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Abstract— This paper shows that structured transmission
schemes are a good choice for secret communication over interfer-
ence networks with an eavesdropper. Structured transmission is
shown to exploit channel asymmetries and thus perform better
than randomly generated codebooks for such channels. For a
class of interference channels, we show that an equivocation sum-
rate that is within two bits of the maximum possible legitimate
communication sum-rate is achievable using lattice codes.1

I. INTRODUCTION

Secret communication over networks is an increasingly im-
portant field of research, with multiple (information theoretic,
networking and cryptographic) perspectives on this problem.
From an information theoretic perspective, the capacity of
a wiretap channel, a model for eavesdropping attack on a
point to point channel, was introduced and analyzed in [7],
[6]. A combination of random-coding2 with binning was used
to achieve the capacity of the wiretap channel. Subsequently,
structured binning arguments (as in [3]) were used instead of
random binning to obtain the same results for wiretap channel
capacity.

Subsequently, the wiretap channel framework has been gen-
eralized to multiple other settings, including channels such as
the multiple access [4] and cognitive-interference [5] channels
and also to network models such as the wireless erasure
network [8]. In all of these cases, as in [6], random coding
and binning arguments form the basis for achieving the secrecy
rate (region).

In recent years, there is an increasing interest in structured
coding schemes, particularly for enhancing the rates achievable
in interference/wireless networks [13], [10]. Lattice codes are
shown to induce an alignment in the interference seen at
each node, thus enhancing the degrees of freedom [10] and
the secure degrees of freedom for an interference network
[9]. Simultaneously, lattice coding has also been shown to
possess security benefits, for information hiding [12] and for
information relaying in wireless networks [1], [2].

In this work, we emphasize the gains of using lattice coding
schemes over random coding schemes for the interference

1This work is supported by DARPA IAMANET and a grant from the Air
Force Office of Sponsored Research

2where a codebook is chosen from a family of codebooks generated using
i.i.d. realizations of a suitable random variable
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Fig. 1. The system model with two legitimate transmit receive pairs and one
eavesdropper. The legitimate receivers observe unequal signal strengths from
the two transmitters, while the eavesdropper observes equal channel gains.

channel with an eavesdropper. Specifically, we show that,
for a class of interference channels, lattice codes achieve an
equivocation rate for each user that is within one-bit of its
individual rates. In other words, the eavesdropper gains no
more than one bit of information about the legitimate messages
per transmission. We also argue that randomly generated
codebooks, in general, cannot achieve this equivocation rate.
The rest of this paper is organized as follows. In section II
we motivate and present the system model. In Section III,
we present the main results for 1 bit secrecy. In section V,
we discuss the advantages of using structured coding versus
random coding from the secrecy perspective. We conclude
with Section VI.

II. SYSTEM MODEL

The notation used in this paper is as follows. |.| denotes the
cardinality of a set, ⊕ is used to denote the direct/Minkowski
sum of two sets, i.e.

S1 ⊕ S2 , {s1 + s2, s1 ∈ S1, s2 ∈ S2}.

Zn denotes the integer lattice in n dimensions, and Zk
p denotes

the set of all k length vectors from GF (p).
The system model is shown in Figure 1. In this setting, we

consider a symmetric interference channel as the legitimate
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communication network, and an external eavesdropper. The
legitimate channel is mathematically given by:

Y1 = X1 + aX2 +N1

Y2 = X2 + aX1 +N2
(1)

where a 6= 1. The eavesdropper’s channel is given by:

Z = bX1 + bX2 +Ne (2)

Here, Xi, i ∈ {1, 2}, is the output signal from Transmitter i,
which is assumed to be constrained to an average power of P .
Legitimate Receiver i observes Yi, i ∈ {1, 2}, and is assumed
to suffer from additive Gaussian noise of unit variance. The
eavesdropper receives Z, which is an equally weighted linear
combination of the two transmit signals with additive Gaussian
noise of variance Ne. In this paper, we make no assumptions
on the value of Ne or the joint distribution between the
noise variables N1, N2 and Ne. In effect, the secrecy results
presented in Section III hold even when Ne = 0.

Note that the legitimate channels between the transmit-
ters and the legitimate receivers (p(yi|x1, x2), i ∈ {1, 2})
are different from the channel between the transmitters and
the eavesdropper (p(z|x1, x2)). This asymmetry in channels
is exploited by the structured coding strategy developed in
Section III. In other words, if a = 1, then lattice coding
strategy described in Section III does not, in general, provide
an advantage over randomly generated codebooks in enabling
secure communication.

