
Lattice Basis Delegation in Fixed Dimension and

Shorter-Ciphertext Hierarchical IBE

Abstract

We present a technique for delegating a short lattice basis that has the advantage of keeping
the lattice dimension unchanged upon delegation. Building on this result, we construct two
efficient hierarchical identity-based encryption or HIBE schemes (with and without random
oracles) that generate shorter ciphertexts than earlier lattice-based constructions. We prove
security from classic lattice hardness assumptions.

1 Introduction

Hierarchical identity based encryption (HIBE) is a public key encryption scheme where entities are
arranged in a directed tree [HL02, GS02]. Each entity in the tree is provided with a secret key
from its parent and can delegate this secret key to its children so that a child entity can decrypt
messages intended for it, or for its children, but cannot decrypt messages intended for any other
nodes in the tree. This delegation process is one-way: a child node cannot use its secret key to
recover the key of its parent or its siblings. We define HIBE more precisely in the next section.

While the first HIBE constructions used bilinear maps [GS02, BB04, BW06, BBG05, GH09,
Wat09], recent constructions are based on hard problems on lattices [CHK09, Pei09b]. The secret
key in these lattice-based constructions is a “short” basis B of a certain integer lattice L. To
delegate the key to a child the parent creates a new lattice L′ derived from L and uses B to
generate a random short basis for this lattice L′. Unfortunately, in all known constructions the
dimension of the child lattice L′ is larger than the dimension of the parent lattice L. As a result,
private keys and ciphertexts become longer and longer as one descends into the hierarchy.

Our results. We first propose a new delegation mechanism that operates “in place”, i.e., with-
out increasing the dimension of the lattices involved. We then use this delegation mechanism to
construct two HIBE systems where the lattices used have the same dimension for all nodes in the
hierarchy. Consequently, private keys and ciphertexts in these systems are the same length for all
nodes in the hierarchy and are much shorter than in previous lattice-based HIBE systems. Our first
construction, in Section 5, provides full HIBE security in the random oracle model. Our second
construction, in Appendix J, provides selective security in the standard model, namely without
random oracles. We prove security of both constructions using the classic learning with errors
(LWE) problem [Reg05].

To briefly explain our delegation technique, let L be a lattice in Zm and let B = {b1, . . . , bm}
be a short basis of L. Let R be a public non-singular matrix in Zm×m. Observe that the set
B′ := {Rb1, . . . , R bm} is a linearly independent set in the lattice L′ := RL. If all entries of the
matrix R are “small” scalars then the norm of the vectors in B′ is not much larger than the norm
of vectors in B. Moreover, using standard tools we can convert the set B′ into a basis of L′ and
then “randomize” the basis without increasing the norm of the vectors by much. The end result is

1

a random short basis of L′. This idea suggests that by associating a public “low norm” matrix R
to each child, the parent node can delegate its short basis B to a child by multiplying the vectors
in B by the matrix R and randomizing the resulting basis. Note that since the dimension of L′ is
the same as the dimension of L this delegation does not increase dimensions.

One might wonder if the child can simply multiply its basis vectors B′ by R−1 in an attempt
to get back a short basis of the parent’s lattice L. However, for most vectors v ∈ Zm the norm of
R−1v is much larger than the norm of v and this attempt fails to produce a short basis of L.

Proving security of this approach is quite technical. The key ingredient (Section 4.2) is a method
that given a lattice L (for which no short basis is given) outputs a “low norm” matrix R, a delegated
lattice L′ and a short basis B′ of L′ such that L′ = LR. In other words, if we are allowed to choose
a low norm R then we can build a delegated lattice L′ for which a short basis is known even though
no short basis is given for L. This enables us to publish matrices R so that during the simulation
certain private keys are known to the simulator while others are not. The key technical challenge
is to show that these simulated matrices R are distributed as in the real system (Section 3).

As part of our security analysis we provide in Appendix F new bounds on the probability that
vectors sampled from a discrete Gaussian distribution are linearly independent over Z and over Zq.

2 Preliminaries

Notation. Throughout the paper we say that a function ε : R≥0 → R≥0 is negligible if ε(n)
is smaller than all polynomial fractions for sufficiently large n. We say that an event happens
with overwhelming probability if it happens with probability at least 1 − ε(n) for some negligible
function ε. We say that integer vectors v1, . . . , vn ∈ Zm are Zq-linearly independent if they are
linearly independent when reduced modulo q.

2.1 Hierarchical IBE

We first review the definitions of IBE and HIBE. Recall that an Identity-Based Encryption system
(IBE) consists of four algorithms [Sha85]: Setup, Extract, Encrypt, Decrypt. The Setup algorithm
generates system parameters, denoted by PP, and a master key MK. The Extract algorithm uses
the master key to extract a private key corresponding to a given identity. The encryption algorithm
encrypts messages for a given identity (using the system parameters) and the decryption algorithm
decrypts ciphertexts using the private key. In a Hierarchical IBE [HL02, GS02], identities are
vectors, and there is a fifth algorithm called Derive. A vector of dimension ` represents an identity
at depth `. Algorithm Derive takes as input an identity Id = (I1, . . . , I`) at depth ` and the private
key SKId|`−1 of the parent identity Id|`−1 = (I1, . . . , I`−1) at depth `− 1 > 0. It outputs the private
key SKId for identity Id. For convenience, we sometimes refer to the master key as the private key at
depth 0, given which algorithm Derive performs the same function as Extract. The Setup algorithm
in an HIBE scheme takes the maximum depth of the hierarchy as input.

Selective and Adaptive ID Security. The standard IBE security model of [BF01] defines the
indistinguishability of ciphertexts under an adaptive chosen-ciphertext and chosen-identity attack
(IND-ID-CCA2). An adaptive chosen-identity attack means that the adversary is allowed to narrow
in adaptively to the identity it wishes to target (i.e., the public key on which it will be challenged).
A weaker notion of IBE security given by Canetti, Halevi, and Katz [CHK07] forces the adversary

2

to announce ahead of time the public key it will target, which is known as a selective-identity attack
(IND-sID-CCA2). We refer to such a system as a selective identity, chosen-ciphertext secure IBE.

As with regular public-key encryption, we can deny the adversary the ability to ask decryption
queries (for the target identity), which leads to the weaker notions of indistinguishability of ci-
phertexts under an adaptive chosen-identity and chosen-plaintext attack (IND-ID-CPA) and under
a selective-identity chosen-plaintext attack (IND-sID-CPA) respectively.

The games used to define secure HIBE are listed in Appendix A.

2.2 Statistical distance

Let X and Y be two random variables taking values in some finite set Ω. Define the statistical
distance, denoted ∆(X;Y), as

∆(X;Y) :=
1
2

∑
s∈Ω

∣∣Pr[X = s]− Pr[Y = s]
∣∣

We say that X is δ-uniform over Ω if ∆(X;UΩ) ≤ δ where UΩ is a uniform random variable over Ω.
Properties of the statistical distance that we will need are presented in Appendix B.

2.3 Integer Lattices

Definition 1. Let B =
[
b1
∣∣ . . . ∣∣ bm] ∈ Rm×m be an m×m matrix whose columns are linearly

independent vectors b1, . . . , bm ∈ Rm. The m-dimensional full-rank lattice Λ generated by B is the
set,

Λ = L(B) =
{
y ∈ Rm s.t. ∃s ∈ Zm , y = B s =

m∑
i=1

si bi

}
Here, we are interested in integer lattices, i.e, when L is contained in Zm. We let det(Λ) denote

the determinant of Λ and let Λ∗ denote the dual lattice of Λ (see [Lov86]).

Definition 2. For q prime, A ∈ Zn×mq and u ∈ Znq , define:

Λq(A) :=
{
e ∈ Zm s.t. ∃s ∈ Znq where A> s = e (mod q)

}
Λ⊥q (A) :=

{
e ∈ Zm s.t. Ae = 0 (mod q)

}
Λuq (A) :=

{
e ∈ Zm s.t. Ae = u (mod q)

}
Observe that if t ∈ Λuq (A) then Λuq (A) = Λ⊥q (A) + t and hence Λuq (A) is a shift of Λ⊥q (A) .
It is also easy to show that Λq(A)∗ = (1/q)Λ⊥q (A).

2.4 The Gram-Schmidt Norm of a Basis

Let S be a set of vectors S = {s1, . . . , sk} in Rm. We use the following standard notation:

• ‖S‖ denotes the L2 length of the longest vector in S, i.e. ‖S‖ := maxi ‖si‖ for 1 ≤ i ≤ k.

• S̃ := {s̃1, . . . , s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk
taken in that order.

3

We refer to ‖S̃‖ as the Gram-Schmidt norm of S.

Micciancio and Goldwassser [MG02] showed that a full-rank set S in a lattice Λ can be converted
into a basis T for Λ with an equally low Gram-Schmidt norm.

Lemma 3 ([MG02, Lemma 7.1]). Let Λ be an m-dimensional lattice. There is a deterministic
polynomial-time algorithm that, given an arbitrary basis of Λ and a full-rank set S = {s1, . . . , sm}
in Λ, returns a basis T of Λ satisfying

‖T̃‖ ≤ ‖S̃‖ and ‖T‖ ≤ ‖S‖
√
m/2

Ajtai [Ajt99] showed how to sample an essentially uniform matrix A ∈ Zn×mq with an associated
basis SA of Λ⊥q (A) with low Gram-Schmidt norm. We use an improved version of Ajtai’s basis
sampling algorithm from [AP09]. The following follows from Theorem 3.2 of [AP09] taking δ := 1/3.
The theorem produces a matrix A statistically close to uniform in Zn×mq along with a short basis.
Since m is so much larger than n, the matrix A is rank n with overwhelming probability. Hence,
we can state the theorem as saying that A is statistically close to a uniform rank n matrix in Zn×mq .

Theorem 4. Let q ≥ 3 be odd and m := d6n log qe. There is a probabilistic polynomial-time
algorithm TrapGen(q, n) that outputs a pair (A ∈ Zn×mq , S ∈ Zm×m) such that A is statistically
close to a uniform rank n matrix in Zn×mq and S is a basis for Λ⊥q (A) satisfying

‖S̃‖ ≤ O(
√
n log q) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

Notation: We let σTG := O(
√
n log q) denote the maximum (w.h.p) Gram-Schmidt norm of a

basis produced by TrapGen(q, n).

2.5 Discrete Gaussians

Definition 5. Let L be a subset of Zm. For any vector c ∈ Rm and any positive parameter
σ ∈ R>0, define:

ρσ,c(x) = exp
(
−π ‖x−c‖

2

σ2

)
: a Gaussian-shaped function on Rm with center c and parameter σ,

ρσ,c(L) =
∑

x∈L ρσ,c(x) : the (always converging) discrete integral of ρσ,c over L,

DL,σ,c : the discrete Gaussian distribution over L with center c and parameter σ,

∀y ∈ L , DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L)

For notational convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ. When σ = 1 we write
ρ to denote ρ1.

The distribution DL,σ,c will most often be defined over the lattice L = Λ⊥q (A) for a matrix
A ∈ Zn×mq or over a coset L = t + Λ⊥q (A) where t ∈ Zm. A few properties of discrete Gaussiants
that we will need are presented in Appendix D.

4

2.6 Sampling from a discrete Gaussian

Gentry et al. [GPV08] construct the following algorithms for sampling from discrete Gaussians.
Let q ≥ 2 and let A be a matrix in Zn×mq . Let TA be a basis for Λ⊥q (A) and σ ≥ ‖T̃A‖ · ω(

√
logm).

