
Homomorphic MACs: MAC-based Integrity for Network Coding

Shweta Agrawal1 and Dan Boneh2?

1 U.T. Austin — shweta@cs.utexas.edu
2 Stanford University — dabo@cs.stanford.edu

Abstract. Network coding has been shown to improve the capacity and robustness in networks. How-
ever, since intermediate nodes modify packets en-route, integrity of data cannot be checked using
traditional MACs and checksums. In addition, network coded systems are vulnerable to pollution at-
tacks where a single malicious node can flood the network with bad packets and prevent the receiver
from decoding the packets correctly. Signature schemes have been proposed to thwart such attacks, but
they tend to be too slow for online per-packet integrity. They also force network coding coefficients to
be picked from a large field which causes the size of the network coding header to be large.

Here we propose a homomorphic MAC which allows checking the integrity of network coded data. Our
homomorphic MAC is designed as a drop-in replacement for traditional MACs (such as HMAC) in
systems using network coding.

1 Introduction

Network coding [1, 8] proposes to replace the traditional ‘store and forward’ paradigm in networks
by more intelligent routing that allows intermediate nodes to transform the data in transit. Network
coding has become popular due to its robustness and the improved throughput it offers.

When transmitting a message using linear network coding [11] the sender first breaks the mes-
sage into a sequence of m vectors v̂1, . . . , v̂m in an n-dimensional linear space Fnq , where n,m and
q are fixed ahead of time. Often q = 28 so that the entire transmitted message is n × m bytes.
The sender transmits these message vectors to its neighboring nodes in the network. As the vectors
traverse the network, moving from one node to the next on their way to the destination, the nodes
randomly combine the vectors with each other. More precisely, each node in the network creates
a random linear combination of the vectors it receives and transmits the resulting linear combi-
nation to its adjacent nodes. Intended recipients thus receive random linear combinations of the
original message vectors. Recipients can recover the original message from any set of m random
linear combinations that form a full rank matrix.

For this approach to work, every vector v̂ in the network must carry with it the coefficients
α1, . . . , αm ∈ Fq that produce v̂ as a linear combination of the original message vectors. To do
so, prior to transmission, the source node augments every message vector v̂i with m additional
components. The resulting vectors v1, . . . ,vm, called augmented vectors, are given by:

vi = (—v̂i—,

m︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ Fn+m
q (1)

i.e., each original vector v̂i is appended with the vector of length m containing a single ‘1’ in
the ith position. These augmented vectors are then sent by the source as packets in the network.

? Supported by DARPA IAMANET, NSF, and the Packard Foundation.

Observe that if y ∈ Fn+m
q is a linear combination of v1, . . . ,vm ∈ Fn+m

q then the linear combination
coefficients are contained in the last m coordinates of y.

Pollution attacks. Our brief description of linear network coding assumes all nodes are honest.
However, if some nodes are malicious and forward invalid linear combinations of received vectors,
then recipients obtain multiple packets, only some of which are proper linear combinations of the
original message vectors. In such a scenario, recipients have no way of telling which of their received
vectors are corrupt and should be ignored during decoding.

Detailed discussion of pollution attacks can be found in [2, 13, 7]. Here we only note that pollu-
tion attacks cannot be mitigated by standard signatures or MACs. Clearly, signing the augmented
message vectors is of no use since recipients do not have the original message vectors and therefore
cannot verify the signature. Similarly, signing the entire message prior to transmission does not
work. To see why, observe that recipients can obtain multiple vectors where, say, only half are
proper linear combinations of the original message vectors and the other half are corrupt. Recipi-
ents would need to decode exponentially many m-subsets until they find a decoded message that
is consistent with the signature (decoding produces the correct transmitted message only when all
m vectors being decoded are a linear combination of the original message vectors). In summary, as
explained in [2, 13, 7], new integrity mechanisms are needed to mitigate pollution attacks.

