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1 Introduction

Cryptography is a rich and elegant field of study that has enjoyed enormous
success over the last few decades. At a very high level, cryptography is the
science of designing methods to achieve certain secrecy goals, for instance that
of hiding information, so that learning the message from a cryptographically
sealed envelope implies a solution to some well known mathematical problem.
By suitably choosing the underlying mathematical problems to be intractable,
we may rest assured that an attacker’s chances of learning secret information
are extremely small: in particular, she must outperform all the mathematical
minds that have attempted without success to solve the underlying problem
in order to learn the secret. Choosing the underlying hard problem is thus
of paramount importance, and we would like to have strong evidence that
current day computing resources do not permit an attacker to solve the
problem in any reasonable time.

Here, the terms “current day computing resources” and “reasonable time”
warrant further investigation. What is considered as reasonable time depends
on the application: for securing credit card transactions, we may expect that
an attacker will not spend ten years to break secrecy, but this may not be
reasonable for highly sensitive defence communications. The question of
computing resources is even more delicate: does the adversary have access to
a mobile phone, a laptop, a cluster of computers or a supercomputer? While
again the answer to this question depends on the application, the subject of
this note is the very model of computation. Traditionally, cryptography has
been based on problems that are conjectured to be infeasible in the realm of
classical computers. However, recent times have seen significant advances in
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the design and construction of quantum computers, which are more powerful
than classical computers. If an attacker has access to a quantum computer,
are known cryptosystems safe?

Two of the most popular problems underlying most current day
cryptography are the integer factorization problem and the discrete logarithm
problem, please see [Gol00] for a discussion. While the best known classical
algorithms to solve these problems take exponential time, a breakthrough
work by Shor [Sho94] demonstrated that they can be solved in quantum
polynomial time. Thus, in the realm of quantum computers, most current day
cryptography breaks down. It is therefore necessary to base cryptography of
the future on problems that remain intractable against quantum computers.
While it is unclear when quantum computers will become a reality, recent
times have seen significant strides in this area and it is widely accepted
that developing cryptosystems that are secure against quantum computers is
an urgent need. To address this, the “National Institute of Standards and
Technology” (NIST), a unit of the U.S. commerce department, initiated a
process to “solicit, evaluate, and standardize one or more quantum-resistant
public-key cryptographic algorithms” [CJL+].

In this note, we do not discuss the progress made in constructing quantum
computers, nor the differences between classical and quantum computing.
Instead, we study some problems that are conjectured to be quantum hard,
and discuss some applications to cryptography.

2 Directions for Post Quantum Cryptography

At a high level, the mathematical problems underlying post-quantum
cryptography may be categorized into the following broad families:

Lattice Based Cryptography. Of all known candidates for post quantum
cryptography, perhaps the most popular is lattice based cryptography.
Informally, a lattice is a set of points in an n dimensional space with a
periodic structure. Lattices occur everywhere, from crystals to stacks
of fruit to ancient Islamic art, and have been widely studied, starting
with ancient mathematicians such as Lagrange, Minkowski and Gauss
upto modern computer scientists. A lattice may be represented using
a basis that generates its points, and given a basis, the most basic
question that may be posed is that of finding the smallest nonzero
point in the corresponding lattice. This classic problem is known as the
shortest vector problem (or SVP) and is related to many other lattice
problems as we shall see subsequently.
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Despite substantial research effort, no efficient quantum algorithms are
known for lattice problems that outperform classical ones significantly.
In fact, the only advantage quantum computers offer in this regard
are modest generic speedups. Besides, lattice based cryptography has
many other advantages. Cryptosystems based on lattices are often
algorithmically simple, efficient and highly paralellizable. Moreover,
lattice based cryptography enjoys a surprising connection between
average case and worst case hardness [Ajt96] which makes it especially
attractive. In more detail, cryptography is based on average case
intractable problems, which means that randomly chosen instances
of problem must be difficult to solve. On the other hand, complexity
theory usually studies worst case hardness, where a problem is
considered hard if there merely exists an intractable instance of the
problem. In a surprising work, Ajtai [Ajt96] showed that certain lattice
problems are hard on the average if some related lattice problems are
hard in the worst case. This allows for the design of cryptographic
schemes that are infeasible to break unless all instances of certain
lattice problems are hard to solve.

