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Abstract

We construct an efficient identity based encryption system based on the standard learning
with errors (LWE) problem. Our security proof holds in the standard model. The key step in
the construction is a family of lattices for which there are two distinct trapdoors for finding
short vectors. One trapdoor enables the real system to generate short vectors in all lattices in
the family. The other trapdoor enables the simulator to generate short vectors for all lattices
in the family except for one. We extend this basic technique to an adaptively-secure IBE and a
Hierarchical IBE.

1 Introduction

Identity-Based Encryption (IBE) provides a public-key encryption mechanism where a public key
is an arbitrary string such as an email address or a telephone number. The corresponding private
key can only be generated by a Private-Key Generator (PKG) who has knowledge of a master
secret. Identity-based encryption was first proposed by Shamir [35], however, it is only recently
that practical implementations were proposed. Boneh and Franklin [11] define a security model
for identity-based encryption and give a construction based on the Bilinear Diffie-Hellman (BDH)
problem. Cocks [19] describes a construction using quadratic residues modulo a composite (see
also [12]) and Gentry et al. [22] give a construction using lattices. The security of all these systems
requires cryptographic hash functions that are modeled as random oracles.

For pairing-based systems, the structure of pairing groups enabled several secure IBE systems
in the standard model [16, 8, 9, 38, 23, 39]. For systems based on quadratic residuosity it is still
not known how to build a secure IBE in the standard model.

In this paper we focus on lattice-based IBE. Cash et al. [18, 17, 31], and Agrawal et al. [3]
recently showed how to construct secure IBE in the standard model from the learning with errors
(LWE) problem [34]. Their constructions view an identity as a sequence of bits and then assign a
matrix to each bit. The resulting systems, while quite elegant, are considerably less efficient than
the underlying random-oracle system of [22] on which they are built.
∗This paper combines preliminary results that appeared in Eurocrypt’10 [1] and PKC’10 [14].
†Supported by NSF and the Packard Foundation.
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1.1 Our Results

We construct a lattice-based IBE in the standard model whose performance is comparable to the
performance of the random-oracle system from [22]. In particular, we process identities as one chunk
rather than bit-by-bit resulting in lattices whose dimension is similar to those in the random oracle
system. This construction also gives an efficient chosen ciphertext secure lattice-based public-key
encryption (PKE) system via a generic selective-IBE to CCA-PKE transformation [15, 13, 10].

Lattices in our system are built from two parts called “right” and “left” lattices. A trapdoor
for the left lattice is used as the master secret in the real system and enables one to generate
private keys for all identities. A trapdoor for the right lattice is only used in the proof of selective
security and enables the simulator to generate private keys for all identities except for one. We use
a “low norm” randomization matrix R to ensure that an attacker cannot distinguish between the
real world and a simulation.

In pairing-based IBE systems one uses large groups G and therefore identities can be encoded
as integers in the range 1 . . . |G|. In contrast, lattice systems are typically defined over a relatively
small field Zq and consequently encoding identities as integers in 1 . . . q would result in too few
identities for the system. Instead, we represent identities as matrices in Zn×nq for some n. More
precisely, we represent identities as elements in Znq (for a total of qn identities) and then use an
encoding function H : Znq → Zn×nq to map identities to matrices. Our security proof requires that
for all id1 6= id2 the matrix H(id1)−H(id2) ∈ Zn×nq is invertible. We present an encoding function
H that has this property and expect this encoding to be useful in other lattice-based constructions.
A similar function H was developed by Cramer and Damgard [20] in an entirely different context.

Full IBE. In Section 7 we show that our base construction extends to an adaptively-secure IBE
using a lattice analog of the Waters IBE [38]. Our base construction requires that the underlying
field Zq satisfy q > Q where Q is the number of private key queries issued by the adversary. This
requirement can be relaxed using the framework of Boyen [14].

Hierarchical IBE (HIBE). In Section 8 we show how to extend our base IBE to an HIBE using
the basis delegation technique from [17, 31]. The construction assigns a matrix to each level of
the hierarchy and the resulting lattice dimension is linear in the recipient identity’s depth. Since
we do not process identities bit-by-bit we obtain an efficient HIBE where the lattice dimension is
much smaller than in [17, 31]. We note that a recent result of [2] uses a different basis delegation
mechanism to construct an improved HIBE where the lattice dimension is fixed for the entire
hierarchy.

2 Preliminaries

Notation. Throughout the paper we say that a function ε : R≥0 → R≥0 is negligible if ε(n)
is smaller than all polynomial fractions for sufficiently large n. We say that an event happens
with overwhelming probability if it happens with probability at least 1 − ε(n) for some negligible
function ε. We say that integer vectors v1, . . . , vn ∈ Zm are Zq-linearly independent if they are
linearly independent when reduced modulo q.
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2.1 IBE and Hierarchical IBE

Recall that an Identity-Based Encryption system (IBE) consists of four algorithms [35, 11]: Setup,
Extract, Encrypt, Decrypt. The Setup algorithm generates system parameters, denoted by PP, and a
master key MK. The Extract algorithm uses the master key to extract a private key corresponding
to a given identity. The encryption algorithm encrypts messages for a given identity (using the
system parameters) and the decryption algorithm decrypts ciphertexts using the private key.

In a Hierarchical IBE [27, 24], identities are vectors, and there is a fifth algorithm called Derive.
A vector of dimension ` represents an identity at depth `. Algorithm Derive takes as input an identity
id = (I1, . . . , I`) at depth ` and the private key SKid|`−1 of the parent identity id|`−1 = (I1, . . . , I`−1)
at depth `−1 ≥ 0. It outputs the private key SKid for identity id. We sometimes refer to the master
key as the private key at depth 0, given which the algorithm Derive performs the same function as
Extract. The Setup algorithm in an HIBE scheme takes the maximum depth of the hierarchy as
input.

Selective and Adaptive ID Security. The standard IBE security model of [11] defines the
indistinguishability of ciphertexts under an adaptive chosen-ciphertext and chosen-identity attack
(IND-ID-CCA2). A weaker notion of IBE security given by Canetti, Halevi, and Katz [16] forces the
adversary to announce ahead of time the public key it will target, which is known as a selective-
identity attack (IND-sID-CCA2).

As with regular public-key encryption, we can deny the adversary the ability to ask decryp-
tion queries (for the target identity), which leads to the weaker notions of indistinguishability of
ciphertexts under an adaptive chosen-identity chosen-plaintext attack (IND-ID-CPA) and under a
selective-identity chosen-plaintext attack (IND-sID-CPA) respectively.

Security Game. We define IBE and HIBE selective security using a game that captures a strong
privacy property called indistinguishable from random which means that the challenge ciphertext
is indistinguishable from a random element in the ciphertext space. This property implies both
semantic security and recipient anonymity, and also implies that the ciphertext hides the public
parameters (PP) used to create it. This can make the IBE more resistant to subpoenas since an
observer cannot tell from the ciphertext which authority holds the corresponding master secret.
For a security parameter λ, we let Mλ denote the message space and let Cλ denote the ciphertext
space. The game, for a hierarchy of maximum depth d, proceeds as follows.

Init: The adversary is given the maximum depth of the hierarchy d and outputs a target
identity id∗ = (I∗1, . . . , I

∗
k), k ≤ d.

Setup: The challenger runs Setup(1λ, 1d) (where d = 1 for IBE) and gives the adversary the
resulting system parameters PP. It keeps the master key MK to itself.

Phase 1: The adversary issues queries q1, . . . , qm where the i-th query qi is a query on idi,
where idi = (I1, . . . , Iu) for some u ≤ d. We require that idi is not a prefix of id∗, (i.e., it
is not the case that u ≤ k and Ii = I∗i for all i = 1, . . . , u). The challenger responds by
running algorithm Extract to obtain a private key di for the public key idi. It sends di
to the adversary.
All queries may be made adaptively, that is, the adversary may ask qi with knowledge
of the challenger’s responses to q1, . . . , qi−1.
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Challenge: Once the adversary decides that Phase 1 is over it outputs a plaintext M ∈Mλ

on which it wishes to be challenged. The challenger picks a random bit r ∈ {0, 1}
and a random ciphertext C ∈ Cλ. If r = 0 it sets the challenge ciphertext to C∗ :=
Encrypt(PP, id∗,M). If r = 1 it sets the challenge ciphertext to C∗ := C. It sends C∗ as
the challenge to the adversary.

Phase 2: The adversary issues additional adaptive queries qm+1, . . . , qn where qi is a private-
key extraction query on idi, where idi is not a prefix of id∗. The challenger responds as
in Phase 1.

Guess: Finally, the adversary outputs a guess r′ ∈ {0, 1} and wins if r = r′.

We refer to such an adversary A as an INDr–sID-CPA adversary. We define the advantage of the
adversary A in attacking an IBE or HIBE scheme E as

Advd,E,A(λ) =
∣∣Pr[r = r′]− 1/2

∣∣
The probability is over the random bits used by the challenger and the adversary.

Definition 1. We say that an IBE or a depth d HIBE system E is selective-identity, indistin-
guishable from random if for all INDr–sID-CPA PPT adversaries A we have that Advd,E,A(λ) is a
negligible function. We abbreviate this by saying that E is INDr–sID-CPA secure for depth d.

Finally, we define the adaptive-identity counterparts to the above notions by removing the
Init phase from the attack game, and allowing the adversary to wait until the Challenge phase to
announce the identity id∗ it wishes to attack. The adversary is allowed to make arbitrary private-
key queries in Phase 1 and then choose an arbitrary target id∗. The only restriction is that he did
not issue a private-key query for id∗ or a prefix of id∗ during phase 1. The resulting security notion
is defined using the modified game as in Definition 1, and is denoted INDr–ID-CPA.

2.2 Statistical Distance

Let X and Y be two random variables taking values in some finite set Ω. Define the statistical
distance, denoted ∆(X;Y ), as

∆(X;Y ) :=
1
2

∑
s∈Ω

∣∣Pr[X = s]− Pr[Y = s]
∣∣

We say that X is δ-uniform over Ω if ∆(X;UΩ) ≤ δ where UΩ is a uniform random variable over Ω.
Let X(λ) and Y (λ) be ensembles of random variables. We say that X and Y are statistically

close if d(λ) := ∆(X(λ);Y (λ)) is a negligible function of λ.

2.3 Integer Lattices

We will be using integer lattices, namely discrete subgroups of Zm. The specific lattices we use
contain qZm as a sub-lattice for some prime q that is much smaller than the determinant of the
lattice.
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Definition 2. For q prime, A ∈ Zn×mq and u ∈ Znq , define:

Λq(A) :=
{
e ∈ Zm s.t. ∃s ∈ Znq where A> s = e (mod q)

}
Λ⊥q (A) :=

{
e ∈ Zm s.t. Ae = 0 (mod q)

}
Λuq (A) :=

{
e ∈ Zm s.t. Ae = u (mod q)

}
Observe that if t ∈ Λuq (A) then Λuq (A) = Λ⊥q (A) + t and hence Λuq (A) is a shift of Λ⊥q (A) .

2.4 The Gram-Schmidt Norm of a Basis

Let S be a set of vectors S = {s1, . . . , sk} in Rm. We use the following notation:

• ‖S‖ denotes the L2 length of the longest vector in S, i.e. ‖S‖ := maxi ‖si‖ for 1 ≤ i ≤ k.

• S̃ := {s̃1, . . . , s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk
taken in that order.

We refer to ‖S̃‖ as the Gram-Schmidt norm of S.

Micciancio and Goldwassser [29] showed that a full-rank set S in a lattice Λ can be converted into
a basis T for Λ with an equally low Gram-Schmidt norm.

