
Specialization and Subordination from Sampling:
Lattice-based A(H)IBE in the Plain Model

Shweta Agrawal ? and Xavier Boyen ??

Preliminary version — July 19, 2009

Abstract. We construct an Identity-Based Encryption (IBE) system without random oracles from
hard problems on lattices. The system provides full ciphertext anonymity, and also extends to HIBE
by properly randomizing lattice trapdoors used as private keys during delegation.

1 Introduction

An Identity Based Encryption (IBE) system [24, 7] is a public key system where the public key
can be an arbitrary string such as an email address. A central authority, called a PKG, uses a
master key to issue private keys to identities that request them. Hierarchical IBE (HIBE) [19,
18] is a generalization of IBE that mirrors an organizational hierarchy. An identity at level k of
the hierarchy tree can issue private keys to its descendant identities, but cannot decrypt messages
intended for other identities.

There are currently three classes of IBE systems: (1) based on groups with a bilinear map [7,
4, 5, 25, 16] (to name a few), (2) based on quadratic residuosity modulo a composite [14, 9, 15], and
(3) based on hard problems on lattices [17]. To date, the only constructions without random oracles
were based on bilinear maps.

In this paper we present an IBE construction based on hard problems in lattices without relying
on random oracles. In fact, the construction is anonymous [6, 1, 10] which means that the ciphertext
does not reveal the recipient’s identity. Anonymous IBE is used for searching on encrypted data.
Our construction generalizes to an HIBE by properly randomizing private keys during delegation.
Similar results were obtained independently by Peikert [22] and Cash, Hofheinz, and Kiltz [13].

2 Preliminaries: IBE and HIBE

Recall that an Identity-Based Encryption system (IBE) consists of four algorithms [24, 7]: Setup,
Extract, Encrypt, Decrypt. The Setup algorithm generates system parameters, denoted by params,
and a master key mk. The Extract algorithm uses the master key to extract a private key cor-
responding to a given identity. The encryption algorithm encrypts messages for a given identity
(using the system parameters) and the decryption algorithm decrypts ciphertexts using the private
key.

In a Hierarchical IBE [19, 18], identities are vectors, and there is a fifth algorithm called Derive. A
vector of dimension ` represents an identity at depth `. Algorithm Derive takes as input an identity
ID = (I1, . . . , I`) at depth ` and the private key dID|`−1 of the parent identity ID|`−1 = (I1, . . . , I`−1)

? University of Texas at Austin — shweta.a@gmail.com — Supported by DARPA IAMANET.
?? Stanford University — xb@cs.stanford.edu — Supported by DARPA IAMANET.

at depth ` − 1 > 0. It outputs the private key dID for identity ID. For convenience, we sometimes
refer to the master key as the private key at depth 0, given which the algorithm Derive performs
the same function as Extract. We note that an IBE system is an HIBE where all identities are at
depth 1. The Setup algorithm in an HIBE scheme takes the maximum depth of the hierarchy as
input.

Selective and Adaptive ID Security. The standard IBE security model of [7, 8] defines the in-
distinguishability of ciphertexts under an adaptive chosen-ciphertext and chosen-identity attack
(IND-ID-CCA2). An adaptive chosen-identity attack means that the adversary is allowed to narrow
in adaptively to the identity it wishes to target (i.e., the public key on which it will be challenged).
A weaker notion of IBE security given by Canetti, Halevi, and Katz [11, 12] forces the adversary to
announce ahead of time the public key it will target, which is known as a selective-identity attack
(IND-sID-CCA2). We refer to such a system as a selective identity, chosen-ciphertext secure IBE.

As with regular public-key encryption, we can deny the adversary the ability to ask decryp-
tion queries (for the target identity), which leads to the weaker notions of indistinguishability of
ciphertexts under an adaptive chosen-identity and chosen-plaintext attack (IND-ID-CPA) and un-
der a selective-identity chosen-plaintext attack (IND-sID-CPA) respectively. Indistinguishability of
ciphertexts against chosen-plaintext attacks is also referred to as semantic security.

Security Game. We define IBE and HIBE semantic security under a selective-identity attack (for a
hierarchy of maximum depth L) using the following game between a challenger and an adversary:

Init: The adversary outputs an identity ID∗ = (I∗1, . . . , I
∗
k) where it wishes to be challenged.

Setup: The challenger runs the Setup algorithm giving it the maximum depth L as input
(where L = 1 for IBE). It gives the adversary the resulting system parameters params. It
keeps the master key mk to itself.

Phase 1: The adversary issues queries q1, . . . , qm where the i-th query qi is a query on IDi,
where IDi = (I1, . . . , Iu) for some u ≤ `. We require that IDi is not a prefix of ID∗, (i.e., it is
not the case that u ≤ k and Ii = I∗i for all i = 1, . . . , u). The challenger responds by running
algorithm Extract to obtain a private key di corresponding to the public key IDi. It sends di
to the adversary.
All queries may be made adaptively, that is, the adversary may ask qi with knowledge of
the challenger’s responses to q1, . . . , qi−1.

Challenge: Once the adversary decides that Phase 1 is over it outputs two equal length plain-
texts M0,M1 ∈ M on which it wishes to be challenged. The challenger picks a random bit
b ∈ {0, 1} and sets the challenge ciphertext to C = Encrypt(params, ID∗,Mb). It sends C as
the challenge to the adversary.

Phase 2: The adversary issues additional adaptive queries qm+1, . . . , qn where qi is a private-
key extraction query on IDi, where IDi 6= ID∗ and IDi is not a prefix of ID∗. The challenger
responds as in Phase 1.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins if b = b′.

We refer to such an adversary A as an IND-sID-CPA adversary. We define the advantage of the
adversary A in attacking an HIBE scheme E = (Setup,Extract,Derive,Encrypt,Decrypt), or an
IBE scheme E = (Setup,Extract,Encrypt,Decrypt), as

AdvE,A =
∣∣Pr[b = b′]− 1/2

∣∣
2

The probability is over the random bits used by the challenger and the adversary.

Definition 1. We say that an IBE or HIBE system E is (t, qID, ε)-secure against a selective-identity,
adaptive chosen-plaintext attack, if, for all IND-sID-CPA adversary A that runs in time t and makes
at most qID chosen private-key extraction queries, we have that AdvE,A < ε. We abbreviate this by
saying that E is (t, qID, ε)-IND-sID-CPA secure.

Finally, we define the adaptive-identity counterparts to the above notions by removing the
Init phase from the attack game, and allowing the adversary to wait until the Challenge phase to
announce the identity ID∗ it wishes to attack. The adversary is allowed to make arbitrary private-
key queries in Phase 1 and then choose an arbitrary target ID∗. The only restriction is that he did
not issue a private-key query for ID∗ or a prefix of ID∗ during phase 1. The resulting security notion
is defined using the modified game as in Definition 1, and is denoted IND-ID-CPA.