We discuss hard lattice problems and their application to cryptography
in more detail in subsequent sections.

Multivariate Polynomial Cryptography. Another family of problems
that is believed to resist quantum computers is related to solving
nonlinear equations over a finite field. Cryptosystems that rely on
such problems for their security are clubbed under the banner of
“multivariate polynomial cryptography” [MI88, BFSS13, Wol05, DY09].
In more detail, the multivariate quadratic polynomial problem, denoted
by MQ, is: given m quadratic polynomials f1, . . . , fm in n variables
x1, . . . , xn, with coefficients chosen from a field F, find a solution z ∈ Fn
such that fi(z) = 0 for i ∈ [m]. Evidently, the parameters are chosen
so that simple attacks such as linearization do not apply. Indeed, in
the worst case, this problem is known to be NP hard.

The birth of multivariate polynomial cryptography took place in 1988,
in an encryption scheme proposed by T. Matsumoto and H. Imai [MI88].
While this scheme was subsequently broken, the general principle found
applicability in many subsequent constructions, such as the “Hidden
Field Equations” by Patarin [Pat96] or “Unbalanced Oil and Vinegar”
[KPG99]. Presently, there exist candidates for secure cryptosystems
based on this class of problems that are believed to be quantum secure.
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We refer the reader to [Has18] for a detailed survey.

Code Based Cryptography. Code based cryptography uses the theory of
error correcting codes to construct cryptosystems. The first candidate
of such a cryptosystem was by McEliece [McE78], based on the hardness
of decoding a general linear code, a problem which is known to be
NP-hard. To construct the secret key, an error-correcting code is
chosen for which an efficient decoding algorithm is known, and which
is able to correct up to t errors. The public key is derived from the
private key by disguising the selected code as a general linear code.
The encryptor generates a codeword using the public key, perturbed
by upto t errors. The decryptor recovers the message by performing
error correction and efficient decoding of the codeword. The security
of the above construction depends heavily on the choice of the error
correcting code used in the construction: to the best of our knowledge,
constructions using Goppa codes have remained resilient to attack
[OS09]. Traditionally the McEliece cryptosystem did not find much
deployment due to its large keys and ciphertexts. But there is renewed
interest in this family of constructions due to their quantum resilience.

Hash Based Cryptography. Hash based cryptography is a general
name given to cryptosystems which derive their hardness from hash
functions. The simplest and most well known example of a hash based
cryptosystem is the signature scheme by Merkle [Mer79], which converts
a weak signature scheme to a strong one, using hash functions. In
more detail, the transformation begins with a signature scheme which
is only secure for signing a single message and converts it into a many
time signature scheme using the so called “Merkle tree structure” and
by relying only on the existence of hash functions. Since one time
signatures can be based simply on the existence of one way functions,
the security of these constructions is well understood even in the
quantum setting. However, the efficiency and generality of hash based
cryptography is restricted, and this limits its popularity.

3 Lattice Based Cryptography

To give the reader a deeper taste of post quantum cryptography, we focus
our attention on lattice based cryptography for the remainder of this note.
To begin, let us define a lattice formally.
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Definition 3.1. An m-dimensional lattice Λ is a full-rank discrete subgroup
of Rm. A basis of Λ is a linearly independent set of vectors whose integer
linear combinations generate Λ. In cryptography, we are usually concerned
with integer lattices, i.e., those whose points have coordinates in Zm.

Among these lattices are the “q-ary” lattices defined as follows: for any
integer q ≥ 2 and any A ∈ Zn×mq , we define

:=
{
e ∈ Zm : A · e = 0 mod q

}
These lattices are of special interest in cryptography.