Lemma 3 ([29, Lemma 7.1]). Let Λ be an m-dimensional lattice. There is a deterministic polynomial-
time algorithm that, given an arbitrary basis of Λ and a full-rank set S = {s1, . . . , sm} in Λ, returns
a basis T of Λ satisfying

‖T̃‖ ≤ ‖S̃‖ and ‖T‖ ≤ ‖S‖
√
m/2

Ajtai [4] showed how to sample an essentially uniform matrix A ∈ Zn×mq with an associated
basis SA of Λ⊥q (A) with low Gram-Schmidt norm. We use an improved sampling algorithm from
Alwen and Peikert [6]. The following follows from Theorem 3.2 of [6] taking δ := 1/3.

Theorem 4. Let q ≥ 3 be odd and m := d6n log qe.
There is a probabilistic polynomial-time algorithm TrapGen(q, n) that outputs a pair (A ∈ Zn×mq , S ∈
Zm×m) such that A is statistically close to a uniform matrix in Zn×mq and S is a basis for Λ⊥q (A)
satisfying

‖S̃‖ ≤ O(
√
n log q ) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

Notation: We let σTG := O(
√
n log q ) denote the maximum (w.h.p) Gram-Schmidt norm of a

basis produced by TrapGen(q, n).

Peikert [31, Lemma 3.2] shows how to construct a basis for Λ⊥q (A|B|C) from a basis for Λ⊥q (B).

Theorem 5. For i = 1, 2, 3 let Ai be a matrix in Zn×miq and let A := (A1|A2|A3). Let T2 be a
basis of Λ⊥q (A2). There is deterministic polynomial time algorithm ExtendBasis(A1, A2, A3, T2) that
outputs a basis T for Λ⊥q (A) such that ‖T̃‖ = ‖T̃2‖.

We will also need the following simple lemma about the effect of matrix multiplication on the
Gram-Schmidt norm.
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Lemma 6. Let R be a matrix in R`×m and S = {s1, . . . , sk} ⊂ Rm a linearly independent set. Let
SR := {Rs1, . . . , Rsk}. Then

‖S̃R‖ ≤ max
1≤i≤k

‖Rs̃i‖

Proof. We show that for all i = 1, . . . , k the i-th Gram-Schmidt vector of SR has L2 norm less
than ‖Rs̃i‖. This will prove the lemma.

For i ∈ {1, . . . , k} let V := spanR(Rs1, . . . , Rsi−1). Set v := si−s̃i. Then v ∈ spanR(s1, . . . , si−1)
and therefore Rv ∈ V . Let u be the projection of Rs̃i on V and let z := Rs̃i−u. Then z is orthogonal
to V and

Rsi = Rv +Rs̃i = Rv + u+ z = (Rv + u) + z .

By construction, Rv + u ∈ V and hence, since z is orthogonal to V , this z must be the i-th Gram-
Schmidt vector of SR. Since z is the projection of Rs̃i on V ⊥ we obtain that ‖z‖ ≤ ‖Rs̃i‖. Hence,
for all i = 1, . . . , k the i-th Gram-Schmidt vector of SR has L2 norm less than ‖Rs̃i‖ which proves
the lemma.

2.5 Discrete Gaussians

Let L be a subset of Zm. For any vector c ∈ Rm and any positive parameter σ ∈ R>0, define:

ρσ,c(x) = exp
(
−π ‖x−c‖

2

σ2

)
: a Gaussian-shaped function on Rm with center c and parameter σ,

ρσ,c(L) =
∑

x∈L ρσ,c(x) : the (always converging) sum of ρσ,c over L,

DL,σ,c : the discrete Gaussian distribution over L with parameters σ and c,

∀y ∈ L , DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L)

We abbreviate ρσ,0 and DL,σ,0 as ρσ and DL,σ. We write ρ to denote ρ1. The distribution DL,σ,c
will most often be defined over the lattice L = Λ⊥q (A) for a matrix A ∈ Zn×mq or over a coset
L = t+ Λ⊥q (A) where t ∈ Zm.

Properties. The following lemma from [31] captures standard properties of these distributions.
The first two properties follow from Lemma 4.4 of [30] and Corollary 3.16 of [34] respectively (using
Lemma 3.1 from [22] to bound the smoothing parameter). We state in property (2) a stronger
version of Regev’s Corollary 3.16 found in [2]. The last two properties are algorithms from [22].

Lemma 7. Let q ≥ 2 and let A be a matrix in Zn×mq with m > n. Let TA be a basis for Λ⊥q (A)
and σ ≥ ‖T̃A‖ω(

√
logm ). Then for c ∈ Rm and u ∈ Znq :

1. Pr
[
x ∼ DΛuq (A),σ : ‖x‖ >

√
mσ

]
≤ negl(n).

2. A set of O(m logm) samples from DΛ⊥q (A),σ contains a full rank set in Zm, except with negli-
gible probability.

3. There is a PPT algorithm SampleGaussian(A, TA, σ, c) that returns x ∈ Λ⊥q (A) drawn from a
distribution statistically close to DΛ,σ,c.
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4. There is a PPT algorithm SamplePre(A, TA, u, σ) that returns x ∈ Λuq (A) sampled from a
distribution statistically close to DΛuq (A),σ, whenever Λuq (A)is not empty.

Recall that when Λuq (A) is not empty then Λuq (A) = t+ Λ⊥q (A) for some t ∈ Λuq (A). Algorithm
SamplePre(A, TA, u, σ) works by calling SampleGaussian(A, TA, σ, t) and subtracts t from the result.

2.6 The LWE Hardness Assumption

Security of all our constructions reduces to the LWE (learning with errors) problem, a classic hard
problem on lattices defined by Regev [34].

Definition 8. Consider a prime q, a positive integer n, and a distribution χ over Zq, all public.
An (Zq, n, χ)-LWE problem instance consists of access to an unspecified challenge oracle O, being,
either, a noisy pseudo-random sampler Os carrying some constant random secret key s ∈ Znq , or, a
truly random sampler O$, whose behaviors are respectively as follows:

Os: outputs samples of the form (ui, vi) =
(
ui, u

T
i s+xi

)
∈ Znq ×Zq, where, s ∈ Znq is a uniformly

distributed persistent value invariant across invocations, xi ∈ Zq is a fresh sample from χ,
and ui is uniform in Znq .

O$: outputs truly uniform random samples from Znq × Zq.

The (Zq, n, χ)-LWE problem allows repeated queries to the challenge oracle O. We say that an
algorithm A decides the (Zq, n, χ)-LWE problem if

LWE-adv[A] :=
∣∣Pr[AOs = 1]− Pr[AO$ = 1]

∣∣
is non-negligible for a random s ∈ Znq .

Regev [34] shows that for certain noise distributions χ, denoted Ψα, the LWE problem is as
hard as the worst-case SIVP and GapSVP under a quantum reduction (see also [32]).

Definition 9. Consider a real parameter α = α(n) ∈ (0, 1) and a prime q. Denote by T = R/Z
the group of reals [0, 1) with addition modulo 1. Denote by Ψα the distribution over T of a
normal variable with mean 0 and standard deviation α/

√
2π then reduced modulo 1. Denote by

bxe = bx+ 1
2c the nearest integer to the real x ∈ R. We denote by Ψα the discrete distribution over

Zq of the random variable bq Xe mod q where the random variable X ∈ T has distribution Ψα.

Theorem 10 ([34]). If there exists an efficient, possibly quantum, algorithm for deciding the
(Zq, n,Ψα)-LWE problem for q > 2

√
n/α then there exists an efficient quantum algorithm for

approximating the SIVP and GapSVP problems, to within Õ(n/α) factors in the `2 norm, in the
worst case.

If we assume the hardness of approximating the SIVP or GapSVP problems in lattices of
dimension n to within approximation factors that are polynomial in n, then it follows from Lemma 9
that deciding the LWE problem is hard when n/α is polynomial in n.

The following lemma about the distribution Ψα will be needed to show that decryption works
correctly. The proof is implicit in [22, Lemma 8.2].
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Lemma 11. Let e be some vector in Zm and let y R← Ψm
α . Then the quanity |e>y| treated as an

integer in [0, q − 1] satisfies

|e>y| ≤ ‖e‖ qαω(
√

logm ) + ‖e‖
√
m/2

with all but negligible probability in m.

Proof. By definition of Ψα, we have yi = bq · wie mod q, where the wi are independent Gaussian
variables of mean 0 and variance α2/(2π). Let w := (w1, . . . , wm) then since the rounding error
per component is at most 1/2, we have ‖y − qw‖ ≤

√
m
2 . Moreover, the random variable |e>w|

is Gaussian with mean 0 and variance ‖e‖2α2/(2π), and therefore by a standard Gaussian tail
bound, Pr

(
|e>w| > ‖e‖α ω(

√
logm)

)
≤ negl(m). By triangle inequality and the Cauchy-Schwarz

inequality, w.h.p

|e>y| ≤ |e>(y − qw)|+ |e>(qw)| ≤ ‖e‖
√
m/2 + ‖e‖ qα ω(

√
logm )

which proves the lemma.

As a special case, Lemma 10 shows that if x R← Ψα is treated as an integer in [0, q − 1] then
|x| < qαω(

√
logm) + 1/2 with all but negligible probability in m.

3 Randomness Extraction

We will need the following lemma which follows directly from a generalization of the leftover hash
lemma due to Dodis et al. [21].

Lemma 12. Suppose that m > (n+1) log2 q+ω(log n) and that q > 2 is prime. Let R be an m×k
matrix chosen uniformly in {1,−1}m×k mod q where k = k(n) is polynomial in n. Let A and B
be matrices chosen uniformly in Zn×mq and Zn×kq respectively. Then, for all vectors w in Zmq , the
distribution (A, AR, R>w) is statistically close to the distribution (A, B, R>w).

To prove the lemma recall that for a prime q the family of hash functions hA : Zmq → Znq for
A ∈ Zn×mq defined by hA(x) = Ax is universal. Therefore, when the k columns of R are sampled
independently and have sufficient entropy, the leftover hash lemma (e.g. as stated in [36, Theorem
8.38]) shows that the distributions (A, AR) and (A, B) are statistically close. A generalization by
Dodis et al. [21] (Lemma 2.2b and 2.4) shows that the same holds even if some small amount of
information about R is leaked. In our case R>w is leaked which is precisely the settings of Dodis et
al. The details follow (the reader can safely skip the remainder of this section on a first reading).

Let T be a random variable taking values in some set X. Recall that the guessing probability
of T is defined as γ(T ) = maxt Pr[T = t]. Also, recall that a family of hash functions H = {h :
X → Y }h∈H is universal if for all x1 6= x2 ∈ X we have that Prh∈H[h(x1) = h(x2)] = 1/|Y |. Let
UY denote a uniform independent random variable in Y . The “classic” left-over-hash-lemma states
that when h is uniform in H and independent of T , the distribution (h, h(T )) is statically close to
(h, UY ), assuming γ(T ) is sufficiently small [25] (see also [36, Theorem 8.37]). The following lemma
shows that about the same holds, even if a few bits of T are “leaked.”
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Lemma 13 (Generalized left-over hash lemma). Let H = {h : X → Y }h∈H be a universal hash
family. Let f : X → Z be some function. Then for any random variable T taking values in X we
have

∆
( (

h, h(T ), f(T )
)
,
(
h, UY , f(T )

) )
≤ 1

2
·
√
γ(T ) |Y | |Z| (1)

More generally, let T1, . . . , Tk be independent random variables taking values in X.
Let γ := maxi=1,...,k γ(Ti). Then

∆
( (

h, h(T1), f(T1), . . . , h(Tk), f(Tk)
)
,
(
h, U

(1)
Y , f(T1), . . . , U (k)

Y , f(Tk)
) )

≤ k

2
·
√
γ |Y | |Z| (2)

Proof. The proof of (1) follows directly from Lemma 2.2b and Lemma 2.4 in [21]. Equation (2)
follows from (1) by a hybrid argument identical to the one given in the proof of Theorem 8.38
in [36].

