
Statistical Randomized Encodings:
A Complexity Theoretic View

Shweta Agrawal ?, Yuval Ishai ??, Dakshita Khurana ? ? ?, and Anat
Paskin-Cherniavsky †

Abstract. A randomized encoding of a function f(x) is a randomized
function f̂(x, r), such that the “encoding” f̂(x, r) reveals f(x) and es-
sentially no additional information about x. Randomized encodings of
functions have found many applications in different areas of cryptography,
including secure multiparty computation, efficient parallel cryptography,
and verifiable computation.
We initiate a complexity-theoretic study of the class SRE of languages
(or boolean functions) that admit an efficient statistical randomized
encoding. That is, f̂(x, r) can be computed in time poly(|x|), and its
output distribution on input x can be sampled in time poly(|x|) given
f(x), up to a small statistical distance.
We obtain the following main results.
◦ Separating SRE from efficient computation: We give the first

examples of promise problems and languages in SRE that are widely
conjectured to lie outside P/poly. Our candidate promise problems
and languages are based on the standard Learning with Errors (LWE)
assumption, a non-standard variant of the Decisional Diffie Hellman
(DDH) assumption and the “Abelian Subgroup Membership problem”
(which generalizes Quadratic-Residuosity and a variant of DDH).
◦ Separating SZK from SRE: We explore the relationship of SRE

with the class SZK of problems possessing statistical zero knowledge
proofs. It is known that SRE ⊆ SZK. We present an oracle separation
which demonstrates that a containment of SZK in SRE cannot be
proved via relativizing techniques.

1 Introduction

A randomized encoding (RE) of a function [20,5] allows one to represent a

complex function f(x) by a “simpler” randomized function, f̂(x, r), such that

the “encoding” f̂(x, r) reveals f(x) but no other information about x1. More
specifically, there should exist an (unbounded) decoder that computes f(x) given

f̂(x, r), and an efficient randomized simulator that simulates the output of

? IIT Delhi. Email: shweta@cse.iitd.ac.in
?? Technion. Email: yuvali@cs.technion.ac.il

? ? ? UCLA and Center for Encrypted Functionalities. Email: dakshita@cs.ucla.edu.
† UCLA and Ariel University. Email: anatpc@ariel.ac.il
1 It also reveals |x|. This is unavoidable, as otherwise the output of f̂ is one of two

disjoint distributions supported over a finite domain, which puts f(x) in BPP.

the encoder f̂(x, r), only given |x| and f(x). We refer to the former decoding
requirement as correctness and to the latter simulation requirement as privacy.
Privacy can either be perfect, statistical, or computational, depending on the
required notion of “closeness” between the simulated distribution and the output
distribution of f̂ . The complexity class SRE (resp. PRE, CRE) is defined to be
the class of boolean functions f : {0, 1}∗ → {0, 1}, or equivalently languages,

admitting a randomized encoding f̂ that can be computed in polynomial time
and having statistical (resp. perfect, computational) privacy. In this paper, we
initiate the study of the class SRE of functions admitting a statistical randomized
encoding (SRE).

As a cryptographic primitive, randomized encodings were first studied explic-
itly by Ishai and Kushilevitz [20], although they were used implicitly in prior
work in the context of secure multiparty computation [32,23,15]. They have found
application in different areas of cryptography, such as parallel implementations
of cryptographic primitives [5], verifiable computation and secure delegation
of computations [6], secure multiparty computation [9,11,20,21,4], and even in
algorithm design [22]. We refer the reader to [3] for a survey of such applications.

The parallel complexity of randomized encodings was studied by Applebaum et
al. [5], who demonstrated that all functions in the complexity class NC1 (and even
certain functions that are conjectured not to be in NC [2]) admit an SRE in NC0.
This establishes a provable speedup in the context of parallel time complexity. It
is natural to ask a similar question in the context of sequential time complexity.
For which functions (if any) can an SRE enable a super-polynomial speedup?
This question is the focus of our work.

Characterizing the class SRE. Let us consider the power of the class SRE of
all functions admitting a polynomial-time computable statistical randomized
encoding. It is evident that P ⊆ SRE, where f̂(x, r) simply outputs f(x). This
satisfies both the correctness and privacy requirements. But is SRE ⊆ P?

◦ SRE for trivial hard languages. First, we consider unary languages, i.e.,
languages L ⊆ {0}∗. These languages admit the trivial SRE defined by

f̂(x) = x. Indeed, the decoder can be defined by D(z) = f(z) and the
simulator, on input (1n, b), can output 0n. Privacy holds since there is only
one input of every length. However, such unary languages may not even be
decidable, as illustrated for example by the language UHP - the unary encoding
of the halting problem, which admits an SRE but is not decidable. This
example also extends to “trivial” binary languages such that for a given input
length, all inputs are either in the language or not. However, note that such
trivial languages are always contained in the class P/poly, namely the class
of functions admitting polynomial-size (but possibly non-uniform) circuits.
This demonstrates that getting a candidate separation between SRE and P
or even PSPACE is not enough; to demonstrate the power of randomized
encodings over efficient computation in a meaningful way, we must separate
the class SRE from P/poly.

◦ Is SRE more powerful that P/poly? Let us now examine the relationship
of SRE and P/poly. To begin, observe that for functions with long outputs,
it is easy to find candidate functions that are not known to be efficiently
computable by non-uniform circuits, but admit an efficient SRE. For example,
assume there exists a family of one way permutations {fn}n∈N secure against
non-uniform adversaries. Then the seemingly hard function f−1(x) can be

encoded by the identity f̂−1(x) = x. As f−1 is also a permutation, this
encoding is both private and correct. However, for boolean functions, the
question looks much more interesting. To the best of our knowledge, no
previous candidates for languages or promise problems that are conjectured
to lie outside P/poly but admit efficient SRE have been proposed. This is
one of the questions we study in this work.

◦ Is SZK more powerful that SRE? Another natural question about random-
ized encodings is their relationship with the class SZK of languages admitting
statistical zero knowledge proofs. It is not hard to show that SRE ⊆ SZK [2].2

This implies that SRE is unlikely to contain NP. Based on current exam-
ples for SZK languages it seems likely that the containment SRE ⊆ SZK is
strict, but no formal evidence was given in this direction. This motivates the
question of finding an oracle relative to which SZK is not contained in SRE.

Why is the class SRE interesting? As has been pointed out already, for functions
that are efficiently computable, the SRE can just compute the function itself.
Therefore, the class SRE is interesting only when the functions themselves are not
efficiently computable, in which case the complexity of the decoder must inherently
be super-polynomial. While most known applications of randomized encodings of
functions require the decoder to be efficient, there are some applications that do
not (see [3]). Moreover, even in cases where the decoder is required to be efficient,
SRE functions can be “scaled down” so that decoding takes a feasible time T
whereas encoding time is sub-polynomial in T . For instance, the computation of
an SRE function can be delegated from a weak client to a powerful but untrusted
server by directly applying an SRE on instances of a small size n, such that the
server may be allowed to run in time exp(n) while the client is only required to
run in time poly(n). Indeed, many real-life problems require exponential time to
solve using the best known algorithms.

1.1 Our Results

Our results can be summarized as follows.

1. Separating SRE from P/poly:
We provide three candidates to separate SRE from efficient computation.

2 Here and in the following, when writing SRE ⊆ SZK we restrict SRE to only contain
languages L that are non-trivial in the sense that for every sufficiently large input
length n there are inputs x0, x1 of length n such that x0 ∈ L and x1 6∈ L. This
excludes languages such as the unary undecidable language mentioned earlier. The
containment proof in [2] implicitly assumes non-triviality.

◦ We give a candidate language, for which we conjecture hardness based
on a non-standard variant of the DDH assumption. We give an efficient
SRE for the this language which builds on the random self reduction for
DDH demonstrated by Naor and Reingold [24].

◦ Next, we give a candidate (dense) promise problem, the hardness of
which follows from the hardness of the standard Learning with Errors
assumption. We devise an efficient SRE for this promise problem.

◦ Last, we design a non-uniform SRE for the Abelian subgroup membership
ASM family of promise problems. This problem generalizes quadratic
residuosity and (an instance of an augmented) co-DDH problem. We also
give a specific instance of this promise problem, which is a language, and
conjecture that this language is outside of P/poly based on a variant of
co-DDH, an assumption introduced in [16].

2. Separating SZK from SRE: We show the existence of an oracle, relative
to which SZK 6⊂ SRE. This oracle separation implies that the containment
SZK ⊆ SRE (if true) cannot be proved via relativizing proof techniques.

1.2 Overview of Main Techniques

We now give an overview of the main techniques used for our separations.

Separating SRE from P/poly. We provide several SRE constructions for problems
that are conjectured to lie outside P/poly. It may be helpful to point out here, that
problems in SRE also admit an SZK proof, and the existence of hard problems in
SZK implies the existence of one-way functions. Therefore, we cannot hope to
get an unconditional result, or even one based on P 6= NP. We have the following
candidates based on various assumptions, which we later summarize in Table 1.

◦ Candidate language related to DDH.
Our first candidate is a language, which we call DDH′, whose hardness is
related to the Decisional Diffie Hellman (DDH) assumption. We consider
inputs of the form 〈g, ga, gb, gc〉 where g is any generator of a fixed DDH
group per input length. Roughly, the input is in the language iff it corresponds
to a DDH tuple, that is, if gc = gab in a fixed group generated by g.
Our SRE for this problem builds on the random self-reduction given by Naor
and Reingold [24] for DDH. However, not only do we randomize the DDH
exponents following [24], but also randomize the generator of the DDH group.
Finally, in order to to devise a candidate language, we must fix the description
of the group and its generator, given just the length of the input. We achieve
this by suggesting an efficient, deterministic procedure to generate a DDH
group and other parameters required by the encoding algorithm, given the
input length. However, note that the hardness of DDH′ cannot be reduced
to the standard DDH. This is because DDH is an average case assumption,
where the public parameters are chosen randomly. In our case, we must fix the
public parameters per input length, and DDH does not guarantee that this
restriction preserves hardness. We conjecture however, that DDH′ remains
infeasible for fixed parameters.

◦ Dense promise problem based on LWE.
Our second example is a (dense) promise problem DLWE′, whose hardness
reduces to the hardness of the standard LWE problem. DLWE′ approximately
classifies noisy codewords (A,b = As+e) into Yes and No instances, depend-
ing upon on the size of the error vector e. Roughly speaking, Yes instances
correspond to small errors and No instances to large errors.
Note that, an SRE encoding of input (A,b = As + e) must be oblivi-
ous of all information about A, s, e except the relative size of the error
vector e. We begin by using the additive homomorphism of the LWE se-
cret to mask s. Specifically, we choose a random vector t and compute
b′ = b + At = A(s + t) + e. Now, b′ no longer retains information about s.
To hide A, we multiply (A,b) by a random low norm matrix R and invoke the
leftover hash lemma to argue that RA looks random even when R’s entries
are chosen from a relatively small range. For No instances, e is large enough
that Re also hides e via LHL, but to hide the smaller e of Yes instances, we
must add additional noise r0. This extra noise is large enough to hide e but
not large enough to affect correctness. For more details, please see Section 3.1.

◦ Generalizing QR, and candidate language related to co-DDH.
Our final candidate is the Abelian Subgroup Membership (promise) problem
ASM, which generalizes the quadratic residuosity problem QRN for composite
modulus N . ASM is specified by an abelian group G, and a subgroup H of
G, such that I(G/H) = Ztq for prime q, integer t and some isomorphism I.
We define Yes instances to be well-formed x ∈ H, and No instances to be
well-formed x ∈ G \H. We note that QRN ∈ P/poly, and therefore is not a
candidate for separation. However, we present a different candidate language,
which is an instance of ASM, and which we conjecture to lie outside P/poly
based on a variant of the co-DDH assumption in [16].
At a high level, our SRE for the generalized ASM promise problem is con-
structed as follows. Given input x,

• Compute y = x · h for random h
$←H.