In the sequel, our main focus will be to construct (H)IBE systems in the selective security
model. We shall however briefly discuss some ways to attain adaptive-ID security.

Ciphertext Anonymity. We shall also briefly discuss the orthogonal privacy notion of IBE cipher-
text anonymity (under chosen-plaintext attacks) in a later section. In short, ciphertext anonymity
requires that the intended recipient of a ciphertext not transpire from the ciphertext to whom lacks
the decryption key.

2.1 Preliminaries: Hard Lattices for Cryptography

Lattices: A n-dimensional lattice in Rm, for n ≤ m, is a periodic subset of Rn. Formally, we define
a lattice and its dual as follows:

Definition 1. Given n linearly independent vectors b1, b2, . . . bn ∈ Rm, the lattice Λ generated by
them is denoted L(b1, b2, . . . , bn) and defined as:

L(b1, b2, . . . , bn) =
{∑

xibi|xi ∈ Z
}

The vectors b1, . . . , bn are called the basis of the lattice.
For a lattice Λ, its dual Λ∗ is defined as: Λ∗ = {x ∈ Zn|∀y ∈ Λ, 〈x, y〉 ∈ Z}.

Gaussians on Lattices: Recently a lot of progress in lattice based cryptography has used gaus-
sians on lattices. Here, we provide a brief introduction. We refer the interested reader to [17] for
more details.

For any σ > 0 the Gaussian function on Rn with center c and standard deviation σ is defined
as:

∀x ∈ Rn, ρσ,c(x) = exp(−π||x− c||2/σ2)

For any c ∈ Rn, and an n dimensional lattice Λ, the discrete gaussian distribution over Λ
is defined as:

∀x ∈ Λ,DΛ,σ,c(x) =
ρσ,c(x)
ρσ,c(Λ)

The denominator should be viewed as a normalizing factor. For notational convenience, we write
DΛ,σ when c = 0.

The smoothing parameter of a lattice is defined as:

3

Definition 2. [20] For any n-dimensional lattice Λ and positive real ε > 0, the smoothing param-
eter ηε(Λ) is the smallest real σ > 0 such that

∑
06=x∈Λ∗ ρ1/σ,0(x) ≤ ε.

Informally, the smoothing parameter is the amount of Gaussian noise σ one must add to a lattice
in order to make the distribution uniform. We refer to [20] for the calculation of ηε(Λ).

Hard Random Lattices Two families of random lattices that have appeared in previous work
and that we will use are defined below. These families are generated from matrices in the following
way. Let A ∈ Zn×mq for some positive n,m, q. Then define:

Λ⊥(A) = {e ∈ Zm : Ae = 0 mod q}

Λ(A) = {y ∈ Zm : y = AT s mod q, for some s ∈ Zn}

It is easy to see that correctly scaled versions of Λ and Λ⊥ are duals [17].
When the matrix A is picked uniformly, solving SV P on Λ⊥(A) is as hard as approximating

certain problems on any lattice of dimension n to within poly(n) factors [2]. The approximation
factors were later improved to Õ(n) in [23].

2.2 The LWE Hardness Assumption

We recall the “Learning With Errors” or LWE hardness assumption, adapted from a description
originally given by Regev [23]. The assumption is stated with respect to a Gaussian error distribu-
tions χ; we refer to [23] for its parameterization.

Definition 3. For a dimension parameter n ∈ N, a positive integer q = q(n) > 2, and a secret
vector s ∈ Znq , denote by As,χ the distribution of the variable (a, aT s+ x) over Znq ×Zq, where the
vector a ∈ Znq is uniform and the scalar x ∈ Zq is sampled from χ [23].

The (average-case) LWE decision problem is to distinguish, with non-negligible probability,
between the distribution As,χ for some random secret s ∈ Znq and the uniform distribution over
Znq × Zq, given oracle access to samples from the given distribution.

As evidence that this is a hard problem, Regev [23] has shown that, for suitable prime moduli
q and Gaussian error distributions χ, the decisional LWEq,χ problem is as hard as solving the
classic worst-case lattice problems SIVP and GapSVP in the `2 norm, using a quantum algorithm.
Peikert [21] subsequently extended Regev’s result to hold for SIVP and GapSVP in all `p norms
for 2 ≤ p ≤ ∞ with essentially the same approximation factors.

Let R/Z be the group [0, 1) with real addition modulo 1. For α ∈ R+, let Ψα be the distribution
on R/Z of a Gaussian variable with mean 0 and standard deviation α/2π, reduced modulo 1.
Regev’s theorem is stated as follows:

Theorem 1 [23] Let then α = α(n) ∈ (0, 1). Let q = q(n) be a prime such that αq > 2n. If there
exists an efficient (possibly quantum) algorithm that solves LWEq,Ψα, then there exists an efficient
quantum algorithm for approximating SIVP and GapSVP in `2 norm, in the worst case, to within
O(n/α) factors.

4

2.3 The Dual of Regev’s Public-Key Cryptosystem

Under the LWE assumption, it is easy to construct a PKE cryptosystem based on the indistin-
guishability of the pseudo-random vector (a, aT s+x) from random. Specifically, the pseudo-random
element aT s+x ∈ Zq can be used to mask one bit of plaintext. This is the Regev PKE cryptosystem.

In the original Regev system [23], the public keys are points close to lattice points, and thus
exponentially sparse in the space, whereas by contrast ciphertexts are uniform in the space. This
poses a problem when we seek to construct an IBE system, because it is not obvious how to
map identities to valid public keys in the Regev systems. Gentry, Peikert, and Vaikuntanathan
[17] propose a simple solution for their IBE cryptosystem, which consists in taking the “dual” of
Regev’s PKE system, essentially swapping public keys and ciphertexts.

The DualRegev PKE system is as follows:

DualKeyGen: Fix a random matrix A ∈ Zn×m for m ≥ 2n lg q. Let fA : Zn → Zm : e 7→ Ae
mod q. Choose an error vector e← DZm,r and compute its syndrome u = fA(e) = Ae mod q.
The secret key is the vector e ∈ Znq . The public key is the vector u ∈ Zmq .

DualEncrypt: To encrypt a bit b ∈ {0, 1}, draw at random a uniform ephemeral s ∈ Znq , a noise
scalar x← χ, and a noise vector y ← χm, and output C = (c0, c1) where:

c0 = uT s+ x+ b · bq
2
c

c1 = AT s+ y

DualDecrypt: To decrypt a ciphertext C = (c0, c1) using the secret key e with respect to the
public matrix A: compute b = c0 − eT c1 ∈ Zq; output 1 if b is closer to b q2c than to 0 modulo
q; otherwise output 0.

The authors of [17] use this DualRegev PKE as their main building block to construct an IBE
system, using a hash function modeled as a random oracle to map identities to public keys.