Proof of Lemma 11. Define the family of hash functions H = {hA : Zmq → Znq }where hA(r) = Ar

and A ∈ Zn×mq . Since q is prime we have that for all r1 6= r2 ∈ Zmq there are exactly qn(m−1) matrices
A ∈ Zn×mq such that Ar1 = Ar2. Hence, H is universal. For a vector w ∈ Zmq , let f : Zmq → Zq be
the function f(r) = r> ·w. Observe that for a matrix R ∈ Zm×kq whose columns are r1, . . . , rk ∈ Zmq
we have that R>w = (f(r1), . . . , f(rk)) ∈ Zkq . Similarly, the columns of the matrix A · R are the k
columns vectors hA(r1), . . . , hA(rk).

Now, using the notation of Lemma 11, observe that the k columns of R are independent vectors
uniform in {1,−1}m. Therefore, letting T1, . . . , Tm be the m columns of R and setting X =
Zmq , Y = Znq and Z = Zq, we obtain from (2) that

∆
( (
A, AR, R>w

)
,
(
A, B, R>w

) )
≤ k

2
·
√

2−m · qn · q =
k

2
·
√

2−m+(n+1) log q . (3)

When m > (n+ 1) log2 q + ω(log n) and k is polynomial in n, the quantity on the right is at most
k
√

2−ω(logn)/2 which is negl(n), as required.

3.1 The Norm of a Random Matrix

Recall that the norm of a matrix R ∈ Rk×m is defined as ‖R‖ := sup‖u‖=1 ‖Ru‖. We will need the
following lemma from Litvak et al. [5] to bound the norm of a random matrix in {−1, 1}m×m. A
similar lemma appears in [6, Lemma 2.2].

Lemma 14. Let R be an m×m matrix chosen at random from {−1, 1}m×m. Then for all vectors
u ∈ Rm we have

Pr
[
‖R‖ > C

√
m
]
< e−m

for some universal constant C (taking C = 16 is sufficient).

Proof. The proof follows from Litvak et al. [5] Fact 2.4 with a2 = 1. Their proof shows that taking
C = 16 is sufficient.
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4 Sampling Algorithms

Let A and B be matrices in Zn×mq and let R be a matrix in {−1, 1}m×m. Our construction makes
use of matrices of the form F = (A | AR + B) ∈ Zn×2m

q and we will need to sample short vectors
in Λuq (F ) for some u in Znq . We show that this can be done using either a trapdoor for Λ⊥q (A) or a
trapdoor Λ⊥q (B). More precisely, we define two algorithms:

1. SampleLeft takes a basis for Λ⊥q (A) (the left side of F ) and outputs a short vector e ∈ Λuq (F ).

2. SampleRight takes a basis for Λ⊥q (B) (the right side of F ) and outputs a short vector e ∈
Λuq (F ).

We will show that, with appropriate parameters, the distributions on e produced by these two
algorithms are statistically indistinguishable.

4.1 Algorithm SampleLeft

Algorithm SampleLeft(A,M1, TA, u, σ):
Inputs:

a rank n matrix A in Zn×mq and a matrix M1 in Zn×m1
q ,

a “short” basis TA of Λ⊥q (A) and a vector u ∈ Znq ,
a gaussian parameter σ > ‖T̃A‖ · ω(

√
log(m+m1)).

(4)

Output: Let F1 := (A | M1). The algorithm outputs a vector e ∈ Zm+m1 sampled from a distribu-
tion statistically close to DΛuq (F1),σ. In particular, e ∈ Λuq (F1).

The algorithm appears in Theorem 3.4 in [17] and also in the signing algorithm in [31]. For
completeness, we briefly review the algorithm.

1. sample a random vector e2 ∈ Zm1 distributed statistically close to DZm1 ,σ,
2. run e1

R← SamplePre(A, TA, y, σ) where y = u− (M1 · e2) ∈ Znq ,
note that Λyq(A) is not empty since A is rank n,

3. output e← (e1, e2) ∈ Zm+m1

Clearly (A |M1) · e = u mod q and hence e ∈ Λuq (F1). Theorem 3.4 in [17] shows that the vector e
is sampled from a distribution statistically close to DΛuq (F1),σ.

Peikert’s basis extension method [31] gives an alternate way to view this. Theorem ?? shows
how to construct a basis TF1 of Λ⊥q (F1) from a basis TA of Λ⊥q (A) such that ‖T̃F1‖ = ‖T̃A‖. Then
calling SamplePre(F1, TF1 , u, σ) generates a vector e sampled from a distribution close to DΛuq (F1),σ.
We summarize this in the following theorem.

Theorem 15. Let q > 2, m > n and σ > ‖T̃A‖·ω(
√

log(m+m1)). Then SampleLeft(A,M1, TA, u, σ)
taking inputs as in (4), outputs a vector e ∈ Zm+m1 distributed statistically close to DΛuq (F1),σ where
F1 := (A | M1).
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4.2 Algorithm SampleRight

Algorithm SampleRight(A,B,R, TB, u, σ).
Inputs:

matrices A in Zn×kq and B in Zn×mq where B is rank n,

a matrix R ∈ Zk×m, let sR := ‖R‖ = sup‖x‖=1 ‖Rx‖,
a basis TB of Λ⊥q (B) and a vector u ∈ Znq ,

a parameter σ > ‖T̃B‖ · sR ω(
√

logm).

Often the matrix R given to the algorithm as input will be a a random matrix
in {1,−1}m×m. Then Lemma 13 shows that sR < O(

√
m) w.h.p.

(5)

Output: Let F2 := (A | AR + B). The algorithm outputs a vector e ∈ Zm+k sampled from a
distribution statistically close to DΛuq (F2),σ. In particular, e ∈ Λuq (F2).

The algorithm uses the basis growth method of Peikert [31, Sec. 3.3] and works in three steps:

1. First, it constructs a set TF2 of (m+ k) linearly independent vectors in Λ⊥q (F2) such that

‖T̃F2‖ < ‖T̃B‖ (sR + 1)
(
< σ/ω(

√
logm)

)
2. Next, if needed it uses Lemma 3 to convert TF2 into a basis T ′F2

of Λ⊥q (F2) with the same
Gram-Schmidt norm as TF2 .

3. Finally, it invokes SamplePre(F2, T
′
F2
, u, σ) to generate a vector e ∈ Λuq (F2).

Since σ > ‖T̃F2‖ω(
√

logm) this e is distributed close to DΛuq (F2),σ, as required.

The shifted lattice Λuq (F2) used in step 3 is not empty. To see why, choose an arbitrary x ∈ Zm

satisfying Bx = u mod q and observe that (−Rx |x) ∈ Zm+k is in Λuq (F2). This x must exist
since B is rank n. Thus, Λuq (F2) is not empty and therefore e is distributed close to DΛuq (F2),σ as
stated.

Step 1 is the only step that needs explaining. Let TB = {b1, . . . , bm} ∈ Zm×m be the given basis
of Λ⊥q (B). We construct (m+ k) linearly independent vectors t1, . . . , tm+k in Λ⊥q (F2) as follows:

1. for i = 1, . . . ,m set ti := (−Rbi | bi) ∈ Zm+k and view it as a column vector; then clearly
F2 · ti = B bi = 0 mod q and therefore ti is in Λ⊥q (F2).

2. for i = 1, . . . , k let wi be the i-th column of the identity matrix Ik. Let ui be an arbitrary
vector in Zm satisfying Awi + Bui = 0 mod q. This ui exists since B is rank n. Set ti+m to
be

ti+m :=
[
wi −Rui

ui

]
∈ Zm+k

Then F2 · ti+m = Awi +Bui = 0 mod q and hence, ti+m ∈ Λ⊥q (F2).

Lemma 16. The vectors TF2
:= {t1, . . . , tm+k} are linearly independent in Zm+k and

satisfy ‖T̃F2‖ ≤ ‖T̃B‖ · (sR + 1).
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Proof. Observe that the first m vectors are linearly independent and span the linear space V of
vectors of the form (−Rx | x) where x ∈ Zmq . For all i > m, the vector ti is the sum of the unit
vector (wi | 0m) plus a vector in V . It follows that TF2 is a linearly independent set. This also
means that for i > m the i-th Gram-Schmidt vector of TF2 cannot be longer than (wi | 0m) and
therefore has norm at most 1. Hence, to bound ‖T̃F2‖ it suffices to bound the Gram-Schmidt norm
of the first m vectors {t1, . . . , tm}.

Let W ∈ Z(m+k)×m be the matrix (−R> | Im)> and observe that ti = Wbi for i = 1, . . . ,m.
Since ‖R‖ ≤ sR we obtain that for all x ∈ Rm

‖W x‖ ≤ ‖Rx‖+ ‖x‖ ≤ ‖x‖ sR + ‖x‖ ≤ ‖x‖ (sR + 1)

Now, since ti = Wbi for i = 1, . . . ,m, applying Lemma 5 to the matrix W gives a bound on the
Gram-Schmidt norm of {t1, . . . , tm} (and hence also on ‖T̃F2‖):

‖T̃F2‖ ≤ max
1≤i≤m

‖W b̃i‖ ≤ max
1≤i≤m

‖b̃i‖ · (sR + 1) ≤ ‖T̃B‖ · (sR + 1)

as required.

Thus, we built m+ k linearly independent vectors in Λ⊥q (F2) that have a short Gram-Schmidt
norm as required for Step 1. This completes the description of algorithm SampleRight. We sum-
marize this in the following theorem.

Theorem 17. Let q > 2,m > n and σ > ‖T̃B‖·sR ω(
√

logm). Then SampleRight(A,B,R, TB, u, σ)
taking inputs as in (5) outputs a vector e ∈ Zm+k distributed statistically close to DΛuq (F2),σ where
F2 := (A | AR+B).

5 Encoding Identities as Matrices

Our construction uses an encoding function H : Znq → Zn×nq to map identities in Znq to matrices in
Zn×nq . Our proof of security requires that the map H satisfy a strong notion of injectivity, namely
that, for any two distinct inputs id1 and id2, the difference between the outputs H(id1) and H(id2)
is never singular, i.e., det(H(id1)−H(id2)) 6= 0.

Definition 18. Let q be a prime and n a positive integer. We say that a function H : Znq → Zn×nq

is an encoding with full-rank differences (FRD) if:

1. for all distinct u, v ∈ Znq , the matrix H(u)−H(v) ∈ Zn×nq is full rank; and
2. H is computable in polynomial time (in n log q).

Clearly the function H must be injective since otherwise, if u 6= v satisfies H(u) = H(v), then
H(u)−H(v) is not full-rank and hence H cannot be FRD.

The function H in Definition 17 has domain of size qn which is the largest possible for a function
satisfying condition 1 of Definition 17. Indeed, if H had domain larger than qn then its image is also
larger than qn. But then, by pigeonhole, there are two distinct inputs u, v such that the matrices
H(u) and H(v) have the same first row and therefore H(u)−H(v) is not full rank. It follows that
our definition of FRD, which has domain of size of qn, is the largest possible.
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An Explicit FRD Construction. We construct an injective FRD encoding for the exponential-
size domain id ∈ Znq . A similar construction is described in [20]. Our strategy is to construct an
additive subgroup G of Zn×nq of size qn such that all non-zero matrices in G are full-rank. Since for
all distinct A,B ∈ G the difference A−B is also in G, it follows that A−B is full-rank.