Let c ∈ Rm, and u ∈ Znq . Then:

• Algorithm SampleGaussian(A, TA, σ, c) returns x ∈ Λ⊥q (A) drawn from a distribution statisti-
cally close to DΛ,σ,c which is a discrete Gaussian centered at c.

• Algorithm SamplePre(A, TA, u, σ) returns x ∈ Λuq (A) sampled from a distribution statistically
close to DΛuq (A),σ.

Recall that if Λuq (A) is not empty then Λuq (A) = t + Λ⊥q (A) for some t ∈ Λuq (A). Algorithm
SamplePre(A, TA, u, σ) simply calls SampleGaussian(A, TA, σ, t) and subtracts t from the result.

Randomizing a basis: Cash et al. [CHK09] and Peikert [Pei09b] show how to randomize a
lattice basis.

RandBasis(S, σ):
On input a basis S of an m-dimensional lattice Λ⊥q (A) and a gaussian parameter σ ≥ ‖S̃‖·ω(

√
log n),

outputs a new basis S′ of Λ⊥q (A) such that

• with overwhelming probability ‖S̃′‖ ≤ σ
√
m, and

• up to a statistical distance, the distribution of S′ does not depend on S. That is, the random
variable RandBasis(S, σ) is statistically close to RandBasis(T, σ) for any other basis T of Λ⊥q (A)
satisfying ‖T̃‖ ≤ σ/ω(

√
log n).

We briefly recall how RandBasis works:
1. For i = 1, . . . ,m, let v ← SampleGaussian(A,S, σ, 0) and

if v is independent of {v1, . . . , vi−1}, set vi ← v, if not, repeat.
2. Convert the set of independent vectors v1, . . . , vm to a basis S′ using lemma 3 (and using

some canonical basis of Λ⊥q (A)).
3. Output S′.

The analysis of RandBasis in [CHK09, Pei09b] uses [Reg05, Corollary 3.16] which shows that a lin-
early independent set is produced in Step (1) w.h.p. afterm2 samples from SampleGaussian(A,S, σ, 0).
In Appendix F.2 we show that only 2m samples are needed in expectation.

2.7 Hardness assumption

Security of all our constructions reduces to the LWE (learning with errors) problem, a classic hard
problem on lattices defined by Regev [Reg05]. Due to space constraints we state the LWE problem
in Appendix E.

3 Gaussian Sampling on a Random Sublattice

Our security proofs require that Gaussian sampling from a random sublattice of Zm produces
approximately the same distribution as Gaussian sampling from Zm directly. More precisely, define
the following two distributions on Zm×m.

5

For a positive integer m and some σ > 2 define DIST0(σ,m) as:

1. for i = 1, . . . ,m sample independent ri
R← DZm,σ ; set R0 := [r1 | . . . | rm] ∈ Zm×m ;

2. if R0 is full rank over Zq output R0; otherwise go back to step (1).

Note that R0 in step (1) is sampled from
(
DZm,σ

)m. Theorem 30 in the appendix shows that
for σ > ω(

√
logm) the expected number of iterations to generate R0 is less than two.

Let A be a rank n matrix in Zn×mq and let a1, . . . , am ∈ Znq be the m columns of A.
Define DIST1(A, σ,m, q) as:

1. sample a uniform random rank n matrix B in Zn×mq ;

2. for i = 1, . . . ,m sample independent ri
R← DΛ

ai
q (B),σ (so that Bri = ai modulo q) ;

set R1 := [r1 | . . . | rm] ∈ Zm×m ;
3. if R1 is full rank over Zq output R1; otherwise go back to step (2).

R1 in step (2) is sampled from DΛ
a1
q (B),σ × · · · × DΛamq (B),σ and hence BR1 = A mod q.

In this section we analyze these distributions without worrying about the complexity of sampling
from them. We give efficient sampling algorithms in the next section. The main result of this
section, captured in the following theorem, shows that DIST0(σ,m) and DIST1(A, σ,m, q) are
statistically close for most matrices A. The proof is given in Appendix G.

Theorem 6. Let q be a prime and let m > 2n log q. Then for all σ in the range 4 ≤ σ < q/ lnm
and all rank n matrices A ∈ Zn×mq , except for at most a q−n fraction of such A, the distributions
DIST0(σ,m) and DIST1(A, σ,m, q) are statistically close.

The proof of Theorem 6 proceeds in several steps. Let R0 be sampled from DIST0(σ,m) and
recall that (Zn×mq)∗ denotes the set of rank n matrices in Zn×mq . First, we show in Lemma 35 that
the distance between DIST0(σ,m) and DIST1(A, σ,m, q) is equal to the distance of AR−1

0 mod q
from the uniform distribution over (Zn×mq)∗. Next, let B be a uniform variable over (Zn×mq)∗. We
show that (B, BR0 mod q) is close to uniform over [(Zn×mq)∗]2. To do so recall that the set of
functions HB : Zmq → Znq defined by HB(v) = B v is a universal family of hash functions. We then
develop a strong version of the left over hash lemma (Lemma 17 and Corollary 19) to show that
(B, BR0 mod q) is close to uniform. The reason we need a strong version of the left over hash
lemma is that requiring R0 to be full rank over Zq introduces a dependency between the columns of
R0. This dependency prevents the standard left over hash (e.g. Theorem 8.38 in [Sho08]) from being
used to extract the entropy from R0. Our version can extract entropy from dependent samples.
Finally, since (B, BR0 mod q) is close to uniform, we argue using properties of statistical distance
(Lemma 13) that for most A the random variable AR−1

0 mod q is close to uniform. This is what
we needed to prove that DIST0(σ,m) and DIST1(A, σ,m, q) are statistically close. The complete
details are given in Appendix G.

4 Basis Delegation Without Dimension Increase

Let A be a matrix in Zn×mq and let TA be a “short” basis of Λ⊥q (A), both given. We wish to
“delegate” the basis TA in the following sense: we want to deterministically generate a matrix B

6

from A and a random basis TB for Λ⊥q (B) such that from A,B and TB it is difficult to recover any
short basis (such as TA) for Λ⊥q (A).

Basis delegation was studied by Cash et al [CHK09] and Peikert [Pei09b]. In all those delegation
mechanisms, the dimension B was larger than the dimension of A. In the resulting HIBE systems
ciphertext and private key sizes increase as the hierarchy deepens.

Here we consider a simple delegation mechanism that does not increase the dimension. To do
so we use a public matrix R in Zm×m where the columns of R have “low” norm. We require that
R be invertible mod q. Now, define B := AR−1 and observe that B has the same dimension as A.
We show how to build a “short” basis of Λ⊥q (B) from which it is difficult to recover a short basis
of A. In the next section we use this to build new HIBE systems.

We begin by defining distributions on matrices whose columns are low norm vectors. We then
define the basis delegation mechanism.

Distributions on low norm matrices. Our construction makes use of invertible matrices R in
Zm×m where all the columns of R are “small” or “low norm”. We say that a matrix R in Zm×m is
Zq-invertible if R mod q is invertible as a matrix in Zm×mq .

Definition 7. Define σR := σTG ω(
√

logm) =
√
n log q · ω(

√
logm). We let Dm×m denote the

distribution DIST0(σR,m) on Zq-invertible matrices in Zm×m from Section 3.

Algorithm SampleR(1m). The following simple algorithm samples matrices in Zm×m from a
distribution that is statistically close to Dm×m.

1. Let T be the canonical basis of the lattice Zm.
2. For i = 1, . . . ,m do ri

R← SampleGaussian(Zm, T, σR, 0).
3. If R is Zq-invertible, output R; otherwise repeat step 2.

Theorem 30 shows that step 2 will need to be repeated fewer than two times in expectation.

4.1 Basis delegation: algorithm BasisDel(A,R, TA, σ)

We now describe a simple basis delegation algorithm that does not increase the dimension of the
underlying matrices.
Inputs: a rank n matrix A in Zn×mq ,

a Zq-invertible matrix R in Zm×m sampled from Dm×m (or a product of such),
a basis TA of Λ⊥q (A),
and a parameter σ ∈ R>0.

(1)

Output: Let B := AR−1 in Zn×mq . The algorithm outputs a basis TB of Λ⊥q (B).

Algorithm BasisDel(A,R, TA, σ) works as follows:

1. Let TA = {a1, . . . , am} ⊆ Zm. Calculate T ′B := {Ra1, . . . , Ram} ⊆ Zm.
Observe that T ′B is a set of independent vectors in Λ⊥q (B).

2. Use Lemma 3 to convert T ′B into a basis T ′′B of Λ⊥q (B).
The algorithm in the lemma takes as input T ′B and an arbitrary basis of Λ⊥q (B) and outputs
a basis T ′′B whose Gram-Schmidt norm is no more than that of T ′B.

7

3. Call RandBasis(T ′′B, σ) and output the resulting basis TB of Λ⊥q (B).

The following theorem shows that BasisDel produces a random basis of Λ⊥q (B) whose Gram-
Schmidt norm is bounded as a function of ‖T̃A‖. The proof is given in Appendix H.

Theorem 8. Using the notation in (1), suppose R is sampled from Dm×m and σ satisfies

σ > ‖T̃A‖ · σR

√
mω(log3/2m) .

Let TB be the basis of Λ⊥q (AR−1) output by BasisDel.
Then TB is distributed statistically close to the distribution RandBasis(T, σ) where T is an arbitrary
basis of Λ⊥q (AR−1) satisfying ‖T̃‖ < σ/ω(

√
logm). If R is a product of ` matrices sampled from

Dm×m then the bound on σ degrades to σ > ‖T̃A‖ ·
(
σR

√
mω(log1/2m)

)` · ω(logm) .

Note that for the smallest possible σ in Theorem 8 we obtain that with overwhelming probability

‖T̃B‖ / ‖T̃A‖ ≤ σRmω(log3/2m) = m3/2 ω(log2m) .

This quantity is the minimum degradation in basis quality as we delegate from level to level in the
HIBE hierarchy.

4.2 The main simulation tool: algorithm SampleRwithBasis(A)

All our proofs of security make heavy use of an algorithm SampleRwithBasis that given a matrix
A in Zn×mq as input generates a “low-norm” matrix R (i.e., a matrix sampled from Dm×m) along
with a short basis for Λ⊥q (AR−1).

Algorithm SampleRwithBasis(A). Let a1, . . . , am ∈ Znq be the m columns of A.

1. Run TrapGen(q, n) to generate a uniform matrix B ∈ Zn×mq and a basis TB of Λ⊥q (B) such
that ‖T̃B‖ ≤ σTG = σR/ω(

√
logm).

2. for i = 1, . . . ,m do:
(2a) sample ri ∈ Zm as the output of SamplePre(B, TB, ai, σR),

then Bri = ai mod q and the distribution of ri is statistically close to DΛ
ai
q (B),σR

.
(2b) repeat step (2a) until ri is Zq linearly independent of r1, . . . , ri−1.

3. Let R ∈ Zm×m be the matrix whose columns are r1, . . . , rm.
Then R has rank m over Zq. Output R and TB.

By construction BR = A mod q and therefore B = AR−1 mod q. Hence, the basis TB is a short
basis of Λ⊥q (AR−1). It remains to show that R is sampled from a distribution close to Dm×m.

Theorem 9. Let m > 2n log q and q > 2. For all but at most a q−n fraction of rank n matrices A
in Zn×mq algorithm SampleRwithBasis(A) outputs a matrix R in Zm×m sampled from a distribution
statistically close to Dm×m. The generated basis TB of Λ⊥q (AR−1) satisfies ‖T̃B‖ ≤ σR/ω(

√
logm)

with overwhelming probability.

