
Foundations of Cryptography
CS 6111

Shweta Agrawal



Course Information

• 4-5 homeworks (20% total)
• A midsem (25%)
• A major (35%)
• A project (20%)
• Attendance required as per institute policy
• Challenge questions (Extra Credit)

Course Webpage : http://www.cse.iitm.ac.in/~shwetaag/CS6111.htm



Policies etc…

• Ask questions!

• Make the class interactive. We’re all here to 
learn.

• Switch of cellphones, laptops, anything 
distracting.

• Highest ethical standards expected. Any 
dishonesty/cheating of any kind will result in 
failing the course.  



Course Reading

• Will not follow any one book. But Katz-
Kindell’s “Introduction to Modern 
Cryptography” will be handy.

• Bellare-Goldwasser’s lecture notes
– http://cseweb.ucsd.edu/~mihir/papers/gb.pdf

• Lecture notes by Yevgeniy Dodis
(http://www.cs.nyu.edu/courses/spring12/CSCI-
GA.3210-001/index.html ) and Luca Trevisan
(http://theory.stanford.edu/~trevisan/cs276/ ) 

http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
http://www.cs.nyu.edu/courses/spring12/CSCI-GA.3210-001/index.html
http://theory.stanford.edu/~trevisan/cs276/


Teaching Assistants

• Suvradip

• Monosij

Please email them anytime. Office hours will be 
announced on website.

End of lecture feedback after every class.



What is this course about

• Theoretical foundations of cryptography

• Mathematical modeling of real world attack 
scenarios

• Reductions between crypto primitives and 
hard number theoretic problems

• Using cryptographic building blocks to build 
more complex real world protocols



What this course is NOT about

• Implementing secure systems

• Real world attacks / hacking

• Analyzing hardness of underlying number 
theoretic problems such as factoring etc

You can do your projects on these topics if you like!



Course Outline

• Foundations : Principles of crypto design, 
number theory, OWF, OWP, TDP, PRGs, PRFs, 
MACs

• Constructions : symmetric and public key 
crypto, digital signatures, MPC

• Advanced Topics: Zero Knowledge, Functional 
encryption, fully homomorphic encryption, 
broadcast encryption etc



Cryptography

• A mathematical science of controlling 
access to information

• Cryptography deals with methods for 
protecting privacy and integrity while
preserving functionality of computer and 
communication systems.

What would we like to achieve?



Real World Problems



#1 : Secure Elections

VOTE
COUNTING

VOTES

SECURITY : individual vote privacy maintained

Winner ? 

Multi-party computation!

CORRECT : Winner determined correctly



#2 : Protecting your code
I know a better 

algorithm to 
factor 

numbers!

O
B
F
U
S
C
A
T
O
R

code

Obfuscated code

• Produces correct 
output
• Impossible to 
reverse engineer

Program 
Obfuscation!



#3 : Activism with safety

C = Encrypt (“The election was rigged”, R)

Deniable Encryption!

Under coercion, reveal R’ s.t. C =(“Really like to cook”, R’)

R, R’ : 
Random bits

Probabilistic 
algorithm



#4: Computing on encrypted data

 Users access data and infrastructure on-the-go

 Cloud stores data about you, me and many more

 I should learn information about myself but no information about you



15

I’ll buy one license
And use it to forge 
and sell new 
licenses …

Can we catch him ?

#5: Traitor Tracing



16

• N users in system, One PK, N SKs

• Anyone can encrypt, only legitimate user should 
decrypt

• If collusion of traitors create new secret key SK*, 
can trace at least one guilty traitor.

#5: Traitor Tracing



1. How can we build these things from math ?

2. What guarantees can we have ?

3. How do we move from messy real world 
scenarios to clean mathematical definitions?

4. How do theorems in math say anything 
about real world attacks?

This course ….



Building Blocks

St. Pancreas International Station - 18 months, 150,000 LEGO bricks
Warren Elsemore



What he started with



Building cryptography
• Same idea!

One way functions, trapdoor 
permutations, Pseudo random 
generators, PRFs
Symmetric key crypto, public key 
crypto, Digital signatures ……

Multiparty computation, 
homomorphic encryption, functional 
encryption, deniable signatures, 
obfuscation, traitor tracing …..