2.4 The GPV Pre-Image Samplable Function Family

The authors of [17] define and construct pre-image samplable functions. For completeness, and
because we build on it, we briefly review their construction here.

Definition 4. [17] A collection of one-way preimage samplable functions consist of three PPT
algorithms TrapGen, SampleDom, SamplePre with the following functionality:

– TrapGen(1λ): On input parameter λ (expressed in unary), it outputs a tuple (A, T), where
A is the description of an efficiently computable function fA : Dλ → Rλ (for some efficiently
recognizable domain Dλ and range Rλ), and T is a trapdoor for the function fA. We will assume
A is an implicit parameter in the remaining algorithms.

– SampleDom(A): On input a function description A, it samples an element x from some distri-
bution χ over the domain Dλ, such that the distribution of fA(x) is uniform over the range Rλ,
and outputs x.

– SamplePre(T, y): On input a trapdoor description T , and a point y ∈ Rλ, it samples an element
x ∈ Dλ from the same distribution χ as in SampleDom conditioned on the event that fA(x) = y,
and outputs x.

5

Correctness. For consistency, the GPV hash functions must satisfy the following:

Correct distributions: SampleDom samples an element x from some distribution χ over the
domain Dλ, such that the distribution of fA(x) is uniform over the range Rλ. SamplePre samples
an element x ∈ Dλ from distribution χ (same as in SampleDom) conditioned on fA(x) = y.

Security. For security, the GPV preimage-samplable functions must also satisfy:

1. One-wayness without trapdoor: For any PPT algorithm A, the probability that A(1λ, A, y) ∈
fA
−1(y) ⊂ Dλ is negligible, where the probability is taken over the choice of A, the target value

y ∈ Rλ chosen uniformly at random, and A’s random coins.
2. Preimage min-entropy: For every y ∈ Rλ, the conditional min-entropy of x ← SampleDom(A)

given fA(x) = y is at least ω(lg λ).
3. Collision resistance without trapdoor: For any PPT algorithm A, the probability that A(1λ, A)

outputs distinct x, x′ ∈ Dλ such that fA(x) = fA(x′) is negligible, where the probability is taken
over choice of A and the random coins consumed by A.

Construction. The GPV trapdoor construction is based on the following result by Ajtai [3] (in
this theorem, the value of n serves as a substitute for the security parameter λ):

Theorem 2 [3] For any prime q = poly(n) and any m ≥ 5n lg q, there is a probabilistic polynomial-
time algorithm that, on input 1n, outputs a matrix A ∈ Zn×mq and a full-rank set S ⊂ Λ⊥(A), where
the distribution of A is statistically close to uniform over Zn×mq and the length ||S|| ≤ L = m2.5.

Note that this set S can be converted efficiently to a basis T of Λ⊥(A) such that ||T̃ || ≤ ||S̃|| ≤ L,
and that can thus serve as a trapdoor for a GPV function.

We will also need the following algorithm constructed by the authors of [17] (they call it SampleD
in their work, but we shall use SampleGaussian to avoid confusion with SampleDom):

– SampleGaussian(B, σ, c): This algorithm uses an arbitrary lattice basis B to sample efficiently
from the discrete Gaussian distribution of center c and deviation σ over the lattice Λ = L(B),
for sufficiently large σ, as formally stated in the following theorem:

Theorem 3 [17] There is a probabilistic polynomial-time algorithm that, given a basis B of an
m-dimensional lattice Λ = L(B), a parameter σ ≥ ||B̃|| · ω(

√
lgm), and a center c ∈ Rm, outputs

a sample from a distribution that is statistically close to DΛ,σ,c.

The GPV preimage samplable functions are constructed as follows. For a security parameter
λ ∈ N, let n = Θ(λ) and q,m,L be as in Theorem 2. The construction takes the Gaussian smoothing
parameter σ ≥ L · ω(

√
lgm) as a parameter, and is as follows:

TrapGen(1λ, σ): Use the algorithm from theorem 2 to choose matrix A ∈ Zn×mq and short “trap-
door” basis T ∈ Λ⊥(A). Let Dλ = {e ∈ Zm : ||e|| ≤ σ

√
m} and Rλ = Znq and fA : Dλ → Rλ,

such that fA(e) = Ae mod q. Output (A, T).
SampleDom(A, σ): Let Bz be the standard basis for Zm (where m is the output dimension of A).

Use the algorithm SampleGaussian(Bz, σ, 0) to sample from distribution DZm,σ.

6

SamplePre(T, σ, y): First choose via linear algebra an arbitrary k ∈ Zm such that Ak = y mod q.
Note that this is not difficult since we do not impose a “smallness” constraint on k, and that
such k exists for all but at most q−n fraction of A by Lemma 5.1 in [17]. Then, use the algorithm
SampleGaussian(T, σ,−k) to sample v from distribution DΛ⊥(A),σ,−k. Note that since σ ≥ ||T̃ || ·
ω(
√

lgm) by design, the preconditions of the algorithm are satisfied and it can be applied. By
Lemma 2.9 in [17], v lands in the domain Dλ with high probability. Output e = v + k.

Proving Correctness. We need to prove the following property:

0. Correctness of Distributions: Let χ = DZm,σ. To show that the distributions line up correctly,
the authors of [17] appeal to the following theorem:

Theorem 4 [17] Assume the columns of A ∈ Zn×mq generate Znq , and let ε ∈ (0, 1
2) and σ ≥

ηε(Λ⊥(A)). Then for e ∼ DZm,σ, the distribution of the syndrome u = Ae mod q is within statis-
tical distance 2ε of uniform over Znq .

Furthermore, fix u ∈ Znq and let k ∈ Zm be an arbitrary solution to Ak = u mod q. Then the
conditional distribution of e ∼ DZm,σ given Ae = u mod q is exactly k +DΛ⊥(A),σ,−k.

We can now easily prove Property 0 above using Theorem 4. We need:

– fA(e) = Ae mod q is statistically close to uniform over the range Rλ = Znq . Note that by
selection of A and Lemma 5.1 in [17], the columns of A generate Znq with probability (1− q−n).
Also since σ ≥ L ·ω

√
logm, ||T || ≤ L, and hence by Lemma 3.1 in [17], we have σ ≥ ηε(Λ⊥(A))

as desired. This, along with part 1 of Theorem 4 gives us the desired property.
– Output of SamplePre: (v+ k) is distributed as DZm,σ conditioned on A(v+ k) = y mod q. The

second part of theorem 4 gives this property.

Proving Security. The GPV functions are one-way and collision-resistant as shown below:

1. One-wayness without trapdoor: Inverting a random function fA on a uniform output u ∈
Rn is syntactically equivalent to solving the “inhomogeneous small integer solution” problem
ISISq,m,σ

√
m. See [17] for more details. 1

2. Preimage min-entropy: Since preimages are distributed according to a discrete Gaussian per
Theorem 4, and since a discrete Gaussian has min-entropy at least m − 1 as shown, e.g., in
Lemma 2.10 in [17], the preimage min-entropy is at least m− 1.