• Pick random elements (x1, x2, . . . xt−1)
$←G.

Define X = [I(x1), . . . , I(xt−1), I(y)].

• Pick R
$← Zt×tq . Output R ·X.

The first step randomizes x within its coset3, erasing all information except
the coset of x. Next, observe that membership of x in the subgroup H is
encoded by the rank of X – if x ∈ H then X is singular, whereas if x 6∈ H,
then X is non-singular with high probability. Thus, randomizing X via RX
hides everything except the rank of X, effectively erasing coset information
about x. The decoder learns whether x ∈ H by computing the rank of RX.
Finally, we amplify the privacy and correctness parameters by applying a
generic masking technique, that may be of independent interest.

3 This step is similar to the classic SRE for QRp which encodes x by x · r2 for randomly
chosen r. However, this is insufficient even for QRN where N is composite (hence for
ASM), as it leaks coset information of x.

Candidate Language Hardness
DDH′ Language Non-Std DDH
DLWE′ (Dense) Promise Problem Std LWE
ASM(co-DDH) Language* Non-Std co-DDH

Table 1. Our Candidates. The SREs are uniform and private against non-uniform
adversaries. If not a language, we exhibit a promise problem. The * denotes that a
specific instance of ASM is a language, though ASM is in general a promise problem.

Separating SZK from SRE Applebaum [2] showed that any language that admits
an SRE encoding also admits an SZK proof. This was done by reducing SRE
to the statistical distance problem [29] which admits a two-round SZK protocol.
The question of whether this containment is strict is still open.

We give an oracle separation between the classes SZK and SRE. We diagonalize
over oracle SRE encoders to obtain a language that is not in oracle-SRE, but
admits an oracle-SZK proof. Our technique involves generalizing the method
of [1] that separates oracle-SZK machines from oracle-BPP machines, with the
oracle being determined during diagonalization. This technique is reminiscent of
the one in [8] showing that any proof for P=NP does not relativize. However,
our setting diverges from that of [1] in two ways.

First, we diagonalize over SRE encoders such that decoders are unbounded.
However, in the presence of unbounded machines, an oracle similar to [1] would
be only as powerful as the plain model. To deal with this, we derive an alternate
definition for SRE, where the output of PPT encoders falls into two distinct
distributions over a polynomially large support (unlike binary output BPP ma-
chines). In order to derive an outlying language via diagonalization in this new
setting, we must account for the size of the support. We stress here that our
separation does not reduce to the SZK− BPP separation in [1], and can in fact,
be viewed as a generalization of their result.

1.3 Related Work

The classes PREN, SREN and CREN have been defined by Applebaum, Ishai
and Kushilevitz [6] as the class of functions that admit perfect (resp. statistical,
computational) randomized encodings in NC0 with a polynomial-time decoder.
In contrast, in this work we do not restrict the complexity of decoding the
output. Applebaum [2] observed that QRp ∈ SREN while not known to be in NC,
suggesting a separation between these classes.

Aiello and H̊astad[1] gave a technique for the oracle separation of SZK from
BPP, by diagonalizing over oracle-BPP machines. Our technique for the oracle
separation of SZK from uniform SRE follows in their broad outline, but must
be adapted to oracle-SRE machines whose outputs are over a large support.
Also, note that SRE has been used in the past for reducing the complexity of
complete problems for a subclass of SZK (more specifically, the class SZKPL of
problems having statistical zero-knowledge proofs where the honest verifier and
its simulator are computable in logarithmic space) [14].

2 Preliminaries

In this section, we define basic notation and recall some definitions which will be
used in our paper. Given a vector x, |x| denotes its size. We let size(C) denote the
size of a circuit C and size(f) denote the size of the smallest circuit computing
f . The statistical distance between two distributions X and Y over space Ω, is
defined as ∆(X ,Y) ≡ 1

2Σu∈Ω |PrX∼X [X = u]− PrY∼Y [Y = u]|.
The definition of a promise problem, the class P/poly (extended to also include

promise problems) and the class SZK, are mostly standard in the literature. We
recall their definitions in Appendix A for completeness.

We now formally define the notion of a statistical randomized encoding of
a function, language or promise problem. Similarly to the previous definition
from [5], our definition requires the encoding to be uniform by default.

Definition 1 (Statistical randomized encodings ((ε, δ)-SRE))). [5] Let
f : {0, 1}∗ → {0, 1}∗ be a function and l(n) an output length function such that

|f(x)| = l(|x|) for every x ∈ {0, 1}∗. We say that f̂ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
is a ε(n)-private δ(n)-correct (uniform) statistical randomized encoding of f
(abbreviated (ε, δ)-SRE), if the following holds:

◦ Length regularity. There exist polynomially-bounded and efficiently com-
putable length functions m(n), s(n) such that for every x ∈ {0, 1}n and

r ∈ {0, 1}m(n)
, we have |f̂(x, r)| = s(n).

◦ Efficient encoding. There exists a polynomial-time encoding algorithm

denoted by enc(·, ·) that, given x ∈ {0, 1}∗ and r ∈ {0, 1}m(|x|)
, outputs

f̂(x, r).
◦ δ-correctness. There exists an unbounded decoder dec, such that for every
x ∈ {0, 1}n we have Pr[dec(1n, f̂(x, Um(n))) 6= f(x)] ≤ δ(n).
◦ ε-privacy. There exists a probabilistic polynomial-time simulator S, such

that for every x ∈ {0, 1}n we have ∆(S(1n, f(x)), f̂(x, Um(n))) ≤ ε(n).

An (ε, δ)-SRE of a language L ⊂ {0, 1}∗ is an (ε, δ)-SRE of the corresponding
boolean function f : {0, 1}∗ → {0, 1}. When ε and δ are omitted, they are
understood to be negligible functions.

Extensions. A non-uniform (ε, δ)-SRE of f is defined similarly, except that the
encoding algorithm is implemented by a family of polynomial-size circuits. For a
partial function f , defined over a subset X ⊆ {0, 1}∗, the correctness and privacy
requirements should only hold for every x ∈ X. An (ε, δ)-SRE of a promise
problem (Yes,No) is an (ε, δ)-SRE of the corresponding partial boolean function.

Definition 2 (The class SRE4). The class SRE is defined to be the set of all
languages that admit an SRE (namely, an (ε, δ)-SRE for some negligible ε, δ). For
concrete functions ε(n), δ(n), we use (ε, δ)-SRE to denote the class of languages
admitting an (ε, δ)-SRE.

4 The difference between the class SRE and the class SREN defined in [5] is that SRE
allows the encoding algorithm to run in polynomial time whereas SREN restricts the
encoding algorithm to be in NC0.

3 Separating SRE from Efficient Computation

We devise three candidates for separating SRE from efficient computation. In
this section, we outline one candidate promise problem, that belongs to SRE and
is unlikely to be in P/poly based on the standard LWE assumption.

We also devise a candidate language based on a non-standard, but plausible,
hardness assumption related to DDH. This candidate is outlined in Appendix B.
The details of another candidate based on the Abelian Subgroup Membership
problem, are in Appendix E.

3.1 Learning With Errors (LWE)-based promise problem.

In this section, we devise a candidate promise problem DLWE′ based on the
hardness of the Learning with Errors (LWE) assumption.

Definition 3. DLWE′ = {Yes,No} where Yes and No are defined as follows.

Yes =
⋃
n

Yesn, No =
⋃
n

Non

The parameters m, p, ε are set per input length n as m = n2, p = n40, δ = 0.05.

Yesn
∆
=
{

(A,As + e) | A ∈ Zm×np , s ∈ Znp , e ∈ [−pδ, pδ]m, ∆(RA,Um×n) ≤ p−0.16m
}

Non
∆
=
{

(A,As + e) | A ∈ Zm×np , s ∈ Znp , e ∈ Zmp \ [−p2/3, p2/3]m,

∆
(
(RA,Re), (Um×n,Um)

)
≤ p−0.16m

}
\ Yesn

Here, RA denotes the distribution RA(mod p) induced by choosing R uniformly
in [−p2/3, p2/3]m×m. Similarly, Re denotes the distribution Re(mod p) induced
by choosing R uniformly in [−p2/3, p2/3]m×m. Um×n and Um denote the uniform
distribution in Zm×np and Zmp respectively.

We must explicitly subtract Yesn from Non because there may exist s, e and
s̃, ẽ such that As + e = As̃ + ẽ and ẽ ∈ (Zp \ [−p2/3, p2/3])m but e ∈ [−pδ, pδ]m,
resulting in an overlap between the sets Yesn and Non. The condition involving
the statistical distance is a technicality required for using the leftover hash lemma
in the construction. The value p−0.16m in the definition is a representative inverse
polynomial function in the input size n. We also define a new promise problem
DLWE′′ which is exactly the same as DLWE′, except setting p = 2n for each input
length n. The analysis of DLWE′′ is the same except p−0.16m is negl(n).

It is easy to show that the hardness of DLWE′ and DLWE′′ against P/poly
follows from the hardness of the standard decisional Learning with Errors problem
DLWE for the same parameters. The details are in Appendix C.2.

Theorem 1. DLWE′ ∈ (1/poly, 1/poly)-SRE and DLWE′′ ∈ (negl, negl)-SRE.

Proof. We construct an SRE for DLWE′ here. On input an instance of size n, the
encoder, decoder, simulator compute parameters m, ε, δ, p as functions of n.

Encoding. The algorithm encSRE(1n,A,b) is defined as follows.

1. Pick R
$← [−p2/3, p2/3]m×m, r0

$← [−p2/3+3δ, p2/3+3δ]m, t
$← Znp .

2. Set A′ = RA and b′ = r0 + Rb.

3. Output (A′′,b′′) = (A′,A′t + b′).

Decoding. The algorithm decSRE(1n,A′′,b′′) accepts if and only if there exist
x ∈ Znp , e ∈ Zmp , such that b′′ = A′′x + e′′, and e′′ ∈ [−p2/3+4δ, p2/3+4δ].

Simulation. On input 1n and a bit b where b = 0/1 represents membership in
Yes/No respectively, the simulator does the following.

◦ If b = 0, pick U
$←Zm×np , t

$←Znp , e
$←[−p2/3+3δ, p2/3+3δ]m. Output (U,Ut+e).

◦ If b = 1, pick U
$← Zm×np and u

$← Zmp . Output (U,u).

Analysis. We give a brief overview of the correctness and privacy arguments.
The complete proof is in Appendix C. Recall that,

encSRE(1n,A,As + e) =
(
RA, RA(s + t) + (Re + r0)

)
where

t
$← Znp , R

$← [−p2/3, p2/3]m×m, r0
$← [−p2/3+3δ, p2/3+3δ]m.

Note that the secret in b′′, namely s + t, is distributed uniformly in Znp .

◦ Case 1: (A,As + e) ∈ Yesn. In this case, e ∈ [−pδ, pδ]m.

Then, for R
$← [−p2/3, p2/3]m, Re ∈ [−p2/3+2δ, p2/3+2δ]m

Moreover, by choice of r0, we have Re << r0, thus ∆
(
Re + r0, r0

)
≤ p−δm

By definition of the promise problem, we have that ∆(RA,Um×n) ≤ p−0.16m
Then the following hold:

• Correctness. Re + r0 ∈ [−p2/3+4δ, p2/3+4δ]. Thus, correctness is perfect.

• Privacy. By the above arguments on the distribution of (RA), (s + t)
and (Re + r0) and by the simulator’s choice of (U, t, e), we can argue
that the output distribution is at most p−0.16m-far from the distribution
induced by SRE.enc on an instance of Yesn.