While our primary interest is the finite field Zq we describe the construction for an arbitrary
field F. For a polynomial g ∈ F[X] of degree less than n define coeffs(g) ∈ Fn to be the n-
vector of coefficients of g (written as a row-vector). If g is of degree less than n − 1 we pad the
coefficients vector with zeroes on the right to make it an n-vector. For example, for n = 6 we have
coeffs(x3 + 2x + 3) = (3, 2, 0, 1, 0, 0) ∈ F6. Let f be some polynomial of degree n in F[X] that is
irreducible. Recall that for a polynomial g ∈ F[X] the polynomial g mod f has degree less than n
and therefore coeffs(g mod f) is a vector in Fn.

Now, for an input u = (u0, u1, . . . , un−1) ∈ Fn define the polynomial gu(X) =
∑n−1

i=0 uix
i ∈ F[X].

Define H(u) as

H(u) :=



coeffs( gu )

coeffs( X · gu mod f )

coeffs( X2 · gu mod f )
...
coeffs( Xn−1 · gu mod f )


∈ Fn×n (6)

This completes the construction. Since for all primes q and integers n > 1 there are (many)
irreducible polynomials in Zq[X] of degree n, the construction can accommodate any pair of q
and n.

The following theorem proves that the function H in (6) is an FRD. The proof, given in [20],
is based on the observation that the matrix H(u)> corresponds to multiplication by a constant in
the number field K = F[X]/(f) and is therefore invertible when the matrix is non-zero. We note
that similar matrix encodings of ring multiplication were previously used in [33, 28].

Theorem 19 ([20]). Let F be a field and f a polynomial in F[X]. If f is irreducible in F[X] then
the function H defined in (6) is an encoding with full-rank differences (or FRD encoding).

An example. Let n = 4 and f(X) = x4 + x− 1. The function H works as follows:

H
(
u = (u0, u1, u2, u3)

)
:=


u0 u1 u2 u3

u3 u0 − u3 u1 u2

u2 u3 − u2 u0 − u3 u1

u1 u2 − u1 u3 − u2 u0 − u3


Theorem 18 shows that the map H is FRD for all primes q where x4 +x− 1 is irreducible in Zq[X]
(e.g. q = 19, 31, 43, 47).

6 The Main Construction: an Efficient IBE

The system uses parameters q, n,m, σ, α specified in Section 6.3. Throughout the section, the
function H refers to the FRD map H : Znq → Zn×nq defined in Section 5. We assume identities are
elements in Znq . The set of identities can be expanded to {0, 1}∗ by hashing identities into Znq using
a collision resistant hash.
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6.1 Intuition

The public parameters in our system consist of three random n ×m matrices over Zq denoted by
A0, A1 and B as well as a vector u ∈ Znq . The master secret is a trapdoor TA0 (i.e. a basis with a
low Gram-Schmidt norm) for the lattice Λ⊥q (A0).

The secret key for an identity id is a short vector e ∈ Z2m satisfying Fid · e = u in Zq where

Fid := (A0 | A1 +H(id)B) ∈ Zn×2m
q

The vector e is generated using algorithm SampleLeft (Theorem 14) and the trapdoor TA0 .
In a selective IBE security game the attacker announces an identity id∗ that it plans to attack.

We need a simulator that can respond to private key queries for id 6= id∗, but knows nothing about
the private key for id∗. We do so by choosing the public parameters A0 and B at random as before,
but choosing A1 as

A1 := A0R−H(id∗)B

where R is a random matrix in {1,−1}m×m. We show that A0R is uniform and independent in
Zn×mq so that A1 is distributed as required. We provide the simulator with a trapdoor TB for
Λ⊥q (B), but no trapdoor for Λ⊥q (A0).

Now, to respond to a private key query for an identity id, the simulator must produce a short
vector e satisfying Fid · e = u in Zq where

Fid :=
(
A0 | A0 ·R+B′

)
∈ Zn×2m

q and B′ :=
(
H(id)−H(id∗)

)
·B .

When id 6= id∗ we know that H(id) −H(id∗) is full rank by construction and therefore TB is also
a trapdoor for the lattice Λ⊥q (B′). The simulator can now generate e using algorithm SampleRight
and the basis TB.
When id = id∗ the matrix Fid no longer depends on B and the simulator’s trapdoor disappears.
Consequently, the simulator can generate private keys for all identities other than id∗. As we will
see, for id∗ the simulator can produce a challenge ciphertext that helps it solve the given LWE
challenge.

6.2 The Basic IBE Construction

Setup(λ): On input a security parameter λ, set the parameters q, n,m, σ, α as specified in Sec-
tion 6.3 below. Next do:

1. Use algorithm TrapGen(q, n) to select a uniformly random n × m-matrix A0 ∈ Zn×mq

with a basis TA0 for Λ⊥q (A0) such that ‖T̃A0‖ ≤ O(
√
n log q)

2. Select two uniformly random n×m matrices A1 and B in Zn×mq .

3. Select a uniformly random n-vector u R← Znq .

4. Output the public parameters and master key,

PP =
(
A0, A1, B, u

)
; MK =

(
TA0

)
∈ Zm×m

Extract(PP,MK, id): On input public parameters PP, a master key MK, and an identity id ∈ Znq ,
do:
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1. Sample e ∈ Z2m as e ← SampleLeft(A0, A1 + H(id)B, TA0 , u, σ) where H is an
FRD map as defined in Section 5.
Note that A0 is rank n w.h.p as explained in Section 6.3.

2. Output SKid := e ∈ Z2m

Let Fid :=
(
A0 | A1 + H(id)B

)
, then Fid · e = u in Zq and e is distributed as DΛuq (Fid),σ by

Theorem 14.

Encrypt(PP, id, b): On input public parameters PP, an identity id, and a message b ∈ {0, 1}, do:

1. Set Fid ←
(
A0 | A1 +H(id) ·B

)
∈ Zn×2m

q

2. Choose a uniformly random s
R← Znq

3. Choose a uniformly random m×m matrix R R← {−1, 1}m×m

4. Choose noise vectors x Ψ̄α←− Zq and y
Ψ̄mα←− Zmq , and set z ← R>y ∈ Zmq (the

distribution Ψ̄α is as in Definition 8),

5. Set c0 ← u> s+ x+ b b q2c ∈ Zq and c1 ← F>id s+
[
y
z

]
∈ Z2m

q

6. Output the ciphertext CT := (c0, c1) ∈ Zq × Z2m
q .

Decrypt(PP, SKid,CT): On input public parameters PP, a private key SKid := eid, and a ciphertext
CT = (c0, c1), do:

1. Compute w ← c0 − e>id c1 ∈ Zq.

2. Compare w and b q2c treating them as integers in Z. If they are close, i.e., if
∣∣∣w− b q2c∣∣∣ <

b q4c in Z, output 1, otherwise output 0.

The matrix R. The matrix R used in encryption plays an important role in the security proof.
Note that the matrix is only used as a tool to sample the noise vector (y, z) from a specific distri-
bution needed in the simulation.

6.3 Parameters and Correctness

When the cryptosystem is operated as specified, we have,

w = c0 − e>id c1 = b bq
2
c+ x− e>id

[
y
z

]
︸ ︷︷ ︸

error term

Lemma 20. The norm of the error term is bounded by [qσmα ω(
√

logm) +O(σm3/2)] w.h.p.

Proof. Letting eid = (e1|e2) with e1, e2 ∈ Zm the error term is

x− e>1 y − e>2 z = x− e>1 y − e>2R>y = x− (e1 −Re2)>y
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By Lemma 6 (part 1) we have ‖eid‖ ≤ σ
√

2m w.h.p.
Hence, by Lemma 13, ‖e1 −Re2‖ ≤ ‖e1‖+ ‖Re2‖ ≤ O(σm).
Then, by Lemma 10 the error term is bounded by∣∣∣∣x− e>id[yz]∣∣∣∣ ≤ |x|+ |(e1 −Re2)>y| ≤ qσmα ω(

√
logm) +O(σm3/2)

as required.

Now, for the system to work correctly we need to ensure that:

- the error term is less than q/5 w.h.p (i.e. α < [σmω(
√

logm)]−1 and q = Ω(σm3/2) ),
- that TrapGen can operate (i.e. m > 6n log q),
- that σ is sufficiently large for SampleLeft and SampleRight

(i.e. σ > σTG

√
m ω(

√
logm ) = m ω(

√
logm ) ), and

- that Regev’s reduction applies (i.e. q > 2
√
n/α)

To satisfy these requirements we set the parameters (q,m, σ, α) as follows, taking n to be the
security parameter:

m = 6n1+δ , q = m2.5 · ω(
√

log n )

σ = m · ω(
√

log n ) , α = [m2 · ω(
√

log n )]−1
(7)

and round up m to the nearest larger integer and q to the nearest larger prime. Here we assume
that δ is such that nδ > dlog qe = O(log n).

Since the matrices A0, B are random in Zn×mq and m > n log q, with overwhelming probability
both matrices will have rank n. Hence, calling SampleLeft in algorithm Extract succeeds w.h.p.

6.4 Security Reduction

We show that the basic IBE construction is indistinguishable from random under a selective identity
attack as in Definition 1. Recall that indistinguishable from random means that the challenge
ciphertext is indistinguishable from a random element in the ciphertext space. This property
implies both semantic security and recipient anonymity.

Theorem 21. The basic IBE system with parameters (q, n,m, σ, α) as in (7) is INDr–sID-CPA
secure provided that the (Zq, n, Ψ̄α)-LWE assumption holds.

Proof. The proof proceeds in a sequence of games where the first game is identical to the INDr–sID-CPA
game from Definition 1. In the last game in the sequence the adversary has advantage zero. We
show that a PPT adversary cannot distinguish between the games which will prove that the ad-
versary has negligible advantage in winning the original INDr–sID-CPA game. The LWE problem
is used in proving that Games 2 and 3 are indistinguishable.

Game 0. This is the original INDr–sID-CPA game from Definition 1 between an attacker A against
our scheme and an INDr–sID-CPA challenger.

Game 1. Recall that in Game 0 the challenger generates the public parameters PP by choosing
three random matrices A0, A1, B in Zn×mq such that a trapdoor TA0 is known for Λ⊥q (A0). At the
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challenge phase the challenger generates a challenge ciphertext CT∗. We let R∗ ∈ {−1, 1}m×m
denote the random matrix generated for the creation of CT∗ (in step 3 of Encrypt).

In Game 1 we slightly change the way that the challenger generates A1 in the public parameters.
Let id∗ be the identity that A intends to attack. The Game 1 challenger chooses R∗ at the setup
phase and constructs A1 as

A1 ← A0R
∗ −H(id∗)B (8)

The remainder of the game is unchanged.
We show that Game 0 is statistically indistinguishable from Game 1 by Lemma 11. Observe

that in Game 1 the matrix R∗ is used only in the construction of A1 and in the construction of
the challenge ciphertext where z ← (R∗)>y. By Lemma 11 the distribution (A0, A0R

∗, z) is
statistically close to the distribution (A0, A

′
1, z) where A′1 is a uniform Zn×mq matrix. It follows

that in the adversary’s view, the matrix A0R
∗ is statistically close to uniform and therefore A1 as

defined in (8) is close to uniform. Hence, A1 in Games 0 and 1 are indistinguishable.

Game 2. We now change how A0 and B in PP are chosen. In Game 2 we generate A0 as a random
matrix in Zn×mq , but generate B using algorithm TrapGen so that B is a random matrix in Zn×mq for
which the challenger has a trapdoor TB for Λ⊥q (B). The construction of A1 remains as in Game 1,
namely A1 = A0 ·R∗ −H(id∗) ·B.