3. Collision-resistance without trapdoor: A collision e, e′ ∈ Dλ for fA implies A(e− e′) = 0 mod q
which implies solving SISq,m,2σ√m. 2

3 A Selectively Secure IBE without Random Oracles

Representation of Identities. The following construction assumes that identities id are arbitrary
strings in {0, 1}k for some k = Θ(λ), for the given value λ of the security parameter.

1 For our purposes, our usage of the GPV trapdoor does not rest on ISIS but on the LWE decisional assumption.
2 Similarly, our need for collision resistance in the GPV trapdoor shall not rest on SIS but on decisional LWE.

7

3.1 Basic Construction

Setup(1λ): Fix a suitable prime modulus q and smoothing parameter σ as a function of λ. Choose a
random matrix A ∈ Zn×mq , along with a short basis for Λ⊥(A), say TA, using Ajtai’s construction
from Theorem 2. We will denote by fA : Zmq → Znq the function defined by fA(e) = Ae mod q.
Also choose a random vector u0 ∈ Znq . Additionally, for each i = 1, ..., k and each b = 0, 1,
choose a random matrix Hi,b ∈ Zn×lq , where l = m. Let H̄ = {(i, b,Hi,b) : 1 ≤ i ≤ k, 0 ≤ b ≤ 1}
denote the ordered set of all the Hi,b.
The IBE public parameters are the matrix A, the vector u0, and the matrices in H̄.
The IBE master secret is the trapdoor TA.

Extract(A, u0, H̄, id, TA): To extract a decryption key corresponding to the identity id ∈ {0, 1}k
using the master secret TA:
1. For each i = 1, ..., k, let bi = biti(id) be the i-th bit of id. Assemble the n × kl matrix
Hid = [H1,b1 |...|Hk,bk] ∈ Zn×klq as the concatenation of k matrices, where the i-th matrix is
thus taken from H̄ as either Hi,0 or Hi,1 according to bi.

2. For each i = 1, ..., k, sample ri ∈ Zlq by running SampleDom(Hi,bi , σ). Let r ∈ Zklq be the
concatenated vector of all the samples, i.e., such that rT = [rT1 |...|rTk].

3. Let u = u0 +Hid r ∈ Znq . Equivalently, let u = u0 +
∑k

i=1Hi,bi ri.
4. Apply the SamplePre(TA, σ, u) function using trapdoor TA to compute the preimage, say e,

of u under the function fA(·). This amounts to finding an e ∈ Zmq such that u = Ae ∈ Znq
and such that e has discrete Gaussian distribution DZm,σ conditioned on u = Ae mod q.

5. Output the identity-based private key K = (e, r).

Encrypt(A, u0, H̄, id, b): To encrypt a bit b for recipient identity id ∈ {0, 1}k:
1. Let Hid = [H1,b1 |...|Hk,bk] ∈ Zn×klq , where bi = biti(id) is the i-th bit of the query id.
2. Choose a uniformly random vector s ∈ Znq .
3. Draw a scalar x ∈ Zq and two vectors y = (y1, ..., ym) ∈ Zmq and z = (z1, ..., zkl) ∈ Zklq , all

respectively sampled from the “noise” distributions χ, χm, and χkl, parameterized as in the
Regev public-key cryptosystem.

4. Let c0 = uT0 s+ x+ bb q2c ∈ Zq.
5. Let c1 = AT s+ y ∈ Zmq .
6. Let c2 = HT

id s+ z ∈ Zklq .
7. Output the ciphertext C = (c0, c1, c2).

Decrypt(A, u0, H̄, id,K,C): To decrypt a ciphertext C = (c0, c1, c2) ∈ Z1+m+kl
q given a private key

K = (e, r) ∈ Zm+kl
q :

1. Compute v = c0 − eT c1 + rT c2 ∈ Zq.
2. Compare v and b q2c in Z.
3. If they are close, i.e., if the difference |v − b q2c| ≤

q
4 , output 1. Otherwise, output 0.

It is easy to show that the Decrypt algorithm will give the correct answer with overwhelming
probability, if its inputs are generated according to the protocol and the noise parameters are
selected as indicated in [23] or [17]. See those references for an elementary proof.

8

Multi-bit Encryption. The preceding scheme is rather inefficient, requiring Θ(k l n) integers mod q
to encrypt a single bit of information. One immediate optimization consists of reusing most of the
encryption header to encrypt multiple bits with limited additional overhead. Specifically, the same
secret ephemeral vector s can be used to encrypt multiple bits b. In this manner, the ciphertext
components c1 and c2 remain the same, whereas as many components c0 are sent as there are bits
to encrypt. Notice that each c0 is a single integer modulo q and thus fairly compact.

3.2 Security Reduction

We show the security of the scheme by using the game-hopping proof technique. We shall construct
a sequence of games, whose initial game, Γ0, is the real attack, and whose terminal game, here Γ4,
will be “unwinnable” by the adversary, in the sense that the adversary will be given an obviously
useless challenge and thus cannot do better than to make an uneducated random guess. Each
transition from Γi to Γi+1 will be shown indistinguishable up to a negligible error under some
hardness assumption. As long as the number of games is polynomially bounded (here, constant),
and each transition distinguishable only with negligible advantage, we will be able to conclude that
the adversary’s advantage in a real attack is negligible, under the stated assumption(s). Our proof is
set in the standard model (in particular, without random oracles, ideal ciphers, or generic groups).

Game Descriptions We first describe the sequence of games without worrying about the indis-
tinguishability of the transitions.

Game Γ0. This is the honest indistinguishability game under a selective-identity chosen-plaintext
attact, or IND-sID-CPA, between an adversary A. and a challenger B.

Recall that, in a selective-identity attack, A informs B of the target identity id† it intents to
attack, before B runs the Setup algorithm and gives the public parameters to A.

Game Γ1. This game is identical to Γ0, except that, in the Setup phase, the challenger B generates
the matrices Hi,b ∈ Zn×lq for i = 1, ..., k and b = 0, 1 not directly, but as the public keys of random
GPV trapdoor functions with corresponding trapdoors Ti,b (using the algorithm in Theorem 2).
Observe that by this process the 2k matrices Hi,b in H̄ are still independently and uniformly
distributed in Zn×lq .

Game Γ2. This game is identical to Γ1, except that the challenger B does not use the master secret
TA nor the Extract procedure to answer identity-based private-key queries. Rather, it uses a new
procedure TrapdoorExtract and its knowledge of the trapdoors Ti,b for 1 ≤ i ≤ k and 0 ≤ b ≤ 1.
These trapdoors are collected in the ordered set T̄ = {(i, b, Ti,b) : 1 ≤ i ≤ k, 0 ≤ b ≤ 1}.