◦ Case 2: (A,As + e) ∈ Non. We have that e ∈ Zmp \ [−p2/3, p2/3]m and

∆
(
(RA, Re), (Um×n, um)

)
≤ p−0.16m. Then the following hold:

• Correctness. By standard averaging arguments, we prove that all entries
of Re + r0 are larger than p2/3+4δ with probability ≥ 1− p−0.13m. Next,
we bound away the probability that randomizing an instance in Non
puts it into the set Yesn. Note that this may happen if the randomized
instance, with secret and error vectors (s, e), may also be expressed with
some (s̃, ẽ) where ẽ is small. We show that the fraction of such values is
at most p−δm, which together with the above, yields p−0.1m-correctness.

• Privacy. We establish that a random sample (A,b)
$← Zm×np × Zmp is

(1 − p−0.1m) close to the distribution induced by SRE.enc on a Non
instance. We do this in two broad steps. First, we show that randomly
chosen (A,b) are such that, w.h.p. b can be expressed as As + e for
some s and large error e. Here, we must be careful to exclude instances
b that can be seen as having small error for a different secret s′. Second,
we establish that A, e corresponding to the instance are “good” for LHL
w.h.p. – i.e., the probability that RA or Re is not uniform is small.

4 Oracle Separation Between SRE and SZK

In this section, we crucially use the following Lemma about the class (ε, δ)-SRE.
This Lemma follows directly from the definition of (ε, δ)-SRE.

Lemma 1. Let Ex denote the distribution enc(x, r) for the algorithm enc(·, ·) of a
language L admitting an (ε, δ)-SRE, induced for any input x by picking r uniformly
at random in {0, 1}∗. Then, ∆(Ex, Ex′) ≤ 2ε iff f(x) = f(x′) (equivalently, both
x, x′ ∈ L or both x, x′ 6∈ L). Moreover, ∆(Ex, Ex′) ≥ 1 − 2δ iff f(x) 6= f(x′)
(equivalently, either x ∈ L, x′ 6∈ L or x 6∈ L, x′ ∈ L).

Now, we study the relation between the classes SRE and SZK.

Imported Theorem 1. [2] Any non-trivial language that admits an (ε, δ)-SRE
such that (1− 2δ)2 > 2ε, also admits an SZK proof.

Next, we explore whether the containment is strict. We give an oracle separa-
tion between the classes SZK (more precisely, the class SZK[2] of languages that
admit a 2-round SZK proof - note that this is the strongest separation) and SRE,
but restricted to the uniform setting. For any oracle A, we denote by SREA the
class SRE where encoders have oracle access to A. Similarly, we denote by SZKA

the class SZK where verifiers have oracle access to A.

Theorem 2. There exists an oracle A, such that SZK[2]A 6⊂ SREA.

Proof Overview. Broadly, we diagonalize over all oracle SRE-encoder machines
to obtain a language which does not have any SRE encoding. We construct this
language in rounds, one for each input length. Specifically, we will ensure that for
every input length n, the output of the encoder on inputs 0n and 1n is either less
than (1− 2δ) or more than ε, violating the definition of SRE from Lemma 15.

This is done via classifying the characteristic vector of the language into
unique and redundant sets, such that it is impossible for any encoder with
polynomially many oracle queries to distinguish between unique versus redundant
characteristic. Moreover, a contrived language is set such that 0n is never in the
language, and 1n is in the language iff the characteristic vector is unique.

5 It is interesting to note that unlike the BPP-SZK [1] separation, a unary language is
not helpful for separation since such a language will always have an SRE. Thus, our
contrived language will be non-trivial and binary.

Intuitively, since encoders cannot distinguish between a unique versus redun-
dant characteristic, one of the following cases will always occur. Either, there
exists a redundant characteristic (implying that both 0n and 1n are not in the
language) such that the encodings of 0n and 1n are more than ε-apart; or, there
exists a unique characteristic (implying that 1n is in the language while 0n is
not) such that the encodings of 0n and 1n are less than (1− 2δ)-apart. We set
the language according to whichever of these cases is true. This ensures that the
output of the encoders is not an SRE for this language.

However, proving either of the two cases is true is significantly more involved
than in the BPP setting of [1] (see Appendix D.3). Finally, we can show that this
language has an SZK proof. The full proof of Theorem 2 is in Appendix D.

5 Conclusion and Open Problems

In this paper, we study the class SRE of languages and promise problems that
admit efficient statistical randomized encodings. We present the first candidates
for SRE problems that are not in P/poly. These include a candidate promise
problem based on the hardness of standard LWE, as well as candidate languages
based on variants of the DDH assumption and the co-DDH assumption of [16].

Then, we explore the relationship of the class SRE with the class SZK of
languages admitting statistical zero knowledge proofs. While it is known that
all non-trivial languages in SRE are also in SZK [2], whether the converse holds
is open. However, we exhibit an oracle and a (non-trivial) language that has an
oracle-based SZK proof but does not have an oracle-based SRE. This shows that
a containment of SZK in SRE cannot be proved via relativizing techniques.

Several natural questions remain open. The first is to identify a complete
language in SRE, thereby obtaining a better characterization of this class. A second
is to better understand the relation between statistical randomized encodings
and random self-reductions (RSR). An RSR for a language or a promise problem
can be viewed as a restricted form of SRE where the decoder just decides the
problem itself. Our LWE-based language is a candidate for a problem in SRE
which is not in RSR, thus supporting the conjecture that RSR ⊂ SRE. Is there an
oracle separating these classes? Finally, it would be interesting to find additional
(and preferably “useful”) candidates for intractable problems in SRE, as well
as natural polynomial-time solvable problems for which an SRE can provide
polynomial speedup over the best known algorithms.

References

1. Aiello, W., H̊astad, J.: Relativized perfect zero knowledge is not BPP. Inf. Comput.

2. Applebaum, B.: Cryptography in Constant Parallel Time. Ph.D. thesis, Technion

3. Applebaum, B.: Randomly encoding functions: A new cryptographic paradigm -
(invited talk). In: Fehr, S. (ed.) ICITS. Lecture Notes in Computer Science, vol.
6673. Springer (2011)

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomiz-
ing polynomials and their applications. In: IEEE Conference on Computational
Complexity. pp. 260–274. IEEE Computer Society (2005)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J. Comput.
36(4), 845–888 (2006)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Efficient
verification via secure computation. In: ICALP. pp. 152–163. Springer-Verlag, Berlin,
Heidelberg (2010)

7. Babai, L.: Local expansion of vertex-transitive graphs and random generation in
finite groups. In: STOC. pp. 164–174 (1991)

8. Baker, T.P., Gill, J., Solovay, R.: Relativizatons of the P =? NP question. SIAM J.
Comput. 4(4), 431–442 (1975)

9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing. STOC ’88, ACM

10. Buhrman, J., Kaas, R.: Mean, median and mode in binomial distributions. Statistica
Neerlandica 34, 13–18 (1980)

11. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing.
pp. 11–19. STOC ’88, ACM, New York, NY, USA (1988)

12. Cramer, H.: On the order of magnitude of the difference between consecutive prime
numbers. Acta Arith 2 pp. 23–46 (1936)

13. Döttling, N., Müller-Quade, J.: Lossy codes and a new variant of the learning-with-
errors problem. In: Eurocrypt (2013)

14. Dvir, Z., Gutfreund, D., Rothblum, G.N., Vadhan, S.: On approximating the entropy
of polynomial mappings. In: In Proceedings of the 2nd Innovations in Computer
Science Conference. pp. 460–475 (2011)

15. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: Proceedings of the Twenty-sixth Annual ACM Symposium on Theory
of Computing. pp. 554–563. STOC ’94, New York, NY, USA (1994)

16. Galbraith, S.D., Rotger, V.: Easy decision-diffie-hellman groups
17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive

proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
18. Hazewinkel, Michiel, e..: Riemann hypothesis, generalized (2001)
19. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way

functions. In: Proceedings of the Twenty-first Annual ACM Symposium on Theory
of Computing. STOC ’89 (1989)

20. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: FOCS. pp. 294–304. IEEE
Computer Society (2000)

21. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: ICALP. Lecture Notes in Computer Science, vol. 2380,
pp. 244–256. Springer (2002)

22. Ishai, Y., Kushilevitz, E., Paskin-Cherniavsky, A.: From randomizing polynomials to
parallel algorithms. In: Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference. ITCS ’12, ACM, New York, NY, USA (2012)

23. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing. pp. 20–31. STOC
’88, ACM, New York, NY, USA (1988)

24. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2) (Mar 2004)

25. Nicely, T.R.: New maximal prime gaps and first occurrences. Mathematics of
Computation 68 (227) p. 1311–1315 (1999)

26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
J.ACM 56(6) (2009), extended abstract in STOC’05

27. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

28. Rivest, R.L., Silverman, R.: Are ’strong’ primes needed for RSA. IACR Cryptology
ePrint Archive 2001, 7 (2001)

29. Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. J. ACM
50(2), 196–249 (Mar 2003), http://doi.acm.org/10.1145/636865.636868

30. Stadler, M.: Publicly verifiable secret sharing. pp. 190–199. Springer-Verlag (1996)
31. Wang, Y.: On the least primitive root of a prime. Sientia Sinica, 10(1) pp. 1–14

(1961)
32. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS.

pp. 162–167 (1986)

http://doi.acm.org/10.1145/636865.636868

A Preliminaries

Definition 4 (Promise Problem). A promise problem Π is a pair of non-
intersecting sets, denoted (Yes,No) where Yes,No ∈ {0, 1}∗ and Yes ∩ No = ∅.
The set Yes ∪ No is called the promise.

We let P/poly denote the class of languages that can be recognized by a
polynomial-size circuit family. Depending on the context, we may extend the
definition of P/poly to include promise problems as well.

Statistical Zero Knowledge (SZK). Next, we define an interactive proof system
and statistical zero knowledge, these are well-known definitions taken verbatim
from existing literature.

Definition 5 (Interactive Proof System [17]). An interactive proof system
for a language L, is a protocol between a probabilistic unbounded Turing Machine,
the “Prover” P , and a PPT Turing Machine, the “Verifier” V , who receive a
common input x. L is said to be in IP [r] if after at most r rounds of interaction,
the verifier outputs either accept or reject, such that:

◦ (Completeness) For all x ∈ L, the probability (over the randomness of P and
V) that V accepts, is at least 1− 2−|x|.

◦ (Soundness) For all x 6∈ L, the probability (over the randomness of V and
arbitrary prover strategy P) that V rejects, is at least 1− 2−|x|.

The prover and verifier may exchange at most poly(|x|) messages. Note that the
verifier’s coin tosses are allowed to be private.

Definition 6 (Statistical Zero Knowledge Proof [17]). A statistical zero
knowledge (SZK) proof for a language L is an interactive proof (according to
Definition 5) for L between a probabilistic unbounded Turing Machine, the “Prover”
P , and a PPT Turing Machine, the “Verifier” V , such that for all k, there exists
N such that for all verifiers V , there exists a PPT simulator SV where for all
x ∈ L, |x| > N : ∆(SV (x), V (x)) ≤ 1

|x|k .

Definition 7 (The class SZK). The class SZK is naturally defined to be the
set of all languages which admit an SZK proof according to Definition 6.

B SRE for DDH′ based on Decisional Diffie Hellman

Here, we devise a candidate language DDH′ for separation whose hardness can be
conjectured based on its similarity to the Decisional Diffie Hellman assumption.

Candidate Language. Our language DDH′ is defined as follows.

