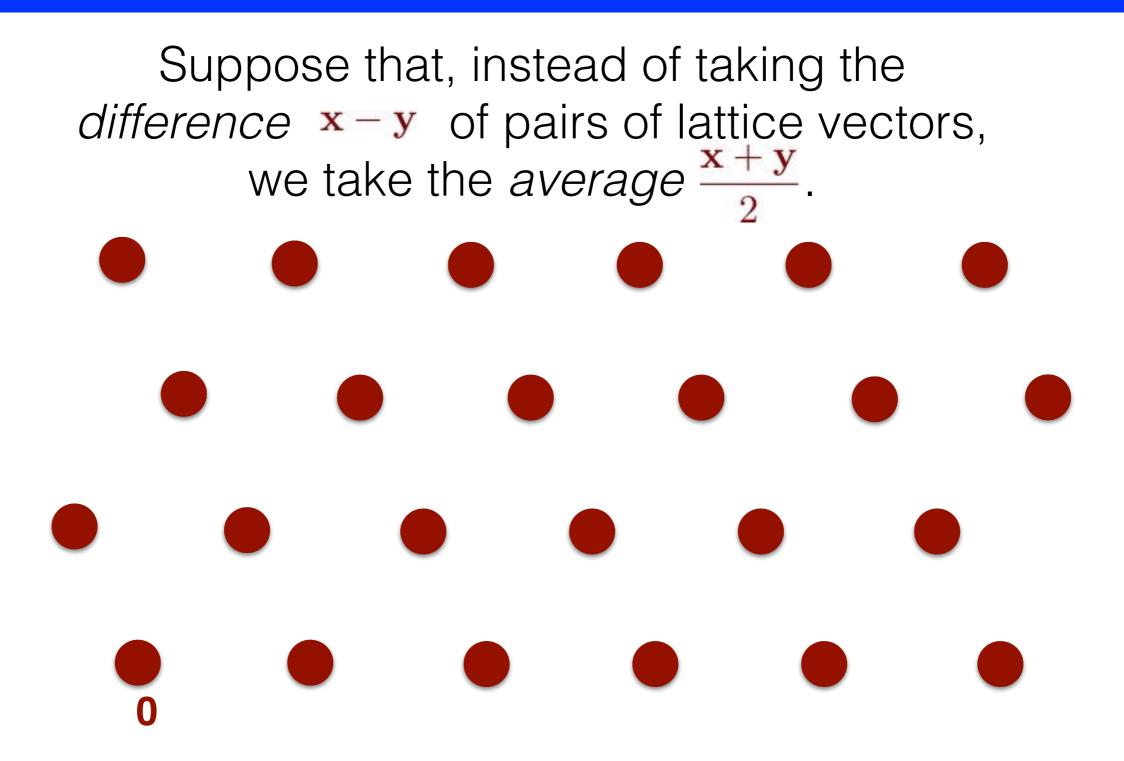
Perturbation	$2^{O(n)}$	[AKS01]
Perturbation	$2^{2.5n}$	[NV08, PS09, MV10,]
Heuristic (no proof of correctness)	$(3/2)^{n/2+o(n)} \approx 2^{0.3n}$	[NV08, Laa15, BDGL15, BLS16,]

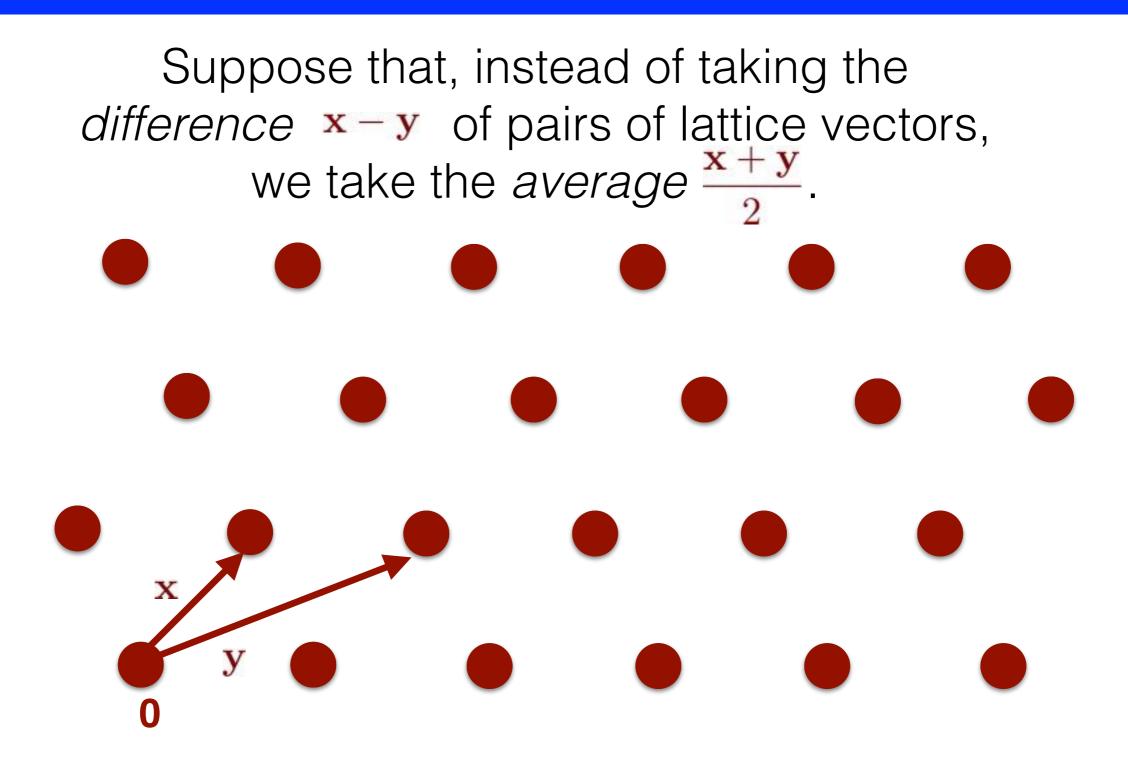
Perturbation	$2^{O(n)}$	[AKS01]
Perturbation	$2^{2.5n}$	[NV08, PS09, MV10,]
Heuristic (no proof of correctness)	$(3/2)^{n/2+o(n)} \approx 2^{0.3n}$	[NV08, Laa15, BDGL15, BLS16,]
Sieving by Averages (Discrete Gaussian)	$2^{n+o(n)}$	[ADR <mark>S</mark> 15, A <mark>S</mark> 17]

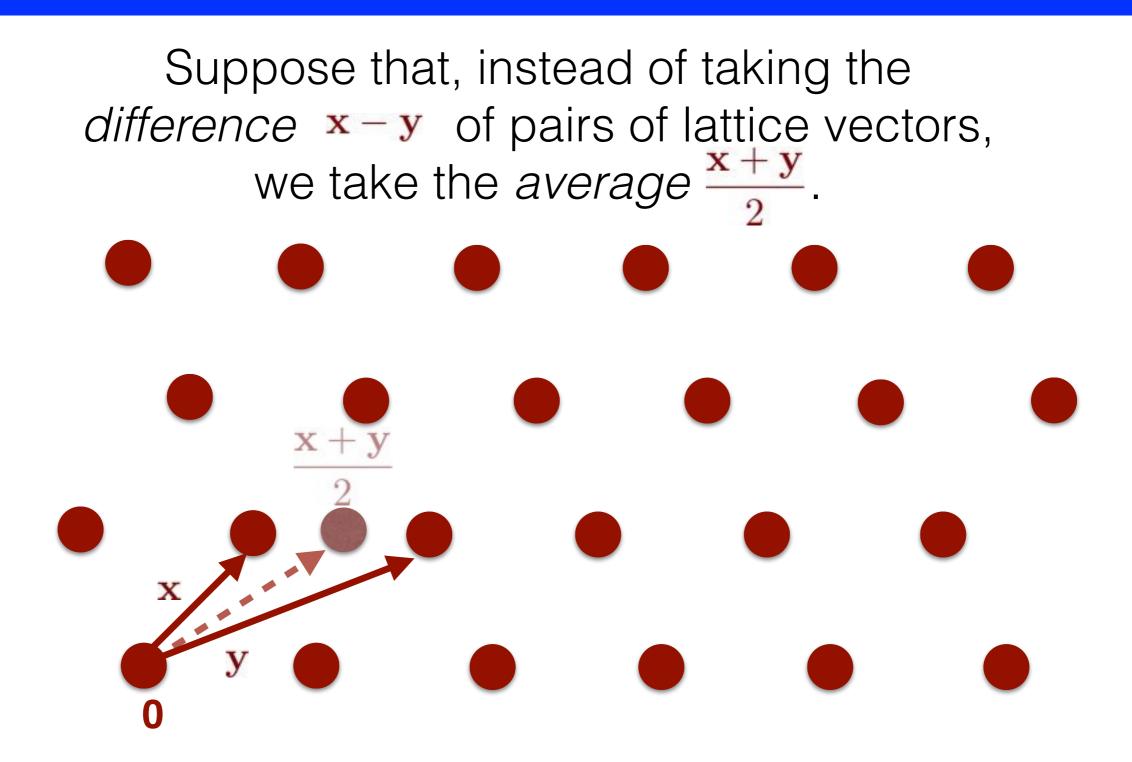
Perturbation	$2^{O(n)}$	[AKS01]
Perturbation	$2^{2.5n}$	[NV08, PS09, MV10,]
Heuristic (no proof of correctness)	$(3/2)^{n/2+o(n)} \approx 2^{0.3n}$	[NV08, Laa15, BDGL15, BLS16,]
Sieving by Averages (Discrete Gaussian)	$2^{n+o(n)}$	[ADRS15, AS17]
Sieving by Averages (Discrete Gaussian)	$2^{n/2 + o(n)}$	[ADRS15] (only approx. decision SVP)

Perturbation	$2^{O(n)}$	[AKS01]
Perturbation	$2^{2.5n}$	[NV08, PS09, MV10,]
Heuristic (no proof of correctness)	$(3/2)^{n/2+o(n)} \approx 2^{0.3n}$	[NV08, Laa15, BDGL15, BLS16,]
Sieving by Averages (Discrete Gaussian)	$2^{n+o(n)}$	[ADR <mark>S</mark> 15, A <mark>S</mark> 17]
Sieving by Averages (Discrete Gaussian)	$2^{n/2 + o(n)}$	[ADR <mark>S</mark> 15] (only approx. decision SVP)
????	Fast!	[FuturePeople18]

Suppose that, instead of taking the *difference* $\mathbf{x} - \mathbf{y}$ of pairs of lattice vectors, we take the *average* $\frac{\mathbf{x} + \mathbf{y}}{2}$.