8

Proof. It suffices to argue that R is sampled from a distribution statistically close to Dm×m. This
follows directly from Theorem 6. To see why observe that the matrix R is sampled from a distribu-
tion statistically close to DΛ

a1
q (B),σR

×· · ·×DΛamq (B),σR
conditioned on R being full rank over Zq. But

this is precisely the distribution DIST1(A, σR,m, q) from Section 3. By Theorem 6, for most rank n
matrices A, this distribution is statistically close to DIST0(σR,m) which is itself the distribution
Dm×m.

5 Adaptively Secure HIBE in the Random-Oracle Model

In this section, we build an HIBE of depth d, secure in the random oracle model. We present a
standard-model HIBE in Appendix J.

To encrypt a message m for identity Id, the encryptor builds a matrix FId and encrypts m using
the dual Regev public key system (described in [GPV08, sec. 7]) using FId as the public key. The
matrix FId is built by multiplying a fixed matrix A, specified in the public parameters, by ` “low
norm” square matrices generated by a random oracle H described in (2) below.

At level `, let Id = (Id1, Id2, . . . , Id`) ∈ ({0, 1}∗)`, where ` ∈ [d]. We assume the availability of a
hash function

H : Z≥0 × {0, 1}∗ → Zm×mq : (i, Idi) 7→ H(i, Idi) ∼ Dm×m (2)

where H(i, Idi) ∼ Dm×m is over the choice of H, which is modeled as a random oracle (the distri-
bution Dm×m is as in Definition 7). H can be constructed explicitly from any “standard” random
function h : {0, 1}∗ → {0, 1} by using h as a coin generator for the sampling process in Algo-
rithm SampleR(1m).

5.1 Parameters

The parameters n,m and q are fixed across the levels of the hierarchy. In addition, we have
level-dependent parameters, which are σ` (gaussian parameter) and α` (noise parameter). As we
delegate from level to level down the hierarchy, the length of the delegated lattice basis increases.
As a result, we will need to increase σ` so that σ` > σ`−1m

3/2ω(log2m) and decrease α`.
To meet these requirements, we set:

q := ω̃((nd)2d) and m := ω̃(nd)

The value of q is comparable to those in the HIBE schemes of [CHK09, Pei09b] which also need
field size q to be exponential in the maximal depth d. However, the width of our lattice m only
depends linearly on d where as in previous constructions the width had a quadratic dependence on
d. Moreover, since σ1 = σTG we obtain

σ` ≥ ω̃
(
(nd)2d

)
and α` ≤

1
ω̃
(
(nd)2d

)√
m

5.2 Construction

The scheme works as follows:

Setup(1n, 1d) On input a security parameter n and maximum depth d:

9

1. Set the parameters of the system q,m, σ`, α` as described above.

2. Invoke TrapGen(q, n) to generate a uniformly random matrix A ∈ Zn×mq along with a
basis TA =

[
a1| . . . |am

]
∈ Zm×m generating the lattice Λ⊥q (A).

3. Generate a uniformly random vector u0 ∈ Znq .

4. Output the public parameters PP and master key MK given by,

PP =
(
A, u0

)
MK =

(
TA

)
Extract(MK, Id) On input a master key MK and an identity Id = (Id1, . . . , Id`) of length |Id| = `:

1. Compute the matrix product RId ← H(`, Id`) . . . H(2, Id2)H(1, Id1) in Zm×m.
Define FId = AR−1

Id mod q, FId ∈ Zm×mq .

2. Construct a randomized basis for Λ⊥q (FId) by running S ← BasisDel(A,RId, TA, σ`).

3. Output the requested identity-based private key SKId = S.

Derive(PP, SKId|`−1
, Id): On input public parameters PP, a secret key SKId|`−1

corresponding to a
“parent” identity Id|`−1 = (Id1, . . . , Id`−1), and a “child” identity Id = (Id1, . . . , Id`−1, Id`):

1. Let RId|`−1
= H(`− 1, Id|`−1) . . . H(2, Id2)H(1, Id1). Set FId|`−1

← AR−1
Id|`−1

∈ Zm×mq .

Recall that SKId|`−1
is a short basis for Λ⊥q (FId|`−1

). Let FId = FId|`−1
H(`, Id`)−1 ∈ Zm×mq .

2. Evaluate S′ ← BasisDel(FId|`−1
, H(`, Id`),SKId|`−1

, σ`) to obtain a short random basis for
Λ⊥q (FId).

3. Output the delegated private key SKId = S′.

Encrypt(PP, Id, b): On input public parameters PP, a recipient identity Id of depth |Id| = `, and a
message bit b ∈ {0, 1}:

1. Compute RId ← H(`, Id`) . . . H(2, Id2)H(1, Id1).

2. Compute the encryption matrix FId ← AR−1
Id mod q. Then FId is in Zn×mq .

3. Now encrypt the message using Regev’s dual public key encryption (as defined in [GPV08,
sec. 7]) using FId as the public key. To do so,

(a) Pick a uniformly random vector s R← Znq .

(b) Choose noise vectors x
Ψα`←− Zq and y

Ψ
m
α`←−∈ Zmq . (Ψα is defined in Appendix E)

(c) Output the ciphertext,

CT =
(
c0 = uT0 s+ x+ b bq

2
c , c1 = F TId s+ y

)
∈ Zq × Zmq

Decrypt(PP, SKId,CT): On input public parameters PP, a private key SKId for an identity Id of
length |Id| = `, and a ciphertext CT:

1. Set dId ← SamplePre(FId,SKId, u0, σ`). Note that FId dId = u0.

2. Compute w = c0 − dTId c1 ∈ Zq.

10

3. Compare w and b q2c treating them as integers in [q] ⊂ Z:

if they are close, i.e., if
∣∣∣w − b q2c∣∣∣ < b q4c in Z, then output 1; otherwise output 0.

In Appendix I we show that the scheme is consistent, namely that valid ciphertexts are correctly
decrypted w.h.p.

5.3 Security

Theorem 10. If, in the random-oracle model, there exists a PPT adversary A with IND-ID-CPA
advantage ε = Ω(λk) for some k > 0 against the adaptive HIBE scheme above, then there exists a
PPT algorithm B that decides the LWE problem with advantage ε′ = Ω(λk/QdH), where QH is the
number of queries made by A to the random oracle H and d is the hierarchy depth.

Proof. Let A be an IND-ID-CPA attacker. We will show that a non-negligible advantage ε in the
IND-ID-CPA game can be used to decide the LWE problem with advantage ε/QdH . This will prove
that under the LWE assumption no polynomial-time attacker can have non-negligible advantage in
the IND-ID-CPA game. Recall that LWE is about recognizing an oracle O (see Appendix E).

Instance. B requests from O and receives, for each i = 0, . . . ,m, a fresh pair (ui, vi) ∈ Znq × Zq.
As the number of oracle calls is known a priori, the samples can be supplied non-interactively
at the beginning, e.g., here in the form of an instance with (m+ 1) (n+ 1) elements of Zq.

Setup. B prepares a simulated attack environment for A as follows.

1. For each i = 1, . . . , d:

(a) Select a uniform random integer Q∗i ∈ [QH], where QH is the maximum number of
random-oracle queries to H that A can make.

(b) Sample a random matrix R∗i ∼ Dm×m by using R∗i ← SampleR(1m); save R∗i for
future use.

2. Assemble the random matrix A0 ∈ Zn×mq from m of the previously given LWE samples,
by letting the i-th column of A0 be the n-vector ui for all i = 1, . . . ,m.
Set A← A0R

∗
d · · ·R∗1.

3. Publish the public parameters PP =
(
A, u0

)
.

Random-oracle hash queries. A may query the random oracle H on any pair (i, Idi) of its
choice, adaptively, and at any time. B answers the Q-th such query as follows. (We assume
w.l.o.g. that the queries are unique; otherwise the simulator simply returns the same output
on the same input without incrementing the query counter Q.)

If Q = Q∗i , define H(i, Idi)← R∗i , return H(i, Idi), and stop.

Otherwise, if Q 6= Q∗i :

1. Define the constant Ai = A ·
(
R∗i−1 · · · R∗2 R∗1

)−1 ∈ Zm×mq (letting Ai = A for i = 1).
2. Run SampleRwithBasis(Ai) to obtain a random R ∼ Dm×m and a short basis TB for
B = AiR

−1 mod q. Then R is a random low-norm matrix in Zm×m that maps the
constant matrix Ai to the matrix B = AiR

−1 mod q for which TB is a short basis.

11

3. Save the tuple (i, Idi, R,B, TB) for future use, and return H(i, Idi)← R.

Queries 1. Amakes interactive key-extraction queries on arbitrary identities Id, chosen adaptively.
B answers a query on Id = Id1Id2 . . . Idk of length |Id| = k ∈ [d] as follows.

1. Construct RId ← H(k, Idk) · · ·H(2, Id2) ·H(1, Id1), querying the oracle H as needed.

2. Let j ∈ [k] be the shallowest level at which the components of Id and Id∗ differ (letting
j = 1 if Id∗ has not been defined yet). Retrieve the saved tuple (j, Idj , R,B, TB) from
the hash oracle query history (w.l.o.g., we can assume that an extraction query on Id
is preceded by a hash query on each component of Id). Then by construction Aj =
BR mod q or equivalently B = A · (R∗1)−1 · · · (R∗j−1)−1 ·H(j, Idj)−1 mod q.

Notice that TB is a short basis for Λ⊥q (B), and that B is exactly the encryption matrix
FId|j (as defined in the Encrypt algorithm) for the ancestor identity Id|j = Id1Id2 . . . Idj

obtained by “truncating” Id to the first j levels. Hence TB is a trapdoor for Λ⊥q (FId|j).

3. Starting from FId|j = B and using its short basis TB, construct a short basis T for
FId = A ·R−1

Id mod q = B ·H(j + 1, Idj+1)−1 · · · ·H(k, Idk)−1 by invoking the delegation
algorithm BasisDel(B,Rk,Idk · · ·Rj+1,Idj+1

, TB, σk).

4. Return T as private decryption key SKId corresponding to the queried identity Id.

Challenge. A announces to B the identity Id∗ on which it wishes to be challenged. Say |Id∗| = `.
We require that Id∗ not be equal to, or a descendant of, any identity Id for which a private
key has been or will be requested in any preceding and subsequent key extraction query. A
also submits a message bit b∗ ∈ {0, 1} to be encrypted.

If the challenge identity Id∗ contains one or more component(s) Id∗i such that H(i, Id∗i) 6= R∗i ,
then the simulator must abort. (Indeed, when this is the case, B is able extract a private key
for Id∗ and thus answer by itself the challenge that it intended to ask.)

If o.t.o.h. Id∗ = Id∗1 . . . Id
∗
` is such that H(i, Id∗i) = R∗i for all i ∈ [`], then B proceeds as follows:

1. For all i = 0, . . . ,m, retrieve vi ∈ Zq from the LWE instance. Let v∗ =

 v1...
vm

 ∈ Zmq .

2. Blind the message bit by letting c∗0 = v0 + b∗ b q2e ∈ Zq.
3. Set c∗1 = v∗ ∈ Zmq .

4. Choose a random bit r R← {0, 1}. If r = 0 set CT∗ = (c∗0, c
∗
1) and send it to the adversary.

If r = 1 choose a random (c0, c1) ∈ Zq × Zmq and send (c0, c1) to A.

Queries 2. A makes more extraction queries, answered by B in the same manner as before.

Guess. After being allowed to make additional queries, A guesses whether CT∗ was an encryption
of b∗ for Id∗. Upon receiving A’s guess, B end the simulation and outputs its answer to LWE:

• If A guesses “good”, B answers “pseudo-random”.