Definition 8. For every input length n, fix pn to be a prime of size bn/4c, such
that (pn − 1) has prime factor qn >

√
pn. Then, define candidate language

DDH′ =
⋃
n∈N
{〈g, ga, gb, ga·b〉 : {a, b} ∈ Zqn and g is an element of order qn in Z∗pn}

Now, we describe a deterministic strategy to compute prime pn for every
input size n. A prime pn such that pn − 1 has a prime factor greater than

√
pn

is called a cryptographic strong prime. These primes find wide applications in
cryptography, and were introduced first in context of the RSA cryptosystem. The
procedure for finding such primes is easy and has been outlined in [27,28]. We
briefly discuss this procedure below. Start with 2bn/8c−1 + 1 and sequentially test
all integers for primality. Set the first such prime to p−−n . Compute p−n as the
least prime of the form p−n = a−−n p−−n + 1, for some integer a−−n . This can be
accomplished by trying a−−n = 2, 4, 6 . . . until a suitable prime p−n is found. In a
similar manner, compute prime pn = a−n p

−
n + 1 by trying integer a−n = 2, 4, 6

Set qn to be p−n . From [27,28], we know that assuming the extended Reimann
Hypothesis, such a prime will be found in poly(n) attempts.

We conjecture that DDH′ is hard because it is similar to the standard DDH
assumption. We briefly recall this assumption here.
DDH Assumption. Let p be a random n-bit prime, q a prime divisor of p− 1
and g be an element of order q in Z∗p. Then, no PPT Turing Machine with
polynomial advice, on input a tuple 〈p, q, g, x, y, z〉 can decide whether there exist
{a, b} ∈ Zq such that x = ga, y = gb, z = ga·b.

The DDH assumption is equivalent [30,24] to the more popular DDH(II)
assumption which is as follows. Let p be a random n-bit prime, q a prime divisor
of p− 1, g an element of order q in Z∗p and a, b, c ∈ Zq. Then the distinguishing
advantage of any PPT Turing Machine with polynomial advice, that gets as input
a tuple 〈p, q, g, ga, gb, gc〉, is negl(n) between the following two distributions on
the input: {〈p, q, g, ga, gb, gc〉 | c = a · b} and {〈p, q, g, ga, gb, gc〉 | c← ZQ}.

However, the hardness of DDH′ does not follow from DDH, because we
deterministically fix p, q per n. On the other hand, in DDH, these parameters
come from a distribution. While fixing parameters allows us to get a uniform
SRE, we only conjecture that DDH′ remains hard.

SRE Construction for DDH′.

Theorem 3. DDH′ ∈ SRE, if the extended Reimann Hypothesis (ERH) holds.

We import the following Theorem from [24].

Imported Lemma 1. [24] There exists a probabilistic polynomial time algo-
rithm R such that on any input 〈p, q, g, ga, gb, gc〉 where p is prime, q is a prime
divisor of p− 1, g an element of order q in Z∗p and a, b, c are three elements in Zq
the output of R is 〈p, q, g, ga′ , gb′ , gc′〉 where if c = ab then a′ and b′ are uniform
in Zq and c′ = a′b′, and if c 6= ab then a′, b′, c′ are all uniform in Zq.

Proof of Theorem 3. We construct an SRE for DDH′ in the following manner.

◦ encSRE(v = 〈g, x, y, z〉)
• Compute the primes pn, qn as a deterministic function of the input length
n = |v|, as in the description of language DDH′.

• Compute (pn, qn, g, x
′, y′, z′) = R(pn, qn, g, x, y, z) where R is from Im-

ported Lemma 16.
• Pick r ← Zq and output 〈gr, (x′)r, (y′)r, (z′)r〉 modulo Z∗p.

◦ decSRE(v̂ = 〈ĝ, x̂, ŷ, ẑ〉)
• Compute the primes pn, qn as a deterministic function of the input length
n = |v̂|, as in the description of language DDH′.

• Check that ĝ is of order q in Zp, and that there exist a, b ∈ Zq such that
x̂ = ĝa, y = ĝb, z = ĝa.b. If yes, accept. Otherwise, reject.

Correctness. It is easy to see that if v ∈ L, then decSRE(encSRE(v)) always accepts.
If v 6∈ L, then Pr[decSRE(encSRE(v)) rejects] = 1− negl(n).

Privacy. The simulator S(1n) generates primes p, q as a deterministic function
of the input length n. Next, it samples g ← Zp such that gq = 1 (this can be
done in probabilistic polynomial time). If v ∈ L, S outputs (ga, gb, ga.b) for a, b
uniform in Zq and if v 6∈ L, S outputs (ga, gb, gc) for a, b, c uniform in Zq. Perfect
privacy follows from Imported Lemma 1, and re-randomization of generator g. �

6 Note that proof of Imported Lemma 1 is constructive, in that [24] given an efficient
construction the algorithm R.

C SRE for DLWE′

C.1 Preliminaries

We first state (without proof) the definition of Universal Hash Functions and the
Leftover Hash Lemma [19].

Definition 9. A family H of hash functions h : {0, 1}n → {0, 1}` is called
universal if, for every x, y ∈ {0, 1}n with x 6= y,

Pr
h∈H

[h(x) = h(y)] ≤ 2−`

Lemma 2 (Leftover Hash Lemma(LHL)[19]). Let X be a random variable
with universe U and H∞(X) ≥ k. Fix ε > 0. Let H be a universal hash family of
size 2d with output length ` = k − 2log(1/ε). Define

Ext(x, h) = h(x)

Then Ext is a strong (k, ε/2) extractor with seed length d and output length `.
Equivalently, the statistical distance ∆((h, h(x)), (h, U)) ≤ ε/2.

C.2 Hardness of DLWE′ from standard DLWE

Here, we show that hardness of DLWE′ against P/poly follows from the hardness
of Learning with Errors (LWE). LWE is the problem of determining a secret
vector s over Zq given a polynomial number of “noisy” inner products on s. The
decisional variant DLWE is to distinguish such samples from random. Formally,
the (average-case) problem is defined as:

Definition 10 ([26]). Let n ≥ 1 and p ≥ 2 be integers, and let χ be a probability
distribution on Zp. For s ∈ Znp , let As,χ be the probability distribution on Znp ×Zp
obtained by choosing a vector a ∈ Znp uniformly at random, choosing e ∈ Zp
according to χ, and outputting (a, 〈a, s〉+ e).

The DLWEp,n,χ problem is: for uniformly random s ∈ Znp , given a poly(n)
number of samples that are either (all) from As,χ or (all) uniformly random
in Znp × Zp, output 0 if the former holds and 1 if the latter holds. We say the
DLWEp,n,χ problem is infeasible if for all polynomial-time algorithms A, the
probability that A solves the DLWE problem (over s and A’s random coins) is
negligibly close to 1/2 as a function of n.

Imported Theorem 2. (LWE is hard for polynomial samples and sublinear
uniform error[13]) Let n be a security parameter, p = p(n) be an integer modulus,
m = m(n) = poly(n) be an integer with m ≥ 3n and r ≥ n1/2+ε ·m be an integer
such that r/p ∈ (0, 1/10), and ε > 0 is an arbitrary small constant. Then the
LWE problem with parameters n, p and uniformly distributed errors in [−r, r]m is
at least as hard (quantumly) as solving worst case problems on (n/2)-dimensional
lattices to within a factor O(n1+ε ·mp/r).

For our purposes, the error distribution χ is the uniform distribution upto a
maximum size of r = ε · p where ε is chosen to satisfy ε · p ≥ n1/2+ε ·m.

Now, we show that hardness of DLWE′ follows from the hardness of DLWE
with the same parameters.

Theorem 4. For security parameter n and p = n40, ε = p−0.95,m = n2, the
DLWE′ problem according to Definition 3 is not in P/poly if the DLWE problem
according to Definition 10 is hard for the same parameters.

Proof. Assume that there exists an efficient adversary B who given (A,b) ∈
Yes ∪ No (always) correctly classifies whether (A,b) ∈ Yes, or (A,b) ∈ No, we
construct an adversary D who distinguishes DLWE with non-negligible advantage
as follows.
D receives (A,b) where either (A,b ← Ams,χ) or (A,b ← Um×n × Um) and

invokes B
(
A,b

)
. If B accepts ((A,b) ∈ Yes), then D outputs 1, else D outputs 0.

We can prove (refer Lemma 3 and Lemma 6), that Pr
[
(A,b) ∈ Yes|(A,b)

$←
Ams,χ

]
= 1 − negl(n) and Pr

[
(A,b) ∈ No|(A,b)

$← Um×n × Um
]

= 1 − 2/n. It
follows that

Pr
[
D outputs 0 | (A,b)

$←Ams,χ
]

≥ Pr
[
(A,b) ∈ Yes | (A,b)

$←Ams,χ
]
· Pr

[
B accepts | (A,b) ∈ Yes

]
= (1− negl(n)) and,

Pr
[
D outputs 1 | (A,b)

$←Um×n × Um
]

≥ Pr
[
(A,b) ∈ No | (A,b)← Um×n × Um

]
· Pr

[
B rejects | (A,b) ∈ No

]
= 1− 2

n
− negl(n) ≥ 1− 3

n

Thus, D has non-negligible distinguishing advantage.

C.3 Correctness of SRE for DLWE′

In this section, we provide the details in the correctness analysis of our SRE for
DLWE′.

Correctness of Yes encodings
This follows directly by observing that if e ∈ [−pδ, pδ]m,R ∈ [−p2/3, p2/3]m×m,

r0 ∈ [−p2/3+3δ, p2/3+3δ]m×m, then Re + r0 ∈ [−p2/3+4δ, p2/3+4δ]m×m.

Correctness of No encodings

For e such that e
$← (Zp \ [−p2/3, p2/3])m, we can use the Markov inequality

to prove that with probability at least
(
1 − (p

2/3+4δ

p)
m)

= (1 − p−0.13m), the

value Re for small R, lies in (Zp \ [−p2/3+4δ, p2/3+4δ])m. Then, with nearly
the same probability, for small ro ∈ [−p2/3+3δ, p2/3+3δ], e′′ = Re + r0 lies in
(Zp \ [−p2/3+4δ, p2/3+4δ])m.

Finally, for random RA and random s′, we must exclude the probability that
RAs′ + e′′ is such, that there exists some other pair s̃′, ẽ where RAs′ + e′′ =
RAs̃′ + ẽ. For a fixed RA, we can eliminate sets |e| = pδm, |s| = pnand|b| = pm.
This is at most a fraction p(δ−1)m+n ≤ 1/p(1−δ)m. Then, with probability at least
1− 1/p, the encoding of a No instance is decoded correctly.

C.4 Privacy of SRE for DLWE′

In this section, we provide the details in the privacy analysis of our SRE for
DLWE′.

Recall that R is a matrix chosen uniformly at random in [−p2/3, p2/3]m×m.
We denote by Ri the ith row of R. Also, we denote by RA the distribution
induced by picking R as above and outputting RA for a given A. For a fixed
row Ri ∈ Zmp , we denote the distribution of picking Ri as above and outputting

RiA ∈ Znp as RiA Similarly, we denote by Re the distribution induced by picking
R as above and giving output Re for a fixed e.

Then, we establish the following lemmas.

Privacy of Yes encodings
We prove in Lemma 3, that a majority of A ∈ Zm×np are such that the distribution

RA induced by multiplying, fixed A, with random R ∈ [−p2/3, p2/3]m×m, is close
to uniform. Next, in Lemma 4 we show that for Yes instances, the distributions

induced by r0 + Re and r0, where r0
$← [−p2/3, p2/3]m, are close. Then, we can

combine the two lemmas (via the triangle inequality for statistical distance) to
obtain that the output of the simulator is close to a random encoding of an
arbitrary Yes instance.

Lemma 3. Define the sets

GoodY
∆
=
{

A, s, e : A ∈ Zm×np , s ∈ Znp , e ∈ [−pδ, pδ]m and ∆(RA,Um×n) ≤ p−0.16m
}

Yes′
∆
=
{

A, s, e : A ∈ Zm×np , s ∈ Znp , e ∈ [−pδ, pδ]m
}

Then, the density of elements of GoodY in Yes′ is overwhelming. Concretely,

|GoodY |
|Yes′|

≥ 1− p−0.16m

where m(n), p(n) are defined appropriately for large enough n.