TrapdoorExtract requires not all of T̄ but only one of its trapdoors, say Ti∗,b∗ , for an arbitrary
choice of index i∗ ∈ {1, ..., k}, where b∗ = biti∗(id) ∈ {0, 1} is the i∗-th bit of the query identity id.
The procedure is as follows:

TrapdoorExtract(A, u0, H̄, id, i
∗, Ti∗,b∗): To extract a decryption key corresponding to the identity

id, using the hash trapdoor Ti∗,b∗ of index i∗ ∈ {1, ...,m} and bit b∗ = biti∗(id):
1. For each i = 1, ..., k, let bi = biti(id) be the i-th bit of id. Assemble Hid = [H1,b1 |...|Hk,bk] ∈

Zn×klq as the concatenation of k matrices, whose i-th matrix is thus taken from H̄ as either
Hi,0 or Hi,1 according to bi.

9

2. For each i ∈ {1, ..., k} \ {i∗}, sample ri ∈ Zlq by running SampleDom(Hi,bi , σ), i.e., sampling
from DZl,σ.

3. Let ũ = u0 +
∑

i∈{1,...,k}\{i∗}Hi,bi ri. In other words, ũ = u0 + Hid r̃ ∈ Znq where r̃ is the
concatenation of all the ri except that 0 is substituted for ri∗ .

4. Sample e ∈ Zmq from the distribution DZm,σ by applying algorithm SampleDom(A, σ), i.e.,
sampling from DZm,σ.

5. Compute u = Ae ∈ Znq . Let also û = u− ũ.
6. Using the trapdoor Ti∗,b∗ , apply algorithm SamplePre(Ti∗,b∗ , σ, û) to sample a suitably dis-

tributed preimage ri∗ ∈ Zlq such that û = Hi∗,b∗ ri∗ .
7. Let r be the concatenation of all the ri for i = 1, ..., k, including ri∗ . Observe that, by

construction, u = u0 +Hid r.
8. Output the identity-based private key K = (e, r).

Game Γ3. This game is identical to Γ2, except in the way the challenger B computes the hash
matrices H̄ and their trapdoors T̄ . It will proceed so that it only knows the trapdoor for the matrix
of index i that does not correspond to the i-th bit of the target identity id†. Precisely:

– For i = 1, ..., k, let biti(id†) be the i-th bit of the target identity id†, revealed by A to B before
Setup.

– In the Setup phase, B now generates Ĥ as follows.
• For each i = 1, ..., k and b ∈ {0, 1} such that b 6= biti(id†), it executes the GPV generation

function as in game Γ2 to obtain both a random hash matrix Hi,b and its trapdoor Ti,b.
• For each i = 1, ..., k and b ∈ {0, 1} such that b = biti(id†), it simply picks a random hash

matrix Hi,b ∈ Zn×lq and sets Ti,b = ⊥.
Let then H̄ be the resulting collection of 2k hash matrices Hi,b, and similarly let T̄ be the
(incomplete) collection of their respective trapdoors Ti,b.

– To answer private-key extraction queries on any identity id 6= id†, the challenger proceeds as
in game Γ2, except that it is forced to choose an index i∗ such that biti∗(id) 6= biti∗(id†). Such
index i∗ always exists for a legal query. Let b∗ = biti∗(id). By construction, Ti∗,b∗ 6= ⊥ in T̂ . The
challenger can thus execute TrapdoorExtract(A, u0, H̄, id, i

∗, Ti∗,b∗). It gives the result K = (e, r)
to A.

Recall that, up to and including this game, the challenge ciphertext is produced by evaluating
Encrypt(A,H0, Ĥ, id

†, b†) for a random bit b† ∈ {0, 1} and outputting the result C† = (c0, c1, c2).
This will change in the following games.

Game Γ4. This game is identical to Γ3, except that the challenge ciphertext given to A is no longer
created honestly, but completely at random by B. Specifically, in Γ4, the challenger no longer
evaluates Encrypt to produce the challenge ciphertext; rather, it draws C† = (c†0, c

†
1, c
†
2) uniformly

at random from Z1+m+kl
q .

The view of A in this last game is thus necessarily independent of the plaintext bit b† ∈ {0, 1},
and hence its advantage at guessing b† is necessarily zero.

Game Transitions We now show the indistinguishability of each transition between the successive
games just described.

10

From Γ0 to Γ1. The view of the adversary is identical in both games. The fact that B knows the
trapdoors Ti,b to the hash keys Hi,b is invisible to A.

From Γ1 to Γ2. The view of the adversary is identical in both games. The fact that B uses a different
procedure to answer key extraction queries is invisible to A, since the resulting keys have the same
distribution.

From Γ2 to Γ3. The view of the adversary is identical in both games. The fact that B now only
knows half of all hash trapdoors, and is thus forced to use the ones he knows when answering key
extractions queries, is again invisible to A.

From Γ3 to Γ4. The view of the adversary is not identical in both games, but it is indistinguishable
under the “Learning With Error” (LWE) hardness assumption. To show this, we consider a reduc-
tion from the problem of deciding 1 + m + kl samples of LWE to that of distinguishing between
games Γ3 and Γ4. The reduction is as follows:

– At the very beginning, before the game starts, B receives 1 + m + kl samples of the LWE
problem, (aj , bj) ∈ Zn+1

q for j = 1, ..., 1 +m+ kl, where all aj ∈ Znq are random, and either all
bj ∈ Zq are also random or all are equal to aTj s+ xj for a (common) uniform secret s ∈ Znq and
(independent) Gaussian noises xj drawn from χ. That is, either all bj are drawn from As,χ or
they are all uniform.

– At the beginning of the game, B receives from A the identity id† that A intends to attack.
– In the Setup phase, B generates Ĥ as follows.
• For each i = 1, ..., k and b ∈ {0, 1} such that b 6= biti(id†), it executes the GPV generation

function as in game Γ2 to obtain both a random hash matrix Hi,b and its trapdoor Ti,b,
exactly as in games Γ3 and Γ4.
• For each i = 1, ..., k and b ∈ {0, 1} such that b = biti(id†), it assembles the hash matrix
Hi,b ∈ Zn×lq so that the j′-th column of Hi,b is copied from the j = (1 +m+ (i− 1)l+ j′)-th
LWE instance vector aj . It sets Ti,b = ⊥.

Again, we let H̄ collect all the Hi,b, and T̄ collect the (available) trapdoors Ti,b.
– To answer private key queries, B proceeds as in game Γ3 or equivalently Γ4. It can do this using

the available trapdoors.
– To create the challenge ciphertext, B picks b† ∈ {0, 1} and sets:

c†0 = b1 + bbq
2
c ∈ Zq

c†1 = (b1+i : i = 1, ...,m) ∈ Zmq
c†2 = (b1+m+i : i = 1, ..., kl) ∈ Zklq

– At the end of the simulation, when A outputs a bit b̂† as its decryption guess, B returns genuine
if b̂† = b†, and random if b̂† 6= b†, as its own answer regarding the LWE instances.