• If A guesses “bad”, B answers “random”.

12

Note that by Theorem 8, the distribution of the public parameters and private key responses
is indistinguishable from that in the main system. The simulator can proceed without aborting in
the challenge phase with probability Pr[¬abort] ≥ Q−`H ≥ Q−dH in the worst case. By a standard
argument, if A has advantage ε ≥ 0 in the above game, then, in the worst case (when ` = d), B
has advantage Q−dH · ε/2 in deciding the LWE problem instance.

References

[Ajt99] Miklos Ajtai. Generating hard instances of the short basis problem. In Jir Wiedermann,
Peter van Emde Boas, and Mogens Nielsen, editors, ICALP, volume 1644 of Lecture
Notes in Computer Science, pages 1–9. Springer, 1999.

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In
STACS, pages 75–86, 2009.

[Ban95] Wojciech Banaszczyk. Inequalites for convex bodies and polar reciprocal lattices in rn.
Discrete and Computational Geometry, 13:217–231, 1995.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In Advances in Cryptology (EUROCRYPT 2004), volume
3027 of LNCS, pages 223–238. Springer, 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Advances in Cryptology—EUROCRYPT 2005, volume 3494
of LNCS. Springer-Verlag, 2005.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, Advances in Cryptology—CRYPTO 2001, volume 2139 of LNCS, pages
213–29. Springer-Verlag, 2001.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption
(without random oracles). In Advances in Cryptology—CRYPTO 2006, volume 4117 of
LNCS, pages 290–307. Springer-Verlag, 2006.

[CHK07] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. J. Cryptol., 20(3):265–294, 2007.

[CHK09] David Cash, Dennis Hofheinz, and Eike Kiltz. How to delegate a lattice basis. Cryptol-
ogy ePrint Archive, Report 2009/351, 2009. http://eprint.iacr.org/.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM Journal on
Computing, 38(1):97–139, 2008.

[GH09] Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially
many levels. In Theory of Cryptography—TCC 2009, volume 5444 of LNCS, pages 437–
56. Springer-Verlag, 2009.

13

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors,
STOC, pages 197–206. ACM, 2008.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In ASIACRYPT
’02: Proceedings of the 8th International Conference on the Theory and Application
of Cryptology and Information Security, pages 548–566, London, UK, 2002. Springer-
Verlag.

[HILL99] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
EUROCRYPT ’02: Proceedings of the International Conference on the Theory and
Applications of Cryptographic Techniques, pages 466–481, London, UK, 2002. Springer-
Verlag.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
Of the American Statistical Association, 58(301):13–30, 1963.

[Lov86] L. Lovasz. An Algorthmic Theory of Numbers, Graphs, and Convexity. SIAM, 1986.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a crypto-
graphic perspective, volume 671 of The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, March 2002.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. In FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 372–381, Washington, DC, USA, 2004. IEEE
Computer Society.

[Pei09a] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In
STOC ’09, 2009.

[Pei09b] Chris Peikert. Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology
ePrint Archive, Report 2009/359, 2009. http://eprint.iacr.org/.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, pages 84–93, New York, NY, USA, 2005. ACM.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of
CRYPTO 84 on Advances in cryptology, pages 47–53, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

[Sho08] Victor Shoup. A Computational Introduction to Number Theory and Algebra, second
edition. Cambridge University Press, 2008.

[Wat09] Brent Waters. Dual key encryption: Realizing fully secure IBE and HIBE under simple
assumption. In Advances in Cryptology—CRYPTO 2009, 2009.

14

A HIBE Security Game

For a security parameter λ, we let Mλ denote the message space and let Cλ denote the ciphertext
space. We define anonymous IBE and HIBE semantic security under a selective-identity attack (for
a hierarchy of maximum depth d) using the following game between a challenger and an adversary.
The game captures a property called ciphertext privacy which means that the challenge ciphertext
is indistinguishable from a random element in the ciphertext space. This property implies both
semantic security and recipient anonymity.

Init: The adversary is given as input the maximum depth of the hierarchy d from the chal-
lenger, and outputs an identity Id∗ = (I∗1, . . . , I

∗
k), k ≤ d where it wishes to be challenged.

Setup: The challenger runs the Setup algorithm giving it the maximum depth d as input
(where d = 1 for IBE) and the security parameter λ. It gives the adversary the resulting
system parameters PP. It keeps the master key MK to itself.

Phase 1: The adversary issues queries q1, . . . , qm where the i-th query qi is a query on Idi,
where Idi = (I1, . . . , Iu) for some u ≤ d. We require that Idi is not a prefix of Id∗, (i.e.,
it is not the case that u ≤ k and Ii = I∗i for all i = 1, . . . , u). The challenger responds
by running algorithm Extract to obtain a private key di corresponding to the public key
Idi. It sends di to the adversary.
All queries may be made adaptively, that is, the adversary may ask qi with knowledge
of the challenger’s responses to q1, . . . , qi−1.

Challenge: Once the adversary decides that Phase 1 is over it outputs a plaintext M ∈Mλ

on which it wishes to be challenged. The challenger picks a random bit r ∈ {0, 1}
and a random ciphertext C ∈ Cλ. If r = 0 it sets the challenge ciphertext to C∗ :=
Encrypt(PP, Id∗,M). If r = 1 it sets the challenge ciphertext to C∗ := C. It sends C∗ as
the challenge to the adversary.

Phase 2: The adversary issues additional adaptive queries qm+1, . . . , qn where qi is a private-
key extraction query on Idi, where Idi 6= Id∗ and Idi is not a prefix of Id∗. The challenger
responds as in Phase 1.

Guess: Finally, the adversary outputs a guess r′ ∈ {0, 1}. The adversary wins if r = r′.

We refer to such an adversary A as an CP-sID-CPA adversary. We define the advantage of the
adversary A in attacking an HIBE scheme E = (Setup,Extract,Derive,Encrypt,Decrypt), or an IBE
scheme E = (Setup,Extract,Encrypt,Decrypt), as

Advd,E,A(λ) =
∣∣Pr[r = r′]− 1/2

∣∣
The probability is over the random bits used by the challenger and the adversary.

Definition 11. We say that an IBE or a depth d HIBE system E is selective-identity, ciphertext
private if for all IND-sID-CPA PPT adversaries A we have that Advd,E,A(λ) is a negligible function.
We abbreviate this by saying that E is IND-sID-CPA secure for depth d.

Finally, we define the adaptive-identity counterparts to the above notions by removing the
Init phase from the attack game, and allowing the adversary to wait until the Challenge phase to
announce the identity Id∗ it wishes to attack. The adversary is allowed to make arbitrary private-
key queries in Phase 1 and then choose an arbitrary target Id∗. The only restriction is that he did
not issue a private-key query for Id∗ or a prefix of Id∗ during phase 1. The resulting security notion
is defined using the modified game as in Definition 11, and is denoted IND-ID-CPA.

15

B Statistical distance

Properties of the statistical distance are presented in, e.g. Shoup [Sho08, Chapter 8.8]. We state
a few properties we will need here. Recall that if X and W are random variables taking values in
some sets Ωx and Ωw respectively, then for all w ∈ Ωw the random variable R(w) := (X|W = w)
over Ωx is defined as Pr[R(w) = x] := Pr[X = x | W = w] for all x ∈ Ωx. If X and Y take values
in Ω then1

EW
[
∆(X|W ; Y |W)

]
:=

∑
w∈Ωw

Pr[W = w] ∆
(

(X|W = w) ; (Y |W = w)
)

(3)

Lemma 12. For random variables X,Y, Z taking values in a finite set Ω and a random variable
W taking values in a finite set Ωw we have:

1. ∆(X;Y) ≤ ∆(X;Z) + ∆(Z;Y).

2. For all functions f : Ω→ Ω′ we have ∆(f(X); f(Y)) ≤ ∆(X;Y).

3. If W is independent of X and Y then ∆(X;Y) = ∆
(
X,W ; Y,W

)
.

4. ∆(X,W ; Y,W) = EW [∆(X|W ; Y |W)].

5. Let A ⊆ Ω where Pr[X ∈ A] = 1 − ε. Let (X|A) be a random variable taking values in A
defined by

Pr[(X|A) = s] := Pr[X = s]/Pr[X ∈ A] for all s ∈ A.

Then ∆
(
X ; (X|A)

)
= ε.

Proof. Part (1) is [Sho08, Theorem 8.30]. Part (2) is [Sho08, Theorem 8.32]. Part (3) is [Sho08,
Theorem 8.33]. Part (4) is a generalization of part (3) which is proved as follows:

∆(X,W ; Y,W) =
1
2

∑
w∈Ωw

Pr[W = w]
∑
x∈Ω

∣∣∣∣Pr[X = x|W = w]− Pr[Y = x|W = w]
∣∣∣∣

=
∑
w∈Ωw

Pr[W = w] ∆(X|W = w ; Y |W = w) = EW [∆(X|W ; Y |W)]

For part (5) observe that for s ∈ A:

Pr[(X|A) = s] = Pr[X = s]/(1− ε) = Pr[X = s] + Pr[X = s]
ε

1− ε
from which it follows that∑

s∈A

∣∣Pr[(X|A) = s]− Pr[X = s]
∣∣ =

∑
s∈A

Pr[X = s] · ε

1− ε
= Pr[X ∈ A] · ε

1− ε
= ε.

Moreover
∑

s 6∈A
∣∣Pr[(X|A) = s]− Pr[X = s]

∣∣ =
∑

s 6∈A
∣∣Pr[X = s]

∣∣ = ε. Therefore

∆
(
X ; (X|A)

)
= (1/2)[ε+ ε] = ε

1More precisely, the sum in (3) is over w ∈ Ωw for which Pr[W = w] 6= 0 so that conditioning on W = w is well
defined.

16

Lemma 13. Let T = (X,Y) be a δ-uniform random variable over Ωx×Ωy. Suppose X is uniform
over Ωx. For x ∈ Ωx let Yx := (Y |X = x). Then for ε > 0 the set Sε of x ∈ Ωx for which Yx is
(δ/ε)-uniform over Ωy has size at least (1− ε)|Ωx|.

Proof. Let Ux be an independent uniform random variable over Ωx and Uy an independent uniform
random variable over Ωy. Then by assumption ∆(X ; Ux) = 0 and therefore

EX [∆(Y |X ; Uy)] = EX(Y |X ; Uy|X) (by independence of X and Uy)
= ∆(Y,X ; Uy, X) (by Lemma 12 part 4)
≤ ∆(Y,X ; Uy, Ux) + ∆(Uy, Ux ; Uy, X) (by Lemma 12 part 1)
≤ δ + ∆(Ux ; X) = δ (by assumption)

Applying Markov’s inequality to the random variable ∆((Y |X) ; Uy) whose expectation is at most δ
shows that PrX [∆(Y |X ; Uy) ≤ δ/ε] ≥ 1 − ε. Therefore Pr[X ∈ Sε] ≥ 1 − ε, which proves the
lemma.

Definition 14. Let X(λ) and Y (λ) be ensembles of random variables. We say that X and Y are
statistically close if d(λ) := ∆(X(λ);Y (λ)) is a negligible function of λ.

C The left over hash lemma and generalizations

Let X be a random variable taking values in some set Ω. Recall that the guessing probability of
X is defined as γ(X) := maxx∈Ω Pr[X = x]. Also, recall that a family of hash functions H = {h :
Ω → T}h∈H is universal if for all x1 6= x2 ∈ Ω we have that Prh∈H[h(x1) = h(x2)] = 1/|T |. Let
UT denote a uniform independent random variable in T . The “classic” left-over-hash-lemma states
that when h is uniform in H and independent of X, the distribution (h, h(X)) is statistically close
to (h, UT), assuming the random variable X has sufficient min-entropy [HILL99] (see also [Sho08,
Theorem 8.37]).

