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Game Plan

e Basics of sieving

 Embarrassingly simple algorithm: Sieving by averages
 Hope to simplity the proot of correctness

 Hope to make it faster
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| attices

e [ is a discrete set of vectors in R"

e Specified by a basis bi,...,b,, linearly independent vectors
e £L={aiby +---+a,b, | a; € Z)
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Sieving

Pros Cons
e \ery natural technique. e Hard to analyze.
e (Clearly “"makes progress” at e \What is the distribution of the
each step. vectors at each step?
e (Can be made to work. e How common are collisions?
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Perturbation 90(n) [AKSO1]

Perturbation 92.5n [NV08, PS09, MV10, ...]
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Sieving Algorithms

Perturbation 90(n) [AKSO1]

Perturbation 92.5n [NV08, PS09, MV10, ...]

Heuristic
(no proof of
correctness)

3/9 n/2+4+o(n) A 0.3n [NVO8, Laal5, BDGL15,
(3/2) 2 BLS16, ...]
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Sieving Algorithms

Perturbation

Perturbation

Heuristic
(no proof of
correctness)

Sieving by Averages
(Discrete Gaussian)

Aggarwal,

20(n)

22.57?,

(3/2)71/2+o(n) ~ 20.371

2n—|—o(n)

[AKSO1]

[INVOS, PS09, MV10, ...]

[INVO8, Laa15, BDGL15,
BLS16, ...]

[ADRS15, AS17]
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Sieving Algorithms

Perturbation

Perturbation

Heuristic
(no proof of
correctness)
Sieving by Averages
(Discrete Gaussian)
Sieving by Averages
(Discrete Gaussian)

????

Aggarwal,

20(n)

22.57?,

(3/2)71/‘2+o(n) ~ 20.371

2n—|—o(n)

2n/2—|—o(n)

Fast!

[AKSO1]

[INVOS, PS09, MV10, ...]

[INVO8, Laa15, BDGL15,
BLS16, ...]

[ADRS15, AS17]

[ADRS15]
(only approx. decision
SVP)

[FuturePeople18]
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Sieving by Averages

Suppose that, instead of taking the
difference x—Yy of pairs of lattice vectors,

+
we take the average = : £

A o . A A R

The average of two lattice vectors will typically not be in the lattice...
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When do we have - : 3 c L7?
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y1 =ai;1b; +---+ay by, yo = a9 1b; + -+ az by,

Yity2 41,11 021 « g e o v 0 o] %m T 02n - b,
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Sieving by Averages

1+
When do we have - : 3 c L7?

y1 =aj1by +---+ a1 ,by, yo =ag1by + -+ as by

Yity2 41,11 021 « g e o v 0 o] %m T 02n - b,
9 2 2

<— y; =y, mod 2L
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Sieving by Averages

1+
When do we have - > 3 c L7?

i = al.lbl s bR al.nbn N o — a2.1b1 I 86 o a2,nbn
yi1+y

° e Lifand only it Y1,Y2 are in the

same coset of 2.
Y1 b
- . n

(Note that there are 2™ cosets.)

B eeee—
V1 TY2
2

We have

e L <— a; = a2 ; mod 2

<— y; =y, mod 2L
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Sieving by Averages

@ 1. Start with many vectors sampled from some nice
distribution.
2. For each coset of 2L, group the vectors within the
coset into disjoint pairs (randomly).
. Take the average of each pair.
Repeat this procedure on the averages.

T ————ee—

~
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Sieving by Averages

Cons Pros
e (Completely ignores geometry e |gnoring the geometry makes
of the lattice! the distribution of vectors
e Not even clear that the vectors easier to analyze.
tend to get shorter... - In [ADRS15], we
e Seemingly can’t do better than combined this with
oo} time and space. careful rejection sampling
to solve SVP.

e |t actually just works! [AS17]
- No rejection sampling or
perturbation needed!
- Yields the fastest known
algorithm for SVP!
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Seriously...

The fastest known SVP algorithm™ [AS17]:

1. Start with 2"1°(") not-too-short lattice
vectors (sampled from the discrete
Gaussian).

2. Do this "sieving by averages” thing.

3. Output the shortest non-zero vector that
yOu See.

* with a known proof of correctness.
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Cosets

]. 2 2 TL

o

Rejection P2"— ll pgnl
Sampling
—

» ’
Take —

Averages | | | |

-
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Why Does This Work?