In the view of A, the behavior of B is identical to both games Γ3 and Γ4 in all respects ex-
cluding the challenge ciphertext. In particular, H̄ created using the LWE instances has a uniform
distribution whether the LWE instances are genuine or not.

For the challenge ciphertext, it is easy to see that, if the LWE instances are genuine, the
components of C† will have the same distribution as in game Γ3; whereas, if the LWE instances

11

are random, so will be the components of C†, as in game Γ4. Should A exhibit a different success
probability in either case, B will have successfully distinguished between 1 + m + kl genuine and
random instances of the LWE problem.

4 A Hierarchical IBE without Random Oracles

It is easy to extend the previous IBE scheme into a hierarchical HIBE system. To do so, we
essentially translate the framework from [4], which amounts to “re-encrypting” the master key for
the various identity components as we delegate it down the hierarchy tree. Each time the key is
re-encrypted, it becomes more specialized and thus less powerful.

Here, the master key is the trapdoor for the top-level root or “identity-less” matrix (denoted A
in the IBE scheme, but here to be renamed H0 for notational convenience). Hence, we need a mech-
anism for specializing trapdoors of this form to “identity-specific” matrices Hid down the hierarchy.
Since in the basic IBE scheme the full identity-specific matrices, from which the ciphertexts are
created, are the horizontal concatenation of the root matrix A and a string of identity-dependent
sub-matrices Hi,bi , the delegation problem in our case is merely that of finding a way to create a
random trapdoor TAB for any given matrix [A|B] given a trapdoor TA for the matrix A.

This problem has an almost immediate solution for the kind of hard random lattices used in
our IBE scheme, as we now show.

4.1 Trapdoor Delegation

Recall that for a lattice defined by a matrix A ∈ Zn×mq , the trapdoor TA is simply a full-rank set
of short vectors e ∈ Λ⊥(A), which is to say a full-rank matrix TA of vectors e such that Ae = 0.

Hence, given a trapdoor TA for A, one can construct a random trapdoor T[A|A′] for the “wider”
concatenated matrix [A|A′] very easily: by picking n short random vectors e′i in the domain of fA′(·),
and for each of them finding a short preimage ei under fA(·) that will cause mutual “cancellation”,
i.e., such that fA(ei) + fA′(e′i) = 0. The algorithm is as follows:

SubTrapdoor(A,A′, TA): Given two matrices A ∈ Zn×mq and A′ ∈ Zn×m′q , and an arbitrary trapdoor
TA for A, do the following to generate a random trapdoor T[A|A′] for [A|A′]:
1. For i = 1, ..., n, do:

(a) Sample a short Gaussian-distributed random vector e′i ∈ Zm′q from the domain of B using
the SampleDom algorithm.

(b) Compute ui = A′ e′i ∈ Znq .
(c) Using the trapdoor TA, sample a short Gaussian-distributed random preimage ei ∈ Zmq

of −ui under fA(·). I.e., find a short vector ei such that Aei = −ui.

(d) Assemble the i-th trapdoor vector in T[A|A′] to be the column vector ti =
[
ei
e′i

]
∈ Zm+m′

q .

2. Output the trapdoor matrix T[A|A′] = [t1|t2|...|tn] ∈ Z(m+m′)×n
q .

As long as SampleDom produces integer Gaussian samples in Zmq with standard deviation
√
mσ,

and as SamplePre given TA produces integer Gaussian in Zm′q with standard deviation
√
m′ σ, the

synthesized vectors ti will also be integer Gaussian in Zm+m′
q with standard deviation

√
m+m′ σ.

12

4.2 Hierarchical Construction

We shall now describe the basic HIBE construction for a hierarchy of identities comprising L levels.
An identity id at level ` ≤ L is represented as an `-vector id = (id1, ..., id`) ∈ {0, 1}`k where each
identity component idl ∈ {0, 1}k is a k-bit string. 3

Setup(1λ, L): Fix a suitable prime modulus q, dimensions n and m, and smoothing parameter σ,
as a function of the security parameter λ.
Choose a random vector u0 ∈ Znq . Invoke Ajtai’s construction from Theorem 2 to choose a ran-
dom matrix H0 ∈ Zn×mq along with a trapdoor T0 which is a short basis for Λ⊥(H0). We denote
by f0 : Zmq → Znq the function defined by f0 : r0 7→ H0 r0 mod q. Moreover, independently
select, for each l = 1, ..., L, each i = 1, ..., k, and each b = 0, 1, a random matrix Hl,i,b ∈ Zn×mq .
Denote by H̄ = {H0} ∪ {(l, i, b,Hi,b) : 1 ≤ l ≤ L, 1 ≤ i ≤ k, 0 ≤ b ≤ 1} the ordered set
comprising H0 and all the Hl,i,b.
The HIBE public parameters are the vector u0 and the matrices in H̄.
The HIBE master secret is the trapdoor T0 (corresponding to H0).

Extract(u0, H̄, id, T0): To extract an identity-based decryption key corresponding to the `-level
identity id ∈ {0, 1}`k using the master secret T0:
1. For each l = 1, ..., ` and i = 1, ..., k, let bl,i = biti(idl) be the i-th bit of the l-th component

of the full identity id.
2. Assemble the n × (1 + `k)m matrix Hid = [H0|H1,1,b1,1 |...|H1,k,b1,k |...|...|H`,k,b`,k] ∈ Zn×`kmq

as the concatenation of 1 + `k matrices chosen from H̄ according to the bits of id.
3. Assemble the n× `km matrix H∆

id in the same manner, but omitting the matrix H0.
4. Use the SubTrapdoor(H0, H

∆
id , TA) algorithm to produce a random trapdoor Tid for the lattice

defined by the concatenated matrix Hid = [H0|H∆
id].

