Define

lacktriangle A special parity-check matrix: let $\mathbf{g}^t = [1 \ 2 \ 4 \ \cdots \ 2^{k-1} \geq rac{q}{2}]$ and

▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, public key \mathbf{A} satisfies $\mathbf{s}^t \mathbf{A} \approx \mathbf{0}$.

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, public key \mathbf{A} satisfies $\mathbf{s}^t \mathbf{A} \approx \mathbf{0}$.
- ▶ Encrypt $\mu \in \{0,1\}$ as $\mathbf{C} = \mathbf{A}\mathbf{R} + \mu\mathbf{G}$. Decryption relation is $\mathbf{s}^t\mathbf{C} \approx \mu \cdot \mathbf{s}^t\mathbf{G}$.

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, public key \mathbf{A} satisfies $\mathbf{s}^t \mathbf{A} \approx \mathbf{0}$.
- ► Encrypt $\mu \in \{0,1\}$ as $\mathbf{C} = \mathbf{A}\mathbf{R} + \mu\mathbf{G}$. Decryption relation is $\mathbf{s}^t\mathbf{C} \approx \mu \cdot \mathbf{s}^t\mathbf{G}$.
- ► Homomorphic mult: $\mathbf{C}_{\times} = \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$.

- lacksquare Secret key $\mathbf{s} \in \mathbb{Z}^n$, public key \mathbf{A} satisfies $\mathbf{s}^t \mathbf{A} pprox \mathbf{0}$.
- ▶ Encrypt $\mu \in \{0,1\}$ as $\mathbf{C} = \mathbf{A}\mathbf{R} + \mu\mathbf{G}$. Decryption relation is

$$\mathbf{s}^t \mathbf{C} \approx \mu \cdot \mathbf{s}^t \mathbf{G}.$$

▶ Homomorphic mult: $\mathbf{C}_{\times} = \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$.

$$\mathbf{s}^{t}\mathbf{C}_{\times} = \mathbf{s}^{t}\mathbf{C}_{1} \cdot \mathbf{G}^{-1}(\mathbf{C}_{2})$$

$$\approx \mu_{1} \cdot \mathbf{s}^{t}\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{C}_{2})$$

$$\approx \mu_{1}\mu_{2} \cdot \mathbf{s}^{t}\mathbf{G}$$

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, public key \mathbf{A} satisfies $\mathbf{s}^t \mathbf{A} \approx \mathbf{0}$.
- ▶ Encrypt $\mu \in \{0,1\}$ as $\mathbf{C} = \mathbf{A}\mathbf{R} + \mu\mathbf{G}$. Decryption relation is

$$\mathbf{s}^t \mathbf{C} \approx \mu \cdot \mathbf{s}^t \mathbf{G}.$$

▶ Homomorphic mult: $\mathbf{C}_{\times} = \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$.

$$\mathbf{s}^{t}\mathbf{C}_{\times} = \mathbf{s}^{t}\mathbf{C}_{1} \cdot \mathbf{G}^{-1}(\mathbf{C}_{2})$$
$$\approx \mu_{1} \cdot \mathbf{s}^{t}\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{C}_{2})$$
$$\approx \mu_{1}\mu_{2} \cdot \mathbf{s}^{t}\mathbf{G}$$

Error in \mathbf{C}_{\times} is $\mathbf{e}_1^t \cdot \mathbf{G}^{-1}(\mathbf{C}_2) + \mu_1 \cdot \mathbf{e}_2^t$.

Asymmetry allows homom mult with additive noise growth. [BV'13]