(CNneetg

ADRS15: If the input is distributed nicely (Gaussian) and the
rejection sampling is done appropriately, then the output will be
distributed nicely (a narrower Gaussian).

Rejection P2"-1
Sampling

Take

Averages | | | |
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Why Does This Work?

AS17: If the input is distributed nicely (Gaussian) within each
coset, then the averages will be distributed nicely (a narrower
Gaussian) within each coset.
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Why Does This Work?

Rejection sampling only reweights the cosets in the output
distribution. If we don’t do rejection sampling, we just get more
vectors from each coset.

- I~
S EH  BE

Had we done
rejection sampling:

== - HH
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Why Does This Work?

Rejection sampling only reweights the cosets in the output
distribution. If we don’t do rejection sampling, we just get more
vectors from each coset.

- = I~
S H  BE

The rejection sampling procedure from ADRS15 was pointless!
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Formal proof: The probability of seeing any vector when we run this
simple algorithm is always greater than the probability of seeing it
when we run the ADRS15 rejection sampling algorithm.
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simple algorithm is always greater than the probability of seeing it
when we run the ADRS15 rejection sampling algorithm.

Moral explanation: Because E[||x + y||*] = E|[||x[|*] + E[||y||*] for
symmetric distributions.
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Efllx + y|I*] = E[l|x/I*] + E[llyl|"]

" le;yHQ] _ Eflix]] ]ZE[HyII |
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Efllx + y|I*] = E[l|x/I*] + E[llyl|"]

g [ 7] - bl Ellyi
2 4
E[||x|?] (If x and y have the
— 9 same marginal distribution.)
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Why Does This Work?

Efllx +y|I*] = E[lIx[I*] + E[lly /"]

- Hx il H2 _ ElIxI*] + Efllyll*]
2 4
E[||x/|?] (If x and y have the
- 9 same marginal distribution.)

In our case, x comes from some symmetric distribution, and y comes from
the same distribution, conditioned on x =y mod 2L

The expected squared norm of our vectors drops by a factor of
two at every step!
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Why Does This Work?

The expected squared norm of our vectors drops by a factor of two at
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Why Does This Work?

The expected squared norm of our vectors drops by a factor of two at
every step.

e Start with vectors with E[||x[|*] = 2° - A1 (£)?. | |
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Why Does This Work?

The expected squared norm of our vectors drops by a factor of two at
every step.

e Start with vectors with E[||x[|*] = 2° - A1 (£)?. | |
e “Sieve by averages” ¢+ 1times to get samples with E[||x||*] = A1 (£)?/2.

N\

>
|

| |
| ! ,
0o  E[xIZ] M(L)?
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Why Does This Work?

It we could get a reasonable bound on the probability of seeing the
zero vector, then we could show that this algorithm solves
(approximate) SVP.

. \ Start with vectors with E[||x[|?] = 2° - A1 (£)?. | |
e “Sieve by averages” ¢+ 1times to get samples with E[||x||*] = A\i1(£)?/2.

| | | .

| ! ,
0o E[x[?] Ai(L£)?
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Why Does This Work?
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Why Does This Work?

If we CGtittrget-a.reasonable bound on the prohakiity 6T §6eing the
Zero vector then [Wear ,:»s.xv«'ﬁin. thls algorlthm solves

. It we could show "anything non-trivial” about this distribution, then we /9
could (probably) show that this algorithm solves (approximate) SVP.

| | | ,

| ‘
0o E[x[?] Ai(L£)?
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Why We Care

Cons

e Ccmpletely ignores geometry
of the lallice!

® Nct even clear that the vectors
tend to get shorter...

e Seemingly can't da better than
gtelr) time and space.
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Why We Care

Cons

e Completely ignores geometry Sieving by Averages [ADRSTS]
of the latlice! (Discrete Gaussian) (only decision SVP)

 Nct even clear that the vectors
tend to get shorter...

e 1Seemingly can't da better than

gtelr) time and space.

A bit of a lie.

We know how to “remove the rejection sampling procedure” from the main
[ADRS15] algorithm (the 27*°(™) _time algorithm for SVP).

If we could do this for the 2"/2+°(")_time algorithm, then it would provably
solve SVP (at least approximately)!