Previous solutions. Recently, several approaches have been proposed to thwart pollution attacks.
Of these, some solutions are information theoretic while others are cryptographic. We refer to [2] for
a survey of defenses. Here we restrict our attention to cryptographic solutions. Several authors [5,
9, 13, 2] devised digital signature schemes for signing a linear subspace. Let V be the linear space
spanned by the augmented message vectors v1, . . . ,vm ∈ Fn+m

q that the sender transmits. These
signature schemes produce a signature σ on V such that Verify(PK,v, σ) holds for every v ∈ V ,
but it is difficult to construct a vector y 6∈ V for which Verify(PK,y, σ) holds. Recipients use these
signatures to reject all received vectors that are not in the subspace V , mitigating the pollution
problem.

The digital signature constructions in [5, 9, 13, 2] are very elegant and very appropriate for offline
network coding systems, such as robust distributed file storage [6]. For online traffic, however, these
systems are too slow to sign every packet. A different solution is needed if one is to defend against
pollution attacks at line speeds.

Another difficulty with these methods is that they require the network coding coefficients to live
in a field Fq where q is the order of a group where discrete-log is difficult, e.g. q ≈ 2160. Therefore
transmitting each coefficient requires 20 bytes and hence the augmentation components add 20×m
bytes to every packet. Recall that in typical linear network coding (without integrity) q = 28 so
that the augmentation components add only m bytes to every packet. Again, a different solution
is needed if one wishes to minimize the augmentation overhead.

Our contribution. We design a MAC scheme that can be used to mitigate pollution attacks. We
construct the MAC in three steps.

First, we construct a homomorphic MAC. That is, given two (vector,tag) pairs (v1, t1) and
(v2, t2) anyone can create a valid tag t for the vector y = α1v1 +α2v2 for any α1, α2 ∈ Fq. Roughly
speaking, our security proof shows that, even under a chosen message attack, creating a valid tag
for a vector outside the linear span of the original message vectors is difficult. We give the details
in Section 2 and 3. Our MAC is related to the classic MAC of Carter and Wagman [4].

This MAC system can be used to mitigate pollution attacks when the source and recipient have
a shared secret key. The source uses the secret key to compute a tag for each of the original message
vectors. Intermediate nodes then use the homomorphic property to compute valid tags for random
linear combinations they produce. The recipient verifies the tags of received vectors and drop all
vectors with an invalid tag.

Network coding (for a single source) is most useful in broadcast settings where there are multiple
recipients for every message. Using our basic homomorphic MAC the sender would need to have
a shared secret key with each recipient. In addition, if we want intermediate nodes to verify tags
before forwarding them on to other nodes, then the sender would need to have a shared secret key
with each network node. Every packet would need to include a tag per network node, which is
unacceptable.

Our second step converts the homomorphic MAC into a broadcast homomorphic MAC using a
technique of Canetti et al. [3]. This enables any network node to validate vectors it receives. The
limitation of this construction is that it is only c-collusion resistant for some pre-determined c.
That is, when more than c recipients and intermediate nodes collude, the MAC becomes insecure.
In some settings, it may be possible to apply TESLA-like methods [12] to convert our homomorphic
MAC into a broadcast MAC. We do not explore this here since we want to enable intermediate
network nodes to verify packet integrity before forwarding packets.

Our third step converts the broadcast homomorphic MAC into an integrity system where there
are multiple senders and multiple verifiers. The result is a network coding MAC in networks where
anyone can be either a sender, a recipient, or an intermediate node.

We experimented with our construction and give running time estimates in Section 7.

Notation: Throughout the paper we let [m] denote the set of integers {1, . . . ,m}. For vectors u
and v in Fnq we let u · v ∈ Fq denote the inner product of u and v.

2 Homomorphic MACs: Definitions

We begin by defining homomorphic MACs and their security. A (q, n,m) homomorphic MAC is
defined by three probabilistic, polynomial-time algorithms, (Sign, Verify, Combine). The Sign algo-
rithm computes a tag for a vector space V = span(v1, . . . ,vm) by computing a tag for one basis
vector at a time. Combine implements the homomorphic property and Verify verifies vector-tag
pairs. Each vector space V is identified by an identifier id which is chosen arbitrarily from a set I.
In more detail, these algorithms provide the following functionality:

– Sign(k, id,v, i): Input: a secret key k, a vector space identifier id, an augmented vector v ∈ Fn+m
q ,

and i ∈ [m] indicating that v is the ith basis vector of the vector space identified by id.
Output: tag t for v.