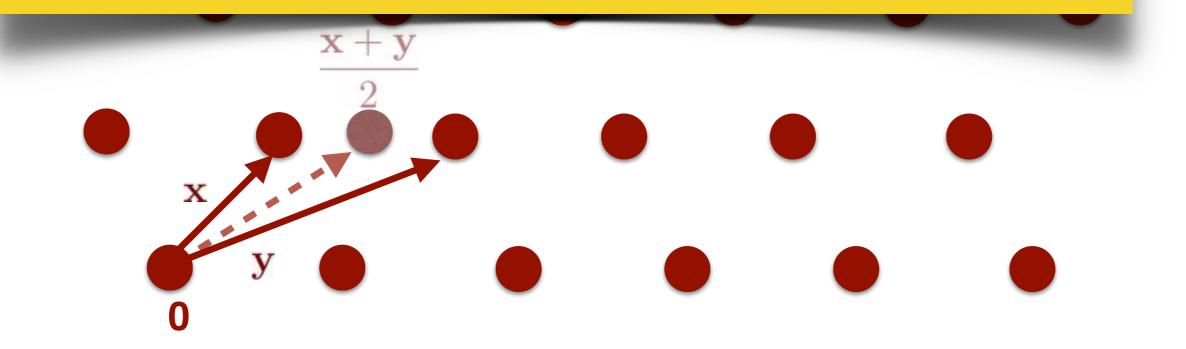






Suppose that, instead of taking the *difference* $\mathbf{x} - \mathbf{y}$ of pairs of lattice vectors, we take the *average* $\frac{\mathbf{x} + \mathbf{y}}{2}$.

The average of two lattice vectors will typically not be in the lattice...



When do we have
$$\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L}?$$

When do we have

$$\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L}?$$

 $\mathbf{y}_1 = a_{1,1}\mathbf{b}_1 + \dots + a_{1,n}\mathbf{b}_n$

When do we have
$$\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L}$$
?
 $\mathbf{y}_1 = a_{1,1}\mathbf{b}_1 + \cdots + a_{1,n}\mathbf{b}_n$ $\mathbf{y}_2 = a_{2,1}\mathbf{b}_1 + \cdots + a_{2,n}\mathbf{b}_n$

When do we have
$$\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L}$$
?
 $\mathbf{y}_1 = a_{1,1}\mathbf{b}_1 + \dots + a_{1,n}\mathbf{b}_n$ $\mathbf{y}_2 = a_{2,1}\mathbf{b}_1 + \dots + a_{2,n}\mathbf{b}_n$
 $\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} = \frac{a_{1,1} + a_{2,1}}{2} \cdot \mathbf{b}_1 + \dots + \frac{a_{1,n} + a_{2,n}}{2} \cdot \mathbf{b}_n$

When do we have
$$\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L}$$
?
 $\mathbf{y}_1 = a_{1,1}\mathbf{b}_1 + \dots + a_{1,n}\mathbf{b}_n$ $\mathbf{y}_2 = a_{2,1}\mathbf{b}_1 + \dots + a_{2,n}\mathbf{b}_n$
 $\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} = \frac{a_{1,1} + a_{2,1}}{2} \cdot \mathbf{b}_1 + \dots + \frac{a_{1,n} + a_{2,n}}{2} \cdot \mathbf{b}_n$
 $\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L} \iff a_{1,i} \equiv a_{2,i} \mod 2$

When do we have
$$\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L}$$
?
 $\mathbf{y}_1 = a_{1,1}\mathbf{b}_1 + \dots + a_{1,n}\mathbf{b}_n$ $\mathbf{y}_2 = a_{2,1}\mathbf{b}_1 + \dots + a_{2,n}\mathbf{b}_n$
 $\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} = \frac{a_{1,1} + a_{2,1}}{2} \cdot \mathbf{b}_1 + \dots + \frac{a_{1,n} + a_{2,n}}{2} \cdot \mathbf{b}_n$
 $\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L} \iff a_{1,i} \equiv a_{2,i} \mod 2$

 $\iff \mathbf{y}_1 \equiv \mathbf{y}_2 \mod 2\mathcal{L}$

When do we have
$$\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L}$$
?
 $\mathbf{y}_1 = a_{1,1}\mathbf{b}_1 + \dots + a_{1,n}\mathbf{b}_n$ $\mathbf{y}_2 = a_{2,1}\mathbf{b}_1 + \dots + a_{2,n}\mathbf{b}_n$
 $\underbrace{\mathbf{y}_1}_{\mathbf{y}_1}$ *We have* $\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L}$ *if and only if* $\mathbf{y}_1, \mathbf{y}_2$ *are in the same coset of* $2\mathcal{L}$.
(Note that there are 2^n *cosets.)* \mathbf{b}_n
 $\underbrace{\frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \in \mathcal{L} \iff a_{1,i} \equiv a_{2,i} \mod 2}_{\iff \mathbf{y}_1 \equiv \mathbf{y}_2 \mod 2\mathcal{L}}$

0

Aggarwal, Stephens-Davidowitz

- 1. Start with many vectors sampled from some nice distribution.
- 2. For each coset of $2\mathcal{L}$, group the vectors within the coset into disjoint pairs (randomly).
- 3. Take the average of each pair.
- 4. Repeat this procedure on the averages.

Aggarwal, Stephens-Davidowitz

<u>Cons</u>

Aggarwal, Stephens-Davidowitz

<u>Cons</u>

• Completely ignores geometry of the lattice!

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than $2^{n+o(n)}$ time and space.

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than $2^{n+o(n)}$ time and space.

<u>Cons</u>

<u>Pros</u>

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than $2^{n+o(n)}$ time and space.

 Ignoring the geometry makes the distribution of vectors easier to analyze.

<u>Cons</u>

<u>Pros</u>

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than $2^{n+o(n)}$ time and space.

- Ignoring the geometry makes the distribution of vectors easier to analyze.
 - In [ADRS15], we combined this with careful rejection sampling to solve SVP.

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than $2^{n+o(n)}$ time and space.

- Ignoring the geometry makes the distribution of vectors easier to analyze.
 - In [ADRS15], we combined this with careful rejection sampling to solve SVP.
- It actually just works! [AS17]

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than $2^{n+o(n)}$ time and space.

- Ignoring the geometry makes the distribution of vectors easier to analyze.
 - In [ADRS15], we combined this with careful rejection sampling to solve SVP.
- It actually just works! [AS17]
 - No rejection sampling or perturbation needed!

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than $2^{n+o(n)}$ time and space.

- Ignoring the geometry makes the distribution of vectors easier to analyze.
 - In [ADRS15], we combined this with careful rejection sampling to solve SVP.
- It actually just works! [AS17]
 - No rejection sampling or perturbation needed!
 - Yields the fastest known algorithm for SVP!

Aggarwal, Stephens-Davidowitz

The fastest known SVP algorithm* [AS17]:

Aggarwal, Stephens-Davidowitz

The fastest known SVP algorithm* [AS17]:

* with a known proof of correctness.

Aggarwal, Stephens-Davidowitz

Seriously...

The fastest known SVP algorithm* [AS17]:

1. Start with $2^{n+o(n)}$ not-too-short lattice vectors (sampled from the discrete Gaussian).

* with a known proof of correctness.

Seriously...

The fastest known SVP algorithm* [AS17]:

- 1. Start with $2^{n+o(n)}$ not-too-short lattice vectors (sampled from the discrete Gaussian).
- 2. Do this "sieving by averages" thing.

* with a known proof of correctness.

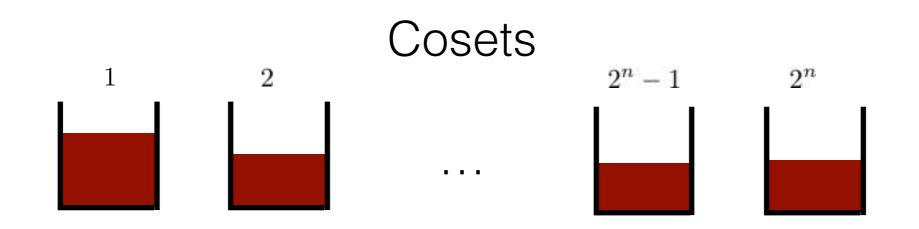
Seriously...

The fastest known SVP algorithm* [AS17]:

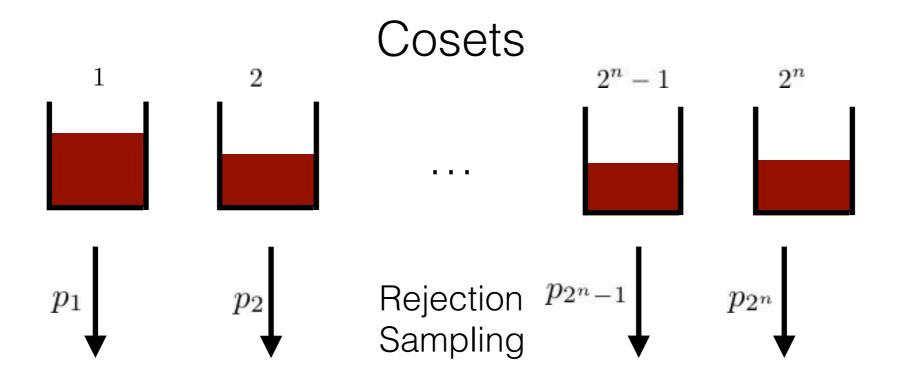
- 1. Start with $2^{n+o(n)}$ not-too-short lattice vectors (sampled from the discrete Gaussian).
- 2. Do this "sieving by averages" thing.
- 3. Output the shortest non-zero vector that you see.