The minimum distance of a lattice Λ is the length of a shortest nonzero
vector:

λ1(Λ) = min
v∈Λ\{0}

‖v‖

Here, ‖ · ‖ denotes the Euclidean norm. In general, the ith successive minima
λi(Λ) is the smallest radius r such that Λ has i linearly independent vectors
of norm at most r.

3.1 Classic Computational Lattice Problems

In this section, we discuss some classic computational problems over lattices.

Definition 3.2 (Shortest Vector Problem (SVP)). Given an arbitrary basis
B of some lattice Λ = Λ(B), find a nonzero vector v ∈ Λ(B) such that
‖v‖ = λ1(Λ(B)).

We note that there is a bound on λ1(Λ(B)) by Minkowski’s first theorem,
which states that for any full rank lattice Λ(B) of rank n,

λ1(Λ(B)) ≤
√
n (det(Λ(B))

1
n

Next, we define the approximate version of this problem. Let γ ≥ 1 be
an approximation factor; this is typically taken as a function of the lattice
dimension n.

Definition 3.3 (Approximate Shortest Vector Problem (SVPγ)). Given a
basis B of an n dimensional lattice Λ = Λ(B), find nonzero vector v ∈ Λ(B)
s.t. ‖v‖ ≤ γ · λ1(Λ(B)).

Of particular importance in cryptography is the decision version of the
approximate shortest vector problem, which we define next.
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Definition 3.4 (Decisional Shortest SVP (GapSVPγ)). Given a basis B
of an n dimensional lattice and the promise that either λ1(Λ(B)) ≤ 1 or
λ1(Λ(B)) ≥ γ, determine which is the case.

Definition 3.5 (Shortest Independent Vector Problem (SIVPγ)). Given a
basis B of a full rank, n dimensional lattice Λ = Λ(B), output a set of n
linearly independent lattice vectors vectors S = {si}i∈[n] s.t. for i ∈ [n],

‖si‖ ≤ γ · λn(Λ(B))

Finally, we define the “bounded distance decoding” problem, which takes
as input a lattice Λ and a target point t, with the promise that t is “close”
to Λ, and asks to find the lattice point closest to t.

Definition 3.6 (Bounded Distance Decoding Problem (BDDγ)). Given a
basis B of an n dimensional lattice Λ = Λ(B) and a target point t ∈ Rn with
the promise that dist(Λ, t) < d = λ1(Λ(B))/(2 · γ), find the unique lattice
point v such that ‖t− v‖ < d.

Hardness and effect on cryptography. Most of the above problems
are known to be NP-hard to solve exactly as well as for sub-polynomial
approximation factors. However, cryptographic constructions rely on the
hardness of the above problems for polynomial approximation factors, which
place them in the realm of NP ∩ co-NP. Even for polynomial approximation
factors however, we believe these problems are intractable; indeed, no efficient
algorithms are known even for sub-exponential approximation factors despite
significant research effort by the community. We refer the reader to [Pei16]
for an in-depth discussion.

Early lattice based cryptosystems such as by Ajtai and Dwork [AD97],
Goldreich, Goldwasser and Halevi [GGH97], and Regev [Reg04] were based
on the above problems or variants thereoff. While these were important
theoretical breakthroughs and introduced ideas that form the cornerstone
of lattice based cryptographic design even today, they were subsequently
replaced by simpler systems relying on hardness of a different set of lattice
problems, which may be seen as “better suited” for cryptographic design.
We discuss these next.

3.2 Modern Computational Lattice Problems

Most modern cryptosystems rely on the hardness of the following problems.
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Short Integer Solution Problem (SIS). The short integer solution
problem was introduced by Ajtai [Ajt96] and is defined below.

Definition 3.7 (Short Integer Solution (SISn,m,q,β)). Given a uniformly
chosen matrix A ← Zn×mq and a real valued parameter β, find a nonzero
integer vector e ∈ Zm s.t.

A e = 0 mod q and ‖e‖ ≤ β

Note that the SIS problem can be seen as an average case short vector
problem on the q-ary lattice Λ⊥q (A) defined above.