As explained above, the Sign algorithm signs a vector space V ⊆ Fn+m
q spanned by v1, . . . ,vm

by running Sign(k, id,vi, i) for i = 1, . . . ,m. This produces a tag for each of the basis vectors.
The identifier id identifies the vector space V . When transmitting a vector vi into the network,
the sender transmits (id,vi, ti). Recipients collect all valid vectors with a given id and decode
those as a group to obtain the original basis vectors encoding the transmitted message. We let I
denote the set of identifiers and K denote the set of keys.

– Combine((v1, t1, α1), . . . , (vm, tm, αm)) : Input: m vectors v1, . . . ,vm ∈ Fn+m
q and their tags

t1, . . . , tm under key k plus m constants α1, . . . , αm ∈ Fq.
Output: a tag t on the vector y :=

∑m
i=1 αivi ∈ Fn+m

q .

– Verify(k, id,y, t): Input: a secret key k, an identifier id, a vector y ∈ Fn+m
q , and a tag t.

Output: 0 (reject) or 1 (accept).

We require that the scheme satisfy the following correctness property. Let V be anm-dimensional
subspace of Fn+m

q with basis v1, . . . ,vm and identifier id. Let k ∈ K and ti := Sign(k, id,vi, i) for
i = 1, . . . ,m. Let α1, . . . , αm ∈ Fq. Then

Verify

(
k, id,

m∑
i=1

αivi, Combine
(
(v1, t1, α1), . . . , (vm, tm, αm)

))
= 1

Security. Next, we define security for homomorphic MACs. We allow the attacker to obtain the
signature on arbitrary vector spaces of its choice (analogous to a chosen message attack on MACs).
Each vector space Vi submitted by the attacker has an identifier idi. The attacker should be unable
to produce a valid triple (id,y, t) where either id is new or id = idi but y 6∈ Vi. More precisely, we
define security using the following game.

Attack Game 1. let T = (Sign,Combine,Verify) be a (q, n,m) homomorphic MAC. We define
security of T using the following game between a challenger C and an adversary A.

Setup. The challenger generates a random key k R← K.

Queries. A adaptively submits MAC queries where each query is of the form (Vi, idi) where Vi is
a linear subspace (represented by a basis of m vectors) and idi is a space identifier. We require that
all identifiers idi submitted by A are distinct. To respond to a query for (Vi, idi) the challenger
does:

Let v1, . . . ,vm ∈ Fn+m
q be a basis for Vi

for j = 1, . . . ,m let tj
R← Sign(k, idi,vj , j) // compute MAC for all basis vectors

send (t1, . . . , tm) to A

Output. The adversary A outputs an identifier id∗, a tag t∗, and a vector y∗ ∈ Fn+m
p .

The adversary wins the security game if Verify(k, id∗,y∗, t∗) = 1, and either
1. id∗ 6= idi for all i (a type 1 forgery), or

2. id∗ = idi for some i and y∗ 6∈ Vi (a type 2 forgery)
Moreover, let y∗ = (y∗1, . . . , y

∗
n+m). Then the augmentation (y∗n+1, . . . , y

∗
n+m) in y∗ is not the all

zero vector (which corresponds to a trivial forgery).

The advantage NC-Adv[A, T] of A with respect to T is defined to be the probability that A wins
the security game.

Definition 1. A (q, n,m) homomorphic MAC scheme T is secure if for all polynomial time adver-
saries A the quantity NC-Adv[A, T] is negligible.

3 Construction 1: A Homomorphic MAC

In this section we describe a secure homomorphic MAC. Our construction is related to a classic
MAC system due to Carter and Wagman [4].

The MAC scheme HomMac: To construct a (q, n,m) homomorphic MAC we use a Pseudo
Random Generator G : KG → Fn+m

q and a Pseudo Random Function F : KF × (I × [m]) → Fq.
Keys for our MAC consist of pairs (k1, k2) where k1 ∈ KG and k2 ∈ KF.