Lemma 15 (left-over hash lemma). Let H = {h : Ω → T}h∈H be a universal hash family and let
h be a uniform random variable in H. Let X be a random variable independent of h and taking
values in Ω. Then (h, h(X)) is δ-uniform over H× T for

δ ≤ 1
2

√
γ(X) |T | .

We also state a version of the left-over-hash lemma that deals with the case when more infor-
mation about the variable X is output. For a random variable X and a random variable W defined
over Ωw recall that2

EW [γ(X|W)] :=
∑
w∈Ωw

Pr[W = w]γ(X|W = w) (4)

This quantity is called the conditional guessing probability of X with respect to W . The following
lemma is a slight generalization of Lemma 2.4 from [DORS08]. For completeness we provide a
proof.

2More precisely, the sum in (4) is over w ∈ Ωw where Pr[W = w] 6= 0.

17

Lemma 16. Let H = {h : Ω → T}h∈H be a universal hash family. Let X and W be random
variables where X takes values in Ω. Let h be a uniform random variable in H independent of X
and W . Suppose that

EW
[
γ(X|W)

]
≤ δ

and let U be an independent uniform random variable in T . Then

∆(h, h(X),W ; h, U,W) ≤ 1
2

√
δ · |T |

Proof. Suppose W takes values in Ωw. For w ∈ Ωw define R(w) := (X|W = w). Since h is
independent of R(w) we know by Lemma 15 that the random variable

(
h, h(R(w))

)
is δ′-uniform

for δ′ ≤ 1
2

√
γ(R(w)) |T |. We use this fact in transition (5) below. The lemma now follows from the

following calculation:

∆
(
h,h(X),W ; h, U,W

)
= EW

[
∆
(

(h, h(X))|W ; (h, U)|W
)]

(by Lemma 12 part (4))
= EW

[
∆
(

(h, h(X))|W ; (h, U)
)]

(by indep. of h, U from W)
= EW

[
∆
(
h, h(R(W)) ; (h, U)

)]
(by indep. of h from W)

≤ EW
[

1
2

√
γ(X|W) · |T |

]
(by Lemma 15) (5)

≤ 1
2

√
EW

[
γ(X|W) · |T |

]
(by concavity of square root)

≤ 1
2

√
δ · |T | (by assumption)

We will need a generalization of Lemma 15 for the case when the same hash function h is
applied to multiple correlated random variables X1, . . . , Xm. The lemma holds as long as the
guessing probability of each variable conditioned on the rest is sufficiently small.

Lemma 17. Let H = {h : Ω → T}h∈H be a universal hash family. Let X1, . . . , Xm be random
variables taking values in Ω. Let h be a uniform random variable in H independent of (X1, . . . , Xm).
Suppose that

EXi+1,...,Xm

[
γ
(
Xi | (Xi+1, . . . , Xm)

)]
≤ δ for all i = 1, . . . ,m.

Then
(
h, h(X1), . . . , h(Xm)

)
is δ′-uniform over H× Tm for δ′ ≤ 1

2m
√
δ · |T |.

Proof. The proof is similar to the proof of Theorem 8.38 in [Sho08]. Let U1, . . . , Um be mutually
independent uniform random variables in T . Define random variables Z0, . . . , Zm as follows:

Z0 := (h, h(X1), . . . , h(Xm)),
Zi := (h, U1, . . . , Ui, h(Xi+1), . . . , h(Xm)),
Zm := (h, U1, . . . , Um)

18

Then

∆(Z0;Zm) ≤
m∑
i=1

∆(Zi−1;Zi) (by Lemma 12 part (1))

≤
m∑
i=1

∆(h, U1, . . . , Ui−1, h(Xi), Xi+1, . . . , Xm ;

h, U1, . . . , Ui−1, Ui, Xi+1, . . . , Xm)

(by Lemma 12 part (2))

=
m∑
i=1

∆(h, h(Xi), Xi+1, . . . , Xm ;

h, Ui, Xi+1, . . . , Xm)

(by Lemma 12 part (3))

≤
m∑
i=1

1
2

√
δ · |T | = 1

2
m
√
δ · |T | (by Lemma 16)

We will apply Lemma 17 to a classic universal hash family described in the following lemma.

Lemma 18. Let q be a prime and n,m positive integers with m > n. For a matrix A ∈ Zn×mq let
hA : Zmq → Znq be the function hA(v) = Av. Then H := {hA : A ∈ Zn×mq } is universal.

Proof. Follows from Example 8.39 of [Sho08].

The next corollary is the one we actually use. We let (Zn×mq)∗ denote the set of rank n matrices
in Zn×mq .

Corollary 19. Let q be a prime and n,m integers with m > n. Let R = [r1| . . . |rm] be a random
variable taking values in Zm×mq where r1, . . . , rm ∈ Zmq are the columns of R. Suppose that

Eri+1,...,rm

[
γ
(
ri | (ri+1, . . . , rm)

)]
≤ δ for all i = 1, . . . ,m. (6)

Let B′ be a uniform matrix in (Zn×mq)∗ independent of R. Then the random variable (B′, B′R) is
δ′-uniform over [(Zn×mq)∗]2 for δ′ ≤ 1

2m
√
δ qn + 3qn−m.

Proof. Let B be a uniform matrix in Zn×mq independent of R. Then by Lemma 17 and Lemma 18
the random variable (B, B R) is δ′′-uniform over (Zn×mq)2 for δ′′ ≤ 1

2m
√
δ qn.

Let E be the event that B is rank n. Then Pr[E] ≥ 1−qn−m and observe that B′ is distributed as
(B|E). Therefore, by Lemma 12 part (5) we obtain that ∆(B,BR ; B′, B′R) < qn−m. Similarly if
U1, U2 are uniform in Zn×mq and U ′1, U

′
2 are uniform in (Zn×mq)∗ then ∆(Ui;U ′i) ≤ qn−m for i = 1, 2.

The lemma now follows from Lemma 12 part (1):

∆(B′, B′R ; U ′1, U
′
2) ≤ ∆(B′, B′R ; B,BR) + ∆(B,BR ; U1, U2)+

∆(U1, U2 ; U ′1, U
′
2) ≤ qn−m + δ′′ + 2qn−m

19

D Properties of Discrete Gaussians

The smoothing parameter. For an n-dimensional lattice Λ and positive real ε > 0 the smooth-
ing parameter ηε(Λ) of Λ is the smallest s such that ρ1/s(Λ∗ \ {0}) ≤ ε [MR04].

The weight of a lattice. The following lemma bounds the Gaussian weight of a lattice Λ.

Lemma 20 ([Reg05, Claim 3.8]). For a lattice Λ in Rm, vector c ∈ Rm and σ > ηε(Λ) we have
ρσ,c(Λ) = σmdet(Λ∗)(1 + δ) where |δ| < ε. When c = 0 then δ ∈ [0, ε].

We will also need the following bounds on ρ(Zm).

Lemma 21. For all m ∈ Z>0 and reals ε > 0 and σ >
√

log(2m(1 + 1/ε))/π we have

σm ≤ ρσ(Zm) ≤ σm(1 + ε) (7)

In particular, for any function σ(m) > ω(
√

logm) there is a negligible function ε(m) such that (7)
holds.

Proof. Since the lattice Zm is its own dual and has determinant 1, we obtain from Lemma 20
(with c = 0) that σm ≤ ρσ(Zm) ≤ (1 + ε)σm for σ > ηε(Zm). Since all the successive minima
of Zm are equal to 1, Lemma 3.3 of [MR04] shows that the smoothing parameter of Zm satisfies
ηε(Zm) ≤

√
log(2m(1 + 1/ε))/π, from which the lemma follows.

The weight outside a ball around the origin. Banaszczyk bounds the weight of a discrete
Gaussian outside a certain ball in Rm. In the following, Bm∞ denotes the closed m-dimensional L∞
unit ball centered at the origin.

Lemma 22 ([Ban95, Lemma 2.10]). For all m-dimensional lattices Λ ⊂ Rm and any real r > 0 we
have

ρ(Λ \ rBm∞) < 2m exp(−πr2) ρ(Λ)

We restate the lemma so that it is easier for us to use.

Corollary 23. For all m-dimensional lattices Λ and reals σ, r where 2me−π(r/σ)2
< 1 we have

ρσ(Λ) ≤ ρσ(Λ ∩ rBm∞) /
(
1− 2me−π(r/σ)2)

Proof.

ρσ(Λ) = ρσ(Λ ∩ rBm∞) + ρσ(Λ \ rBm∞)

= ρσ(Λ ∩ rBm∞) + ρ(σ−1(Λ \ rBm∞))

≤ ρσ(Λ ∩ rBm∞) + 2m exp(−π(r/σ)2) ρ(σ−1Λ)

= ρσ(Λ ∩ rBm∞) + 2m exp(−π(r/σ)2) ρσ(Λ)

Solving for ρσ(Λ) proves the corollary.

Using these facts we bound the guessing probability of DZm,σ modulo a prime q (the guessing
probability γ is defined in Section C).

20

Lemma 24. Let q be a prime, m > 2 an integer and 0 < σ < q/ lnm. Let r be an independent
random variable sampled from DZm,σ. Then

γ(r mod q) ≤ 2/σm .

Proof. Since the highest point in the distribution r mod q is when r mod q = 0, it suffices to bound
the probability that r is in qZm.

γ(r mod q) = Pr[r ∈ qZm] = ρσ(qZm)/ρσ(Zm) ≤ ρσ(qZm)/σm (8)

where the last inequality follows from Lemma 21. Then by applying Corollary 23 to the lattice
qZm with r := q − 0.0001 we obtain that

ρσ(qZm) ≤ ρσ(0)/(1− 2me−π(q/σ)2
) ≤ ρσ(0)/0.5 = 2 (9)

where the second inequality follows from σ < q/ lnm. The lemma follows by combining (8) and (9).

Large deviation bounds: Micciancio and Regev showed that the norm of vectors sampled from
discrete Gaussians is small with high probability.

Lemma 25 ([MR04, Lemma 4.4]). For any m-dimensional lattice Λ, any c ∈ Rm, and any two
reals ε ∈ (0, 1) and σ ≥ ηε(Λ),

Pr
{
x ∼ DΛ,σ,c : ‖x− c‖ >

√
mσ

}
≤ 1 + ε

1− ε
2−m

E The LWE hardness assumption

LWE (learning with errors) is a classic hard problem on lattices. It has been extensively studied,
and is defined, e.g., in [Reg05]. We give an equivalent restatement of this decisional problem:

Definition 26. Consider a prime q, a positive integer n, and a distribution χ over Zq, all public.
An (Zq, n, χ)-LWE problem instance consists of access to an unspecified challenge oracle O, being,
either, a noisy pseudo-random sampler Os carrying some constant random secret key s ∈ Znq , or, a
truly random sampler O$, whose behaviors are respectively as follows:

Os: outputs noisy pseudo-random samples of the form (ui, vi) =
(
ui, u

T
i s+xi

)
∈ Znq ×Zq, where,

s ∈ Znq is a uniformly distributed persistent secret key that is invariant across invocations,
xi ∈ Zq is a freshly generated ephemeral additive noise component with distribution χ, and
ui ∈ Znq is a fresh uniformly distributed vector revealed as part of the output.