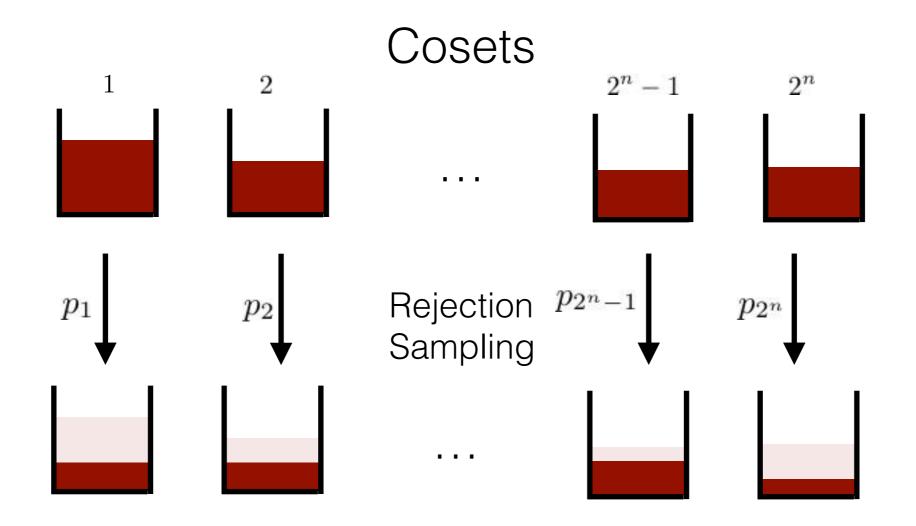
* with a known proof of correctness.

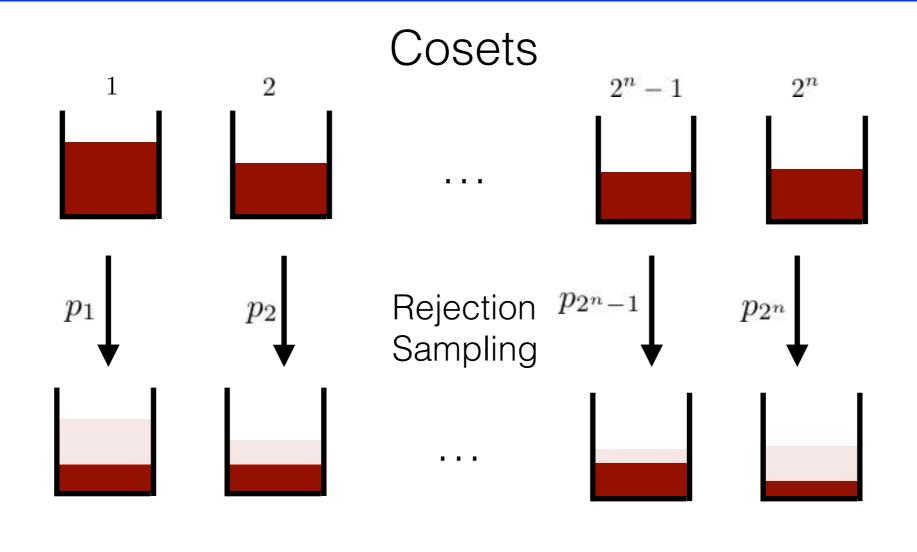




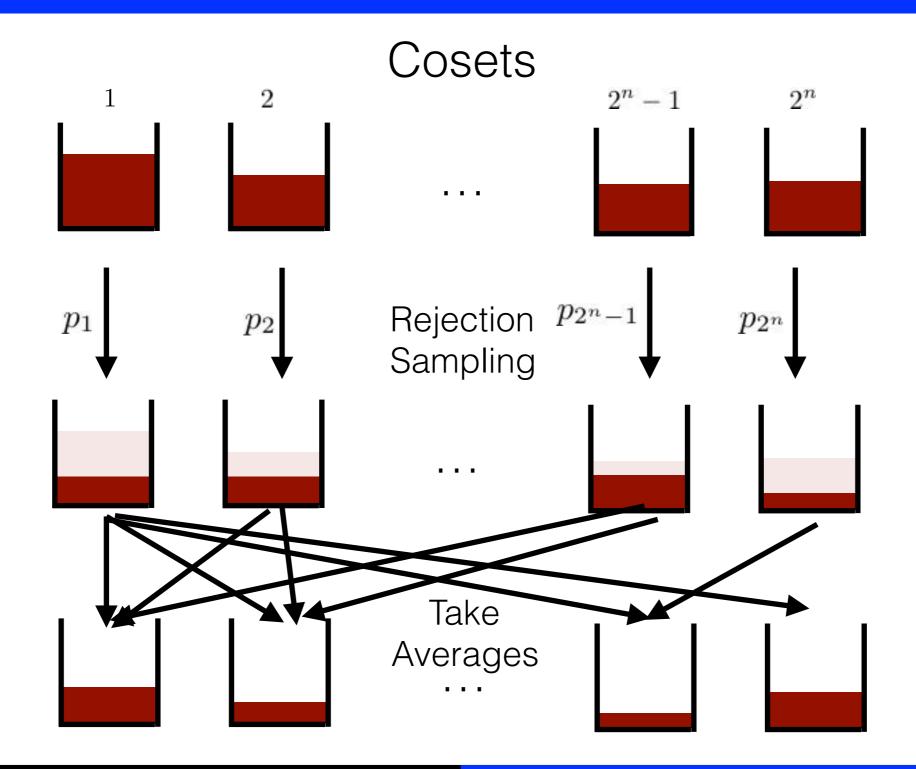
Rejection Sampling





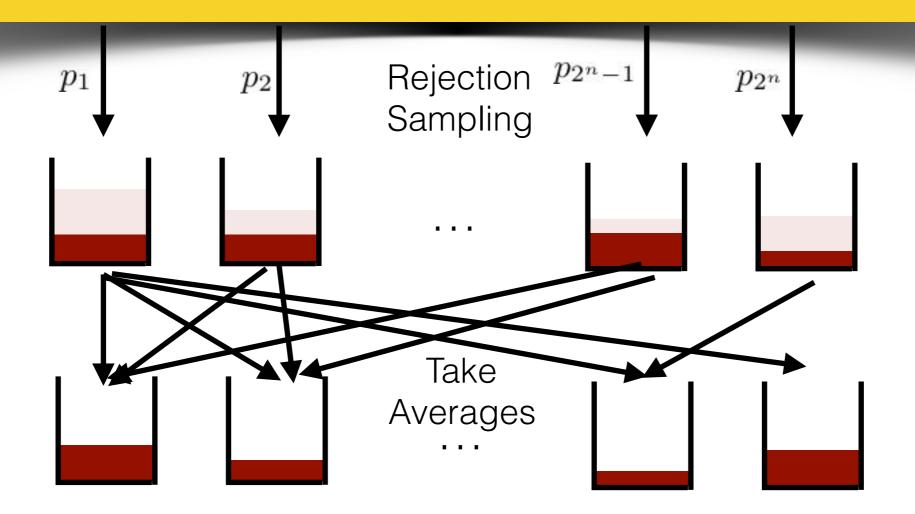


Take Averages

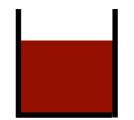


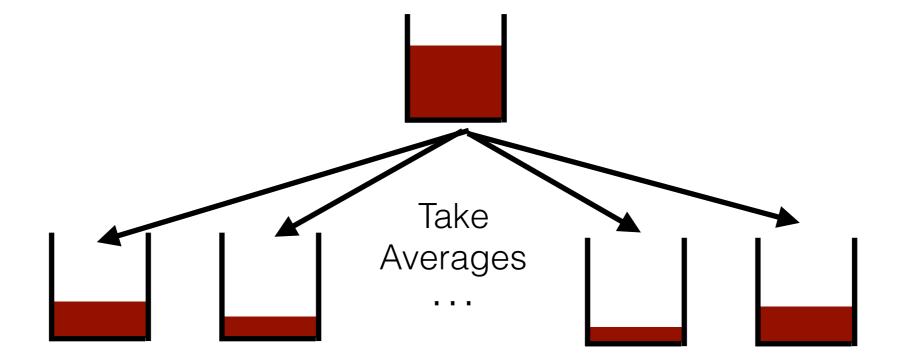
Cosets

ADRS15: If the input is distributed nicely (Gaussian) and the rejection sampling is done appropriately, then the output will be distributed nicely (a narrower Gaussian).