The challenger responds to private key queries using the trapdoor TB. To respond to a private
key query for id 6= id∗ the challenger needs a short e ∈ Λuq (Fid) where

Fid := (A0 | A1 +H(id) ·B) =
(
A0 | A0R

∗ +
(
H(id)−H(id∗)

)
B
)
.

By construction, [H(id) − H(id∗)] is non-singular and therefore TB is also a trapdoor for Λ⊥q (B′)
where B′ :=

(
H(id) −H(id∗)

)
B. Moreover, since B is rank n w.h.p, so is B′. The challenger can

now respond to the private key query by running

e← SampleRight
(
A0,

(
H(id)−H(id∗)

)
B, R∗, TB, u, σ

)
∈ Z2m

q

and sending SKid := e to A. Theorem 16 shows that when σ > ‖T̃B‖sR ω(
√

logm) the generated e

is distributed close to DΛuq (Fid),σ, as in Game 1. Recall that ‖T̃B‖ ≤ σTG by Theorem 4 and
sR = ‖R∗‖ ≤ O(

√
m) w.h.p by Lemma 13. Therefore σ used in the system, as defined in (7), is

sufficiently large to satisfy the conditions of Theorem 16.
Game 2 is otherwise the same as Game 1. Since A0, B and responses to private key queries are

statistically close to those in Game 1, the adversary’s advantage in Game 2 is at most negligibly
different from its advantage in Game 1.

Game 3. Game 3 is identical to Game 2 except that the challenge ciphertext (c∗0, c
∗
1) is always

chosen as a random independent element in Zq × Z2m
q . Since the challenge ciphertext is always a

fresh random element in the ciphertext space, A’s advantage in this game is zero.
It remains to show that Game 2 and Game 3 are computationally indistinguishable for a PPT

adversary, which we do by giving a reduction from the LWE problem.

Reduction from LWE. Suppose A has non-negligible advantage in distinguishing Games 2 and 3.
We use A to construct an LWE algorithm B.

Recall from Definition 7 that an LWE problem instance is provided as a sampling oracle O
which can be either truly random O$ or a noisy pseudo-random Os for some secret s ∈ Znq . The
simulator B uses the adversary A to distinguish between the two, and proceeds as follows:
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Instance. B requests from O and receives, for each i = 0, . . . ,m, a fresh pair (ui, vi) ∈ Znq × Zq.

Targeting. A announces to B the identity id∗ that it intends to attack.

Setup. B constructs the system’s public parameters PP as follows:

1. Assemble the random matrix A0 ∈ Zn×mq from m of the previously given LWE samples
by letting the i-th column of A0 be the n-vector ui for all i = 1, . . . ,m.

2. Assign the zeroth LWE sample (so far unused) to become the public random n-vector
u0 ∈ Znq .

3. The remainder of the public parameters, namely A1 and B, are constructed as in Game 2
using id∗ and R∗.

Queries. B answers each private-key extraction query as in Game 2.

Challenge. B prepares, when prompted by A with a message bit b∗ ∈ {0, 1}, a challenge ciphertext
for the target identity id∗, as follows:

1. Let v0, . . . , vm be entries from the LWE instance. Set v∗ =

 v1...
vm

 ∈ Zmq .

2. Blind the message bit by letting c∗0 = v0 + b∗ b q2e ∈ Zq.

3. Set c∗1 =

[
v∗

(R∗)>v∗

]
∈ Z2m

q .

4. Choose a random bit r R← {0, 1}. If r = 0 send CT∗ = (c∗0, c
∗
1) to the adversary. If r = 1

choose a random (c0, c1) ∈ Zq × Z2m
q and send (c0, c1) to the adversary.

We argue that when the LWE oracle is pseudorandom (i.e. O = Os) then CT∗ is distributed
exactly as in Game 2. First, observe that Fid∗ = (A0 | A0R

∗). Second, by definition of Os we
know that v∗ = A>0 s+ y for some random noise vector y ∈ Zmq distributed as Ψ̄m

α . Therefore,
c∗1 defined in step (3) above satisfies

c∗1 =

[
A>0 s+ y

(R∗)>A>0 s+ (R∗)>y

]
=

[
A>0 s+ y

(A0R
∗)>s+ (R∗)>y

]
= (Fid∗)>s+

[
y

(R∗)>y

]

and the quantity on the right is precisely the c1 part of a valid challenge ciphertext in Game 2.
Also note that v0 = u>0 s+ x, just as the c0 part of the challenge ciphertext in Game 2.

When O = O$ we have that v0 is uniform in Zq and v∗ is uniform in Zmq . Therefore c∗1 as
defined in step (3) above is uniform and independent in Z2m

q by the standard left over hash
lemma (e.g. Theorem 8.38 of [36]) where the hash function is defined by the matrix (A>0 |v∗).
Consequently, the challenge ciphertext is always uniform in Zq × Z2m

q , as in Game 3.

Guess. After being allowed to make additional queries, A guesses if it is interacting with a Game 2
or Game 3 challenger. Our simulator outputs A’s guess as the answer to the LWE challenge
it is trying to solve.
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We already argued that when O = Os the adversary’s view is as in Game 2. When O = O$ the
adversary’s view is as in Game 3. Hence, B’s advantage in solving LWE is the same as A’s advantage
in distinguishing Games 2 and 3, as required. This completes the description of algorithm B and
completes the proof.

6.5 Multi-Bit Encryption

We briefly note that, as in [22], it is possible to reuse the same ephemeral encryption randomness
s to encrypt multiple message bits. An N -bit message can thus be encrypted as N components
c0 plus a single component c1, where the same ephemeral s ∈ Znq is used throughout. The total
ciphertext size with this technique is 1 element of Zq for each bit of the message, plus a constant
2m elements of Zq regardless of the message length. The ciphertext size is thus (N +2m) elements
of Zq.

To do this for an N -bit message we need include N vectors u1, . . . , uN ∈ ZNq in the public
parameters PP (as opposed to only one vector u in the basic scheme). Message bit number i is
encrypted as in the basic scheme, but using the vector ui. The proof of security remains mostly
unchanged, except that in the reduction to LWE the simulator queries the LWE oracle m+N times
instead of m+ 1 times. This enables the simulator to prepare a challenge ciphertext that encrypts
N message bits using a single random vector s ∈ Znq . The vectors generated by the unused N LWE
queries make up the vectors u1, . . . , uN in the public parameters.

7 Extension 1: Adaptively Security IBE

Recall that Waters [38] showed how to convert the selectively-secure IBE in [8] to an adaptively
secure IBE. We show that a similar technique, also used in Boyen [14], can convert our basic
IBE construction to an adaptively secure IBE. The size of the private keys and ciphertexts in the
resulting system is essentially the same as in the basic scheme, though the public parameters are
larger. The system is simpler and with shorter ciphertexts than the recent construction of Cash et
al. [17].

7.1 Intuition

We treat an identity id as a sequence of ` bits id = (b1, . . . , b`) in {1,−1}`. Then during encryption
we use the matrix

Fid :=
(
A0 | B +

∑̀
i=1

biAi
)
∈ Zn×2m

q

where A0, A1, . . . , A`, B are random matrices in the public parameters. The master key is a trapdoor
TA0 for A0, as in the basic scheme.

In the security reduction, we construct each matrix Ai (excluding A0) as

Ai := A0Ri + hiB for i = 1, . . . , `

where all the matrices Ri are random in {1,−1}m×m and hi is a secret coefficient in Zq. Then

Fid =
(
A0

∣∣∣ A0

(∑̀
i=1

biRi
)

+
(
1 +

∑̀
i=1

bihi
)
B
)
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The simulator will know a trapdoor (i.e. a short basis) TB for B, and thus also for Fid, unless
the coefficient of B in Fid cancels to zero. Such cancellation occurs for identities id for which
1 +

∑`
i=1 bihi = 0 and these identities are unknown to the attacker. For those special identities the

simulator will be unable to answer key-extraction queries, but will be able to construct a useful
challenge to solve the given LWE problem instance.

The security proof will require that we choose q = 2Q where Q is the number of chosen identity
queries issued by the adversary. The framework of Boyen [14] enables us to reduce the modulus q
to a value similar to the one in the selective IBE system of the previous section.

7.2 Full-IBE Construction

Setup(λ): On input a security parameter λ, set the parameters q, n,m, σ, α as specified in Sec-
tion 7.3 below. Next do:

1. Use algorithm TrapGen(q, n) to select a uniformly random n × m-matrix A0 ∈ Zn×mq

with a basis TA0 for Λ⊥q (A0) such that ‖T̃A0‖ ≤ O(
√
n log q).

2. Select `+ 1 uniformly random n×m matrices A1, . . . , A`, B ∈ Zn×mq .

3. Select a uniformly random n-vector u ∈ Znq .

4. Output the public parameters and master key,

PP =
(
A0, A1, . . . , A`, B

)
, MK =

(
TA0

)
Extract(PP,MK, id): On input public parameters PP, a master key MK, and an identity id =

(b1, . . . , b`) ∈ {1,−1}`:

1. Let Aid = B +
∑`

i=1 biAi ∈ Zn×mq .

2. Sample e ∈ Z2m
q as e← SampleLeft(A0, Aid, TA0 , u, σ).

Note that A0 is rank n w.h.p as explained in Section 6.3.

3. Output SKid := e ∈ Z2m.

Let Fid :=
(
A0 | Aid

)
, then Fid · e = u in Zq and e is distributed as DΛuq (Fid),σ by Theorem 14.

Encrypt(PP, id, b): On input public parameters PP, an identity id, and a message b ∈ {0, 1}, do:

1. Let Aid = B +
∑`

i=1 biAi ∈ Zn×mq and Fid := (A0|Aid) ∈ Zn×2m
q .

2. Choose a uniformly random s
R← Znq .

3. Choose ` uniformly random matrices Ri
R← {−1, 1}m×m for i = 1, . . . , `

and define Rid =
∑`

i=1 biRi ∈ {−`, . . . , `}m×m.

4. Choose noise vectors x Ψ̄α← Zq and y
Ψ̄mα←∈ Zmq , set z ← R>idy ∈ Zmq ,

5. Set c0 ← u> s+ x+ b b q2c ∈ Zq and c1 ← F>id s+
[
y
z

]
∈ Z2m

q .

6. Output the ciphertext CT := (c0, c1) ∈ Zq × Z2m
q .
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As an optimization, note that Step 3 can be performed more efficiently by directly constructing
an m-by-m-matrix Rid whose elements are i.i.d. from the binomial distribution assumed by
the sum of ` independent coins in {−1, 1}.

Decrypt(PP, SKid,CT): On input public parameters PP, a private key SKid = eid, and a ciphertext
CT = (c0, c1), do:

1. Compute w ← c0 − e>id c1 ∈ Zq.

2. Compare w and b q2c treating them as integers in Z. If they are close, i.e., if
∣∣∣w− b q2c∣∣∣ <

b q4c in Z, output 1, otherwise output 0.

7.3 Parameters and Correctness

As in Section 6.3, when the cryptosystem is operated as specified, we have,

w = c0 − e>id c1 = b bq
2
c+ x− e>id

[
y
z

]
︸ ︷︷ ︸

error term

Lemma 22. For an ` bit identity id = (b1, . . . , b`) ∈ {1,−1}`, the norm of the error term is bounded
w.h.p by

qσ`mα ω(
√

logm) +O(σm3/2)

Proof. The proof is identical to the proof of Lemma 19 except that the matrix R is replaced by
Rid := R`+1 +

∑`
i=1 biRi. Since ‖Rid‖ ≤

∑`
i=1 ‖Ri‖ we have by Lemma 13 that ‖Rid| ≤ O(`

√
m)

w.h.p. This leads to the extra factor of ` in the error bound.