– Sign(k, id,v, i): To generate a tag for an ith basis vector v ∈ Fn+m
q using key k = (k1, k2) do:

(1) u← G(k1) ∈ Fn+m
q

(2) b← F
(
k2, (id, i)

)
∈ Fq

(3) t← (u · v) + b ∈ Fq
Output t. Note that the tag is a single element of Fq.

– Combine((v1, t1, α1), . . . , (vm, tm, αm)): output t←
∑m

j=1 αjtj ∈ Fq.

– Verify(k, id,y, t): Let k = (k1, k2) be a secret key and let y = (y1, . . . , yn+m) ∈ Fn+m
q .

Do the following:
u← G(k1) ∈ Fn+m

q and a← (u · y) ∈ Fq
b←

∑m
i=1

[
yn+i · F

(
k2, (id, i)

)]
∈ Fq

if a+ b = t output 1; otherwise output 0

This completes the description of HomMac. To verify correctness of the scheme, suppose y =∑m
i=1 αivi where v1, . . . ,vm are the original augmented basis vectors and t1, . . . , tm are their tags.

The coordinates (yn+1, . . . , yn+m) of y are equal to the coefficients (α1, . . . , αm). Therefore, a + b
computed in Verify satisfies

a+ b =
m∑
i=1

αi ·
(

(u · vi) + F (k2, (id, i))
)

=
m∑
i=1

αi · ti

which is precisely the output of Combine
(
(v1, t1, α1), . . . , (vm, tm, αm)

)
, as required.

Security. We prove security assuming G is a secure PRG and F is a secure PRF. For a PRF
adversary B1 we let PRF-Adv[B1, F] denote B1’s advantage in winning the PRF security game
with respect to F . Similarly, for a PRG adversary B2 we let PRG-Adv[B2, G] be B2’s advantage in
winning the PRG security game with respect to G.

Theorem 2. For any fixed q, n,m, the MAC scheme HomMac is a secure (q, n,m) homomorphic
MAC assuming the PRG G is a secure PRG and the PRF F is a secure PRF.

In particular, for all homomorphic MAC adversaries A there is a PRF adversary B1 and a PRG
adversary B2 (whose running times are about the same as that of A) such that

NC-Adv[A,HomMac] ≤ PRF-Adv[B1, F] + PRG-Adv[B2, G] + (1/q)

Proof. We prove the theorem using a sequence of three games denoted Game 0,1,2. For i = 0, 1, 2
let Wi be the event that A wins the homomorphic MAC security game in Game i.

Game 0 is identical to Attack Game 1 applied to the scheme HomMac. Therefore

Pr[W0] = NC-Adv[A,HomMac] (2)

In Game 1 we replace the output of the PRG used in HomMac with a truly random string. That is,
Game 1 is identical to Game 0 except that to respond to MAC queries the challenger computes at
initialization time u R← Fn+m

q instead of u ← G(k1) in step (1) of the Sign algorithm. Everything
else remains the same. Then there is a PRG adversary B2 such that∣∣Pr[W0]− Pr[W1]

∣∣ = PRG-Adv[B2, G] (3)

In Game 2 we replace the PRF by a truly random function. That is, Game 2 is identical to
Game 1 except that to respond to MAC queries the challenger computes b R← Fq instead of b ←
F
(
k2, (idi, j)

)
in step (2) of the Sign algorithm. Everything else remains the same. Then there is a

PRF adversary B1 such that ∣∣Pr[W1]− Pr[W2]
∣∣ = PRF-Adv[B1, F] (4)

The complete challenger in Game 2 works as follows:

init: u R← Fn+m
q

The adversary submits MAC queries (Vi, idi) where Vi = span(v1, . . . ,vm) ⊆ Fn+m
q .

The challenger responds to query number i as follows:
for j = 1, . . . ,m do:

bi,j
R← Fq and ti,j ← (u · vj) + bi,j ∈ Fq

send (ti,1, . . . , ti,m) to A

Eventually the adversary outputs (id∗, t∗,y∗). To determine if the adversary wins the game we first
compute:

if id∗ = idi then set (b∗1, . . . , b
∗
m)← (bi,1, . . . , bi,m) // (type 2 forgery)

else for j = 1, . . . ,m set b∗j
R← Fq // (type 1 forgery)

Let y∗ = (y∗1, . . . , y
∗
n+m). The adversary wins (i.e. event W2 happens) if

t∗ = (u · y∗) +
m∑
j=1

(y∗n+j · b∗j) (5)

and, for a type 2 forgery y∗ 6∈ Vi. Moreover the augmentation (y∗n+1, . . . , y
∗
n+m) in y∗ is not all zero.