5. Output the identity-based private key for id consisting of the subordinate trapdoor Tid.

Derive(H̄, id, T): To derive a private key for a delegatee identity id = (id1, ..., id`) ∈ {0, 1}`k given
a private key K = (r, T) for a delegator identity id′ = (id1, ..., id`′) ∈ {0, 1}`

′k, prefix of id, such
that 0 < `′ < `:
1. For each l = 1, ..., ` and i = 1, ..., k, let bl,i = biti(idl) be the i-th bit of the l-component of

id.
2. Assemble the n×(1+`k)m matrix Hid = [H0|H1,1,b1,1 |...|H1,k,b1,k |...|...|H`,k,b`,k] ∈ Zn×(1+`k)m

q

as the concatenation of 1 + `k matrices including H0 matching the delegatee’s identity id.
3. Build the n× (1 + `′k)m matrix H ′id = [H0|H1,1,b1,1 |...|H1,k,b1,k |...|...|H`′,k,b`′,k

] ∈ Zn×(1+`′k)m
q

as the concatenation of the 1 + `′k matrices corresponding to the delegator’s identity id′.
4. Fix the n × (` − `′)km matrix H∆

id = [H`′+1,1,b`′+1,1
|...|H`′+1,k,b`′+1,k

|...|...|H`,k,b`,k] ∈ Zn×kmq

as the concatenation of the (`− `′)k matrices corresponding to the suffix of id not in id′.
– Notice that Hid = [H ′id|H∆

id] and that the given trapdoor T should apply exactly to H ′id.
5. Use the SubTrapdoor(H ′id, H

∆
id , T) algorithm with the trapdoor T to produce a subordinate

random trapdoor Tid for the concatenated matrix Hid = [H ′id|H∆
id].

6. Output the identity-based private key consisting of the trapdoor Tid corresponding to Hid.
3 A word about notation: in the HIBE, the variable l will be used as an iterator over the hierarchy levels. In the basic

IBE scheme given in an earlier section, l = m was a dimension parameter; we now use m for l’s earlier purpose.
Moreover, for notation uniformity, we shall rename the earlier matrix A and its trapdoor TA respectively by H0

and T0, and also substitute for the short private-key vector e a new short vector denoted r0.

13

Notice that Extract is a special case of Derive when the delegator identity is the empty string, and
could have been specified that way.

Encrypt(u0, H̄, id, b): To encrypt a bit b ∈ {0, 1} for some recipient’s full hierarchical identity
id = (id1, ..., id`) ∈ {0, 1}`k:

1. Let Hid = [H0|H1,1,b1,1 |...|H1,k,b1,k |...|...|H`,k,b`,k] ∈ Zn×(1+`k)m
q where as before bl,i = biti(idl)

is the i-th bit of the l-th component of the recipient identity id.
2. Choose a uniformly random vector s ∈ Znq .
3. Draw a scalar x ∈ Zq, a vector y = (y1, ..., ym) ∈ Zmq , and a vector z = (z1, ..., z`km) ∈ Z`kmq ,

all respectively sampled from the “noise” distributions χ, χm, and χ`km, parameterized as
in the Regev public-key cryptosystem.

4. Let c0 = uT0 s+ x+ bb q2c ∈ Zq.
5. Let c1 = HT

id s+ [yT |zT]T ∈ Z(1+`k)m
q .

6. Output the ciphertext C = (c0, c1).

Decrypt(u0, C, Tid): To decrypt a ciphertext C = (c0, c1) ∈ Z1+((1+`k)m)
q given a trapdoor Tid for

the lattice defined by the matrix Hid corresponding to identity id:

1. Invoke the function SamplePre(Tid, σ, u0) using the trapdoor Tid. This produces a short preim-
age r ∈ Z(1+`k)m

q of u0 under the map fid(·) : r 7→ Hid r mod q. In other words, this samples r
from the discrete Gaussian distribution DZ1+`k)m,σ conditioned on the event u0 = Hid r ∈ Znq .

2. Compute v = c0 − rT c1 ∈ Zq.
3. Compare v and b q2c in Z.
4. If they are close, i.e., if the difference |v − b q2c| ≤

q
4 , output 1. Otherwise, output 0.

Observe that the first step, that involving SamplePre, can be performed once and for all by the
recipient with identity id upon receiving his private-key trapdoor Tid. In other words, we can
decompose Decrypt into two algorithms, PreDecrypt and PostDecrypt, where the former is expensive
but executed once only, and the latter is cheap and executed on every ciphertext needing decryption:

PreDecrypt(u0, Tid): To create a permanent decryption key rid ∈ Z(1+`k)m
q given a trapdoor Tid for

the lattice defined by the matrix Hid corresponding to identity id:

1. Conpute rid ← SamplePre(Tid, σ, u0). We get rid ∈ Z(1+`k)m
q such that Hid r = u0 ∈ Znq .

PostDecrypt(u0, C, rid): To decrypt a ciphertext C = (c0, c1) ∈ Z1+((1+`k)m)
q given a decryption

key rid ∈ Z(1+`k)m
q previously created by PreDecrypt:

1. Compute v = c0 − rTid c1 ∈ Zq and compare it to b q2c in Z.
2. If the two are close, i.e., if the difference |v − b q2c| ≤

q
4 , output 1. Otherwise, output 0.

We remark finally that the sole purpose of providing private keys of the form Tid rather than rid
as in the basic IBE scheme, is to enable delegation further down the hierarchy tree. Otherwise, it
would be more efficient for the Extract procedure to output rid directly, as in the basic IBE scheme.

14

4.3 Security Proof

We can show a tight security reduction from the task of deciding the LWE problem on the basis of
(1 + (1 + `k)m) samples from (or non-interactive oracle to) the LWE oracle, to the advantage over
random of guessing the decryption of a random bit in an IND-sHID-CPA attack. The reduction is
essentially the same as in the IBE case given earlier. Rather than to give a full proof, we merely
note the following changes or additions:

– The adversary A announces before the Setup step the full hierarchical identity id† that it intends
to attack.

– The simulator B will, as in the IBE game, construct the matrices in H̄ so that, for each bit of
each identity component, it ignores the trapdoor for the bit value that is the same as in the
target identity id†. It also makes sure to ignore the trapdoor for the matrix H0 (the analogue
to A in the basic IBE scheme).

– With this setup, the simulator B is still able to answer every Extract query for identities id
that are neither equal to, or prefix of, the target identity id†. Indeed, by construction, B knows
at least one trapdoor Tl,i,bl,i for some matrix Hl,i,bl,i included in the concatenation Hid, and
based on this it can evaluate SubTrapdoor and obtain a subordinate trapdoor Tid for Hid. The
subordinate trapdoor will have the same (integer Gaussian) distribution as in the real scheme.

– To construct the challege ciphertext for id† in the final game, the simulator proceeds in a
completely analogous way as the IBE simulator. The only difference is that B will need not
only 1 + (1 + k)m samples from the LWE oracle, but as many 1 + (1 + `k)m such samples,
owing to the increased length of the ciphertext. Observe that the simulator is unable to decrypt
the challenge himself, since he will know none of the trapdoors for the matrices Hl,i,bl,i that
constitute the target identity’s encryption matrix Hid† .

5 Further Extensions

We briefly and informally mention a few extensions and properties of note that apply to our systems.

5.1 Ciphertext Anonymity and Indistinguishability from Random

Although the preceding proofs focused on the usual notion of semantic security, we observe that our
IBE and HIBE schemes provide the strongest possible notion of privacy: complete indistinguishabil-
ity of the ciphertext from random (for the basic system: under a selective-identity chosen-plaintext
attack, in the computational sense under the LWE assumption).