Now, for the system to work correctly we need to ensure that:

- the error term is less than q/5 w.h.p (i.e. α < [σ`mω(
√

logm)]−1 and q = Ω(σm3/2) ),
- that TrapGen can operate (i.e. m > 6n log q),
- that σ is sufficiently large for SampleLeft and SampleRight

(i.e. σ > σTG`
√
m ω(

√
logm ) = `m ω(

√
logm ) ),

- that Regev’s reduction applies (i.e. q > 2
√
n/α), and

- that our security reduction applies (i.e. q > 2Q where Q is the number of identity queries
from the adversary).

To satisfy these requirements we set the parameters (q,m, σ, α) as follows, taking n to be the
security parameter:

m = 6n1+δ , q = 2Q

σ = m` · ω(
√

log n ) , α = [`2m2 · ω(
√

log n )]−1
(9)

and round up m to the nearest larger integer and q to the nearest larger prime. Here we assume
that δ is such that nδ > dlog qe = O(log n).

Finally, we note that the framework of Boyen [14] enables us to reduce the modulus q to a value
similar to the one in the selective IBE system of the previous section.
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7.4 Proving Full Security

We show that the full IBE construction is indistinguishable from random under the adaptive identity
attack (INDr–ID-CPA) defined in Section 2.1. Recall that indistinguishable from random means that
the challenge ciphertext is indistinguishable from a random element in the ciphertext space. This
property implies both semantic security and recipient anonymity. The reduction requires that the
underlying modulus q be larger than 2Q where Q is the number of adaptive identity queries issued
by the adversary.

Theorem 23. The full IBE system with parameters (q, n,m, σ, α) as in (9) is INDr–ID-CPA secure
provided that the (Zq, n, Ψ̄α)-LWE assumption holds.

In particular, suppose there exists a probabilistic algorithm A that wins the INDr–ID-CPA game
with probability ε, making no more than Q ≤ q/2 adaptive chosen-identity queries. Then is a
probabilistic algorithm B that solves the (Zq, n, Ψ̄α)-LWE problem in about the same time as A and
with probability ε′ ≥ ε/(2 q).

7.4.1 Abort-resistant hash functions

The proof of Theorem 22 will use an information theoretic hashing concept we call abort-resistant
hash functions defined as follows.

Definition 24. Let H := {h : X → Y } be a family of hash functions from X to Y . For a set of
Q+ 1 inputs x̄ = (x0, x1, . . . , xQ) ∈ XQ+1, define the non-abort probability of x̄ as the quantity

α(x̄) := Pr
[
H(x0) = 0 ∧ H(x1) 6= 0 ∧ . . . ∧ H(xQ) 6= 0

]
where the probability is over the random choice of H in H.
We say that H is (Q, εmin, εmax) abort-resistant if for all x̄ = (x0, x1, . . . , xQ) ∈ XQ+1

with x0 6∈ {x1, . . . , xQ} we have α(x̄) ∈ [εmin, εmax].

We will use the following abort-resistant hash family used in [38, 26, 7].
For a prime q let (Z`q)∗ := Z`q \ {0`} and define the family HWat : { Hh : (Z`q)∗ → Zq }h∈Z`q as

Hh(id) := 1 +
∑̀
i=1

hibi ∈ Zq where id = (b1, . . . , b`) ∈ (Z`q)∗ and h = (h1, . . . , h`) ∈ Z`q (10)

In our application we will only use these hash functions with inputs in {1,−1}`. Since abort
resistance holds for the larger domain (Z`q)∗ we state the more generate result.

Lemma 25. Let q be a prime and 0 < Q < q. Then the hash family HWat defined in (10) is(
Q, 1

q

(
1− Q

q

)
, 1
q

)
abort-resistant.

Proof. The proof uses an argument similar to the one in [38, 26, 7]. Consider a set īd of Q + 1
inputs id0, . . . , idQ in (Z`q)∗ where id0 6∈ {id1, . . . , idQ}. For i = 0, . . . , Q + 1 let Si be the set of
functions H in HWat such that H(idi) = 0 and observe that |Si| = q`−1. Moreover, |S0 ∩Sj | ≤ q`−2

for every j > 0. The set of functions in HWat such that H(id0) = 0 but H(idi) 6= 0 for i = 1, . . . , Q
is exactly S := S0 \ (S1 ∪ . . . SQ). Now,

|S| = |S0 \ (S1 ∪ . . . ∪ SQ)| ≥ |S0| −
Q∑
i=1

|S0 ∩ Si| ≥ q`−1 −Qq`−2
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Therefore the no-abort probability of īd, which is |S|/q`, is at least 1
q (1 − Q

q ). The no-abort
probability is at most 1/q since |S| ≤ |S0| = q`−1. Since īd was arbitrary, the lemma follows.

7.4.2 Proof of Theorem 22

Using these tools we can now prove full IBE security.

Proof of Theorem 22. The proof proceeds in a sequence of games where the first game is identical
to the INDr–ID-CPA game from Section 2.1. In the last game in the sequence the adversary has
advantage zero. We show that a PPT adversary cannot distinguish between the games which will
prove that the adversary has negligible advantage in winning the original INDr–ID-CPA game. The
LWE problem is used in proving that Games 3 and 4 are indistinguishable. In game i we let Wi

denote the event that r = r′ at the end of the game. The adversary’s advantage in Game i is
|Pr[Wi]− 1

2 |.
Game 0. This is the original INDr–ID-CPA game from Section 2.1 between an attacker A against
our scheme and an INDr–ID-CPA challenger.

Game 1. Recall that in Game 0 the challenger generates the public parameters PP by choosing
`+2 random matrices A0, A1, . . . , A`, B in Zn×mq such that a trapdoor TA0 is known for Λ⊥q (A0). At
the challenge phase the challenger generates a challenge ciphertext CT∗. We let R∗i ∈ {−1, 1}m×m
for i = 1, . . . , ` denote the ` ephemeral random matrices generated for the creation of CT∗ (in step 3
of Encrypt).

In Game 1 we slightly change the way that the challenger generates the matrices Ai, i ∈ [1, `]
in the public parameters. The Game 1 challenger chooses R∗i , i ∈ [`] at the setup phase and also
chooses ` random scalars hi ∈ Zq for i = 1, . . . , `. Next it generates matrices A0 and B as in Game 0
and constructs the matrices Ai for i = 1, . . . , ` as

Ai ← A0 ·R∗i − hi ·B ∈ Zn×mq (11)

The remainder of the game is unchanged. Note that the R∗i ∈ {−1, 1}m×m are chosen in advance,
during the setup phase, and that the knowledge of the challenge identity id∗ is not needed in order
to do so.

We show that Game 0 is statistically indistinguishable from Game 1 by Lemma 11. Observe that
in Game 1 the matrices R∗i , i ∈ [`] are used only in the construction of the matrices Ai and in the
construction of the challenge ciphertext where z ← (R∗id)>y ∈ Zmq (and where R∗id =

∑`
i=1 b

∗
i R
∗
i ).

By Lemma 11, the distribution
(
A0 , A0 · (R∗1 | . . . | R∗` ), z

)
is statistically close to the distribution

(A0, (A′1 | . . . | A′`), z) where A′i, i ∈ [`] are uniform matrices in Zn×mq . It follows that in the
adversary’s view, the matrices A0R

∗
i are statistically close to uniform and therefore the Ai as

defined in (11) are close to uniform. Hence, all the Ai for i = 1, . . . , ` are random independent
matrices in the attacker’s view, as in Game 0. This shows that

Pr[W0] = Pr[W1] (12)

Game 2. Game 2 is identical to Game 1 except that we add an abort event that is independent
of the adversary’s view. We use the abort-resistant family of hash functions HWat introduced in
Lemma 24. Recall that HWat is a (Q, εmin, εmax) abort-resistant family, where εmin = 1

q (1 − Q/q)
by Lemma 24. Since q = 2Q we have εmin = 1/(2q).

The Game 2 challenger behaves as follows:
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- The setup phase is identical to Game 1 except that the challenger also chooses a random hash
function H ∈ HWat and keeps it to itself.

- The challenger responds to identity queries and issues the challenge ciphertext exactly as in
Game 1 (using a random bit r ∈ {0, 1} to select the type of challenge). Let id1, . . . , id

Q be
the identities where the attacker queries and let id∗ be the challenge identity. By definition,
id∗ is not in {id1, . . . , idQ}.

- In the final guess phase, the attacker outputs its guess r′ ∈ {0, 1} for r. The challenger now
does the following:

1. Abort check: the challenger checks if H(id∗) = 0 and H(idi) 6= 0 for i = 1, . . . , Q. If
not, it overwrites r′ with a fresh random bit in {0, 1} and we say that the challenger
aborted the game. Note that the adversary never sees H and has no idea if an abort
event took place. While it is convenient to describe this abort at the end of the game,
nothing would change if the challenger aborted the game as soon as the abort condition
becomes true.

2. Artificial abort: the challenger samples a bit Γ ∈ {0, 1} such that Pr[Γ = 1] =
γ(id∗, id1, . . . , idq) where the function γ(·) is defined in Lemma 25 below. If Γ = 1 the
challenger r′ with a fresh random bit in {0, 1} and we say that the challenger aborted
the game due to an artificial abort. The reason for this step is explained in Lemma 25.

This completes the description of Game 2. Note that the abort condition is determined using a
hash function H that is independent of the attacker’s view.

Lemma 26. For i = 1, 2 let W1 be the event that r = r′ at the end of Game i. Then∣∣∣∣Pr[W2]− 1
2

∣∣∣∣ ≥ 2εmin

∣∣∣∣Pr[W1]− 1
2

∣∣∣∣ (13)

So as not to interrupt the proof of Theorem 22, we come back to this lemma at the end of the proof
where we also define the function γ(·).

Game 3. We now change how A0 and B in Game 2 are chosen. In Game 3 we generate A0 as a
random matrix in Zn×mq , but generate B using algorithm TrapGen so that B is a random matrix in
Zn×mq for which the challenger has a trapdoor TB for Λ⊥q (B). The construction of Ai for i = 1, . . . , `
remains as in Game 2, namely, Ai = A0 ·R∗i − hi ·B.

The challenger responds to private key queries using the trapdoor TB. To respond to a private
key query for id = (b1, . . . , b`) ∈ {1,−1}` the challenger needs a short vector e ∈ Λuq (Fid) where

Fid :=
(
A0

∣∣∣ B +
∑̀
i=1

biAi

)
=
(
A0 | A0 Rid + hidB

)
and where

Rid ←
∑̀
i=1

biR
∗
i ∈ Zm×mq and hid ← 1 +

∑̀
i=1

bi hi ∈ Zq (14)

Note that hid = H(id) where H the hash function in HWat defined by (h1, . . . , h`).

The challenger now does the following:
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1. Construct hid and Rid as in (14). If hid = 0 abort the game and pretend that the adversary
outputs a random bit r′ in {0, 1}, as in Game 2.

2. Set e← SampleRight(A0, hidB, Rid, TB, u, σ) ∈ Z2m
q .

3. Send SKid := e to A.

Since hid in Step 2 is non-zero the set TB is also a trapdoor for hidB. Moreover, since B is rank n
w.h.p so is hidB. Theorem 16 shows that when σ > ‖T̃B‖sR ω(

√
logm) with sR := ‖Rid‖, the

generated e is distributed close to DΛuq (Fid),σ, as in Game 2. Recall that ‖T̃B‖ ≤ σTG by Theorem 4
and

sR = ‖Rid‖ ≤
∑̀
i=1

‖R∗i ‖ = O(`
√
m)

w.h.p by Lemma 13. Therefore σ used in the system, as defined in (9), is sufficiently large to satisfy
the conditions of Theorem 16.