O$: outputs truly random samples
(
ui, vi

)
∈ Znq × Zq, drawn independently uniformly at random

in the entire domain Znq × Zq.

The (Zq, n, χ)-LWE problem statement, or LWE for short, allows an unspecified number of queries
to be made to the challenge oracle O, with no stated prior bound. We say that an algorithm A
decides the (Zq, n, χ)-LWE problem if

∣∣Pr[AOs = 1]− Pr[AO$ = 1]
∣∣ is non-negligible for a random

s ∈ Znq .

21

Regev [Reg05] shows that the for certain noise distributions χ, denoted Ψα, the LWE problem
is as hard as the worst-case SIVP and GapSVP under a quantum reduction (see also [Pei09a]).

Definition 27. Consider a real parameter α = α(n) ∈ (0, 1) and a prime q = q(n) > 2
√
n/α.

Denote by T = R/Z the group of reals [0, 1) with addition modulo 1. Denote by Ψα the distribution
over T of a normal variable with mean 0 and standard deviation α/

√
2π then reduced modulo 1.

Denote by bxe = bx + 1
2c the nearest integer to the real x ∈ R. We denote by Ψα the discrete

distribution over Zq of the random variable bq Xe mod q where the random variable X ∈ T has
distribution Ψα.

Theorem 28 ([Reg05]). If there exists an efficient, possibly quantum, algorithm for deciding the
(Zq, n,Ψα)-LWE problem then there exists an efficient quantum algorithm for approximating the
SIVP and GapSVP problems, to within Õ(n/α) factors in the `2 norm, in the worst case.

If we assume the hardness of approximating the SIVP or GapSVP problems in lattices of di-
mension n to within approximation factors that are polynomial in n, then it follows from Lemma 28
that deciding the LWE problem is hard when n/α is polynomial in n.

The following lemma, which is implicit in [GPV08, Lemma 8.2], will be used to show that
decryption in our systems works correctly.

Lemma 29. Let e ∈ Zm be a vector satisfying ‖e‖ ≤ σ
√
m for some σ. Let x ∈ Zmq be sampled

from (Ψα)m and treat x as a vector in [−q/2, q/2]m. Then with overwhelming probability

|x>e| ≤ mσ/2 + qασ
√
mω(

√
logm)

For decryption we will need |x>e| ≤ q/5 which implies that α <
(
σ
√
mω(

√
logm)

)−1. Clearly
we will also need mσ < q/5.

F Linear Independence of Gaussian Samples

For a lattice Λ, Regev showed that sampling m2 vectors from DΛ,σ, for sufficiently large σ, produces
m linearly independent vectors in Zm with high probability [Reg05, Corollary 3.16]. In this section
we strengthen this result in two ways. First, we show that sampling ω(m logm) vectors is sufficient.
Second, and more importantly, we show that sampling ω(m logm) vectors from DZm,σ will result
in m linearly independent vectors in Zm that are also linearly independent modulo q for sufficiently
large primes q. We start with the second result.

In what follows we say that vectors r1, . . . , r` in Zm are Zq-linearly independent if they are
linearly independent when reduced modulo q. Similarly, we say that a matrix R ∈ Zm×m is Zq-
invertible if it is invertible when reduced modulo q.

F.1 Linear independence over Zq

We prove the following theorem which plays an important role in our proofs of security.

Theorem 30. Let m ≥ n, σ > ω(
√

logm) and q > σω(
√

logm). Then the probability that m
vectors in Zm sampled independently from DZm,σ are Zq-linearly independent is at least 1− 1+ε

σ−1 for
some negligible function ε.

22

We first derive a bound on the Gaussian weight of an m-dimensional lattice Λq(A).

Lemma 31. Let m ≥ n and let q > 2 be a prime. Let σ ∈ R>0 and define ε = 2me−(π/4) (q/σ)2
. If

ε < 1 then for all matrices A ∈ Zn×mq we have that

ρσ(Λq(A)) ≤ ρσ(Zn) / (1− ε) .

Proof. First, we can assume without loss of generality that A is rank n. To see why observe that if
A is not rank n then there is some rank n matrix A′ in Zn×mq such that Λq(A) ⊆ Λq(A′). Therefore
ρσ(A) ≤ ρσ(A′) and it suffices to bound ρσ(A′).

Now, suppose A is rank n. Then there must exist n positions i1, . . . , in ∈ {1, . . . ,m} such that
these n columns of A form a rank n matrix in Zn×nq (otherwise, the column rank of A is at most
n− 1). Define the projection map:

π : Λq(A)→ Zn defined by π((x1, . . . , xm))→ (xi1 , . . . , xin)

This map has two important properties on the set T := Λq(A) ∩ (q/2)Bm∞.

Property 1: ρσ(x) ≤ ρσ(π(x)) for all x ∈ T . This follows from the fact that ‖π(x)‖ ≤ ‖x‖ and the
definition of ρσ.

Property 2: The map π is injective on T , that is π(x) 6= π(y) for all x 6= y ∈ T . To see why,
suppose that x 6= y ∈ T satisfy π(x) = π(y). Then there are sx, sy in Znq such that x = A>sx
and y = A>sy modulo q. Let An ∈ Zn×nq be the matrix whose columns are the n columns of A at
positions i1, . . . , in. Recall that An is full rank. Then A>nsx = A>nsy and therefore sx = sy in Znq .
But then x = A>sx = A>sy = y modulo q which implies that x− y ∈ qZm \ {0}. This contradicts
the fact that both x and y are inside (q/2)Bm∞ proving that π is injective on T .

Using these two properties we obtain:

ρσ(T) =
∑
x∈T

ρσ(x) ≤
∑
x∈T

ρσ(π(x)) ≤
∑
x∈Zn

ρσ(x) = ρσ(Zn) (10)

The first inequality follows from property (1) and the second from property (2). Plugging (10) into
Corollary 23 we obtain:

ρσ(Λq(A)) ≤ ρσ(Zn)/
(
1− 2m exp(−π(q/(2σ))2)

)
as required.

Corollary 32. Let m ≥ n, σ > ω(
√

logm) and q a prime such that q > σω(
√

logm). Let v ∈ Zm
be a vector sampled from DZm,σ. Then for all matrices A in Zn×mq there is a negligible function
ε = ε(m) such that

Pr[v ∈ Λq(A)] ≤ (1 + ε) σ−(m−n)

Proof. Since σ > ω(
√

logm) we know by Lemma 21 that there is a negligible function δ = δ(m)
such that

ρσ(Zn)
ρσ(Zm)

≤ σn(1 + δ)
σm

=
1 + δ

σm−n

23

Let τ = 2m exp
(
− (π/4) (q/σ)2

)
. Then by Lemma 31

Pr[v ∈ Λq(A)] =
ρσ(Λq(A))
ρσ(Zm)

≤ ρσ(Zn)
(1− τ)ρ(Zm)

≤ 1 + δ

1− τ
· σ−(m−n)

Since q/σ > ω(
√

logm) we know that τ = τ(m) is a negligible function, and the corollary follows.

Proof of Theorem 30. Let v1, . . . , vm be m vectors in Zm sampled independently from DZm,σ. For
i = 1, . . . ,m let Ai ∈ Zi×mq be the matrix whose rows are the vectors vj mod q for j = 1, . . . , i. Then
the probability that v1, . . . , vm are not Zq linearly independent is at most

∑m−1
i=1 Pr[vi+1 ∈ Λq(Ai)].

By Corollary 32 there is a negligible function ε = ε(m) such that

m−1∑
i=1

Pr[vi+1 ∈ Λq(Ai)] ≤
m−1∑
i=1

(1 + ε)σ−(m−i) = (1 + ε)
m−1∑
i=1

σ−(m−i) ≤ (1 + ε) · 1
σ − 1

as required.

F.2 Linear independence over Z

We generalize Regev’s analysis of linear independence [Reg05, Corollary 3.16] to show that sampling
m vectors from an m-dimensional lattice Λ gives m linearly independent vectors with constant
probability. The main theorem for this section is the following.

Theorem 33. Let Λ be an m-dimensional lattice and σ > k ηε(Λ) for some k > 1 and ε > 0. Then
the probability that m vectors in Zm sampled independently from DΛ,σ are linearly independent in
Rm is at least 1− 1+ε

k−1 .

When k = 3 + 2ε we see that m samples from DΛ,σ are linearly independent with probability
at least 1/2. Therefore, to generate a random basis of Λ by sampling from DΛ,σ (as in algorithm
RandBasis) we would need to sample two sets of m vectors in expectation. To generate a basis
with high probability we would need to generate ω(logm) sets of m samples each, for a total
of ω(m logm) samples. If σ > ω(ηε(Λ)) then O(m logm) samples are sufficient. This improves
the running time analysis of algorithm RandBasis which, using Regev’s Corollary 3.16, needed m2

samples.
To prove Theorem 33 we first generalize Regev’s Lemma 3.15.

Lemma 34. Let Λ be an m-dimensional lattice and σ > k ηε(Λ) for some k > 1 and ε > 0. Let H
be a subspace of Rm of dimension at most m − n for some 1 ≤ n ≤ m. Then when x is sampled
from DΛ,σ the probability that x ∈ H is at most (1 + ε)/kn.

Proof. Since ρ is unchanged under rotation, we may assume without loss of generality that H is
orthogonal to the first n rows of the m ×m identity matrix. Let x = (x1, . . . , xm) and we bound
the probability that x ∈ H namely that x1 = . . . = xn = 0. First, let d1, . . . , dm ∈ R>0 and
d = maxi(di). Then by the Poisson summation formula:

∑
x∈Λ

m∏
i=1

e−π(dixi/σ)2
=

det(Λ∗)σm

d1 · · · dm

∑
x∈Λ∗

m∏
i=1

e−π(σxi/di)
2 ≤ det(Λ∗)σm

d1 · · · dm
ρd/σ(Λ∗) (11)

24

and when σ/d > ηε(Λ) we know that ρd/σ(Λ∗) ≤ 1 + ε. Now, let t =
√
k2 − 1. Then using (11) we

obtain

E

[
n∏
i=1

e−π(txi/σ)2

]
=

1
ρσ(Λ)

∑
x∈Λ

[
n∏
i=1

e−π(txi/σ)2
m∏
i=1

e−π(xi/σ)2

]

=
1

ρσ(Λ)

∑
x∈Λ

[
n∏
i=1

e−π(kxi/σ)2
m∏

i=n+1

e−π(xi/σ)2

]

≤ det(Λ∗)σm

knρσ(Λ)
ρk/σ(Λ∗) ≤ det(Λ∗)σm

knρσ(Λ)
(1 + ε) ≤ 1 + ε

kn

where the last inequality follows from ρσ(Λ) ≥ det(Λ∗)σm by the Poisson summation formula. By
Markov’s inequality we therefore obtain

Pr[x1 = . . . = xn = 0] = Pr
[n∏
i=1

e−π(txi/σ)2
= 1
]
≤ (1 + ε)/kn

as required.

Proof of Theorem 33. Let v1, . . . , vm be m vectors in Zm sampled independently from DΛ,σ. The
probability that v1, . . . , vm are not linearly independent is at most

∑m−1
i=1 Pr[vi+1 ∈ spanR(v1, . . . , vi)].

By Lemma 34

m−1∑
i=1

Pr[vi+1 ∈ spanR(v1, . . . , vi)] ≤
m−1∑
i=1

(1 + ε)/ki = (1 + ε)
m−1∑
i=1

k−i ≤ (1 + ε)/(k − 1)

as required.