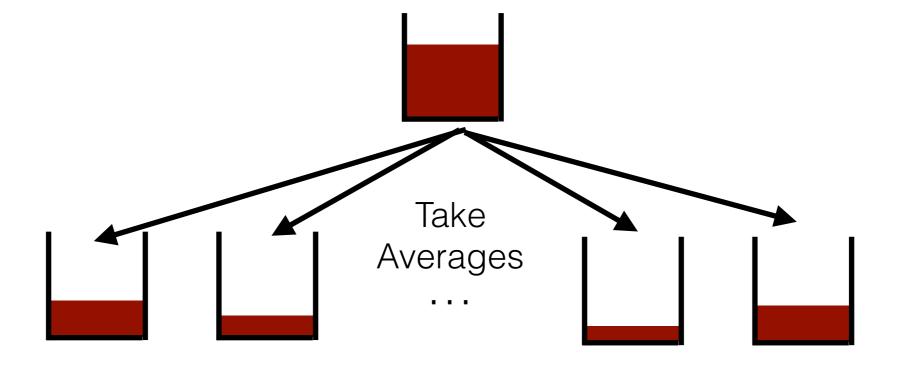


Aggarwal, Stephens-Davidowitz





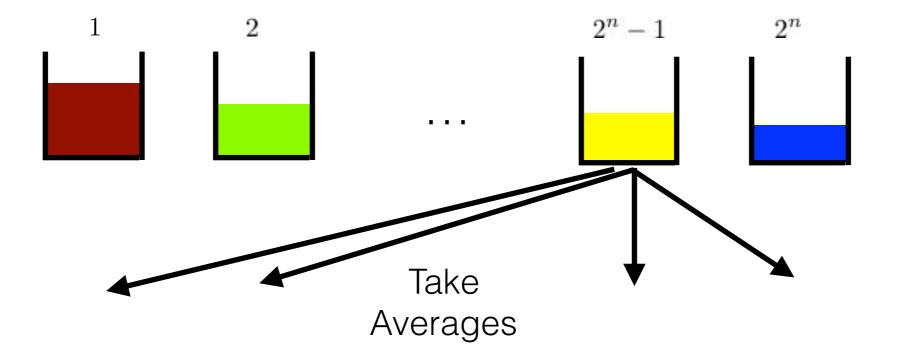
Aggarwal, Stephens-Davidowitz

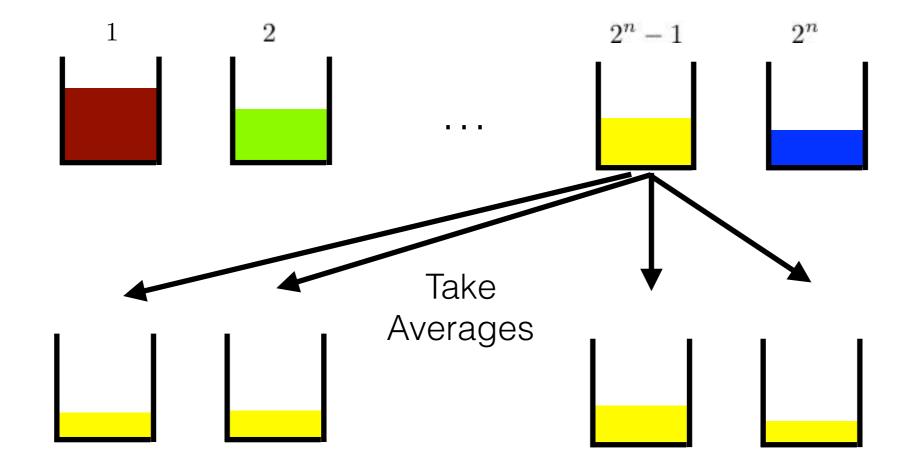


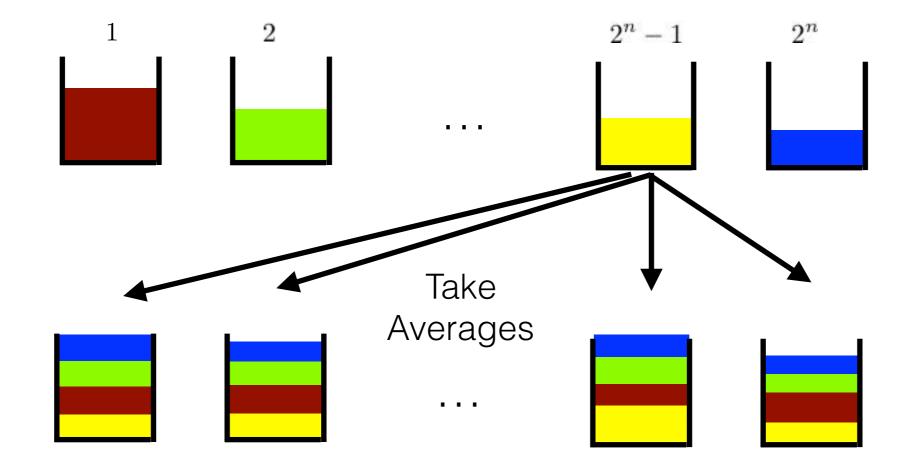
AS17: If the input is distributed nicely (Gaussian) *within* each coset, then the averages will be distributed nicely (a narrower Gaussian) *within* each coset.

Aggarwal, Stephens-Davidowitz

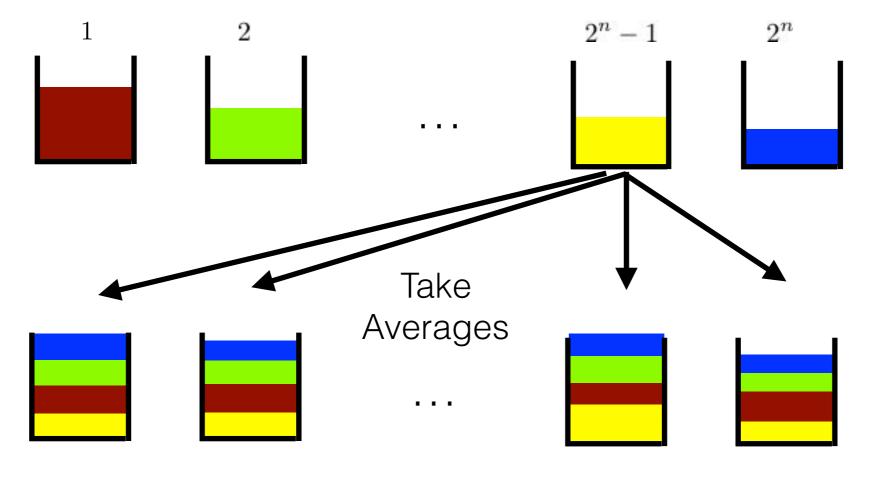
Aggarwal, Stephens-Davidowitz



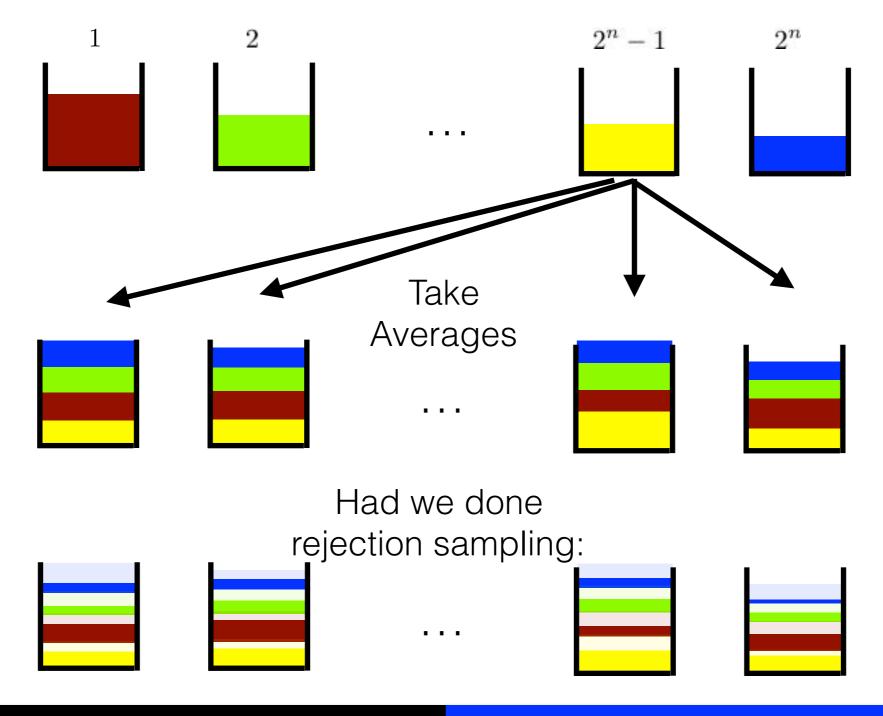




Aggarwal, Stephens-Davidowitz

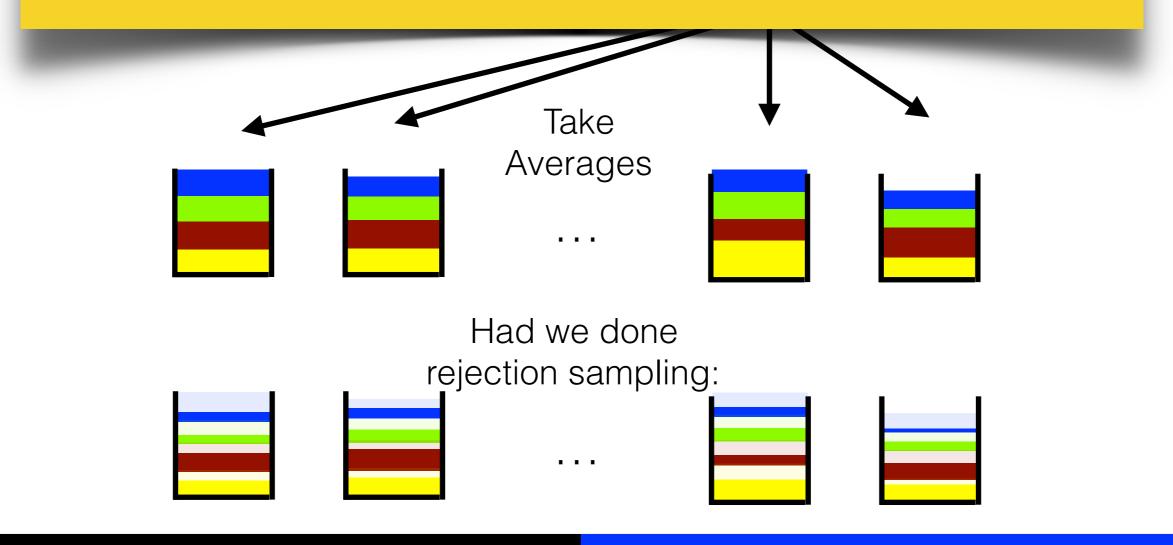


Had we done rejection sampling:



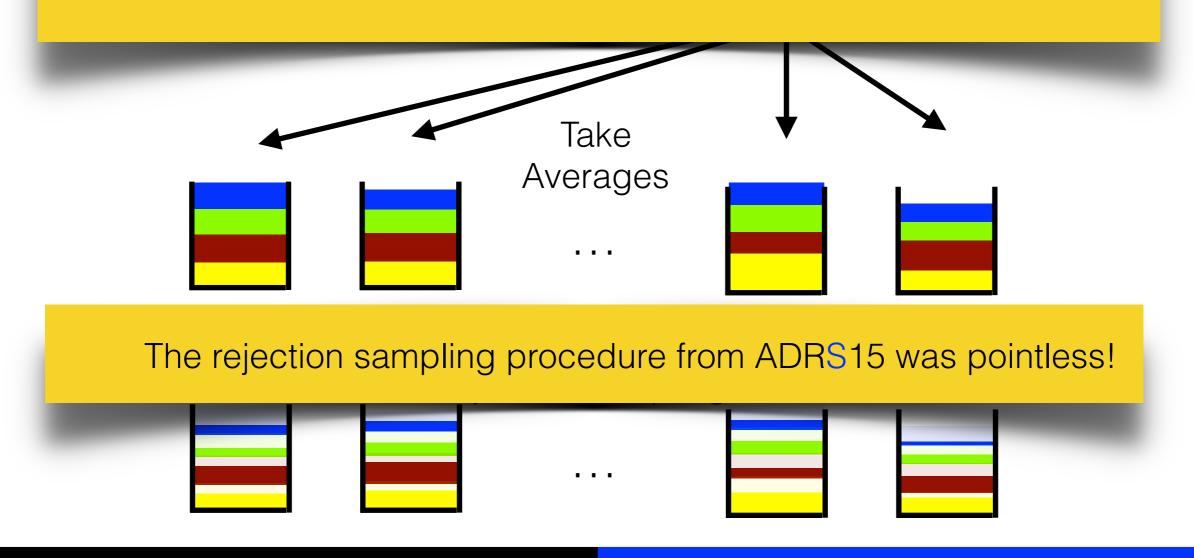
Aggarwal, Stephens-Davidowitz

Rejection sampling only reweights the cosets in the output distribution. If we don't do rejection sampling, we just get more vectors from each coset.



Aggarwal, Stephens-Davidowitz

Rejection sampling only reweights the cosets in the output distribution. If we don't do rejection sampling, we just get more vectors from each coset.



Aggarwal, Stephens-Davidowitz

Formal proof: The probability of seeing any vector when we run this simple algorithm is always greater than the probability of seeing it when we run the ADRS15 rejection sampling algorithm.

Formal proof: The probability of seeing any vector when we run this simple algorithm is always greater than the probability of seeing it when we run the ADRS15 rejection sampling algorithm.

Moral explanation: Because $\mathbb{E}[||\mathbf{x} + \mathbf{y}||^2] = \mathbb{E}[||\mathbf{x}||^2] + \mathbb{E}[||\mathbf{y}||^2]$ for symmetric distributions.

Formal proof: The probability of seeing any vector when we run this simple algorithm is always greater than the probability of seeing it when we run the ADRS15 rejection sampling algorithm.

Moral explanation: Because $\mathbb{E}[||\mathbf{x} + \mathbf{y}||^2] = \mathbb{E}[||\mathbf{x}||^2] + \mathbb{E}[||\mathbf{y}||^2]$ for symmetric distributions.

$$\mathbb{E}[\|\mathbf{x} + \mathbf{y}\|^2]$$

Formal proof: The probability of seeing any vector when we run this simple algorithm is always greater than the probability of seeing it when we run the ADRS15 rejection sampling algorithm.

Moral explanation: Because $\mathbb{E}[||\mathbf{x} + \mathbf{y}||^2] = \mathbb{E}[||\mathbf{x}||^2] + \mathbb{E}[||\mathbf{y}||^2]$ for symmetric distributions.

$$\mathbb{E}[\|\mathbf{x} + \mathbf{y}\|^2] = \mathbb{E}[\|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2]$$

Formal proof: The probability of seeing any vector when we run this simple algorithm is always greater than the probability of seeing it when we run the ADRS15 rejection sampling algorithm.

Moral explanation: Because $\mathbb{E}[||\mathbf{x} + \mathbf{y}||^2] = \mathbb{E}[||\mathbf{x}||^2] + \mathbb{E}[||\mathbf{y}||^2]$ for symmetric distributions.

$$\mathbb{E}[\|\mathbf{x} + \mathbf{y}\|^2] = \mathbb{E}[\|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2]$$
$$= \mathbb{E}[\|\mathbf{x}\|^2] + \mathbb{E}[\|\mathbf{y}\|^2] + 2\mathbb{E}[\langle \mathbf{x}, \mathbf{y} \rangle]$$

Aggarwal, Stephens-Davidowitz

Formal proof: The probability of seeing any vector when we run this simple algorithm is always greater than the probability of seeing it when we run the ADRS15 rejection sampling algorithm.

Moral explanation: Because $\mathbb{E}[||\mathbf{x} + \mathbf{y}||^2] = \mathbb{E}[||\mathbf{x}||^2] + \mathbb{E}[||\mathbf{y}||^2]$ for symmetric distributions.

$$\mathbb{E}[\|\mathbf{x} + \mathbf{y}\|^2] = \mathbb{E}[\|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2]$$
$$= \mathbb{E}[\|\mathbf{x}\|^2] + \mathbb{E}[\|\mathbf{y}\|^2] + 2\mathbb{E}[\langle \mathbf{x}, \mathbf{y} \rangle]$$
$$= \mathbb{E}[\|\mathbf{x}\|^2] + \mathbb{E}[\|\mathbf{y}\|^2]$$

$$\mathbb{E}[\|\mathbf{x} + \mathbf{y}\|^2] = \mathbb{E}[\|\mathbf{x}\|^2] + \mathbb{E}[\|\mathbf{y}\|^2]$$

$$\mathbb{E}[\|\mathbf{x} + \mathbf{y}\|^2] = \mathbb{E}[\|\mathbf{x}\|^2] + \mathbb{E}[\|\mathbf{y}\|^2]$$

$$\mathbb{E}\left[\left\|\frac{\mathbf{x}+\mathbf{y}}{2}\right\|^{2}\right] = \frac{\mathbb{E}[\|\mathbf{x}\|^{2}] + \mathbb{E}[\|\mathbf{y}\|^{2}]}{4}$$

$$\mathbb{E}[\|\mathbf{x} + \mathbf{y}\|^2] = \mathbb{E}[\|\mathbf{x}\|^2] + \mathbb{E}[\|\mathbf{y}\|^2]$$

$$\mathbb{E}\left[\left\|\frac{\mathbf{x}+\mathbf{y}}{2}\right\|^{2}\right] = \frac{\mathbb{E}[\|\mathbf{x}\|^{2}] + \mathbb{E}[\|\mathbf{y}\|^{2}]}{4}$$
$$= \frac{\mathbb{E}[\|\mathbf{x}\|^{2}]}{2} \qquad (\text{If } \mathbf{x} \text{ and } \mathbf{y} \text{ have the} \\ \text{same marginal distribution.})$$

$$\mathbb{E}[\|\mathbf{x} + \mathbf{y}\|^2] = \mathbb{E}[\|\mathbf{x}\|^2] + \mathbb{E}[\|\mathbf{y}\|^2]$$

$$\mathbb{E}\left[\left\|\frac{\mathbf{x}+\mathbf{y}}{2}\right\|^{2}\right] = \frac{\mathbb{E}[\|\mathbf{x}\|^{2}] + \mathbb{E}[\|\mathbf{y}\|^{2}]}{4}$$
$$= \frac{\mathbb{E}[\|\mathbf{x}\|^{2}]}{2} \qquad (\text{If } \mathbf{x} \text{ and } \mathbf{y} \text{ have the} \\ \text{same marginal distribution.})$$

In our case, **x** comes from some symmetric distribution, and **y** comes from the same distribution, conditioned on $\mathbf{x} \equiv \mathbf{y} \mod 2\mathcal{L}$

$$\mathbb{E}[\|\mathbf{x} + \mathbf{y}\|^2] = \mathbb{E}[\|\mathbf{x}\|^2] + \mathbb{E}[\|\mathbf{y}\|^2]$$

$$\mathbb{E}\left[\left\|\frac{\mathbf{x}+\mathbf{y}}{2}\right\|^{2}\right] = \frac{\mathbb{E}[\|\mathbf{x}\|^{2}] + \mathbb{E}[\|\mathbf{y}\|^{2}]}{4}$$
$$= \frac{\mathbb{E}[\|\mathbf{x}\|^{2}]}{2} \qquad (\text{If } \mathbf{x} \text{ and } \mathbf{y} \text{ have the} \\ \text{same marginal distribution.})$$

In our case, **x** comes from some symmetric distribution, and **y** comes from the same distribution, conditioned on $\mathbf{x} \equiv \mathbf{y} \mod 2\mathcal{L}$

The expected squared norm of our vectors drops by a factor of two at every step!

Aggarwal, Stephens-Davidowitz

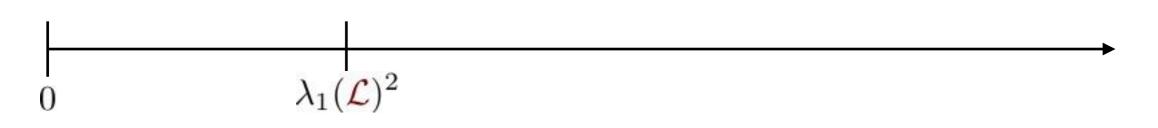
The expected squared norm of our vectors drops by a factor of two at every step.

• Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.

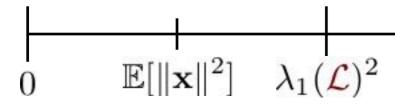
- Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.
- "Sieve by averages" $\ell + 1$ times to get samples with $\mathbb{E}[\|\mathbf{x}\|^2] = \lambda_1(\mathcal{L})^2/2$.

- Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.
- "Sieve by averages" $\ell + 1$ times to get samples with $\mathbb{E}[\|\mathbf{x}\|^2] = \lambda_1(\mathcal{L})^2/2$.

- Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.
- "Sieve by averages" $\ell + 1$ times to get samples with $\mathbb{E}[\|\mathbf{x}\|^2] = \lambda_1 (\mathcal{L})^2 / 2$.

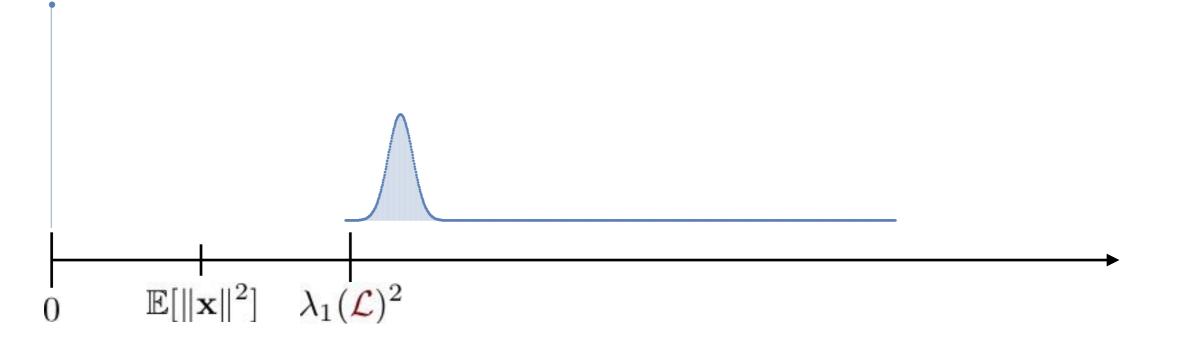


- Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.
- "Sieve by averages" $\ell + 1$ times to get samples with $\mathbb{E}[\|\mathbf{x}\|^2] = \lambda_1(\mathcal{L})^2/2$.

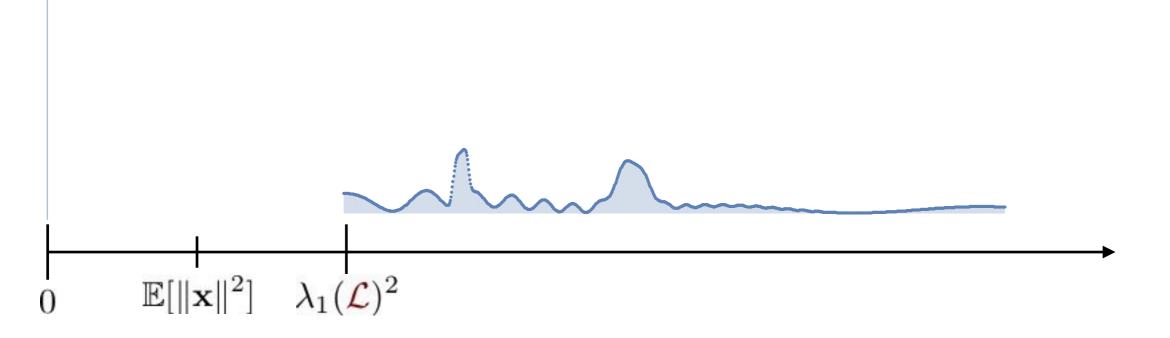


- Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.
- "Sieve by averages" $\ell + 1$ times to get samples with $\mathbb{E}[\|\mathbf{x}\|^2] = \lambda_1(\mathcal{L})^2/2$.

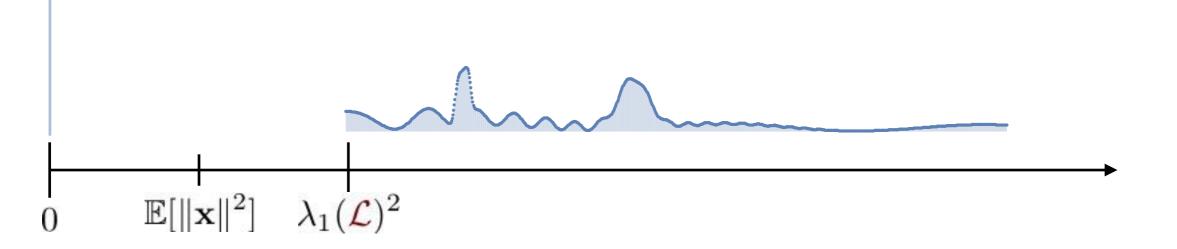
- Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.
- "Sieve by averages" $\ell + 1$ times to get samples with $\mathbb{E}[\|\mathbf{x}\|^2] = \lambda_1(\mathcal{L})^2/2$.



- Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.
- "Sieve by averages" $\ell + 1$ times to get samples with $\mathbb{E}[\|\mathbf{x}\|^2] = \lambda_1(\mathcal{L})^2/2$.

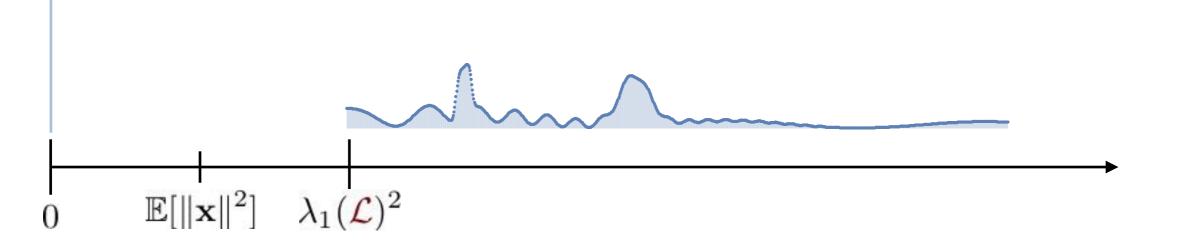


- Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.
- "Sieve by averages" $\ell + 1$ times to get samples with $\mathbb{E}[\|\mathbf{x}\|^2] = \lambda_1(\mathcal{L})^2/2$.



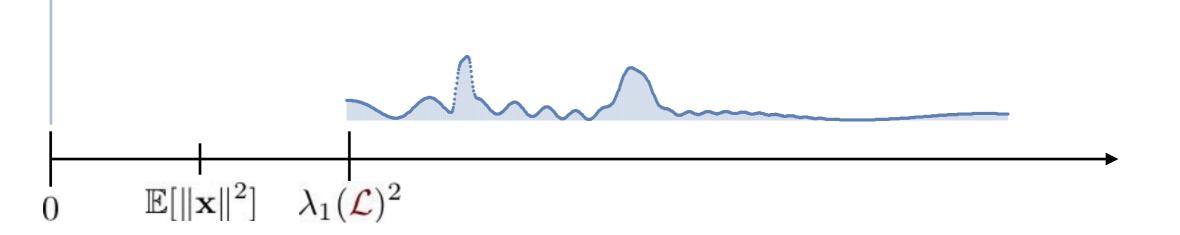
If we could get a reasonable bound on the probability of seeing the zero vector, then we could show that this algorithm solves (approximate) SVP.

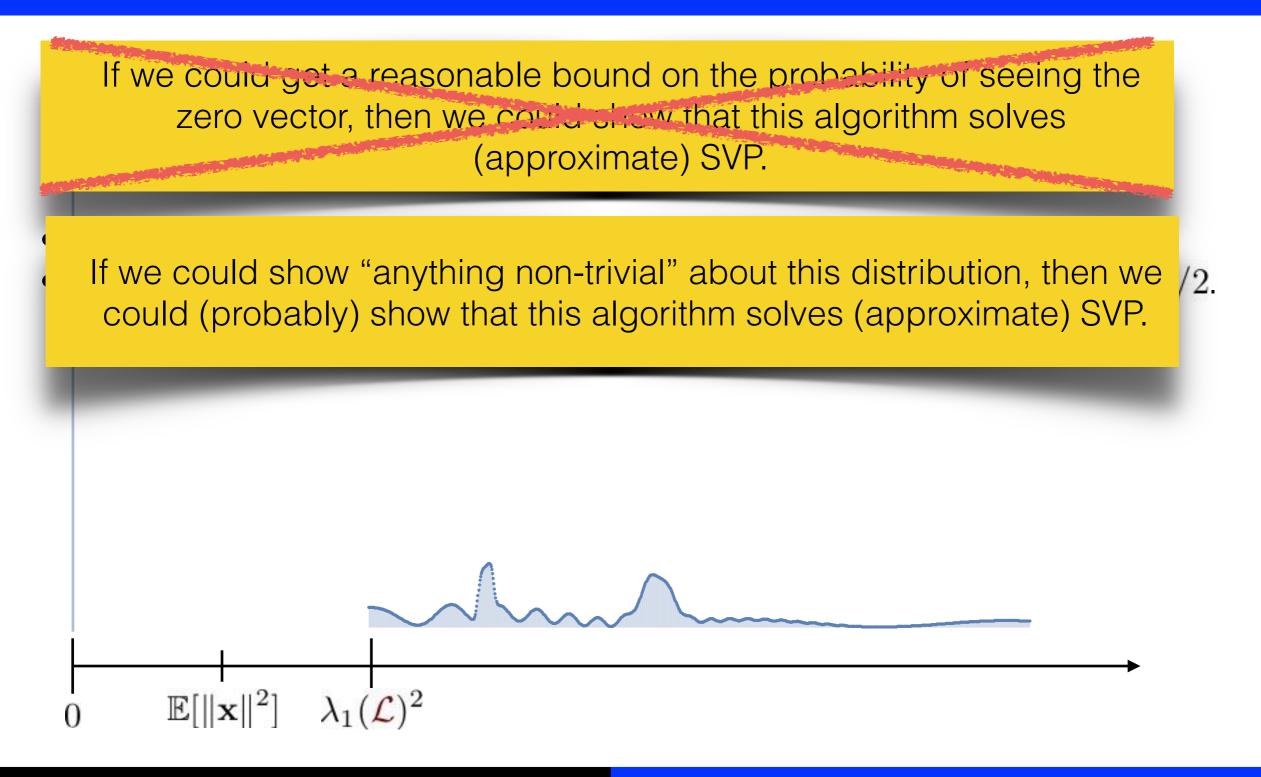
- Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.
- "Sieve by averages" $\ell + 1$ times to get samples with $\mathbb{E}[\|\mathbf{x}\|^2] = \lambda_1(\mathcal{L})^2/2$.