Definition 3.8 (Inhomogeneous Short Integer Solution (ISISn,m,q,β)). Given
a uniformly chosen matrix A← Zn×mq , a uniformly chosen vector u← Znq
and a real valued parameter β, find a nonzero integer vector e ∈ Zm s.t.

A e = u mod q and ‖e‖ ≤ β

The SIS and ISIS problem can be seen as essentially equivalent, and
related to the classic GapSVP problem as follows.

Theorem 3.9. [Ajt96, MR07, GPV08, MP13] For m = poly(n), any β > 0,
and sufficiently large q ≥ β · poly(n), solving the (average case) SISn,m,q,β
(or ISISn,m,q,β) problem with non-negligible probablity is at least as hard as
solving the decisional approximate shortest vector problem GapSVPγ and
the approximate shortest independent vectors problem SIVPγ on arbitrary
n-dimensional lattices (i.e. in the worst case) with overwhelming probability,
for some γ = β · poly(n).

We refer the reader to [Pei16] for a detailed discussion regarding the
reductions.

While the SIS and ISIS problem can be used to construct primitives like
one way functions, collision resistant hash functions and signatures, public-
key encryption (and beyond) require the so-called “Learning With Errors”
problem LWE [Reg09] or its ring variant RLWE [LPR10]. We define these
next.

Definition 3.10 (LWE). Let q = q(n) ≥ 2 be an integer and let χ = χ(n) be
a distribution over Z. The LWEn,q,χ problem is to distinguish the following
two distributions: in the first distribution, sample (ai, bi) uniformly from
Zn+1
q . In the second distribution, one first draws s← Znq uniformly and then

samples (ai, bi) ∈ Zn+1
q by sampling ai ← Znq uniformly, ei ← χ and setting

bi = 〈ai, s〉+ ei. The LWEn,q,χ assumption is that the LWEn,q,χ problem is
infeasible.
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We will also need the definition of a B-bounded distribution.

Definition 3.11 (B-bounded distribution). A distribution ensemble (χn)n∈N
is called B-bounded if

Pr
e←χn

(‖e‖ > B) = negl(n)

Here, negl(·) refers to a function that decreases faster than the inverse of
any polynomial.

Regev [Reg09] proved that for certain moduli q and certain bounded
error distributions χ, the LWEn,q,χ assumption is true as long as certain
worst-case lattice problems are hard to solve using a quantum algorithm.
This result was de-quantized by Peikert for exponential modulus [Pei09]
and by Brakerski, Langlois, Peikert, Regev, Oded and Stehlé for polynomial
modulus [BLP+13].

Theorem 3.12. For integer dimension n, prime integer q and integer
B ≥ 2n, there is an efficiently sampleable B bounded distribution χ such
that if there exists an efficient (possibly quantum) algorithm that solves
LWEn,q,χ, then there is an efficient quantum algorithm for solving Õ(qn1.5/B)
approximate worst case SIVP and GapSVP.

Next, we define the ring variant of the LWE problem, which yields more
efficient cryptosystems than LWE.

Definition 3.13 (Ring Learning With Errors (RLWE)). Let f(x) = xn + 1
where n is a power of 2. Let q = q(n) be an integer. Let R = Z[x]/f(x)
and let Rq = R/qR. Let χ be a probability distribution on R. For s ∈ Rq,
let As,χ be the probability distribution on Rq × Rq obtained by choosing
an element a ∈ Rq uniformly at random, choosing e ← χ and outputting
(a, a · s + e). The decision RLWEn,q,χ problem is to distinguish between
samples that are either (all) from As,χ or (all) uniformly random in Rq ×Rq.
The RLWEn,q,χ assumption is that the RLWEn,q,χ problem is infeasible.

Theorem 3.14 ([LPR10]). Let r ≥ ω(
√

log n) be a real number and let
R, q be as above. Then, there is a randomized reduction from 2ω(logn) · (q/r)
approximate RSVP to RLWEn,q,χ where χ is the discrete Gaussian distribution
with parameter r. The reduction runs in time poly(n, q).