G Proof of Theorem 6

Our first step is a simpler expression for the statistical distance between DIST0(σ,m) and DIST1(A, σ,m, q).
For a fixed rank n matrix A ∈ Zn×mq define the following four random variables:

• Let R0 be distributed as DIST0(σ,m) and R1,A distributed as DIST1(A, σ,m, q).
• Let B be a uniform random variable in (Zn×mq)∗ (namely a uniform rank n matrix in Zn×mq).
• Let B′A be defined as follows: sample R as DIST0(σ,m) and set B′A ← AR−1 mod q.

The following lemma relates these variables.

Lemma 35. For a fixed rank n matrix A ∈ Zn×mq we have ∆(R0;R1,A) = ∆(B;B′A).

For completeness, before proving Lemma 35 we state the following immediate lemma.

Lemma 36. Let D be a distribution and let E be some event. Consider the random variable R′

defined by: (1) sample a new independent R according to D, and (2) if R ∈ E output R′ ← R;
otherwise go back to step (1). Then R′ is distributed as (R|E).

25

Proof. For r ∈ E we know that Pr[R′ = r] is the probability that R = r in the first iteration, plus
the probability that R = r in the second iteration, and so on. Therefore,

Pr[R′ = r] = Pr[R = r]
(
1 + Pr[¬E] + Pr[¬E]2 + . . .

)
=

Pr[R = r]
1− Pr[¬E]

=
Pr[R = r]

Pr[E]
= Pr[R = r|E]

which proves the lemma.

Proof of Lemma 35. Fix some rank n matrix A ∈ Zn×mq and define the following terminology.

• Let D be the distribution (DZm,σ)m on Zm×m.
• Let Ω′ ⊆ Ω be the set of Zq-invertible matrices in Zm×m.

We let D′ be the distribution on Ω′ defined by ∀R ∈ Ω′ : D′(R) := D(R)/D(Ω′).
• For a matrix β ∈ Zn×mq let Ωβ be the set of matrices R ∈ Zm×m such that βR = A (mod q).

Let Ω′β := Ωβ ∩ Ω′.

• For β ∈ Zn×mq define the distribution Dβ on Ωβ as ∀R ∈ Ωβ : Dβ(R) := D(R)/D(Ωβ).

Observe that the distribution DΛ
a1
q (β),σ × · · · × DΛamq (β),σ used in Step 2 of DIST1(A, σ,m, q) is

identical to the distribution Dβ on Ωβ. Indeed, the weight of a matrix R = [r1| . . . |rm] in Ωβ under
the distribution DΛ

a1
q (β),σ × · · · × DΛamq (β),σ is

m∏
i=1

ρσ(ri)
ρσ(Λaiq (β))

=
m∏
i=1

ρσ(ri)/ρσ(Zm)
ρσ(Λaiq (β))/ρσ(Zm)

=
m∏
i=1

DZm,σ(ri)
DZm,σ(Λaiq (β))

=
D(R)
D(Ωβ)

= Dβ(R)

Next, observe that for every matrix R ∈ Ω′ there is exactly one matrix β ∈ Zn×mq for which R is in
Ω′β. This β is simply β = AR−1 mod q. Hence, the sets Ω′β where β ∈ Zn×mq are a partition of Ω′.

Using these facts we can calculate the weight of R ∈ Ω′ under the distribution DIST1(A, σ,m, q).
Let β ∈ Zn×mq be the unique matrix such that R ∈ Ω′β. Let E be the event that a matrix sampled
from Dβ is in Ω′. Then

Pr[R1,A = R] = Pr[B = β] Dβ(R)/Pr[E] (by Lemma 36)

= Pr[B = β] D(R)/D(Ω′β) (since Pr[E] = D(Ω′β)/D(Ωβ))

= Pr[B = β] · D′(R)/D′(Ω′β) .

Similarly, by Lemma 36, for all R ∈ Ω′ the weight of R under DIST0(σ,m) is

Pr[R0 = R] =
D(R)
D(Ω′)

= D′(R)

26

Now, since the sets Ω′β are a partition of Ω′ we obtain that

∆(R0 ; R1,A) =
∑

β∈(Zn×mq)∗

∑
R∈Ω′β

∣∣Pr[R0 = R]− Pr[R1,A = R]
∣∣

=
∑

β∈(Zn×mq)∗

∑
R∈Ω′β

∣∣∣∣∣D′(R)− Pr[B = β]
D′(R)
D′(Ω′β)

∣∣∣∣∣
=

∑
β∈(Zn×mq)∗

∣∣∣∣∣1− Pr[B = β]
1

D′(Ω′β)

∣∣∣∣∣ ∑
R∈Ω′β

D′(R)


=

∑
β∈(Zn×mq)∗

[∣∣∣∣∣1− Pr[B = β]
1

D′(Ω′β)

∣∣∣∣∣D′(Ω′β)

]

=
∑

β∈(Zn×mq)∗

∣∣D′(Ω′β)− Pr[B = β]
∣∣

Since D′(Ω′β) = Pr[R0 ∈ Ω′β] = Pr[βR0 = A] = Pr[B′A = β] we obtain that

∆(R0 ; R1,A) =
∑

β∈(Zn×mq)∗

∣∣Pr[B′A = β]− Pr[B = β]
∣∣ = ∆(B′A ; B)

as required.

Next, to bound ∆(B;B′A) we first show that the distribution (B,BR) is close to uniform. This
is a direct consequence of the generalized left over hash lemma in Corollary 19.

Lemma 37. Let q be a prime and m > n. Let R be a random variable sampled according to
DIST0(σ,m) with σ in the range 3 ≤ σ < q/ lnm. Let B be a uniform random rank n matrix in
Zn×mq independent of R. Then the distribution (B, BR mod q) is δ′-uniform over [(Zn×mq)∗]2 for

δ′ ≤ m
√
qn/σm + 3qn−m .

In particular, if m > 2n log q then (B,BR mod q) is statistically close to uniform over [(Zn×mq)∗]2.

Proof. We prove the lemma using Corollary 19. To apply the corollary it suffices to show that
DIST0(σ,m) modulo q satisfies condition (6) with δ ≤ 4/σm. We prove condition (6) for i = 1.
The analysis for other i is the same.

First, let r be an independent random variable sampled from DZm,σ and taking values in Zm.
By Lemma 24 the guessing probability of r mod q is bounded by

γ(r mod q) ≤ 2/σm .

Next, Let ρ2, . . . , ρm ∈ Zm be Zq-linearly independent vectors and let E be the event that the
matrix [r|ρ2| . . . |ρm] is not full rank modulo q. This event happens whenever r ∈ Λq([ρ2| . . . |ρm])
and therefore, by Corollary 32 there is a negligible function ε such that

Pr[E] = Pr
[
r ∈ Λq([ρ2| . . . |ρm])

]
≤ (1 + ε)/σ < 0.5 .

27

It follows that

γ(r mod q | ¬E) ≤ γ(r mod q)/Pr[¬E] ≤ (2/σm)/Pr[¬E] ≤ 4/σm . (12)

Now, let r1, . . . , rm ∈ Zm be the columns of R. Consider the random variable

r̂1 := r1|(r2 = ρ2 ∧ . . . ∧ rm = ρm)

which takes values in Zm. Observe that r̂1 is distributed as (r|¬E) and therefore

γ(r̂1 mod q) = γ(r mod q | ¬E) ≤ 4/σm . (13)

Since (13) holds for all Zq-linearly independent ρ2, . . . , ρm ∈ Zm it follows that

Er2,...,rm [γ(r1|(r2, . . . , rm))] ≤ 4/σm .

We note that tuples ρ2, . . . , ρm ∈ Zm that are not Zq-linearly independent can be ignored since
they can never be columns of R and hence will have no impact the expectation. Corollary 19 now
applies with δ = 4/σm which completes the proof of the lemma.

Now we can complete the proof of Theorem 6.

Proof of Theorem 6. Let B be uniform in (Zn×mq)∗ and R be chosen from DIST0(σ,m). Set A ←
BR mod q. Then by Lemma 37 the pair (A,B) is δ′-uniform in [(Zn×mq)∗]2. Moreover, since B
is uniform and R is invertible the random variable A is also uniform in (Zn×mq)∗. Then, applying
Lemma 13 to (A,B) with X := A and Y := B shows that there is a set Agood containing at least
(1− q−n) of (Zn×mq)∗ such that (B|A = α) is (δ′qn)-uniform in (Zn×mq)∗ for all α ∈ Agood.

For α, β ∈ (Zn×mq)∗ let Ω′β be the set of invertible matrices in Zm×m such that α = βR modulo q.
Then the random variable (B|A = α) is the same as the variable B′α used in Lemma 35 since:

Pr
[
(B|A = α) = β

]
=

Pr[A = α ∧B = β]
Pr[A = α]

=
Pr[R ∈ Ω′β ∧B = β]

Pr[A = α]

=
Pr[R ∈ Ω′β] Pr[B = β]

Pr[A = α]
= Pr[R ∈ Ω′β] = Pr[B′α = β]

Therefore, whenever α ∈ Agood we have

∆(R0;R1,A) = ∆(B;B′α) = ∆(B ; (B|A = α)) ≤ qnδ′ ≤ m
√
q3n/σm + 3q2n−m

which is a negligible value, as required. This completes the proof of the theorem.

H Proof of Theorem 8

In this section we prove Theorem 8. We begin with a few lemmas bounding the length of certain
vectors. The first lemma bounds the inner product of a Gaussian sample in Zm with a fixed vector
in Zm.

Lemma 38. Let u ∈ Rm and σ > 0. Let r ∈ Zm be a random variable sampled from DZm,σ. Then
the inner product r>u satisfies |r>u| ≤ ‖u‖σ ω(logm) with overwhelming probability.

28

Proof. When r = (r1, . . . , rm) is sampled from DZm,σ, each ri is sampled from DZ,σ and r1, . . . , rm
are independent of each other. By Lemma 22, applied to the lattice Z, we know that for all k > 0

Pr
[
|ri| > kσ

]
=
ρσ(Z \ kσB1

∞)
ρσ(Z)

=
ρ((1/σ)Z \ kB1

∞)
ρσ(Z)

≤ 2 exp(−πk2) ρσ(Z)
ρσ(Z)

= 2 exp(−πk2) .

Taking k = ω(
√

logm) we obtain that each ri is at most σω(
√

logm) in absolute value with
overwhelming probability.

Now, consider the inner product r> · u =
∑m

i=1 riui ∈ R. Each summond riui has expectation 0
and is in the interval [−I, I] for I := uiσω(

√
logm) with overwhelming probability. Moreover, all

the riui are independent of one another. Then by the Hoeffding bound [Hoe63] we obtain for all
k > 0 that

Pr
[
|r>u| > k · ‖u‖σω(

√
logm)

]
< 2e−k

2/2 + ε(m)

where ε(m) is a negligible function in m (the reason for ε(m) is that riui are in the interval [−I, I]
with overwhelming probability, as opposed to probability 1). The lemma now follows by taking
k := ω(

√
logm).

The next lemma shows that a matrix R sampled from Dm×m does not increase the norm of a vector
in Rm by much.

Lemma 39. Let R in Zm×m be distributed as (DZm,σR
)m Let u ∈ Rm. Then with overwhelming

probability ‖Ru‖ ≤ ‖u‖ · σR

√
mω(logm).

Proof. By Lemma 25 the L2 norm of all rows of R is at most σR

√
m with overwhelming probability.