If we could get a reasonable bound on the probability or seeing the zero vector, then we could chow that this algorithm solves (approximate) SVP.

- Start with vectors with $\mathbb{E}[\|\mathbf{x}\|^2] = 2^{\ell} \cdot \lambda_1(\mathcal{L})^2$.
- "Sieve by averages" $\ell + 1$ times to get samples with $\mathbb{E}[\|\mathbf{x}\|^2] = \lambda_1(\mathcal{L})^2/2$.





Aggarwal, Stephens-Davidowitz

<u>Cons</u>

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than 2^{n+o(n)} time and space.

<u>Cons</u>

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than 2^{n+o(n)} time and space.

A bit of a lie.

<u>Cons</u>

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than 2^{n+o(n)} time and space.

A bit of a lie.

Sieving by Averages (Discrete Gaussian)

 $2^{n/2 + c(n)}$

[ADRS15] (only decision SVP)

<u>Cons</u>

- Completely ignores geometry of the lattice!
- Not even clear that the vectors tend to get shorter...
- Seemingly can't do better than 2^{n+o(n)} time and space.

A bit of a lie.

Sieving by Averages (Discrete Gaussian)

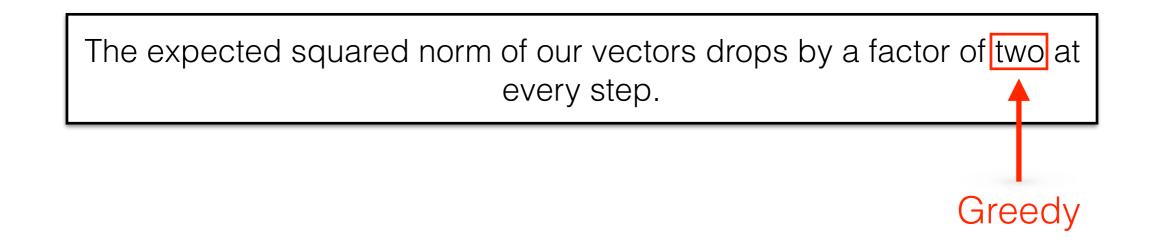
 $2^{n/2 + c(n)}$

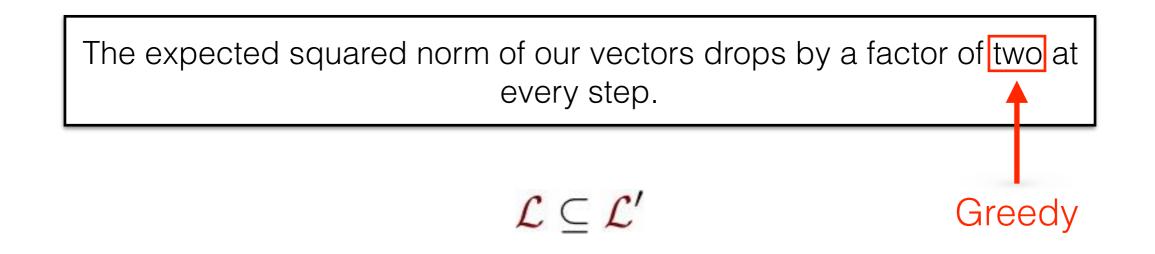
[ADRS15] (only decision SVP)

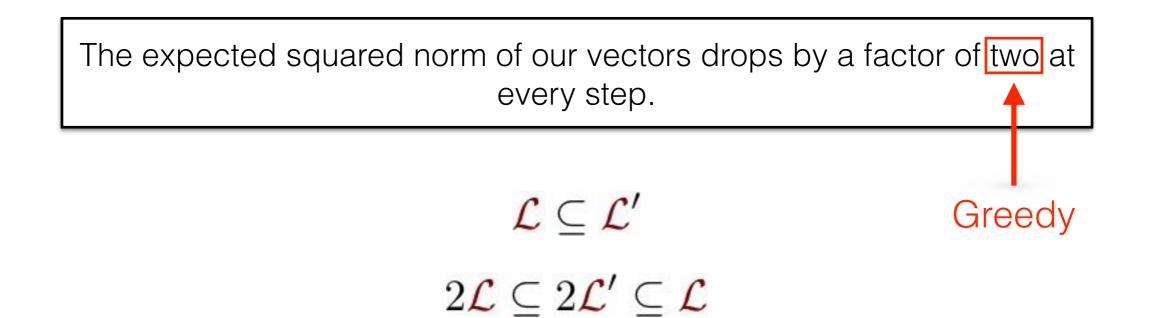
We know how to "remove the rejection sampling procedure" from the main [ADRS15] algorithm (the $2^{n+o(n)}$ -time algorithm for SVP).

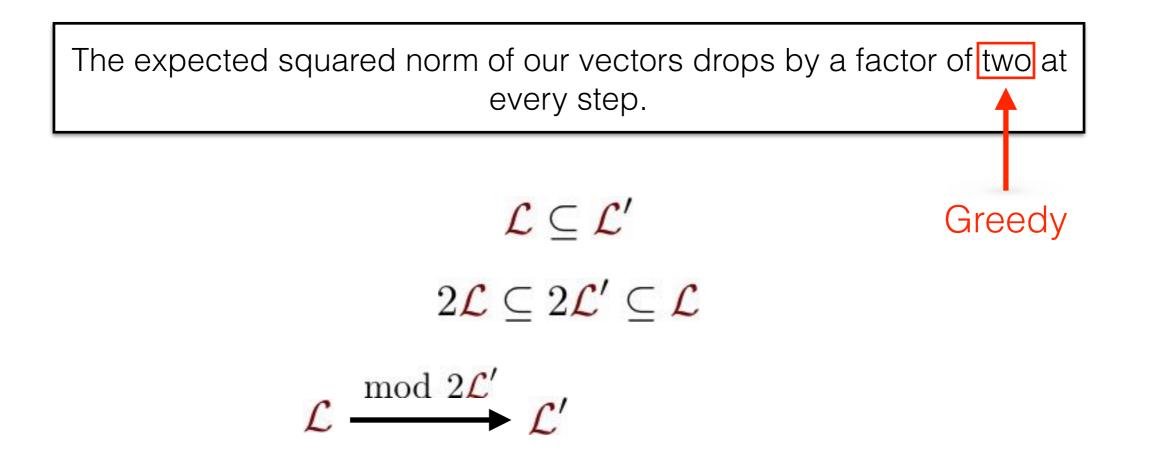
If we could do this for the $2^{n/2+o(n)}$ -time algorithm, then it would provably solve SVP (at least approximately)!