Proof. For A ∈ Zpm×n, define hash function hA(Ri) from Zmp to Znp as hA(Ri) =
RiA. The corresponding family of hash functions {hA(·)}A is a universal hash
function family.

We observe that this family {hA(·)}A is a universal family of hash functions
from Zmp to Znp , on inputs Ri with min-entropy k = 2m log p/3. The output
length of this family is ` = n log p. Then, the Leftover Hash Lemma gives us that

∆
(
RiA,Un

)
≤ p−m/3.

Then, we can use a standard averaging argument to show at least a fraction
(1 − p−m/6) of A’s satisfy ∆(RiA,Un) ≤ p−m/6. By a union bound on the m
rows of R, for A chosen above, ∆(RA,Um×n) ≤ mp−(1/6)m ≤ p−0.16m for large
enough m, and the lemma follows7.

Lemma 4. Let r0
$← [−p2/3+3δ, p2/3+3δ] be a random variable. Let r1 = r0 + a,

for some fixed a. Let the (uniform) distribution induced by r0 be denoted by R0,

and the distribution induced by r1 be denoted by R1. Then, ∆(R0,R1) = |a|
p2/3+3δ ,

where | · | denotes the maximum-norm of vector a.

Proof. By definition of statistical distance,

∆(R0,R1) =
∑

i∈[−p2/3+3δ,p2/3+3δ]

Pr[r0 = i]− Pr[r1 = i]

=
|a|

p2/3+3δ

Thus, the statistical distance between the distribution induced by random

choice of r0
$← [−p2/3+3δ, p2/3+3δ], and r0 + Re for a fixed value of Re is |Re|

|r0| is

at most p−δm.

Finally, we can directly apply the triangle inequality to argue that the output
of the simulator is at most (p−0.05m + p−m/6)-far from the actual distribution of
the encodings of Yes instances.

Privacy of No encodings
In Lemma 5, we prove that a majority of A and e are such that the distributions

RA and Re induced by multiplying, fixed A (resp. e), with random R ∈
[−p2/3, p2/3]m×m, is close to uniform. Next, we show that a majority of vectors
(A,b) chosen uniformly at random, are No instances (and infact, have high
error according to the No decoding). Thus we establish that the support of No
instances and the support of (uniform) random (A,b) are close. Finally, we use
the fact that the distribution of No instances is uniform over their support, and
the fact that their support is close to the uniform distribution, to prove that the
simulator’s output is close to the encoding of an arbitrary No instance.

7 Recall that m = n2, p = n40, ε = p−0.95.

Lemma 5. Let R
$← [−p2/3, p2/3]m×m. Then, define the sets

GoodN
∆
=
{

A, s, e : A ∈ Zm×np , s ∈ Znp , e ∈ (Zp \ [−p2/3, p2/3])m)

∧ ∆
(
(RA,Re), (Um×n,Um)

)
= O(p−0.16m)

}
No′

∆
=
{

A, s, e : A ∈ Zm×np , s ∈ Znp , e ∈ (Zp \ [−p2/3, p2/3])m)
}
\ Yes′

Then,
|GoodN |
|No′|

= 1− p−0.16m

Proof. Fix a matrix A, such that for R
$← [−p2/3, p2/3]m×m, RA is p−0.16m-close

to uniform. From Claim 1, we know that the fraction of such A ∈ Zm×np is at
least (1− p−0.16m).

For a fixed A, we first prove that even conditioned on some matrix A′ = RA,
the matrix R still has sufficient entropy so that the hash function he(R) = Re
mod p is close to uniform with high probability (via LHL).

We claim that for any v ∈ Znp (the range of the hash function), the set of its
pre-images under hA for a fixed A chosen as above (such that RA is p−0.16-close
to uniform), has size at least as large as p2m/3−n−2. Moreover, the distribution
of the pre-images Ri is uniform conditioned on v.

We argue this by contradiction. Fix a v ∈ Znp and let Rv denote the set of

preimages of v under hA, i.e. Rv
∆
= {r ∈ Zmp | hA(r) = v mod p}. Assume for

contradiction that |Rv| < p2m/3−n−2. Now, note that the probability assigned to

v by the uniform distribution is 2p2m/3−n

2p2m/3
and by RiA is 2p2m/3−n−2

2p2m/3
. Thus

∆(RiA; Un) ≥ | Pr
RiA

(v)− Pr
Un

(v) |

=| ((2p)2m/3−n − (2p)2m/3−n−2)/((2p)2m/3) |
= Θ((2p)−n)

On the other hand, it follows from Lemma 3 that

∆(RiA; Un) ≤ p−0.16m � Θ((2p)−n)

which is a contradiction for all i ∈ [m].
Thus, we have that for a fixed hash family hA,

H∞(Ri|ARi = v) ≥ (2m/3− n−Θ(1)) log(p)

for all v and i.
Now, note that {he}e, defined as he(R) = Re mod p is a universal family of

hash functions. Applying the LHL in a manner similar to Lemma 3, we conclude
that

∆
(
Re, Um) ≤ p−0.16m

where Re is sampled conditioned on fixed RA8.
Summarizing, for at least a (1 − p−0.16m) fraction of A’s, for at least a

(1− p−0.16m) fraction of e ∈ (Zp \ [−p2/3, p2/3])m’s, (RA,Re) is p−0.16m- close
to (Um×n,Um).

For uniformly chosen s ∈ Znp , (RA,RAs + Re) is a randomized function of
(RA,Re), and the statistical distance from uniform can only decrease. Therefore
the distribution induced by (RA,RAs + Re) is p−0.16m- close to (Um×n,Um).

Lemma 6. For (A,b)
$← (Um×n,Um), Pr

[
(A,b) ∈ No

]
≥ 1 − 1/poly(p), for

some polynomial poly(·).

Proof. First we argue that if (A,b)
$← (Um×n,Um), then we may express b =

As + e so that (A, s, e) ∈ No′ defined in Lemma 5, with probability 1−Θ(1/p).
We will define the sets

SmErr
∆
= {e | e ∈ [−pδ, pδ]m}

LgErr
∆
= {e | e ∈ (Zp \ [−p2/3, p2/3])m)

Now, note that,
|LgErr|
Zmp

= (1− p−1/3)m ≥ 1− 1

n

Next, we must eliminate all (e, s) pairs per A that are such that b = As+e =
As′ + e′ for some (s′, e′) where e′ ∈ SmErr. We show that the fraction of b that
can be generated using small error is small.

Formally, since | SmErr |= pδm, we have that

| {b | (b = As + e), s ∈ Znp , e ∈ SmErr} |
| {b | b ∈ Zmp } |

=
pδm+n

pm
≤ 1/n

Hence, if (A,b)
$← (Um×n,Um), then we may express b = As + e so that

(A, s, e) ∈ No′ with probability 1−Θ(1/p).
Next, by Lemma 5,

|GoodN |
|No′|

≥ 1− p−0.16m

Since by definition, No comprises of random (A,b) such that b = As + e
where (A, s, e) ∈ GoodN , we get the claim.

Moreover, by definition of the promise problem, the distribution RA induced
by random choice of R, and the distribution Re induced by random choice of
R are close to uniform, over the support of No instances. By Lemma 6, these
supports are 1/poly(p)-close. These arguments together prove that the output of
the simulator is 1/poly(p)- close to the encoding of an arbitrary No instance.

8 Actually, the LHL is applied to e ∈ Zm
p , but (1− p−0.33) fraction of this set contains

|e| > p2/3, and at least a (1 − p−0.16) fraction of this set is such that Re is close
to uniform. Therefore, for at least a (1 − p−0.33 − p−0.16) fraction of e where e ∈
(Zp \ [−p2/3, p2/3]m), Re is close to uniform

Extending to DLWE′′.
Recall that DLWE′′ was identical to DLWE′ except setting p = 2n. The hardness

of DLWE′′ follows from the (less standard) sub-exponential hardness of DLWE.
Then, the same analysis as above, extends to prove that DLWE′′ is in (negl, negl)−
SRE. Specifically, the correctness and privacy are again O(p−m), which is now,
O(1/ exp(n)) (instead of O(1/n) for DLWE′).

D Oracle Separation between SRE and SZK

Here, we prove Theorem 2.
For this proof, we denote by P a probabilistic unbounded prover interacting

with a PPT verifier, denoted by V . An oracle-SRE is an SRE machine enc which
may query some oracle A. This is denoted by encA. We give an oracle A such that
SZKA[2] 6= SREA with ε, δ ≤ 2−|x|. We diagonalize over all oracle SRE machines
while ensuring that the language constructed via diagonalization admits a two-
round SZK protocol.

D.1 Mapping Oracles to Languages

In this part, we define a map from an arbitrary set of strings, A ∈ Σ∗, to a set of
binary strings, LA. Looking ahead, A will correspond to the strings in the oracle
set. This map is defined as follows:

1. Let an denote the characteristic vector of A ∩ Σn. That is, an is a 2n-bit
string such that for all n-bit strings i ∈ Σn, an[i] = 1 if and only if i ∈ A,
where an[i] denotes the ith bit of an.

2. Divide the first b2n/3nc bits of an into segments of length 3n. We will ignore
the remaining bits of an.

3. Of these, let sj denote the jth segment, that is, the bits 1 + 3n(j − 1) to 3nj
in an. For each string v, of length 3n, define Rv as the set of segments which
have value v: R = {i|si = v}.
◦ an is unique whenever |Rv| ≤ 1 for all strings v of length 3n. That is,

no two segments share the same value. Note that there are 23n possible
different values of length 3n, to be allotted to b2n/9nc segments.

◦ an is redundant whenever there are exactly b
√

2n/3nc strings v with

b
√

2n/3nc ≤ |Rv| ≤ b
√

2n/3nc+ 2 and |Rv| = 0 for the remaining v.
◦ an is completely redundant if it is 02

n

.

4. Last, define the binary language LA as follows:
1n ∈ LA if and only if an is unique; and x 6∈ LA if x 6= 1n for some n.

D.2 Diagonalization Over SRE

Recall from Lemma 1 that an (ε, δ)-SRE for a language is an encoding algorithm
enc that satisfies the ε-privacy and δ-accuracy requirements.

Our first step is to enumerate all oracle-SRE encoders. That is, we lexico-
graphically enumerate all PPT TMs enc such that they form an ε, δ-SRE for
some language L. Call this enumeration encA1 , encA2 , Next, we set A in rounds
such that at round i, encAi is not an (ε, δ)-SRE for LA.

Without loss of generality, assume that for sufficiently large n, encAi runs in
time at most ni on inputs of length n. We will determine A in rounds by putting
strings in and out of the oracle set. A string that has not yet been put in or out
of A will be called undetermined.

The general idea of the construction is to ensure that at round i, either
∆(enc(1ni), enc(0ni)) > 2ε or ∆(enc(1ni), enc(0ni)) < (1 − 2δ). In both cases,
encAi is not an (ε, δ)-SRE for LA.

Let mi for i = 1, 2, . . . be defined by minm∈N(9m2i+1/222−m/2 ≤ 1/2) (this
setting will be useful later). Let n1, n2, . . . be a sequence of integers defined by
n1 = max{20,m1} and ni = max(ni−1i−1 + 1,mi) for i = 2, 3, For all x not of
length ni for some i, set x 6∈ A. We set strings of length ni in rounds.

Round i: Run encAi on inputs 1ni and 0ni . Note that since enci can run for time
at most nii it cannot ask about strings of length ni+1 or greater. So when enci asks
A about a string y we have 3 cases: |y| = nj for j < i, |y| 6= nj for 1 ≤ j ≤ i+ 1
and |yi| = ni. In the first case the answer has already been determined in a
previous round and in the second case the answer was determined ahead of time.
Therefore, ∆[(encAi (1ni)), (encAi (0ni))] is determined only by answers to queries
of the third type, that is, by ani .