Then by the Cauchy-Schwartz inequality each coordinate of Ru is at most ‖u‖ · σR

√
m in absolute

value from which it follows that ‖Ru‖ ≤ ‖u‖ · σR m.
We can do better by using the randomness of the rows of R. Lemma 38 shows that for a vector

r sampled from DZm,σR
the inner product |r>u| is less than ‖u‖σR ω(logm) with overwhelming

probability. Since the rows of R are sampled from a distribution statistically close to DZm,σR
,

applying the union bound to the rows of R shows that with overwhelming probability all coordinates
of Ru are less than ‖u‖σR ω(logm) in absolute value. Hence ‖Ru‖ is at most ‖u‖σR

√
mω(logm)

with overwhelming probability, as required.

The next lemma bounds the Gram-Schmidt norm of a basis after it is transformed by a matrix R.

Lemma 40. Let R be a matrix in Rm×m and S = {s1, . . . , sk} ⊂ Rm a linearly independent set.
Let SR := {Rs1, . . . , Rsk}. Then

‖S̃R‖ ≤ max
1≤i≤k

‖Rs̃i‖

Proof. We show that for all i = 1, . . . , k the i-th Gram-Schmidt vector of SR has L2 norm less
than ‖Rs̃i‖. This will prove the lemma.

For i ∈ {1, . . . , k} let V := spanR(Rs1, . . . , Rsi−1). Set v := si−s̃i. Then v ∈ spanR(s1, . . . , si−1)
and therefore Rv ∈ V . Let u be the projection of Rs̃i on V and let z := Rs̃i−u. Then z is orthogonal
to V and

Rsi = Rv +Rs̃i = Rv + u+ z = (Rv + u) + z .

29

By construction, Rv + u ∈ V and hence, since z is orthogonal to V , this z must be the i-th Gram-
Schmidt vector of SR. Since z is the projection of Rs̃i on V ⊥ we obtain that ‖z‖ ≤ ‖Rs̃i‖. Hence,
for all i = 1, . . . , k the i-th Gram-Schmidt vector of SR has L2 norm less than ‖Rs̃i‖ which proves
the lemma.

Finally, we can prove Theorem 8.

Proof of Theorem 8. Let σ′ := ‖T̃A‖ · σR

√
mω(logm). Then, with overwhelming probability the

vectors in T ′′B generated in step 2 satisfy:

‖T̃ ′′B‖ ≤ ‖T̃ ′B‖ (by Lemma 3)
≤ max

1≤i≤m
‖R ãi‖2 (by Lemma 40)

≤ max
1≤i≤m

‖ãi‖ · σR

√
mω(logm) (by Lemma 39)

= ‖T̃A‖ · σR

√
mω(logm) = σ′

Since σ > σ′ ω(
√

logm) by assumption, algorithm RandBasis(T ′′B, σ) outputs a random basis of Λ⊥q (B)
as required.

I Consistency of the HIBE scheme

Lemma 41. The HIBE scheme of Section 5.2 is consistent.

Proof. When the cryptosystem is operated as specified, we have,

w = c0 − d>Id c1

= uT0 s+ x+ b bq
2
c − d>Id

(
F TId s+ y

)
= uT0 s+ x+ b bq

2
c − (FIddId)> s− d>Idy

= uT0 s+ x+ b bq
2
c − uT0 s− d>Idy

= x+ b bq
2
c − d>Idy

= b bq
2
c+ x− d>Idy︸ ︷︷ ︸

error term

≈ b bq
2
c

Since ‖dId‖ ≤ σd
√
m by Lemma 25, we know by Lemma 29 that |d>Id ·y| is smaller than q/5 w.h.p

by our choice of parameters. Moreover, since |x| is much smaller than q we obtain that ‖x−dId · y‖
is smaller than q/4 and hence decryption is correct with high probability.

J Selectively Secure HIBE in the Standard Model

We build an HIBE of depth d that is selectively secure without random oracles. The construction
is actually a binary tree encryption (BTE) which means that identities at each level are binary
(i.e. 0 or 1). To build an HIBE with k-bit identities at each level we would assign k levels of the
BTE hierarchy to each level of the HIBE. The parameters used by this system are the same as the
parameters used for the random oracle system in Section 5.1

30

J.1 Construction

Setup(1λ, 1d): On input a security parameter λ and a maximum depth d represented in unary:

1. Use algorithm TrapGen(q, n) to select a uniformly random n×m-matrix A ∈ Zn×mq with
a basis TA ∈ Zm×m for Λ⊥q (A) such that ‖T̃A‖ ≤ m · ω(

√
logm).

2. Select a uniformly random n-vector u0 ∈ Znq .

3. Select 2d square matrices R1,0, R1,1, . . . , Rd,0, Rd,1 ∈ Zm×m from the distribution Dm×m
by invoking SampleR(1λ) 2d times.

4. Output the public parameters and master key,

PP =
(
A , u0 , R1,0, R1,1 , R2,0, R2,1 , . . . , Rd,0, Rd,1

)
MK =

(
TA

)
Extract(PP,MK, Id): On input public parameters PP, a master key MK, and an identity Id of depth

|Id| = ` ≤ d:

1. Compute RId ← R`,Id` ·R`−1,Id`−1
· · ·R2,Id2 ·R1,Id1 . Define FId = A ·R−1

Id mod q.

2. Construct a randomized basis for Λ⊥q (FId) by running S ← BasisDel(A,RId,MK =
TA, σ`).

3. Output the private key SKId = S.

Derive(PP, SKId|`−1
, Id): On input public parameters PP, a child identity Id of depth `, and a secret

key corresponding to the parent identity Id|`−1 of depth `− 1:

1. Define RId|`−1
= R`−1,Id`−1

· · ·R2,Id2 ·R1,Id1 . Compute FId|`−1
← A ·R−1

Id|`−1
mod q.

Recall that SKId|`−1
is a short basis for Λ⊥q (FId|`−1

) and let FId = FId|`−1
R−1
`,Id`

mod q.

2. Construct a randomized short basis for Λ⊥q (FId) as S′ ← BasisDel(FId|`−1
, R`,Id` ,SKId|`−1

, σ`).

3. Output the private key SKId = S′.

Encrypt(PP, Id, b): On input public parameters PP, an identity Id of length |Id| = `, and a message
b ∈ {0, 1}:

1. Construct RId = R`,Id` · · ·R2,Id2 ·R1,Id1 .

2. Construct the encryption matrix FId = A ·R−1
Id mod q.

3. Pick a uniformly random vector s R← Znq .

4. Choose noise vectors x
Ψα`←− Zq and y

Ψ
m
α`←−∈ Zmq . (Ψα is defined in Appendix E)

5. Output the ciphertext,

CT =
(
c0 = uT0 s+ x+ b bq

2
c , c1 = F TId s+ y

)
∈ Zq × Zmq

Decrypt(PP, SKId,CT): On input public parameters PP, a private key SKId (say that |Id| = `), and
a ciphertext CT:

31

1. Set dId ← SamplePre(FId, SKId, u0, σ`).
Note that FId dId = u0.

2. Compute w = c0 − dTId c1 ∈ Zq.
3. Compare w and b q2c treating them as integers in [q] ⊂ Z:

if they are close, i.e., if
∣∣∣w − b q2c∣∣∣ < b q4c in Z, then output 1; otherwise output 0.

In Appendix I we show that the scheme is consistent, namely that decryption correctly decrypts
all valid ciphertexts.

J.2 Security

Theorem 42. If there exists a PPT adversary A with IND-sID-CPA advantage ε > 0 against the
selective HIBE scheme of Section J.1, then there exists a PPT algorithm B that decides the LWE
problem with advantage ε/2.

Proof. Let A be an IND-sID-CPA attacker. We will show that a non-negligible advantage in the
IND-sID-CPA game can be used to solve the LWE problem. This will prove that under the LWE
assumption no polynomial time attacker can have non-negligible advantage in the IND-sID-CPA
game.

Instance. B requests from O and receives, for each i = 0, . . . ,m, a fresh pair (ui, vi) ∈ Znq × Zq.
As the number of oracle calls is known a priori, the samples can be supplied non-interactively
at the beginning, e.g., here in the form of an instance with (m+ 1) (n+ 1) elements of Zq.

Targeting. A announces to B the identity Id∗ that it intends to attack. Say |Id∗| = `.

Setup. 1. Assemble the random matrix A0 ∈ Zn×mq from m of the previously given LWE sam-
ples, by letting the i-th column of A0 be the n-vector ui for all i = 1, . . . ,m.

2. Choose ` low norm m×m matrices R1,Id∗1
, . . . , R`,Id∗` by invoking Ri ← SampleR(1λ).

3. Set RId∗ = R`,Id∗` · · ·R2,Id∗2
·R1,Id∗1

.

4. Let A← A0 ·R−1
Id∗ .

5. For i = 1, . . . , ` construct Ri,Id∗i as follows.

– Let Mi ← A ·R−1
1,Id∗1
· · ·R−1

(i−1),Id∗i−1
.

– Invoke Ri,Id∗i ← SampleRwithBasis(Mi) to obtain a random Ri,Id∗i
∼ Dm×m and a short

basis TBi for Λ⊥q (Bi) where Bi = MiR
−1

i,Id∗i
mod q. Thus Ri,Id∗i is a low-norm matrix such

that Bi ·Ri,Id∗i ·R(i−1),Id∗(i−1)
· · ·R(1),Id∗(1)

= A.

6. For i = ` + 1, . . . , d, choose low norm m × m matrices R`+1,0, R`+1,1, . . . , Rd,0, Rd,1 as
Ri ← SampleR(1λ).

7. Publish the system parameters PP =
(
A, u0, R1,0, R1,1, . . . , Rd,0, Rd,1

)
.

Queries 1. A makes interactive key-extraction queries on identities Id that may be chosen adap-
tively. Queried identities Id must not be equal to or be a prefix of the challenge identity Id∗

to be admissible. B answers each query as follows.

32

1. Construct RId = Rk,Idk · · ·R2,Id2 ·R1,Id1 .

2. Construct FId = A ·R−1
Id .

3. Let j ∈ [k] be the first position where Id 6= Id∗. Then Bj ·RId|j = A by construction and
we have a trapdoor for Λ⊥q (Bj) = Λ⊥q (FId|j).

4. Construct a trapdoor for FId = A · R−1
Id = A · R−1

Id|j
· R−1

j+1,Idj+1
· · ·R−1

k,Idk
by invoking

algorithm BasisDel(FId|j , Rk,Idk · · ·Rj+1,Idj+1
, TBj , σk).

Challenge. B prepares, when prompted by A with a message bit b∗ ∈ {0, 1}, a challenge ciphertext
for the target identity Id∗, as follows:

1. For all i = 0, . . . ,m, retrieve vi ∈ Zq from the LWE instance. Let v∗ =

 v1...
vm

 ∈ Zmq .

2. Blind the message bit by letting c∗0 = v0 + b∗ b q2e ∈ Zq.
3. Set c∗1 = v∗ ∈ Zmq .

4. Choose a random bit r R← {0, 1}. If r = 0 send CT∗ = (c∗0, c
∗
1) to the adversary. If r = 1

choose a random (c0, c1) ∈ Zq × Zmq and send (c0, c1) to A.

Queries 2. A makes more private-key queries which are answered by B in the same manner as
before.

Guess. After being allowed to make additional queries, A guesses whether CT∗ was an encryption
of b∗ for Id∗. Upon receiving A’s guess, B end the simulation and outputs its answer to LWE:

• If A guesses “good”, B answers “pseudo-random”.

• If A guesses “bad”, B answers “random”.

By Theorem 8, the distribution of the public parameters and private key responses is indistin-
guishable from that in the main system. By a standard argument, if A has advantage ε ≥ 0 in the
above game then B has advantage ε/2 in the LWE decisional problem.

33