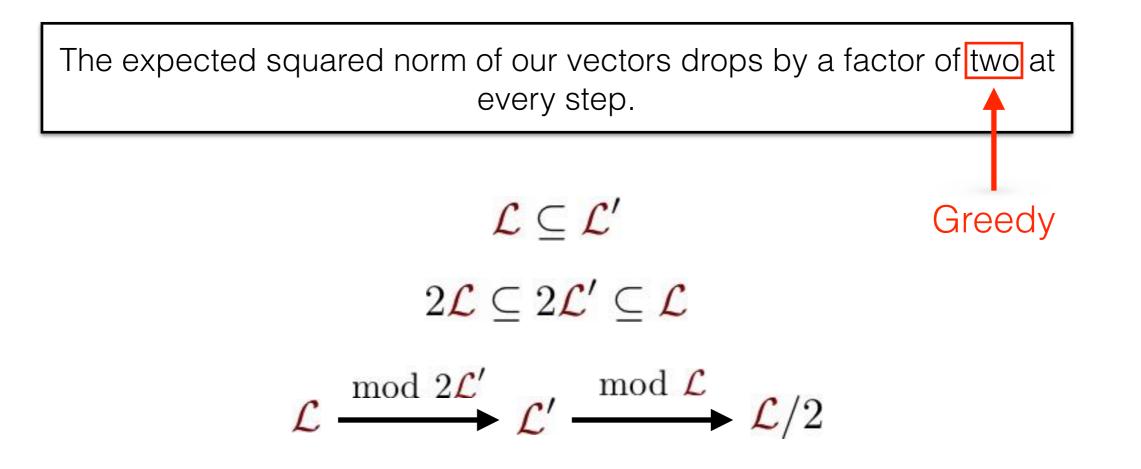
Aggarwal, Stephens-Davidowitz

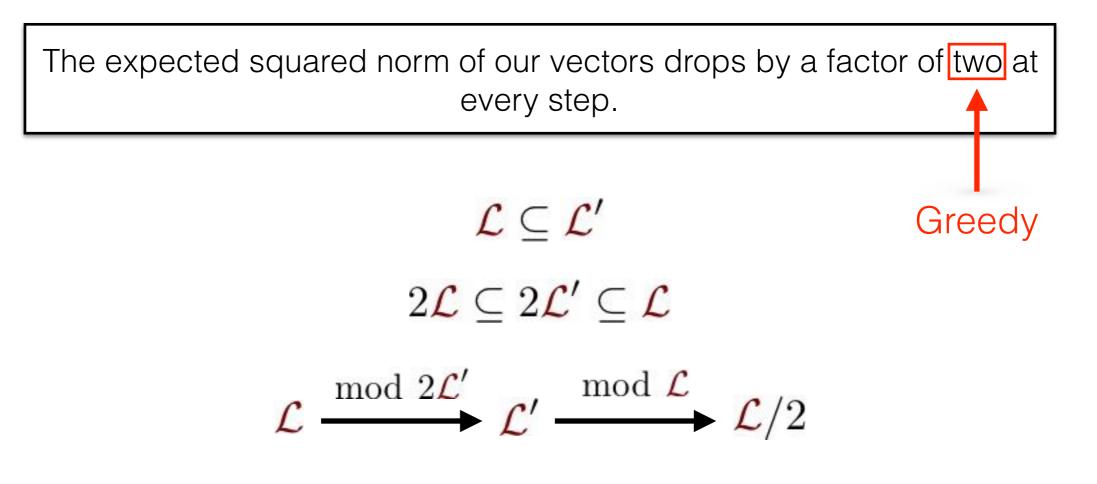




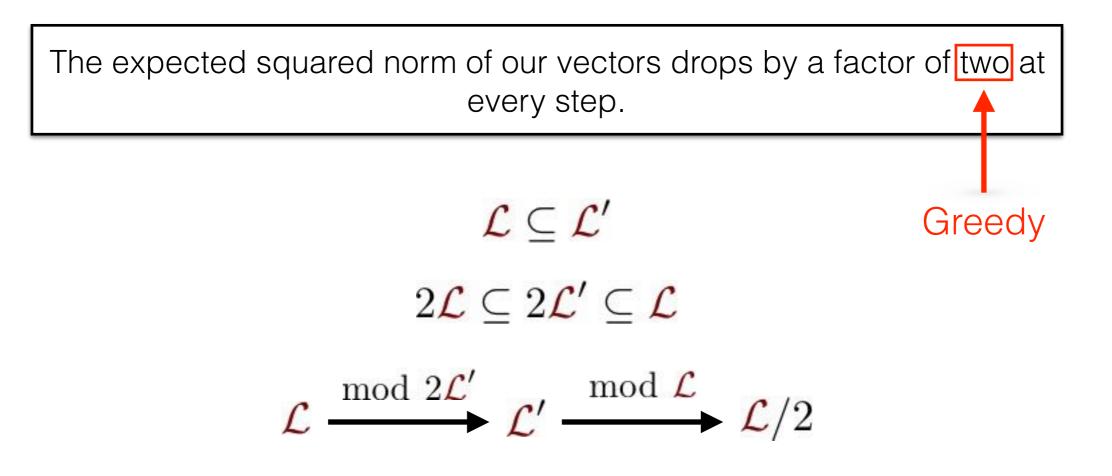








The expected squared norm will drop by a factor of four, but the output vectors will be in $\mathcal{L}/2$.



The expected squared norm will drop by a factor of four, but the output vectors will be in $\mathcal{L}/2$.

If we double the vectors to put them in \mathcal{L} , the final expected squared norm will be unchanged...

The expected squared norm of our vectors drops by a factor of two at

The running time will be roughly $|\mathcal{L}/2\mathcal{L}'| + |\mathcal{L}'/\mathcal{L}|$.

 $2\mathcal{L} \subseteq 2\mathcal{L}' \subseteq \mathcal{L}$

$$\mathcal{L} \xrightarrow{\mod 2\mathcal{L}'} \mathcal{L}' \xrightarrow{\mod \mathcal{L}} \mathcal{L}/2$$

The expected squared norm will drop by a factor of four, but the output vectors will be in $\mathcal{L}/2$.

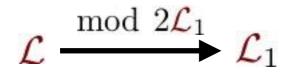
If we double the vectors to put them in \mathcal{L} , the final expected squared norm will be unchanged...

Aggarwal, Stephens-Davidowitz

$\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \cdots \subseteq \mathcal{L}_\ell \subseteq \mathcal{L}/2^k$

Aggarwal, Stephens-Davidowitz

$\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \cdots \subseteq \mathcal{L}_\ell \subseteq \mathcal{L}/2^k$

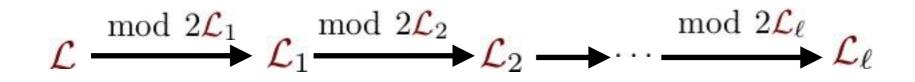


Aggarwal, Stephens-Davidowitz

$\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \cdots \subseteq \mathcal{L}_\ell \subseteq \mathcal{L}/2^k$

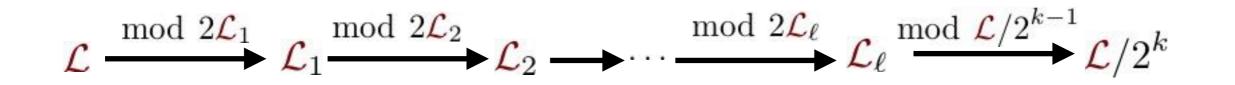


$\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \cdots \subseteq \mathcal{L}_\ell \subseteq \mathcal{L}/2^k$



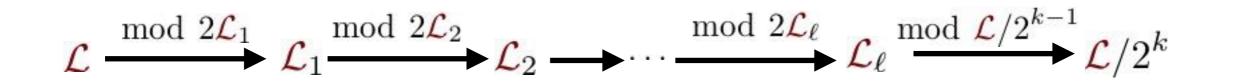
$\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \cdots \subseteq \mathcal{L}_\ell \subseteq \mathcal{L}/2^k$

$\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \cdots \subseteq \mathcal{L}_\ell \subseteq \mathcal{L}/2^k$



The expected squared norm will drop by a factor of 2^{ℓ} .

$\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \cdots \subseteq \mathcal{L}_\ell \subseteq \mathcal{L}/2^k$

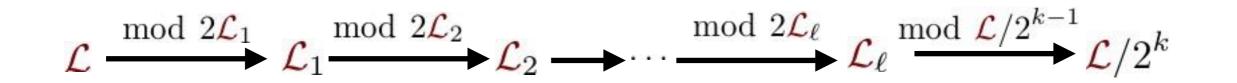


The expected squared norm will drop by a factor of 2^{ℓ} .

If we multiply the output vectors by 2^k to put them in \mathcal{L} , the final expected squared norm will drop by $2^{\ell-2k}$.

A "Tower" of Lattices

$\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \cdots \subseteq \mathcal{L}_\ell \subseteq \mathcal{L}/2^k$



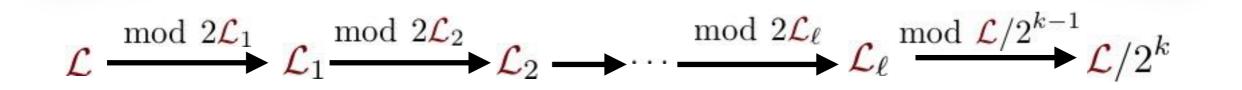
The expected squared norm will drop by a factor of 2^{ℓ} .

If we multiply the output vectors by 2^k to put them in \mathcal{L} , the final expected squared norm will drop by $2^{\ell-2k}$.

The running time will be roughly
$$\sum_i |\mathcal{L}_i/2\mathcal{L}_{i+1}|$$
.

A "Tower" of Lattices

We can take $|\mathcal{L}_i/2\mathcal{L}_{i+1}| = 2^{n/2+o(n)}$ to get an algorithm with this running time.



The expected squared norm will drop by a factor of 2^{ℓ} .

If we multiply the output vectors by 2^k to put them in \mathcal{L} , the final expected squared norm will drop by $2^{\ell-2k}$.

The running time will be roughly
$$\sum_i |\mathcal{L}_i/2\mathcal{L}_{i+1}|$$
.

Embarrassingly Simple SVP

• There exists a rejection sampling procedure like in [ADRS15] that provably yields a correct algorithm [RS15].

- There exists a rejection sampling procedure like in [ADRS15] that provably yields a correct algorithm [RS15].
 - Don't know how to implement it when the vectors get short.

- There exists a rejection sampling procedure like in [ADRS15] that provably yields a correct algorithm [RS15].
 - Don't know how to implement it when the vectors get short.
- The analysis that we used in [AS17] to "remove the rejection sampling" does not seem to work for this faster algorithm.

- There exists a rejection sampling procedure like in [ADRS15] that provably yields a correct algorithm [RS15].
 - Don't know how to implement it when the vectors get short.
- The analysis that we used in [AS17] to "remove the rejection sampling" does not seem to work for this faster algorithm.
- The "expected squared norm analysis" still works.

- There exists a rejection sampling procedure like in [ADRS15] that provably yields a correct algorithm [RS15].
 - Don't know how to implement it when the vectors get short.
- The analysis that we used in [AS17] to "remove the rejection sampling" does not seem to work for this faster algorithm.
- The "expected squared norm analysis" still works.
 - "Anything non-trivial about distribution" => faster SVP algorithm!

Aggarwal, Stephens-Davidowitz

Embarrassingly Simple SVP

• Are there other interesting sieving procedures?

- Are there other interesting sieving procedures?
- Can we close the gap between search and decision (approximate) SVP?

- Are there other interesting sieving procedures?
- Can we close the gap between search and decision (approximate) SVP?
 - Can someone please tell me something about this distribution?!

- Are there other interesting sieving procedures?
- Can we close the gap between search and decision (approximate) SVP?
 Can someone please tell me something about this distribution?!
- Can we close the gap between provable and heuristic algorithms?

- Are there other interesting sieving procedures?
- Can we close the gap between search and decision (approximate) SVP?
 Can someone please tell me something about this distribution?!
- Can we close the gap between provable and heuristic algorithms?
- Can we close the gap between asymptotically faster algorithms and enumeration?

Thanks!