This very strong notion of indistinguishability subsumes in particular the usual notion of IBE
anonymity, denoted ANON-sID-CPA, which requires that it should not be feasible to distinguish a
ciphertext created for recipient id1 from one created for id2 (without necessarily decrypting either).
The notion of IBE and HIBE ciphertext anonymity has many useful applications, e.g., for searching
on public-key-encrypted data [6, 1, 10].

5.2 From Selective to Adaptive Security

We briefly discuss two standard methods by which our schemes can be made IND-ID-CPA secure.

15

Exponential Reduction Very generally, let us say that a cryptographic scheme is (ε, τ)-secure
for security objective OBJ against adversarial capabilities ADV, if every probabilistic algorithm
conducting an attack ADV against the system has a probability of winning under criterion OBJ
with probability ≤ ε in time ≤ τ .

It is well known from [4] that any selective-identity secure IBE scheme E can be transformed
generically into an adaptive-identity secure IBE scheme E ′ for the same security objective (e.g.,
indistinguishability), at the cost of an increase in the attack’s success probability proportional to
the number N of allowed identities. Specifically:

Theorem 5 [4] Every IBE system E with (ε, τ)-IND-sID-CPA security can be transformed gener-
ically into an IBE system E ′ with (Nε, τ)-IND-ID-CPA security, where N is the total number of
allowed identities in E ′.

Since N must be exponential for the transformed IBE scheme E ′ to be universally useful,
this transformation generally introduces an exponential loss of security; but one can easily and
cheaply compensate for such loss by increasing the security parameter of the initial scheme E by
an additive constant log2N . For general use with hashed identities, it is customary to require
N = 2n or N = 22n, where n = nE ′ is the desired security parameter of the final system. In these
conditions, the generic transformation from selective to adaptive identity will result for the final
system in a security parameter nE ′ = n if one sets the initial system’s parameter nE = 2n or 3n.
Because a scheme’s security parameter exponentially affects its security, but only polynomially its
complexity, the overall cost of the transformation is expected to remain quite small (typically a
constant multiplicative factor).

Combinatorial Transformation If one wishes to avoid changing the underlying “number-theo-
retic context” (i.e., the choices of prime order q, lattice dimension n, vector space dimension m,
etc.) when transforming the selective-ID scheme into an adaptive-ID scheme, one can instead use
the semi-generic transformation from [5] based on “admissible biased binary hash functions”.

The structure of our basic scheme is very well suited to the semi-generic transformation from
[5], owing to the construction of H̄ as an assembly of left-or-right sub-matrices depending on the
value of each bit of the identity. The idea, borrowed from [5], is to expand the identity id using some
code with large enough minimum distance, and design a set of trapdoors such that no trapdoor
is known for either value 0 or 1 of certain bits of the expanded identities. This way, the simulator
will be able to answer private key extraction queries for all identities except a polynomially small
fraction of them, and conversely be able to make use of the adversary’s response to the challenge
ciphertext for any one of those remaining identities. We refer to [5] for more information about this
technique. The details of this transformation will be added in a subsequent version.

Per on our current understanding of the hardness of lattice problems, the “exponential re-
duction” should result in much more efficient fully-secure IBE schemes than the “combinatorial
transformation”, for identical values of the (resulting) security parameter.

Acknowledgments

The authors wish to thank Dan Boneh for many stimulating discussions on related lattice problems,
that were in many ways instrumental to the development of the present work.

16

References

1. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-Lee,
Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency properties, relation
to anonymous IBE, and extensions. In Advances in Cryptology—CRYPTO 2005, LNCS, pages 205–22. Springer-
Verlag, 2005.

2. Miklos Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC ’96: Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 99–108, New York, NY, USA, 1996.
ACM.

3. Miklos Ajtai. Generating hard instances of the short basis problem. In ICALP, volume 1644 of Lecture Notes in
Computer Science, pages 1–9. Springer, 1999.

4. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without random oracles.
In Advances in Cryptology—EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
223–238, 2004.

5. Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Advances in
Cryptology—CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 443–459, 2004.

6. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption with
keyword search. In Advances in Cryptology—EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 506–22. Springer-Verlag, 2004.

7. Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian, editor, Advances
in Cryptology—CRYPTO 2001, volume 2139 of LNCS, pages 213–29. Springer-Verlag, 2001.

8. Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. SIAM Journal of Computing,
32(3):586–615, 2003.

9. Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption without pairings. In
Proceedings of FOCS 2007, pages 647–657, 2007.

10. Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random oracles).
In Advances in Cryptology—CRYPTO 2006, volume 4117 of LNCS, pages 290–307. Springer-Verlag, 2006.

11. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In Advances in
Cryptology—EUROCRYPT 2003, volume 2656 of LNCS. Springer-Verlag, 2003.

12. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. In
Advances in Cryptology—EUROCRYPT 2004, volume 3027 of LNCS, pages 207–22. Springer-Verlag, 2004.

13. David Cash, Dennis Hofheinz, and Eike Kiltz. How to delegate a lattice basis. Manuscript, 19 July 2009.
14. Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Proceedings of the 8th IMA

International Conference on Cryptography and Coding, pages 26–8, 2001.
15. Giovanni Di Crescenzo and Vishal Saraswat. Public key encryption with searchable keywords based on jacobi

symbols. In Proceedings of INDOCRYPT 2007, pages 282–296, 2007.
16. Craig Gentry. Practical identity-based encryption without random oracles. In Advances in Cryptology—

EUROCRYPT 2006, LNCS. Springer-Verlag, 2006.
17. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic

constructions. In Richard E. Ladner and Cynthia Dwork, editors, STOC, pages 197–206. ACM, 2008.
18. Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Advances in Cryptology—

ASIACRYPT 2002, LNCS. Springer-Verlag, 2002.
19. Jeremy Horwitz and Ben Lynn. Towards hierarchical identity-based encryption. In Advances in Cryptology—

EUROCRYPT 2002, LNCS, pages 466–81. Springer-Verlag, 2002.
20. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian measures. In

FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pages 372–
381, Washington, DC, USA, 2004. IEEE Computer Society.

21. Chris Peikert. Limits on the hardness of lattice problems in p norms. In IEEE Conference on Computational
Complexity, pages 333–346, 2007.

22. Chris Peikert. Bonsai trees (or, arboriculture in lattice-based cryptography). Manuscript, 19 July 2009.
23. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages 84–93,

2005.
24. Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology—CRYPTO 1984,

volume 196 of LNCS, pages 47–53. Springer-Verlag, 1984.
25. Brent Waters. Efficient identity-based encryption without random oracles. In Advances in Cryptology—

EUROCRYPT 2005, volume 3494 of LNCS. Springer-Verlag, 2005.

17