We now show that Pr[W2] = 1/q in Game 2. This is the crux of the proof. Let T be the event
that the adversary outputs a type 1 forgery.

Type 1 forgery (event T happens): We bound Pr[W2 ∧ T]. In a type 1 forgery the right hand
side of (5) is a random value in Fq independent of the adversary’s view. Therefore, when event T
happens, the probability that (5) holds is exactly 1/q. Hence, Pr[W2 ∧ T] = (1/q) · Pr[T].

Type 2 forgery (event ¬T happens): We bound Pr[W2∧¬T]. In a type 2 forgery A uses an id∗ used
in one of the MAC queries. Then id∗ = idi for some i. Event W2 happens if y∗ 6∈ Vi and (5) holds.

Let {t′1, . . . , t′m} be the tags for the basis vectors {v1, . . . ,vm} of the linear space Vi. Define

y′ :=
m∑
j=1

y∗n+j · vj ∈ Vi and t′ :=
m∑
j=1

y∗n+j · t′j ∈ Fq

Then, t′ is a valid tag for y′. Hence, we now know that the following two relations hold:

(u · y∗) +
m∑
j=1

y∗n+j · bi,j = t

(u · y′) +
m∑
j=1

y′n+j · bi,j = t′

Subtracting one from the other we obtain(
u · (y∗ − y′)

)
= t− t′ (6)

Hence, by producing a valid forgery, the adversary found a y∗ and t that satisfy (6). Moreover, since
y∗ 6∈ Vi but y′ ∈ Vi we know that y∗ 6= y′. But since in the adversary’s view, u is indistinguishable
from a random vector in Fn+m

q , the probability that he can satisfy (6) is exactly 1/q. Hence, when
event ¬T happens we have that Pr[W2 ∧ ¬T] = (1/q) · Pr[¬T].

Putting together our bounds for Pr[W2 ∧ T] and Pr[W2 ∧ ¬T] we obtain

Pr[W2] = Pr[W2 ∧ T] + Pr[W2 ∧ ¬T] = 1/q(Pr[T] + Pr[¬T]) = 1/q (7)

Putting together equations (2),(3),(4),(7) proves the theorem. ut

Improved security. Since the tag on a vector v is a single element in Fq, there is a homomor-
phic MAC adversary that can break the MAC (i.e. win the MAC security game) with probability
1/q. When q = 28 the MAC can be broken with probability 1/256. Security can be improved by
computing multiple MACs per vector. For example, with 8 tags per vector security becomes 1/q8.
The resulting tag is 8 bytes long. The proof of Theorem 2 easily extends to prove these bounds for
HomMac using multiple tags.

We note, however, that a homomorphic MAC with security 1/256 may be sufficient for the
network coding application. The reason is that the homomorphic MAC is only used by recipients
to drop malformed received vectors. The sender can, in addition, compute a regular MAC (such as
HMAC) on the transmitted message prior to encoding it using network coding. Recipients, after
decoding a matrix of vectors with valid homomorphic MACs, will further validate the HMAC on
the decoded message and drop the message if its HMAC is invalid. Hence, success in defeating the
homomorphic MAC does not mean that a rogue message is accepted by recipients. It only means
that recipients may need to do a little more work to properly decode the message (by trying various
m-subsets of the received vectors with a valid homomorphic MAC). As mentioned above, this issue
can be avoided by increasing the security of the homomorphic MAC by computing multiple tags
per vector.

4 Broadcast Homomorphic MACs: Definitions

We next convert the homomorphic MAC of the previous section to a broadcast homomorphic MAC.
This will enable all nodes in the network (both recipients and routers) to verify tags in transmitted
packets. We start by defining security for a broadcast homomorphic tag, which takes into account
a set of nodes trying to fool some other node.