Principles of Crypto Design [Katz-Lindell]

1. Formulate a rigorous and precise definition of 
security for cryptosystem – security model.

2. Precisely formulate the mathematical 
assumption (e.g. factoring) on which the 
security of the cryptosystem relies.

3. Construct cryptosystem (algorithms) and 
provide proof (reduction) that cryptosystem 
satisfying security model in (1) is as hard to 
break as mathematical assumption in (2). 



1: Security Model

Real world 
attacks

Crypto
Proofs

Security Model : Mathematical definition 
that scheme has to satisfy

Scheme achieves security in given model = 
Scheme secure against attacks captured by that 
model



 Every pair of users must share a unique secret key

 Need key to encrypt and decrypt. Intuitively, only holder of 

secret key should be able to decrypt

Case Study : Secure encryption



We must construct the following algorithms:

1. Keygen : Algorithm that generates secret key K

2. Encrypt(K,m) : Algorithm used by Alice to 
garble message m into “ciphertext” CT

3. Decrypt(K, CT) : Algorithm used by Bob to 
recover message m from ciphertext CT.

Case Study : Secure encryption

Syntax



How should security of encryption be defined? 

Answer 1 : Upon seeing ciphertext, Eve should 
not be able to find the secret key.

Case Study : Secure encryption

But our goal is to protect the message!

Consider encrypt algorithm that ignores the secret key 
and just outputs the message. An attacker cannot 
learn the key from the ciphertext but learns the entire 
message!



Answer 2 : Upon seeing ciphertext, Eve should 
not be able to find the message.

Case Study : Secure encryption

Is it secure intuitively to find 99% of the mesg?

Answer 3 : Upon seeing ciphertext, Eve should 
not be able to find a single character of the 
message.

Is it ok to leak some property of the mesg, such 
as whether m> k?



Answer 4 : Any function that Eve can compute 
given the ciphertext, she can compute without 
the ciphertext.

Case Study : Secure encryption

Still need to specify :

• Can Eve see ciphertexts of messages of her 
choice?

• Can Eve see decryptions of some ciphertexts?

• How much power does she have?



What about security of real world 
functionalities?



Ideal Security definition

IDEALREAL

adversary A

Trusted 
party

Cryptographic
protocol



IDEALREAL

adversary A

Trusted 
party

adversary S

Ideal Security definition

Cryptographic
protocol



IDEALREAL

Cryptographic
protocol

adversary A

Trusted 
party

adversary S

≈

Ideal Security definition



2: Mathematical Assumption

• Trivial assumption : my scheme is secure

• Use minimal assumptions

– Existence of one way functions

• Use well studied assumptions

– Examples: factoring, discrete log, shortest vector 
problem etc…



3: Reduction

Attacker A

Reduction B

Cryptosystem Π

Break on Π

Instance x of hard
Problem X

Solution to x



Show how to use an adversary for breaking 
primitive 1 in order to break primitive 2

Important : 

• Run time: how does T1 relate to T2

• Probability of success: how does Succ1 relate 
to Succ2

• Access to the system 1 vs. 2

3: Reduction



Secret Key Encryption
Construction

• Keygen : Pick a random string r . Set K = r. Give 
to both Alice and Bob

• Encrypt (m, K ) : CT = m r

• Decrypt ( CT, K) : m r r =m



 

Only works for single use of r!  

How to generate shared key?



Public Key Cryptography



What we need…

1. Invertible: It must be possible for Alice to decrypt 
encrypted messages.

2. Efficient to compute: It must be reasonable for people 
to encrypt messages for Alice.

3. Difficult to invert: Eve should not be able to compute 
m from the “encryption” f(m).

4. Easy to invert given some auxiliary information: Alice 
should restore m using SK.



What we need…

1. Invertible

1. Efficient to compute

2. Difficult to invert

3. Easy to invert given 
some auxiliary 
information

One way functions!



What we need…

1. Invertible

1. Efficient to compute

2. Difficult to invert

3. Easy to invert given 
some auxiliary 
information

One way 
permutations!



What we need…

1. Invertible

1. Efficient to compute

2. Difficult to invert

3. Easy to invert given 
some auxiliary 
information

Trapdoor 
permutations!



Up Next …

• Discuss some number theory

• Introduce conjectured hard problems such as 
factoring, discrete log.

• Build candidate one way functions, one way 
permutations and trapdoor permutations

• Construct proofs of security.