Game 3 is otherwise the same as Game 2. In particular, in the challenge phase the challenger
checks if the challenge identity id∗ = (b∗1, . . . , b

∗
` ) ∈ {1,−1}` satisfies hid∗ := 1 +

∑`
i=1 b

∗
i hi = 0. If

not, the challenger aborts the game (and pretends that the adversary output a random bit r′ in
{0, 1}), as in Game 2. Similarly, in Game 3 the challenger implements an artificial abort in the
guess phase.

Since Games 2 and 3 are identical in the attacker’s view (the public parameters, responses to
private key queries, the challenge ciphertext, and abort conditions) the adversary’s advantage in
Game 3 is identical to its advantage in Game 2, namely

Pr[W2] = Pr[W3] (15)

Game 4. Game 4 is identical to Game 3 except that the challenge ciphertext (c∗0, c
∗
1) is always

chosen as a random independent element in Zq × Z2m
q . Since the challenge ciphertext is always a

fresh random element in the ciphertext space, A’s advantage in this game is zero.
It remains to show that Games 3 and 4 are computationally indistinguishable for a PPT adver-

sary, which we do by giving a reduction from the LWE problem. If an abort event happens then
the games are clearly indistinguishable. Therefore, it suffice to focus on sequences of queries that
do not cause an abort.

Reduction from LWE. Suppose A has non-negligible advantage in distinguishing Games 3 and 4.
We use A to construct an LWE algorithm denoted B.

Recall from Definition 7 that an LWE problem instance is provided as a sampling oracle O
which can be either truly random O$ or a noisy pseudo-random Os for some secret s ∈ Znq . The
simulator B uses the adversary A to distinguish between the two, and proceeds as follows:

Instance. B requests from O and receives, for each i = 0, . . . ,m, a fresh pair (ui, vi) ∈ Znq × Zq.

Setup. B constructs the system’s public parameters PP as follows:

1. Assemble the random matrix A0 ∈ Zn×mq from m of the previously given LWE samples
by letting the i-th column of A0 be the n-vector ui for all i = 1, . . . ,m.

2. Assign the zeroth LWE sample (so far unused) to become the public random n-vector
u0 ∈ Znq .
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3. The remainder of the public parameters, namely Ai, i > 0 and B, are constructed as in
Game 3 using random hi and R∗i .

Queries. B answers each private-key extraction query as in Game 3.

Challenge. B prepares, when prompted by A with a message bit b∗ ∈ {0, 1} and a target identity
id∗ = (b∗1, . . . , b

∗
` ), a challenge ciphertext for the target identity id∗, as follows:

1. Let v0, . . . , vm be entries from the LWE instance. Set v∗ =

 v1...
vm

 ∈ Zmq .

2. Blind the message bit by letting c∗0 = v0 + b∗ b q2e ∈ Zq.

3. Set R∗id∗ :=
∑`

i=1 b
∗
i R
∗
i .

4. Set c∗1 =

[
v∗

(R∗id∗)
>v∗

]
∈ Z2m

q .

5. Choose a random bit r R← {0, 1}. If r = 0 send CT∗ = (c∗0, c
∗
1) to the adversary. If r = 1

choose a random (c0, c1) ∈ Zq × Z2m
q and send (c0, c1) to the adversary.

We argue that when the LWE oracle is pseudorandom (i.e. O = Os) then CT∗ is distributed
exactly as in Game 3. First, since hid∗ = 0 we have that Fid∗ = (A0 | A0R

∗
id∗). Second, by

definition of Os we know that v∗ = A>0 s+ y for some random noise vector y ∈ Zmq distributed
as Ψ̄m

α . Therefore, c∗1 defined in step (3) above satisfies

c∗1 =

[
A>0 s+ y

(R∗id∗)
>A>0 s+ (R∗id∗)

>y

]
=

[
A>0 s+ y

(A0R
∗
id∗)

>s+ (R∗id∗)
>y

]
= (Fid∗)>s+

[
y

(R∗id∗)
>y

]

and the quantity on the right is precisely the c1 part of a valid challenge ciphertext in Game 3.
Also note that v0 = u>0 s+ x, just as the c0 part of the challenge ciphertext in Game 3.

When O = O$ we have that v0 is uniform in Zq and v∗ is uniform in Zmq . Therefore c∗1 as
defined in step (3) above is uniform and independent in Z2m

q by the standard left over hash
lemma (e.g. Theorem 8.38 of [36]) where the hash function is defined by the matrix (A>0 |v∗).
Consequently, the challenge ciphertext is always uniform in Zq × Z2m

q , as in Game 4.

Guess. After being allowed to make additional queries, A guesses if it is interacting with a Game 3
or Game 4 challenger. Our simulator implements the artificial abort from Games 3 and 4 and
outputs the final guess as the answer to the LWE challenge it is trying to solve.

We already argued that when O = Os the adversary’s view is as in Game 3. When O = O$ the
adversary’s view is as in Game 3. Hence, B’s advantage in solving LWE is the same as A’s advantage
in distinguishing Games 3 and 4, as required. This completes the description of algorithm B and
since Pr[W4] = 1/2 we obtain

|Pr[W3]− 1
2
| = |Pr[W3]− Pr[W4]| ≤ LWE-adv[B] (16)
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Summary. Combining (12), (13), (15) and (16) we obtain that

|Pr[W0]− 1
2
| ≤ (1/εmin) LWE-adv[B] = 4q · LWE-adv[B]

as required in the statement of Theorem 22.

Proof of Lemma 25. To complete the proof of Theorem 22 we prove Lemma 25 which expresses
the advantage of the adversary in Game 2 as a function of its advantage in Game 1.

Proof of Lemma 25. A detailed analysis of the effect of the abort condition in Game 2 is given
in [7]. We review the main points here. Let I := ({1,−1}`)Q+1 be the set of all (Q + 1)-tuples of
identities. For I ∈ I:

• Let κ(I) be the event that in Game 1 the adversary uses the first entry in I as the challenge
ciphertext and issues identity queries for the remaining Q identities. Then

∑
i∈I κ(I) = 1.

• Let β2(I) ⊆ κ(I) be the event that r = r′ in Game 2 when κ(I) happens.
Similarly, let β1(I) ⊆ κ(I) be the event that r = r′ in Game 1 when κ(I) happens.
Then

∑
I∈I βi(I) = Pr[Wi] for i = 1, 2.

• Let E be the event that that challenger aborts the game in the guessing phase of Game 2 and
let ε(I) := Pr[¬E | κ(I)]. Then ε(I) ∈ [εmin, εmax].

Then for all I ∈ I we have

Pr
[
β2(I) ∧ E

]
= Pr[ (r = r′) ∧ κ(I) ∧ E ] = 1/2 Pr[κ(I) ∧ E ]

Pr
[
β2(I) ∧ ¬E

]
= Pr

[
β1(I) ∧ ¬E

]
= Pr

[
β1(I)

]
ε(I)

Pr
[
κ(I) ∧ ¬E(I)

]
= Pr[κ(I)] ε(I)

Since Pr[β2(I)] = Pr[β2(I) ∧ E(I)] + Pr[β2(I) ∧ ¬E(I)] and the same holds for κ(I) we obtain:∣∣∣∣Pr[W2]− 1
2

∣∣∣∣ =

∣∣∣∣∣∑
I∈I

(
Pr
[
β2(I)

]
− 1/2 Pr

[
κ(I)

])∣∣∣∣∣
=

∣∣∣∣∣∑
I∈I

(
Pr
[
β1(I)

]
− 1/2 Pr

[
κ(I)

])
ε(I)

∣∣∣∣∣ .
To lower bound this expression we separate the positive and negative terms and use the fact that
ε(I) ∈ [εmin, εmax]. We also use the fact that∣∣∣∣Pr[W1]− 1

2

∣∣∣∣ =

∣∣∣∣∣∑
I∈I

(
Pr
[
β1(I)

]
− 1/2 Pr

[
κ(I)

])∣∣∣∣∣ ≤ 1/2

and obtain ∣∣∣∣Pr[W2]− 1
2

∣∣∣∣ ≥ εmin

∣∣∣∣Pr[W1]− 1
2

∣∣∣∣− 1/2(εmax − εmin) .

If ε(I) were the same for all I ∈ I then εmax = εmin and we would be done. Unfortunately, without
the artificial abort, ε(I) are not all the same. There are two ways to deal with this. Waters [38]
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introduces an artificial abort so that ε(I) is close to its minimum value εmin for all I ∈ I. Bellare
and Ristenpart [7] set the parameters in the reduction so that (εmax−εmin) is negligible. In our case,
(εmax − εmin) is bounded by Q/q2 and therefore the latter approach would require making q larger
which would negatively impact the performance of the system. We therefore opt for the Waters
approach and introduce an artificial abort. The analysis of the artificial abort and the definition of
the function γ(I) are as in [38]. With the artificial abort, (εmax − εmin) is less than |Pr[W1]− 1/2|
and the proof of (13) is complete.

7.5 Further Improvements and Extensions

Smaller q. It is possible to decouple the choice of modulus q from the number of key extraction
queries Q, by using one of the techniques used in the very recent lattice-based signature scheme
of [14]. The benefit is that then q can be chosen as small as possible, which improves the overall
time and space efficiency of the scheme.

Smaller `. The value of ` can be reduced, thus shrinking the ciphertext and private key size.
Recall that the system above treats identities as elements in {1,−1}`. It is possible to treat
identities as elements in {−B, . . . , B}`′ and then get away with a smaller `′ since we would only
need B`′ > 2`. Lemma 24 holds when identities are in Z`q (i.e. B = q/2). However, the norm of the
matrix Rid used in encryption and in the simulation will grow with B. Therefore, while `′ shrinks,
the size of q will need to grow to compensate for the increased norm of Rid. Clearly setting B = 1
is sub-optimal, but we do not calculate the optimal B here.

Multi-bit encryption. The system can encrypt multiple bits at once using the same method
used in Section 6.5.

Induced signature scheme. The full IBE system gives rise to an existentially unforgeable
signature scheme via the standard conversion of IBE to a signature [11] . Security follows from the
ISIS problem rather than LWE. Describe signature scheme.

8 Extension 2: Hierarchical IBE

We show how the basis delegation techniques from [17, 31] can convert the basic IBE construction
to an HIBE. Identities are vectors id = (id1, . . . , id`) where the idi are in Znq \ {0}. Excluding 0
coordinates is necessary for the proof of security.

For a hierarchy of maximum depth d the public parameters will contain random matrices
A0, A1, . . . , A`, B in Zn×mq . Then to encrypt to an identity id = (id1, . . . , id`) at depth ` ≤ d
we use the matrix

Fid :=
(
A0 | A1 +H(id1)B | . . . | A` +H(id`)B

)
∈ Zn×(`+1)m

q (17)

where H is the FRD map H : Znq → Zn×nq defined in Section 5. The master key is a trapdoor TA0

for A0, as in the basic scheme. The secret key for the identity id consists of a short basis for the
lattice Λ⊥q (Fid). Key delegation, namely where user id issues a secret key to user (id|id`+1), is done
by using the short basis for Λ⊥q (Fid) to generate a random short basis for Λ⊥q (Fid|id`+1

).
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In the selective security reduction, the attacker declares at the beginning of the game an identity
id∗ = (id∗1, . . . , id

∗
` ) for ` ≤ d where it wishes to be challenged. If ` < d we pad id∗ with d− ` zeros

so that id∗ is in (Znq )d. The simulator chooses the matrices A0 and B uniformly at random in Zn×mq

and constructs the matrices Ai for i = 1, . . . , d as

Ai := A0Ri −H(id∗i )B for i = 1, . . . , d

where all the matrices Ri are random in {1,−1}m×m. As in Section 6.4 the matrices A0Ri are
uniform and independent in Zn×mq and therefore Ai, i = 1, . . . , d are uniform in Zn×mq as in the
real system. We provide the simulator with a trapdoor TB for Λ⊥q (B), but no trapdoor for Λ⊥q (A0).