A broadcast homomorphic MAC is parametrized by a five tuple (q, n,m, µ, c) where (q, n,m)
are as in the previous section, µ is the number of nodes in the system, and c is the collusion bound
(the maximum number of nodes that can collude to fool another node).

A (q, n,m, µ, c) broadcast homomorphic MAC is defined by four probabilistic, polynomial-time
algorithms, (Setup, Sign, Verify, Combine) that provide the following functionality:

– Setup(λ, µ, c): Input: security parameter λ, number of users in the system µ, and desirable
collusion resistance bound c. Output: A set of µ + 1 keys k, k1, . . . , kµ. Here k is the sender’s
key and k1, . . . , kµ are keys given to the µ verifiers.

– Algorithms Sign,Combine,Verify are as in Section 2, except that the Sign algorithm is given the
key k and the Verify algorithm is given one of the keys ki for some i ∈ [µ].

The system must satisfy a correctness requirement analogous to the one in Section 2.

Security: Next, we define security against c-collusions. The adversary A is given c verifier keys
and its goal is to create a message-tag pair that will verify under some verifier’s key not in the
adversary’s possession. More precisely, we define security using the following game.

Attack Game 2. Let T = (Setup,Sign,Combine,Verify) be a (q, n,m, µ, c) broadcast homomor-
phic MAC. We define security of T using the following game between a challenger C and an
adversary A (the security parameter λ is given as input to both the challenger and the adversary).

Setup. The adversary sends the challenger the indices of c users acting as verifiers {i1, . . . , ic}.
The challenger runs Setup(λ, c, µ) to obtain keys k, k1, . . . , kµ and sends the keys {ki1 , . . . , kic} to
the adversary.

Queries. The adversary adaptively submits MAC queries as in Attack Game 1. The challenger
responds as in that game using the sender’s key k.

Output. The adversary A outputs an index j∗ ∈ [µ], an identifier id∗, a tag t∗, and a vector
y∗ ∈ Fn+m

p .

The adversary wins the security game if Verify(kj∗ , id∗,y∗, t∗) = 1, and the additional winning
conditions of Attack Game 1 are satisfied.

The advantage BNC-Adv[A, T] of A with respect to T is defined to be the probability that A wins
this security game.

Definition 3. A (q, n,m, µ, c) broadcast homomorphic MAC scheme T is secure if for all polyno-
mial time adversaries A, the quantity BNC-Adv[A, T] is negligible.

5 Construction 2: A Broadcast Homomorphic MAC

We convert our homomorphic MAC HomMac into a broadcast MAC using a technique of Canetti et
al. [3] based on cover free set systems. Instead of computing one tag per vector, we compute several
tags per vector using independent keys. We give each verifier a subset of all MAC keys. Thus, each
verifier can validate a subset of the MACs on each packet. More importantly, when key assignment
is done properly, no coalition of c verifiers can fool another verifier. We start by recalling a few
definitions.

Definition 4. A set system is a pair (X,B) where X is a finite set of elements and B = (A1, . . . , Aµ)
is an ordered set of subsets of X.

Definition 5. A set system (X,B) is called a (c, d)–cover free family if for all c distinct sets
A1, . . . , Ac ∈ B and any other set A ∈ B, we have |A \ ∪cj=1Aj | > d.

We construct a (q, n,m, µ, c) broadcast homomorphic MAC from HomMac and any (c, d) cover
free family (X,B) where |B| = µ. The parameter d is important for security; the error term in the
security proof is (1/q)d. The system works as follows:

MAC scheme BrdctHomMac:

Setup(λ, c, µ): Pick a (c, d) cover free family (X,B),such that |B| = µ and 1
qd
< 1

2λ
.

Let ` = |X| and generate ` keys {K1, . . . ,K`} for HomMac. We equate X with this set of keys,
i.e. X := {K1, . . . ,K`}.
The sender’s key k consists of all ` keys in X. We assign to verifier number i (where i ∈ [µ]) the
key ki := Ai ⊆ X where Ai is subset number i in B.