Denote by s(ani), the statistical distance ∆[(encAi (1ni)), (encAi (0ni))] over the
randomness of encAi , for fixed characteristic string ani . Note that 0ni 6∈ LA for
all ni. Consider the following two cases.

◦ If there exists a redundant ani such that s(ani) ≥ 2−ni , then set A according
to this ani .

◦ If no redundant ani exists with s(ani) ≥ 2−ni , then find a unique ani with
s(ani) ≤ 1 − 2−ni , and set A according to this ani . Lemma 7 shows that
such a unique ani exists with non-negligible probability. Intuitively, with
polynomially many oracle queries, encAi cannot distinguish redundant ani

from unique ani . Refer to Appendix D for the full proof.

It is easy to see that if one of the two cases is always possible, then there exists
no (ε, δ)-SRE for LA, according to Definition 1 with ε, δ = 2−ni .9 The following
Lemma establishes this.

Lemma 7. If s(ani) ≤ 2−ni for all redundant ani , then fraction of unique ani

with s(ani) < 1− 2−ni is at least 2−ni .

Refer the next section for the full proof of Lemma 7. Then, we obtain the following
main lemma.

Lemma 8. LA 6∈ SREA.

D.3 Proof of Lemma 7

In this section, we give a formal proof of Lemma 7. We prove a more general
statement, for any two fixed negligible functions d1(·), d2(·). Lemma 7 is a special
case of this proof for d1(n) = d2(n) = 2−n. Consider the contrapositive statement
of the lemma, that is, suppose there exist negligible polynomials d1(·) and d2(·)
such that s(ani) ≤ d1(ni) for all redundant ani , and fraction of unique ani with
s(ani) < 1− d2(ni) is less than 1/poly(ni) for all polynomials poly(·).
9 Note that this can, in general, be proved for ε, δ set to any fixed negligible function
negl(ni). Our proof handles this general case.

We prove the lemma by deriving a contradiction for the above statement,
in two parts. In the first claim, we show that any PPT encryptor that runs in
time at most ni and is executed 2` (where ` is a fixed polynomial of ni) times
on a fixed input set, fails to generate very biased outputs when the oracle A is
set according to ani which is unique versus ani which is redundant. Next, we
claim that if the statistical distance between enc(0ni), enc(1ni) is very low for
all redundant ani , and the statistical distance between enc(0ni), enc(1ni) is very
high for all unique ani , then the outputs are indeed very biased. We denote the
set of redundant ani by R and the set of unique ani by U .

Claim. Consider any PPT oracle machine encAi that runs in time at most ni, and
is executed 2` times alternately on inputs 0ni and 1ni and uniform randomness,
and produces an output distribution. The output produced by encAi is taken as
input by an unbounded distinguisher D (which does not have oracle access to
A), which outputs a single bit. Then for any such distinguisher D,

Pr
ani∈R

[D = 1] ≤ Pr
ani∈U

[D = 1] ≤ Pr
ani∈R

[D = 1]/(1− `2n2i+1/2
i 22−ni/2)

Proof. Fix the randomness r1, r2, . . . r2` of encAi . Once the randomness of encAi
is fixed (for inputs fixed alternatingly to 0ni or 1ni), it becomes deterministic
and depends only on ani . Consider one set of 2` computations of enc, such that
on each computation it examines k1, k2, . . . k2` segments respectively, and the
distinguisher outputs 1. Let k = k1 + k2, . . .+ k2`.

Let mR be the number of redundant ani on which encAi would produce this
computation for this input set (that is, which have the same values at those k
segments), and let mU be the number of unique ani on which encAi would produce
this computation for this input set.

Assuming without loss of generality that all the 2`.k segments are unique, we
have that

mU

|U |
= Πk−1

i=0 (23n − i)−1, and

mR

|R|
= Π l1−1

i=0 (23n − i)−1 · Pr
ani∈R

[k specified segments have unique values]

Using k ≤ 2`ni we get that the last probability10, is at least (1−`2n2i+1/2
i 22−ni/2).

Summing over all possible sets of computations where D outputs 1, then over
the randomness r:

Pr
ani∈R

[D = 1] ≤ Pr
ani∈U

[D = 1] ≤ Prani∈R[D = 1]

(1− `2n2i+1/2
i 22−ni/2)

Claim. If s(ani) ≤ d1(ni) for all ani ∈ R, and s(ani) ≥ 1− d2(ni) for a fraction
> 1 − 1/poly(ni) of ani ∈ U for all polynomials poly(·), then there exists an
(unbounded) distinguisher D which takes as input the pairs (encAi (0), encAi (1))i

10 Refer [1] for details.

for i ∈ [`] over uniform randomness of the encoders and randomly chosen ani ,
such that |Prani∈R[D = 1] − Prani∈U [D = 1]| ≥ 0.5 − negl(`) for a negligible
function negl(·). Note that the oracle A and hence ani is fixed over all inputs to
the distinguisher, also note that the distinguisher does not require oracle access
to A.

Proof. On input three samples (encAi (0), encAi (1))1, (encAi (0), encAi (1))2, (encAi (0), encAi (1))3
where all three correspond to the same (unique or redundant) A, consider
a distinguisher D′ which fixes any subset S of the union of the supports of
(encAi (0), encAi (1)) over all unique and redundant ani . The distinguisher outputs
0 if for all three pairs, one of encAi (0) and encAi (1) is in the subset S, and the
other is outside the subset S. Otherwise, the distinguisher D′ outputs 1.

Now, (for redundant A - low statistical distance), the probability of a sin-
gle instance having both encAi (0) and encAi (1) in or outside the subset S is
Prani∈R[D′ = 1] ≥ 2minp(p

2 + (1− p)2)±O(d1) ≥ 0.25±O(d1).
Therefore, the probability of this event happening in at least one out of 3

independent samples is, at least 1− (0.753 ±O(d1) ≥ 0.5 +O(d1).
However, (for unique A), Prani∈U [D′ = 1] ≤ O(d2) = negl(ni).

But when ` = 3, by Claim D.3 and our setting of ni (refer Section 4), we have
that for all distinguishers D,

Pr
ani∈R

[D = 1] ≤ Pr
ani∈U

[D = 1] ≤ 2 Pr
ani∈R

[D = 1]

Whereas, by Claim D.3, we have a distinguisher D such that: |Prani∈R[D =
1]− Prani∈U [D = 1]| ≥ 0.5− negl(n). This gives a contradiction.

D.4 Statistical Zero Knowledge

It remains to show that LA admits an oracle-SZK proof. Let L
(1)
A denote the

language LA restricted to strings of the form 1n for all n. Then following lemma
can be imported from [1].

Imported Lemma 2. [1] L
(1)
A ∈ SZK[2].

Note that all inputs x such that x 6= 1n for some n, are trivially not in LA.
On inputs of the form 1n for some n, we can invoke the interactive proof of [1]
via Imported Lemma 2. With overwhelming probability over the choice of an,
this proof is shown by [1] to have the statistical zero knowledge property11.

Thus, we obtain the following main lemma.

Lemma 9. LA ∈ SZKA[2].

This completes the proof of Theorem 2.

11 A slight modification to the diagonalization described above [1] makes it possible
to always pick a unique ani which satisfies the conditions of the diagonalization
and the extra SZK condition. This ensures that LA ∈ oracle-SZK always, while also
diagonalizing over all oracle-SRE encoders.

E ASM-based promise problem

We consider (a family of) promise problems, which is a special case of the Abelian
Subgroup Membership problem. We devise an efficient SRE for this class of
problems, and specify instances of it that are likely to be outside of P/poly.

E.1 Notation and preliminaries.

We denote by X = [x1; x2; . . . ; xt] the matrix formed by taking xi as rows and
by [x1 | x2 | . . . | xt] the matrix formed by taking xi as columns. Xi denotes the
i’th row in a matrix X.

Next, we formulate a lemma about distributions that will be useful in our
ASM construction.

Lemma 10. Let A,B denote a pair of distributions with finite supports. Let
C = pA+ (1− p)B (that is, a distribution that samples A with probability p > 0,
and samples B with probability 1 − p). Then, for every integer k1 > 0 and
ε ∈ (0, 1], there exists k2(k1, p, ε) = poly(k1, 1/p, 1/ε), monotonically increasing
in k1, 1/p, 1/ε, such that any pair of distributions D1, D2 as described below
satisfies SD(D1, D2) ≤ ε. Let k′2 ≥ k2.

◦ D1 : Generate k′2 + k1 iid. samples from C. Output a random permutation of
the samples.

◦ D2 : Generate k1 iid. samples s1, . . . , sk1 from A, and k′2 iid. samples
sk1+1, . . . , sk1+k′2 from C. Output a random permutation of the si’s.

Proof. The high level intuition is that replacing a “small” number of samples
from A by a large number of samples from C when C contains some sufficiently
large “component” of A does not change the distribution by much. The total
number of samples k2 + k1 (for a fixed k1) would need to grow the smaller p
is (the less likely it is to “run into A” in C - the worst case is when A,B have
disjoint supports).

Set some k′2 to be determined later, and let Bin denote the binomial distribu-
tion. We have SD(D1, D2) ≤ SD(Bin(p, k′2 + k1), Bin(p, k′2) + k1). To see this,
think of D′1, D

′
2 obtained from the same processes as above, but sampling from

A,B is replaced by the constants 0, 1. Now, apply the randomized function of
replacing 0 by A and 1 by B in both, to obtain D1, D2 which can only reduce SD.
Thus, it suffices to bound SD(D′1, D

′
2). The random permutation of the samples

insures that the SD between the distribution can be calculated from a ”succinct”
representation of the counts of 1’s in the sample.

Observation 1. For t < k1, Pr(A = t) = 0 < Pr(C = t). For t ∈ [k1, k1 + k′2],

we have Pr(C = t)/Pr(A = t) = pk1
∏k1
i=1(k′2 + i)/(t− k1 + i).

We conclude that Pr(C = t)/Pr(A = t) is monotone decreasing where it is
defined, and thus the graphs Pr(C) and Pr(A) over [k1, k1 + k′2] (viewed as

functions of t over R) have a single (not necessarily integral) point t′ of intersection.
Thus, we have

SD(A,C) =
∑
i≤t′

(Pr(C = i)− Pr(A = i)) +
∑
i>t′

(Pr(A = i)− Pr(C = i)) =

(1)

(
∑
i≤t′

Pr(C = i)−
∑
i>t′

Pr(C = i)) + (
∑
i>t′

Pr(A = i)−
∑
i≤t′

Pr(A = i)) (2)

We prove that for large enough k′2, t′ is close to the mean of both distributions,
both summands in Equation 2 are small. It is easy to see that

t ∈ [p(k1 + k′2), pk′2 + k1 − 1] (3)

From [10], for the binomial distribution X = Bin(n, p), Pr(X ≤ np), P r(X ≥
np) = 1/2±Θ((np)−0.5). That is, the distribution Bin(n, p) is almost symmetric
about its mean np. Here Θ hides a global constant, and Θ((np)−0.5) is the
probability of obtaining the value T with maximal probability. It is known that
T equals np rounded either up or down, or both. That is, we have.

Claim. The maximum weight of a single value t (may occur for 1 or two values
around the mean) in X = Bin(n, p) occurs with probability Θ((np)−0.5).

Proof. To prove the claim, observe that by Chernoff bounds Pr(|X −np| ≥ γ) ≤
e−γ

2/3np. Taking γ = (np)0.5, we get a bound of 0.72. Thus, a T with maximal
probability has weight at least 0.14(np)−0.5.