Now, to respond to a private key query for an identity id = (id1, . . . , id`), the simulator must
produce a short basis for Λ⊥q (Fid) where

Fid =
(
A0

∣∣∣ A0Rid +Bid

)
∈ Zn×(`+1)m

q (18)

and where

Rid := (R1 | . . . | R`) ∈ Zm×`mq (19)

Bid :=
((
H(id1)−H(id∗1)

)
B
∣∣∣ . . . ∣∣∣ (H(id`)−H(id∗` )

)
B
)
∈ Zn×`mq (20)

When id is not a prefix of id∗ we know that H(idi) − H(id∗i ) is full rank for some i ∈ {1, . . . , `}.
We show that the simulator can then extend TB to a short basis for the entire lattice Λ⊥q (Bid).
The simulator can now generate short vectors in Λ⊥q (Fid) using algorithm SampleRight, which is
sufficient for constructing the required short basis for Λ⊥q (Fid).
When id is a prefix of id∗ the matrix Fid no longer depends on B and the simulator’s trapdoor
disappears. Consequently, the simulator can generate private keys for all identities other than
prefixes of id∗. As we will see, for id∗ the simulator can produce a challenge ciphertext that helps
it solve the given LWE challenge.

8.1 Sampling a random basis

Let Λ be an m-dimenaional lattice and let O(Λ, σ) be an algorithm that generates independent sam-
ples from a distribution statistically close toDΛ,σ. The following algorithm called SampleBasisO(Λ, σ)
uses O to genenerate a basis T of Λ:

1. For i = 1, . . . ,m, let v ← O(Λ, σ) and
if v is independent of {v1, . . . , vi−1}, set vi ← v, if not, repeat.

2. Convert the set of independent vectors v1, . . . , vm to a basis T using Lemma 3 (and using
some canonical basis of Λ) and output T .

The following theorem summarizes properties of this algorithm. Recall that Gentry et al. [22, Sec. 3]
define b̃l(Λ) as the Gram-Schmidt norm of the shortest bases of Λ, namely b̃l(Λ) := minT ‖T‖ where
the minimum is over all ordered bases T of Λ.

Lemma 27. For σ > b̃l(Λ) ω(
√

logm) algorithm SampleBasisO(Λ, σ) satisfies the following prop-
erties:

1. Step 1 requires at most O(m logm) w.h.p and 2m samples in expectation.
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2. With overwhelming probability ‖T̃‖ ≤ ‖T‖ ≤ σ
√
m.

3. Up to a statistical distance, the distribution of T does not depend on the implementation of O.
That is, the random variable SampleBasisO(σ) is statistically close to SampleBasisO

′
(σ) for

any algorithm O′ that samples from a distribution statistically close to DΛ,σ.

Proof. Part (1) follows from Lemma 6 part (2) where the expectation statement is by a result
from [2]. Part (2) follows from Lemma 6 part (1). Part (3) is immediate.

Algorithm SampleBasisLeft. The lattice Λ of interest is Λ⊥q (Fid) where Fid is defined in (17) for
id = (id1, . . . , id`). Write Fid = (A | M) for some matrices A and M , then given a short basis TA
for Λ⊥q (A) we can implement algorithm O(Fid, σ) as

OSL(Fid, σ) := SampleLeft(A,M, TA, 0, σ) .

When σ > ‖T̃A‖·ω(
√

log(`m)) Theorem 14 shows that the resulting vector is distributed statistically
close to DΛ⊥q (Fid),σ, as required for SampleBasis.

Using OSL in algorithm SampleBasis leads to an algorithm to sample a random basis of Λ⊥q (Fid)
given a short basis of A. We refer to this algorithm as SampleBasisLeft(A, M, TA, σ) and summa-
rize its properties in the following corollarly.

Corollary 28. Algorithm SampleBasisLeft(A, M, TA, σ) outputs a basis of Λ⊥q (Fid) satisfying the
three properties in Lemma ?? provided that A is rank n and σ > ‖T̃A‖ · ω(

√
log(`m)).

Algorithm SampleBasisRight. In the simulation, the matrix Fid is defined as in (18). In this
case, given a short basis TB for Λ⊥q (B) we can implement algorithm O as follows:
Algorithm OSR(Fid, σ):

1. First, use Theorem ?? to extend the basis TB for Λ⊥q (B) to a basis T for Λ⊥q (Bid) such
that ‖T̃‖ = ‖T̃B‖.

2. Then run SampleRight(A0, Bid, Rid, TB, 0, σ) and output the result.
When B is rank n and id is not a prefix of id∗ the matrix Bid is rank n as required for
SampleRight.

Let sR := ‖Rid‖ be the norm of the matrix Rid. When σ > ‖T̃B‖ · sR ω(
√

logm) Theorem 16 shows
that the resulting vector is distributed statistically close to DΛ⊥q (Fid),σ, as required for SampleBasis.

Using OSR in algorithm SampleBasis leads to an algorithm to sample a random basis of Λ⊥q (Fid)
for Fid defined in (18) given a short basis ofB. We refer to this algorithm as SampleBasisRight(A0, Bid, Rid, TB, σ)
and summarize its properties in the following corollary.

Corollary 29. Algorithm SampleBasisRight(A0, Bid, Rid, TB, σ) outputs a basis of Λ⊥q (Fid) satis-
fying the three properties in Lemma ?? provided that B is rank n, that id is not a prefix of id∗, and
that σ > ‖T̃B‖ · sR ω(

√
logm) where sR := ‖Rid‖.

An important fact for the proof of security is that for sufficiently large σ algorithms SampleBasisLeft
and SampleBasisRight sample a basis of Fid from statistically close distributions.
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8.2 The HIBE Construction

We can now describe the HIBE system. Recall that identities are vectors id = (id1, . . . , id`) where
the idi are in Znq \ {0}.

Setup(d, λ): On input a security parameter λ, and a maximum hierarchy depth d, set the parame-
ters q, n,m, σ̄, ᾱ as specified in Section 8.3 below. The vectors σ̄ and ᾱ live in Rd and we use
σ` and α` to refer to their `-th coordinate. Next do:

1. Use algorithm TrapGen(q, n) to select a uniformly random n × m-matrix A0 ∈ Zn×mq

with a basis TA0 for Λ⊥q (A0) such that ‖T̃A0‖ ≤ O(
√
n log q)

2. Select d+ 1 uniformly random n×m matrices A1, . . . , Ad and B in Zn×mq .

3. Select a uniformly random n-vector u R← Znq .

4. Output the public parameters and master key,

PP =
(
A0, A1, . . . , Ad, B, u

)
; MK =

(
TA0

)
∈ Zm×m

Derive(PP, (id|id`), SKid): On input public parameters PP and a secret key corresponding to an
identity id at depth `−1 the algorithm outputs a secret key for the identity (id|id`) at depth `.
It works as follows:

Recall that SKid is a short basis for Λ⊥q (Fid) and let Fid|id` =
(
Fid

∣∣ A` + H(id`)B
)
.

Construct short basis for Λ⊥q (Fid|id`) by invoking

S ← SampleBasisLeft
(
Fid,

(
A` +H(id`)B

)
, SKid, σ`

)
and output SKid|id` ← S.

Algorithm Extract(PP, (ε|id), MK) works the same way by setting Fε := A0.

Encrypt(PP, id, b): On input public parameters PP, an identity id at depth ` and a message b ∈
{0, 1} do:

1. Build the identity-based encryption matrix

Fid :=
(
A0 | A1 +H(id1)B | . . . | A` +H(id`)B

)
∈ Zn×(`+1)m

q

2. Choose a uniformly random vector s R← Znq .

3. Choose ` uniformly random m×m matrices R1, . . . , R` in {−1, 1}m×m.

4. Choose noise vectors x
Ψ̄α`←− Zq and y

Ψ̄mα`←− Zmq , set zi ← R>i y ∈ Zmq for i = 1, . . . , `
(the distribution Ψ̄α is as in Definition 8).

5. Let z be the vector (y, z1, . . . , z`) ∈ Z(`+1)m
q and output the ciphertext,

CT =
(
c0 = uT0 s+ x+ b bq

2
c , c1 = F Tid s+ z

)
∈ Zq × Z(`+1)m

q
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Decrypt(PP, SKid,CT): On input public parameters PP, a private key SKid where id is an identity
at depth `, and a ciphertext CT = (c0, c1):

1. Set eid ← SamplePre(Fid, SKid, u0, σ`). Then Fid eid = u0 and ‖eid‖ ≤ σ`
√
m(`+ 1).

2. Compute w = c0 − eTid c1 ∈ Zq.
3. Compare w and b q2c treating them as integers in Z.

If they are close, i.e., if
∣∣∣w − b q2c∣∣∣ < b q4c in Z, output 1. Otherwise output 0.

8.3 Parameters and Correctness

When the cryptosystem is operated as specified, we have,

w = c0 − e>id c1 = b bq
2
c+ x− e>id z︸ ︷︷ ︸

error term

Lemma 30. The norm of the error term is bounded by [q`2σ`mα` ω(
√

logm)+O(`2σ`m3/2)] w.h.p.

Proof. The proof is essentially the same as the proof of Lemma 19.

Now, for the system to work correctly we need to ensure that for all 1 ≤ ` ≤ d:

- the error term is less than q/5 w.h.p (i.e. α` < [σ`mω(
√

logm)]−1 and q = Ω(σ`m3/2) ),
- that TrapGen can operate (i.e. m > 6n log q),
- that σ` is sufficiently large for SampleBasisLeft and SampleBasisRight

(i.e. σ` > σTG

√
m ω(

√
logm ) = m ω(

√
logm ) ), and

- that Regev’s reduction applies (i.e. q > 2
√
n/α`)

To satisfy these requirements we set the parameters (q,m, σ̄, ᾱ) as follows, taking n to be the
security parameter:

m = 6n1+δ , q = m2.5 · ω(
√

log n )

σ` = m · ω(
√

log n ) , α` = [m2 · ω(
√

log n )]−1 for ` = 1, . . . , d.
(21)

and round up m to the nearest larger integer and q to the nearest larger prime. Here we assume
that δ is such that nδ > dlog qe = O(log n).

Since the matrices A0, B are random in Zn×mq and m > n log q, with overwhelming probability
both matrices will have rank n. Hence, calling SampleBasisLeft in algorithm Extract succeeds w.h.p.

8.4 Security Reduction

We show that the HIBE construction is indistinguishable from random under a selective identity
attack as in Definition 1.

Theorem 31. The HIBE system with parameters (q, n,m, σ̄, ᾱ) as in (21) is INDr–sID-CPA secure
provided that the (Zq, n, Ψ̄αd)-LWE assumption holds.
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9 Conclusion and Open Problems

We constructed an efficient identity-based encryption scheme and proven its security in the standard
model from the LWE assumption (which is itself implied by worst-case lattice assumptions). We
showed that the basic selective-ID secure scheme extends to provide full adaptive-ID security and
to support a delegation mechanism to make it hierarchical.

It would be interesting to improve these constructions by adapting them to ideal lattices [37].
Another open problem is to construct an adaptively secure lattice-based IBE in the standard model
where all the data is short (including the public parameters).
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