Sign(X, id,v, i). For j = 1, . . . , ` compute tj ← HomMac-Sign(Kj , id,v, i)
and output t := (t1, . . . , t`).

Combine((v1, t1, α1), . . . , (vm, tm, αm)) : Apply HomMac-Combine to all ` tags in the m tuples.

Verify(Ai, id,y, t). Here t is a tuple of ` tags. Output 1 if the HomMac tags in t verify for all keys
in Ai. Output 0 otherwise.

Security. The following simple theorem states the security property of this construction. Recall
that HomMac uses a PRF and a PRG.

Theorem 6. For any fixed q, n,m, µ, c, the broadcast homomorphic MAC BrdctHomMac is a secure
(q, n,m, µ, c) Broadcast Homomorphic MAC assuming the PRG G is a secure PRG and the PRF
F is a secure PRF.

In particular, for all broadcast homomorphic MAC adversaries A there is a PRF adversary B1

and a PRG adversary B2 (whose running times are about the same as that of A) such that

BNC-Adv[A,BrdctHomMac] ≤ PRF-Adv[B1, F] + PRG-Adv[B2, G] + (1/q)d (8)

The proof is immediate from Theorem 2 and is omitted here. Since q is fairly small (e.g. q = 256)
it is very important that the error term in (8) is (1/q)d. In particular, one needs a (c, d) cover free
set system where d makes (1/q)d negligible (or concretely (1/q)d < (1/2)λ). The (1/q)d error term
is obtained thanks to properties of the HomMac homomorphic MAC.

6 Key Management for Multi-Sender Broadcast Homomorphic MACs

The key dissemination scheme described in the previous section supports a single sender. A real
network consists of many nodes where each node can be a sender, a recipient, a router, or all three.
To handle many senders with the system of the previous section one would need to set up a cover
free family of keys for every sender. In this section, we describe a single cover free set system of
keys that simultaneously supports all senders of the network.

We modify the key dissemination scheme as follows. Every node in the network is given two sets
of keys, the first set corresponding to the node’s role as a sender and the second set corresponding
to its role as a router. Hence, the node uses its first set of keys to sign a message, and its second set
of keys to verify the authenticity of a message it receives. Every node in the network is identified
by a sender id that is unique. We denote the sender id of node i by sidi. As before, the network is
associated with a set of global keys, the set X of the cover free family. We denote the total number
of keys in the network by `, i.e. |X| = ` and the keys in the set X by x1, x2, . . . , xl.

The first set of keys given to node i, called K1i is {F (x1, sidi), F (x2, sidi), . . . , F (xl, sidi)}. Here,
F is a PRF. Note that |K1i | = `. The second set of keys given to sender i, called K2i is as before,
a block in the cover free family, i.e. K2i ∈ B. We denote the members of K2i by {xi1 , xi2 , . . . , xib},
where b is the block size.

This setup is sufficient for every node in the network to play its dual roles of sender and router.
To sign a packet, node i simply uses its ` keys from set K1i to create ` tags for the packet. Verifi-
cation of a received packet (say p),proceeds as follows:
Note that each packet carries with it the id of its sender. The verifying node reads the sender id of p,
say sidj . Then it computes the b keys it needs to verify p as {F (xi1 , sidj), F (xi2 , sidj), . . . , F (xib , sidj)}.
Using these b keys, the node proceeds to verify p as before. Thus, using sender id of each received
packet, a node computes ‘on the fly’ the keys it needs for verification.

The proof of security largely remains the same as in the previous section. As before, knowing a
single block (or union of c blocks) is not enough to fool any other node in the system. Also, since
the only information a node has about keys of other nodes is encoded by the PRF F , security is
maintained.

7 Experimental results

We implemented the homomorphic broadcast MAC outlined in section 5 to measure its performance.
In our implementation, we chose q = 256, i.e. we worked in the field F28 . For brevity, we will denote
this field by F. Our messages were chosen as vectors of length 1024 over the field F, and the network
coding coefficients were picked randomly from F. We ran our experiments using two cover free set
systems constructed from polynomials [10].

– The first set system is a (2, 1) cover-free set system where |X| = 49 and each subset contains 7
keys. The number of verifiers is µ = 74 = 2401.