Thus, each of the two summands in Equation 2 is bounded by

Θ(k1(pk′2)−0.5). (4)

(the probability for each t in both distributions is bounded by 0.14(pk′2)−0.5, 0.14(p(k′2+
k1)−0.5) respectively). Let c denote the constant implicit in Equation 4. By Equa-
tion 3, there are at most 2k′1 elements of the form Pr(C = t) (Pr(A = t)) over
the two summands. Thus, by Claim E.1, taking k′2 so that 4ck1p(k

′
2 +k1)−0.5 ≤ ε

suffices yields SD(D′1, D
′
2) ≤ ε. Letting k′2 ≥ k1/3 and rearranging we get

k′2 ≥
64c2k21
ε2p .

E.2 Problem Specification.

The problem family (ASMG,H
n)n is specified by G where (G, ·) is a finite abelian

group, and a subgroup H of G, fixed for every length parameter n. We have
G/H ∼= Ztq for a prime q. The input is an element x ∈ G (that is, Gn, Hn is a
sequence of groups specifying one instance of the problem, we often omit the
subscript n when clear from the context). We assume:

1. The group element x is specified by an encoding (a one to one mapping, not

necessarily efficient) E : Gn → {0, 1}p(n), for some monotonically increasing
n ≤ p(n) ∈ poly(n). There exists a PPT algorithm Mul(·) to that multiplies
encoded elements of G (giving in a valid encoding of the result).

2. There exists a PPT algorithm Gen that takes 1n as input and outputs a
generator set (h1, . . . , hl) (for arbitrary l defined according to H), for H.
If t > 1, also compute a g1, . . . , gt ∈ Gn, such that I(g1), . . . , I(gt) are
independent vectors in Ztq,12 where I is some isomorphism from G/H to Ztq,
and the gi’s are viewed as coset representatives.

3. x is promised to be in the Image of E.

Yesn = {x : x ∈ E(H)}
Non = {x : x ∈ E(G)/E(H)}

Yes = ∪nYesn,No = ∪nNon.

Remark 1. Requirements 2,3 in the above definition are needed for our SRE to
work. Settling for non-uniform SRE, these requirements can be dropped, as each
set of generators is of size ≤ n, and can be given as advice to the SRE encoder.

We stress that ASMG,H is in fact a framework for defining promise problems,
each possessing properties as above. Some of these problems are easy and some
are hard (under certain computational assumptions). Our SRE will work for any
instance of ASMG,H , while hardness for P/poly is proved for a specific instance
(a language) in the sequel.

E.3 SRE Construction

In this section we provide a non-uniform SRE for the Abelian Subgroup Mem-
bership problem.

Construction 1 (SREε). Fix some problem (sequence) ASMG,H
n (with associated

PPT algorithms E,Mul). In all the subsequent discussion, we consider a specific
(sufficiently large) n. For t > 1, let I denote some isomorphism between G/H and
Ztq for which Gen outputs g1, . . . , gt for which I(g1), . . . , I(gt) are independent
vectors in Ztq.

Our SRE will make use of the following procedures:

◦ samp(y1, ...yl): A PPT taking a generator set y1, . . . , yl of a subgroup Y of
G, and outputs a random element of Y . Here and elsewhere we slightly abuse
notation by writing elements of G, and products over G, meaning that these
are encodings of elements of G. x · y is used as a shorthand for Mul(x, y). 13

12 Here the gi’s are viewed as elements of G/H. At the cost of slightly modifying the
construction, and complicating the analysis, the independence restriction may be
replaced with merely requiring that each gi is sampled at random from G (G/H).

13 This can be done efficiently by returning
∏

j∈f (yj)ij , where the ij ’s are i.i.d uniform
over [|G|] (or [|Y |], if known.

◦ samp-ind(l, g1, . . . , gt) : A PPT taking an integer l, and gi’s where I(g1), . . . , I(gt) ∈
Ztq are independent, and outputs l elements s1, . . . , sl of G, so that the I(si)’s
are random independent vectors in Ztq.14

encε(x) : We begin by calling Gen(1n) (where n is efficiently extracted from
x). Let h1, . . . , hl denote the generators of H, and g1, . . . , gf the generators of G
returned. If f = 0, set t = 1, otherwise, set t = f .

We first address the case t = 1 which is particularly simple. Here encε(x)

simply outputs xi · samp(h1, . . . , hl), where i
$← [q− 1]. This is easily seen to yield

a perfectly correct and private SRE for the proble (or a negligible ε assuming we
can only sample bits, and p− 1 is not a power of 2). See analysis of a concrete
instantiation of this case in Section E.4 for details. From now on we focus on
the case t > 1. SREε is specified as follows:

We define the procedure SampMat(x) as follows.

1. Sample (x1, ..., xt−1)
$← samp-ind(g1, . . . , gt). Set xt = x, and define x =

(x1, . . . , xt). Denote X = I(x) , [I(x1); . . . ; I(xt)] ∈ Zt×tq (no need to actually
compute X, which may be inefficient).

2. Sample l1, ..., lt ∈ Ztq and denote R = [l1; ...; lt] ∈ Zt×tq .

For i ∈ [t], let x′i =
∏
j∈[t]

(xj)
li,j · samp(H).

3. Output x′ = (x′1, ..., x
′
t). Denote X′ = I(x′).

Now, let pq denote the fraction of invertible t × t matrices in Zt×tq (as t goes
to infinity). If q > 4 · 2n, set k1 = 1, k2 = 0 (this will result in a single call
to SampMat(x)). Otherwise, set k1 = dlog(1−p2q)(2

−n)e, k2 = k2(k1, 0.14/q, ε) as

specified in Lemma 10.

1. For w in [k1], let x′w
$← SampMat(x) (with fresh randomness every time).

2. For w ∈ [k2], let x′k1+w
$← SampMat(1) (again, with fresh randomness).

3. Output a uniformly picked permutation y = (y1, . . . ,yk1+k2) of x′1, . . . ,x
′
k1+k2

.

dec((y1, . . . ,yk1+k2)): Check whether some I(yi) is of full rank (as an element
of Zt×tq). If yes, reject, otherwise accept.

Theorem 5. For every promise problem (sequence) ASMG,H
n (with associated

algorithms E,Mul), and ε(n) = 1/poly(n), SREε from Construction 1 is a
(ε, 2−n)-SRE for the problem.

In a search of instances of ASM separating SRE from P/poly, note that
ASMG,H

n is a candidate only if gcd(|G|/|H|, |H|) > 1 for infinitely many n’s, since
otherwise (x|H| =? 1) tests for membership in H.

14 This can be done efficiently by sampling an non-singular matrix [m1; . . . ;ml] ∈ Zl×t
q ,

and output
∏l

i=1 s
m1,i

i , . . . ,
∏l

i=1 s
ml,i
i (this procedure introduces a negligibly small

error, due to the need to sample a non-singular matrix). This special procedure is
only needed where q is small relatively to n. This is so, as making l independent calls
to samp(g1, . . . , gt), where the I(gi)’s generate G/H already yields what we need w.p.
Ω(1/q).

Proof. Before delving into proof details, let us provide a short overview of the
ideas behind the construction for t > 1. The first idea is that given a group
element g ∈ G, and a random element in h ∈ H, g · h reveals precisely the coset
of x. We multiply by a random element of H where necessary. This idea has
previously been used in the literature [2] for QR.

As to hiding the coset of x (except for whether it equals H), we start with the
following basic construction (corresponds to SampMat(x) in our construction).
One case is that q is very large. In this case, we observe that sampling random
t − 1 elements of G, (x1, . . . , xt−1), and adding xt = x to the set, results in
a basis I(x1), . . . , I(xt) of Zt×tq . We can view these vectors as a matrix X =
[I(x1); . . . ; I(xt)] over Zt×tq (although I is implicit, and encε never actually
evaluates it). We can effectively multiply this matrix by a vector r ∈ Ztq by
computing

∏
i x

ri
i , where ri is viewed as an element of Z. Similarly, we can

multiply by a matrix R, viewed as a sequence of column vectors. Picking R to be
a random matrix in Zt×tq , we obtain that RX is an SRE for large q. To see this,
we observe:

◦ If x /∈ H, X is non-singular and thus RX is a random matrix with probability
≥ 1− 2/q. Thus, a uniform matrix output by a simulator given b = 0 results
in an error of at most 2/q. As, again, a random matrix is non-singular with
probability 1− 2/q, the decoder detects a full rank matrix RX, and rejects
with probability ≥ 1− 4/q.
◦ For x ∈ H, I(x) is singular, so a matrix as above is distributed in the same

way for all x ∈ H, so we get perfect privacy. Perfect correctness follows from
the fact that X (and thus RX) has rank (t− 1) < t.

To conclude, we get a (O(1/q), O(1/q))-SRE using the above construction. How-
ever, the parameters are quite bad if q is small (worst for q = 2). In this case,
we augment the above construction using Lemma 10. More precisely, we repeat
SampMat some k1 = O(n) times to amplify correctness correctness to, say,
2−n. Now, to improve privacy, we “mix in” sufficiently many - k2 instances of
SampMat(1), and randomly permuting all instances.

Simulator. The simulator Simε takes as input the size parameter 1n and a single
bit b, where b = 0 denotes x 6∈ H, b = 1 denotes x ∈ H. It proceeds by.

◦ Input b = 0.
1. If q > 4 · 2n, set k1 = 1, v = 1, k2 = 0. Otherwise, Let pS =

∏t−1
i=1 1− qi−t.

Sample v
$←Bin(k1, pS), k1 = dlog1−p2q (2

−n)e, k2 = k2(k1, 0.14/q, ε). For

every i ∈ [v].
(a) Generate a pair X,R, where X = [I(x1); . . . ; I(xt)] is (isomorphic

via I to) a random invertible matrix in Zt×tq , and R is a random
matrix in Zt×tq .15

(b) For i ∈ [t], let x′i =
∏
j∈[t]

(xj)
Ri,j · samp(H).

15 This computation is generally inefficient, done by first picking a matrix X ∈ Zt×t
q ,

and then inverting it via I, which may not be efficiently computable, to obtain x.

(c) Set x′i = [x′1; . . . ;x′t].

2. For all i ∈ [k1 + k2 − v], sample x′v+i
$←Mat(1) uniformly at random.

3. Output a random permutation of the x′i’s.

◦ Input b = 1. Output encε(1).

Analysis of simulation and correctness.

The case x ∈ H. In this case, the simulator simply runs encSRE(1). To observe
perfect privacy for this case, we note that the output of encSRE(x) depends only
on the coset of G/H falls in, rather then the concrete coset member. This is due
to multiplying by samp(H) Correctness in this case is perfect, as I(x) = 0 for all
isomorphisms, and thus rank(yi) < t for all i with probability 1 over the choices
of encε(x) and dec rejects.

The case x /∈ H. The case x /∈ H is more complicated. As observed already, we
may focus only on the coset of G/H that x belongs to, as the concrete member
of the coset that x constitutes is completely “erased” by encε(x). On a high level,
there are two cases. In a simpler case, q is large (q > 4/ε). Then, X′ generated
in SampMat(x) is a random non-singular matrix Zt×tq with probability ≥ 1− 2/q.
Thus, letting the simulator output a random full-rank matrix X on input (1n, 0)
results in privacy error of at most 2/q. Correct decryption occurs when both
X,R generated by SampMat(x) are of full rank. By union bound, this occurs
with probability ≥ 4/q. Thus, we have obtained a (4/q, 2−n)− SRE.

However, the 4/q privacy error bound becomes significant for small q (and
trivial for q = 4). More generally, even though a tighter analysis yields some non-
trivial guarantees starting q = 2, the privacy error is Θ(1/q). Thus, for 4/q > ε,
we need a more complicated technique. The first idea is to repeat SampMat(x)
k1 times to amplify correctness to the proper level 2−n. However, this can only
increase the privacy error. Luckily, we can remedy this situation by using Lemma
6, and “mixing in” some k2 � k1 samples from a suitable distribution C, which
is independent of x. Details follow.