———— e ———..
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Being Less Greedy

(and making no progress...)

The expected squared norm of our vectors drops by a factor of two at
every step.
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Being Less Greedy

(and making no progress...)

The expected squared norm of our vectors drops by a factor of|two| at
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(and making no progress...)

The expected squared norm of our vectors drops by a factor of|two| at
every step. T

LCk Greedy
QEC2L' C L

mod 2£’ mod L
c 22 )2

The expected squared norm will drop by a factor of four, but the output
vectors will be in L/2.
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Being Less Greedy

(and making no progress...)

The expected squared norm of our vectors drops by a factor of|two| at
every step. T

LCk Greedy
QEC2L' C L

mod 2£’ mod L
c 22 )2

The expected squared norm will drop by a factor of four, but the output
vectors will be in L/2.

If we double the vectors to put them in L, the final expected squared
norm will be unchanged...
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Being Less Greedy

(and making no progress...)

‘ The expected squared norm of our vectors drops by a factor of|two| at

The running time will be roughly |[£/2L"| + | £/ L]|.

WA C L

mod 2£’ mod L
L — [ — L]2

The expected squared norm will drop by a factor of four, but the output
vectors will be in L/2.

If we double the vectors to put them in L, the final expected squared
norm will be unchanged...
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A “Tower” of Lattices

£ CLy Ty C Ty’ £]2"

mod 2L, mod 2L
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A “Tower” of Lattices
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A “Tower” of Lattices
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The expected squared norm will drop by a factor of 2%
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A “Tower” of Lattices
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mod 2L mod 2L, mod 2Ly ftieid /2% .
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The expected squared norm will drop by a factor of 2%

If we multiply the output vectors by 2% to put them in £, the final
expected squared norm will drop by 2¢—2F.
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A “Tower” of Lattices

LCELCly T CLyCTLIY

mod 2L mod 2L, mod 2Ly ftieid /2% .
[ e [\ b Ly —p L > []2

The expected squared norm will drop by a factor of 2%

If we multiply the output vectors by 2% to put them in £, the final
expected squared norm will drop by 2¢—2F.

The running time will be roughly Z 1Li/2L;41).
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A “Tower” of Lattices

We can take |£; /2L, 1| = 2"/27°(™) to get an algorithm with this running time.

B

mod 2L mod 2L, mod 2Ly iigd L/25" e
[ ——— [ ———b Ly —p  ———p [f = [/2

The expected squared norm will drop by a factor of 2¢

If we multiply the output vectors by 2% to put them in £, the final
expected squared norm will drop by 2¢—2F.

The running time will be roughly Z 1Li/2L;41).
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What We Know About

I'nis Faster Algorithm

e There exists a rejection sampling procedure like in [ADRS15] that
provably yields a correct algorithm [RS15].
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e The analysis that we used in [AS17] to “remove the rejection sampling”
does not seem to work for this faster algorithm.
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What We Know About

I'nis Faster Algorithm

e There exists a rejection sampling procedure like in [ADRS15] that
provably yields a correct algorithm [RS15].
- Don't know how to implement it when the vectors get short.

e The analysis that we used in [AS17] to “remove the rejection sampling”
does not seem to work for this faster algorithm.

e [he "expected squared norm analysis” still works.
- “Anything non-trivial about distribution” => faster SVP algorithm!
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e Are there other interesting sieving procedures”?

Aggarwal, Embarrassingly Simple SVP



Parting Ihoughts

e Are there other interesting sieving procedures?

e (Can we close the gap between search and decision (approximate) SVP?

Aggarwal, Embarrassingly Simple SVP



Parting Ihoughts

e Are there other interesting sieving procedures?

e (Can we close the gap between search and decision (approximate) SVP?
- Can someone please tell me something about this distribution?!

Aggarwal, Embarrassingly Simple SVP



Parting Ihoughts

e Are there other interesting sieving procedures?

Can we close the gap between search and decision (approximate) SVP?
- Can someone please tell me something about this distribution?!
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Parting Ihoughts

e Are there other interesting sieving procedures?

e (Can we close the gap between search and decision (approximate) SVP?
- Can someone please tell me something about this distribution?!

e (Can we close the gap between provable and heuristic algorithms?

e (Can we close the gap between asymptotically faster algorithms and
enumeration”
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