– The second set system is a (2, 5) cover-free set system where |X| = 121 and each subset contains
11 keys. The number of verifiers is µ = 114 = 14641.

In our implementation, we chose m = 5, so the sender sends 5 messages, each a 1 kilobyte vector
as described above. Each message is signed with 49 (or 121) keys by the sender, hence a router
receives 5 messages, with 49(or 121) tags each. The router then linearly combines the tags along

with the messages, to yield an aggregate message with an aggregate tag. We verify that the resultant
aggregate tag is a valid MAC for the aggregate message thus constructed.

Since our homomorphic MAC requires fast multiplication in F, we created a multiplication
table offline which stores all 216 products of pairs of elements of F. This table speeds up product
computation, which is now just a quick table lookup. The addition in the field is implemented as
a simple XOR operation. We implemented the pseudorandom function F and the pseudorandom
generator G using AES (from OpenSSL).
We timed the following three operations:

1. Signing: Source signs one message.
2. Combine and Verify: Router receives five (message,tag) pairs and computes a random linear

combination of the five vectors and their corresponding tags. Then it verifies that the combined
tag is valid for the combined message.

The results for both cover free set systems are shown in the following table. Timing units are in
microseconds.

Operation timed Sign Combine & Verify tag size(bytes) Security
p = 7 430.3 88.5 49 (1/2)8

p = 11 1329.3 161.5 121 (1/2)40

These experiments were conducted on a GNU/Linux system with 4 Intel Xeon 3 Ghz processors
with symmetric multiprocessing support.

8 Conclusions

We presented a homomorphic MAC suitable for networks using network coding. The homomorphic
MAC can be converted to a broadcast homomorphic MAC using cover free set systems. The resulting
broadcast MAC is collusion resistant up to a pre-determined collusion bound c. The tag size grows
quadratically with c.

Our experimental results show that the MAC performs well as a point-to-point MAC. As a
broadcast MAC it performs well for small values of c. It is an interesting question whether a
TESLA-type mechanism [12] applied to our homomorphic MAC can be used to give the same
functionality as our broadcast MAC, where every intermediate network router can verify the tag.

References

1. R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network information flow. IEEE Transactions on Information Theory,
46(4):1204–1216, 2000.

2. D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature schemes for network coding.
In Proc. of PKC 2009, 2009.

3. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast security: A taxonomy and some
efficient constructions. In Proc. of INFOCOM ’99, volume 2, pages 708–716, 1999.

4. L. Carter and M. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences,
18(2):143–154, 1979.

5. Denis Charles, K Jain, and K Lauter. Signatures for network coding. In CISS ‘06, 2006. To appear in International
Journal of Information and Coding Theory.

6. C. Gkantsidis and P. Rodriguez. Network coding for large scale content distribution. In Proc. of IEEE INFOCOM
2005, pages 2235–2245, 2005.

7. Keesook Han, Tracey Ho, Ralf Koetter, Muriel Medard, and Fang Zhao. On network coding for security. In
Military Communications Conference (Milcom), 2007.

8. Ralf Koetter. An algebraic approach to network coding. IEEE/ACM Transactions on Networking, 11:782–795,
2003.

9. M. Krohn, M. Freedman, and D. Mazieres. On the-fly verification of rateless erasure codes for efficient content
distribution. In Proc. of IEEE Symposium on Security and Privacy, pages 226–240, 2004.

10. Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. Coding constructions for blacklisting problems without
computational assumptions. In Proc. of Crypto ’99, pages 609–623, 1999.

11. Shuo-Yen Robert Li, Raymond W. Yeung, and Ning Cai. Linear network coding. IEEE Trans. Inform. Theory,
49(2):371–381, 2003.

12. A. Perrig, R. Canetti, D. Tygar, and D. Song. Efficient authentication and signature of multicast streams over
lossy channels. In Proc. of 2000 IEEE Symposium on Security and Privacy, 2000.

13. Fang Zhao, Ton Kalker, Muriel Médard, and Keesook Han. Signatures for content distribution with network
coding. In Proc. of International Symposium on Information Theory (ISIT), 2007.