Claim. There exist distributions A′,D,B, where D is the same for all x /∈
H and efficiently samplable, such that SampMat(1) = p1A′ + (1 − p1)B and
SampMat(x) = p2D + (1− p2)A′. The probabilities p1, p2 are also independent
of x, and p1 ≥ 0.14/q.

The observations in Claim E.3 allow us to use Lemma 10. In particular, it
is critical for encoding efficiency that p1 is not too small. More precisely, to
simulate encε(x), take k′1 = dlog1−p2q εe samples s1, . . . , sk′1 of Ber(p2). Replace

all 1’s by independent samples of D, and 0’s by samples of SampMat(1). Let
k2 = k2(k′1, p1, ε). Generate k2 samples sk′1+1, . . . , sk′1+k2 of SampMat(1). Output
a random permutation of s1, . . . , sk1+k2 . The locations and distribution of samples
from D are distributed as in encε(x). Applying Lemma 10 with k1 = v, where v
is the (unknown) number of 0’s in the above experiment, p = p1, A = A′ and
C = SampMat(1) results in a simulation error of ε.

In particular, not knowing k1 precisely is not a problem, since k2 is monotoni-
cally increasing in k1 (and we could only overestimate k1). Similarly, a bound on
p1, as we use above, rather then an exact value suffices for the same reason. Note
that the simulation does not require knowing the distribution A′, as Lemma 10
allows us to replace instances of A′ with instances of SampMat(1)!

It remains to prove Claim E.3. Let Goodx denote the event that X has rank
t in SampMat(x). As I(x1), . . . , I(xt−1) are independent vectors, its complement
Goodx is exactly the event where I(x1), . . . , I(xt−1) span I(x) for x /∈ H. Let A′
denote the distribution of SampMat(x) conditioned on Goodx, and C ,Mat(1).
It is easy to see that Mat(x) = p2D + (1 − p2)A′, where D is the uniform
distribution over all matrices in Zt×tq (X′ = RX, conditioned on Goodx). Also, it

is easy to see that p2 = PrMat(x)(Goodx) =
∏t−1
i=1 1− qi−t (the precise value of

p2 is needed for the simulation).
Now, to see that Mat(1) = p1A′+(1−p1)B for p1 ≥ pq, we show that the distri-

bution SampMat(1) conditioned on the event BadSim = I(x) ∈ span(I(x1), . . . , I(xt−1))
equals A′.

As to bounding p1, we show that BadSim occurs with probability p1 ≥ 0.14pq.
BadSim occurs if, for instance, the first t− 2 I(xi)’s are independent, and I(xt−1)
is of the form aI(x) + b, for b ∈ span(I(x1), . . . , I(xt−2)), a 6= 0. The probability
of this event is p1 ≥ pq(q − 1)/q2 ≥ pq/2q ≥ 0.14/q (for all x /∈ H).

It remains to prove that Mat(1) conditioned on BadSim equals A′. We observe
that A′ is of the form RX, where X is uniform over Zt×tq where Xt = x and the
other rows span x (denote the support X by Sx), and R is a random matrix.
Mat(1)|BadSim is uniform over Zt×tq where Xt = 0 and the other rows span x
(denote the support of X by S1), and R is a random matrix. We show that the
exists a bijection Mx from Sx to S1 such that Mx(X) = Tx,XX, where Tx,X is an
invertible matrix. This way, the conditional distributions conditioned on X = V
in Mat(x),Mat(1) respectively RV and R(Tx,VV) = (RTx,V)V have the same
distribution for all V ∈ Sx. Thus, Mat(1)|BadSim equals A′, as required. The
mapping Mx(X) is defined by Tx,X = [e1; . . . , et−1; l], where l satisfies lt = −1,
and (l1, . . . , lt−1) are the coefficients of the Xi’s for i < t that yields Xt. Clearly,
Tx,X is invertible, and Mx is indeed a bijection.

Remark 2. The above construction extends for general finite G and H CG. The
only required adaptation is a procedure samp(H) for H which is not necessarily
Abelian. An Abelian H can be perfectly sampled given any generating set of it.
However, we can use a more sophisticated algorithm of [7] for sampling general
finite groups Ω(N)-close to uniformly given a set of generators for the group, and
a bound N on the group’s size. The sampling procedure is efficient in log(N).

E.4 Candidate Language

We define a language L which is an (extension of an) instance of ASM.
Let q denote the smallest, say, n/10-bit prime. For a length parameter n, let

p1 = m1q
t1 +1, p2 = m2q

t2 +1 denote the two smallest distinct n-bit primes of this
form where both ti > 0. We define G = G1×G2, where Gi is the order-q subgroup

of Z∗pi . Elements of G are encoded by pairs of integers (a1, a2) ∈ [p1−1]× [p2−1]
satisfying aqi = 1 mod pi for both i ∈ [2] (that is, this set of (a1, a2) equals Im(E)).
Multiplication in G is done by modular element-wise multiplication, which is
clearly efficient assuming finding p1, p2 is efficient (this is Mul). In particular,
p1, p2 are re-computed given an input x = (x1, x2), based on n = |x1|, in order to
evaluate Mul(x, y). H is generated by a fixed (g1, g2), where each gi is a generator
of Gi (determined in a fixed way, as we will see below). Yesn,Non are as induced
by the specification of ASMG,H .

To complete the specification of the promise problem, it remains to specify a
PPT algorithm GenParams(1n) for finding q, p1, p2, g1, g2 (to make Mul efficient),
and Gen(1n). To find q start from 2n/10−1+1 until finding primes with the suitable
properties. To find p1, p2, start from the smallest i ≥ 2n+1+1 which is of the form
aq+ 1, and iterate in steps of q, until finding two primes p1, p2 of the form above.
These procedures are efficient based on strong, but widely believed conjectures on
the maximal gaps between consecutive primes in arithmetic progressions starting
at x being at most polylog(x) steps apart. Namely

Conjecture 1 (Cramer). Let a, q > 0 be integers with gcd(a, q) = 1. Then there
exists a constant c, such that every pair of consecutive primes in the sequence
starting at qx+ a are at distance O(logc x). In an idealized model where primes
in [x] are distributed uniformly this gap can be proved with c = 2 [12] for all
fixed (a, q). This model of [12] is very strong, but is widely believed to give the
correct prediction, and has empirical support [25].16

We apply this conjecture with (a, q, x) = (1, 1, 2n/10) to find q, and (a, q, x) =
(1, q, 2n) to find p1, p2. Now, gi = find-gen-mod(pi, q), where find-gen-mod is
defined as follows.

Let p = qtm + 1 where t > 0, gcd(m, q) = 1. For each i ∈ [log p8], check
whether g = i(p−1)/q 6= 1:

1. If so, output g.
2. Otherwise, continue.

Clearly, this procedure is efficient. It always returns a proper generator of Gi
assuming the ERH. This holds, as the range [log p8] always contains a generator
i of Z∗p for a prime p [31]. Thus, Gen outputting such (g1, g2) is efficient assuming
the ERH.

To make the above promise problem a language, observe that it is easy to
efficiently check that x is in E(G) for some n. If not x = (x1, x2), where the
xi’s are integers of the same length n, then it is in L. Otherwise, check whether
x = (x1, x2) is in support(E), by computing q, p1, p2 from 1|x|, and checking that
xq = 1 mod pi.

We conclude that the promise problem can be turned into a language by
putting all malformed inputs x in L, and setting L = ∪nYesn.

16 This is to compare with the PNT for arithmetic progressions, that only states that
the overall density of such primes is Ω(1/ log x). The maximal gaps assuming the
ERH are only bounded by Õ(

√
x) [18].

Thus, it has a (tweaked) SRE based on our construction E.3 for the corre-
sponding ASM instance. This (tweaked) ASM-based SRE for it checks whether
x ∈ E(G). If so, applies the SRE from E.3 to x. Otherwise, replaces x by (1, g2),
say, which is in Non = E(G)/E(H). Apply the SRE in E.3 to it.

The explicit construction for the special case is included here for completeness,
and to build intuition by considering a special simple case.

Construction 2.

◦ enc(x = (x1,x2)): Generate parameters p1, p2, q, g1, g2 from 1|x1| as explained

above. Check that x
(pi−1)/q
i = 1 mod pi for i ∈ [2]. If not, replace x by (1, g2).

Pick i ∈ [q − 1], s ∈ [q] at random. Output xi · (g1, g2)s = (g1
sxi1, g2

sxi2).
◦ dec(out): Check whether out ∈ H: if out = (g1, g2)i for some i, output 1.

Otherwise, output 0.

As explained in the following section, this is a perfect SRE for the problem.
The case of a malformed x is handled by replacing it by (1, g2), which is in
E(G)/E(H).

It is perfectly correct, as the mapping xi for i ∈ [q − 1] maps H onto itself,
and permutes the other cosets of G/H. multiplying by (g1, g2)s (an element of
H) does not change the coset. As to privacy, the mapping xi already hides coset
(of G/H) information except for whether x ∈ H (by uniformity of i in [q − 1]).
Now, (g1, g2)s for a random s ∈ [q] is uniform over H, so multiplying xi by it
wipes the information about which coset member x was.

This language is not in P/poly based on the following assumption, which is
an instance of a modified co-DDH assumption [16], to which we refer as the
mod-co-DDH assumption. Let p1, p2, g1, g2 be as above. Then, the language
L = ∪nLn, where

Ln = {x = (y, z)|there exists a ∈ [q], such that g1
a = y mod p1, g2

a = z mod p2}

is not in P/poly. This assumption is related to DDH, with p1, p2 being different.
It is potentially weaker, as g1, g2 here are fixed, instead of being part of the input
(observe that for p1 = p2, the assumption does not hold).

Theorem 6. Assume the ERH, and Conjecture 1. Then there exists (a sequence
of) groups G,H (with associated algorithms Mul,E), such that ASMG,H extended
to a language LG,H by placing malformed inputs in LG,H has a (0, 0)-SRE. LG,H
is not in P/poly under the mod-co-DDH assumption.

Remark 3. The above language falls into a simple case for our ASM construction,
where G/H is cyclic (t = 1). The full(er) power of our construction comes out for
a modified language where G = Lp1 × Lp2 × Lp3 , and H is generated by some
(h1, h2, h3). In this case G/H ∼= Z2

q. In this case, a set of generators g1,g2 of G
that generates G/H(∼= Z2

q) (for some isomorphism I) is found by picking a pair
of random elements in G (succeeds w.p (1− 1/q)(1− 1/q2) = 1− o(n−1)). Still,
as q is large, even this is not the hardest case, which occurs when G/H = Ztq
where t > 1 and q is small.

A non-uniform SRE for an ASM-based language. In the non-uniform setting,
we have further freedom to pick q, p1, p2, g1, g2 as some numbers of n/10 and n
bits respectively such that pi = qmi + 1, and gi generating the corresponding
Gi (there are exp(n) sequences for a given n). Thus, hard-coding them into enc
unconditionally results in a non-uniform SRE for the induced language Ln based
on these parameters, as constructed above. The induced family of languages
defined by each parameter sequence offers a broader range of candidates for a
language Ln outside of P/poly. Thus, potentially, the assumption mod-co-DDH
can be relaxed as follows. enh-mod-co-DDH states that there exists a sequence
of (q, p1, p2, g1, g2) as above, where such that the corresponding language Ln is
outside of P/poly. We obtain the following theorem.

Theorem 7. There exists (a sequence of) groups G,H (with associated al-
gorithms Mul,E), such that ASMG,H extended to a language LG,H by adding
malformed inputs to LG,H has a (0, 0)-SRE. LG,H is not in P/poly under the
enh-mod-co-DDH assumption.

	Statistical Randomized Encodings: A Complexity Theoretic View