NTRU. Another popular hardness assumption is the NTRU assumption
defined by [HPS98] which roughly states that it is hard to distinguish a
fraction of small elements over Rq from random.
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Definition 3.15 (NTRUq,χ). The NTRU problem NTRUq,χ is to distinguish
between the following two distributions: in the first distribution sample a
polynomial h = g/f where f, g ← χ, conditioned on f being invertible in Rq
and in the second distribution sample a polynomial h uniformly over Rq.

Stehlé and Steinfeld [SS11] showed that the NTRUq,χ problem is hard even
for unbounded adversaries for χ chosen as the discrete Gaussian distribution
with parameter r >

√
q · poly(n). However, it is more useful to make the

assumption for much smaller r = poly(n) as in [LATV12].

4 Cryptographic Constructions

In this section, we discuss how the aforementioned hardness assumptions
can be used to design cryptosystems. Due to space constraints we restrict
our attention to the primitive of encryption. We describe the public key
encryption system based on LWE defined by Regev [Reg09].

4.1 Public Key Encryption

Recall the notion of public key encryption. At a high level, a public key
encryption scheme consists of the following algorithms:

Setup(1n): This algorithm takes as input the security parameter (which can
be used to fine tune the efficiency-security tradeoff in any construction)
and outputs a public key PK and a secret key SK.

Encrypt(PK,M): This algorithm takes as input public key PK and a message
M ∈ {0, 1}, and outputs a ciphertext CT.

Decrypt(PK,SK,CT): This algorithm takes as input the public key PK, the
secret key SK and a ciphertext CT and outputs a message M or ⊥.

Correctness requires that if (PK, SK) are generated honestly using Setup
and CT is generated honestly using Encrypt on inputs (PK,M), then
Decrypt(PK, SK,CT) yields M as desired. Security requires that an
encryption of M0 is indistinguishable from an encryption of M1 for any
M0,M1.

We proceed to describe a public key encryption system designed by Regev
[Reg09], whose hardness is based on the LWE problem.

Setup(1n): On input a security parameter n do:
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1. Choose a random matrix A ∈ Zn×mq .

2. Choose a uniformly random s
R← Znq .

3. Choose a noise vector e← χm.

4. Set b = AT · s + e.

Output PK = (A,b) and SK = s.

Encrypt(PK,M): On input public parameters PK and a message M ∈ {0, 1},
do:

1. Choose a uniformly random vector r
R← {0, 1}m.

2. Compute c0 = A · r and c1 = rTb +Mb q2c.

Output the ciphertext CT := (c0, c1).

Decrypt(PK,SK,CT): On input the public parameters PK, the secret key
SK = s and a ciphertext CT = (c0, c1), do:

1. Let d = c1 − cT
0s.

2. If d is closer to q/2 than to 0 output 1, else output 0.

Correctness. To see that the encryption scheme is correct, we walk
through the steps of decryption:

d = c1 − cT
0s

=
(
rTb +Mbq

2
c
)
−
(
A · r

)T
s

= rT(AT · s + e) +Mbq
2
c − rTATs

= rTATs + rTe +Mbq
2
c − rTATs

= rTe +Mbq
2
c

Since r is binary and e is chosen from a bounded distribution, it is possible
to set the parameters so that rTe is significantly smaller than q/2 and can
be rounded off to recover the bit M .
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Security. Security relies on the LWE assumption. Note that by the leftover
hash lemma [BDK+11], for m > 2n log q and randomly chosen r, the product
A · r = u (say) is uniform. Then, we observe that the ciphertext (c0, c1) is
sampled from the LWE distribution as (u,uTs + rTe +Mb q2c), which by the
LWE assumption is indistinguishable from uniform (u, v) which implies that
M is hidden.

5 Conclusions

We presented a very high level overview of post quantum cryptography, with
a focus on lattice based cryptography. This note is too short to contain
anything beyond a flavour of the topic of discussion, which is as deep as it
is beautiful. We refer the reader to [Pei16] for an excellent survey of lattice
based cryptography and to [CJL+, OS09] for more details on post quantum
cryptography at large.
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