The goal is to communicate at the highest sum-rate possible
in the legitimate channel while ensuring that the eavesdrop-
per’s understanding of the legitimate messages is constrained.
If W1,W2 represent the legitimate messages with cardinalities
2nR1 and 2nR2 respectively, then we desire to

max(R1 +R2) (3)

such that (R1, R2) belong to the achievable region of the le-
gitimate interference channel. Let Rei denote the equivocation
rate for each message:

Rei =
1
n
H(Wi|Zn)

for i ∈ {1, 2}. The 1 bit secrecy requirement can be defined
as Rei ≥ Ri − 1 for i ∈ {1, 2}. This is equivalent to
1
nI(Wi;Zn) ≤ 1, and this is the formulation we will use in
the paper. In this paper, we focus on achieving a symmetric
rate point of the region defined by (3). Given the symmetry
in the channel definition, a symmetric rate point exists that
achieves the sum-capacity of this channel, and our goal is
to use lattice codes to achieve this rate point for a class of
symmetric interference channels.

III. MAIN RESULTS

First, we require a few lemmas:
Lemma 1: Let C = Λ ∩ VL where Λ is a “good”

Construction-A lattice 3 of dimension n and VL is the Voronoi

3By “good”, we mean a lattice that is simultaneously good for source and
channel coding, as defined in [11].

region of a “good” nested lattice L [11]. Let X1 and X2 be
random variables distributed uniformly over C. Then,

H(X1 +X2) ≤ log |C|+ n
Proof: Let X be a random variable distributed uniformly over
C⊕C. Since H(X1 +X2) ≤ H(X) = log |C⊕C| it suffices
to show that

|C ⊕ C| ≤ 2n|C| (4)

The proof of this is comes from the construction of “good”
nested lattice codebooks in [11]. Let

Λ = G′(p−1GZk
p + Zn)

L = G′Zn

where G′ is an invertible n × n matrix and G is an n × k
matrix with elements from GF(p). The details behind this
construction and the fact that matrices G,G′ exist such that
these lattices are “good” can be found in [11], [18].

Then we have,

Λ mod L ≡ G′[p−1GZk
p + Zn] mod G′(Zn)

where modulo Zn is intersection with the Voronoi region of
Zn (as defined in [11]), and ≡ denotes the fact that there is
an invertible transformation between the two sets.

Let
γ ∈ Γ , [p−1GZk

p + Zn] mod Zn

Note that the Voronoi region of Zn, which we denote by ΩZn ,
is an n-dimensional cube centred around the origin, extending
between [−0.5, 0.5) in each dimension. Hence by intersecting
Γ with ΩZn , gives that each (scalar) element of γ is contained
within the interval [−0.5, 0.5). This implies that every element
β ∈ Γ⊕ Γ is such that β’s component along each dimension
is within the interval [−1, 1). Thus we have:

Γ⊕ Γ ⊂ [p−1GZk
p + Zn] mod 2Zn

or that

C ⊕ C ⊂ [G′(p−1GZk
p + Zn)] mod 2L

which, in turn, establishes (4) and thus the lemma.

Lemma 2: Let X1, X2 be two independent random vari-
ables uniformly distributed over C. Then,

1
n
I(X1;X1 +X2) ≤ 1

Proof: Note that

H(X1|X1 +X2) = H(X1, X2)−H(X1 +X2)
= H(X1) +H(X2)−H(X1 +X2)
≥ 2 log |C| − (log(|C|) + n)
≥ log |C| − n

Hence,

I(X1;X1 +X2) = H(X1)−H(X1|X1 +X2)
≤ log |C| − log |C|+ n



A. Very Strong Interference Channel

The “very strong” interference channel was first studied in
[14]. By very strong, we mean that the interference channel
gain (a in equation (1)) is large enough such that the inter-
fering signal (for e.g. from Transmitter 1) can be successfully
decoded at the receiver (Receiver 2), thus resulting in parallel
channels. For the class of very strong interference channels for
which a2 ≥ P + 1, we show that rates arbitrarily close to the
the unconstrained (without the secrecy requirement) capacity
region of the channel can be achieved using lattice codes with
1-bit secrecy for the channel given by Figure 1.

Symmetric interference channels with multiple (> 2)
transmit-receive pairs and very strong interference are inves-
tigated in [15] using a lattice coding framework. In [15],
it is shown that if a2 ≥ (P+1)2

P , then codebooks that are
nested subsets of the same lattice can be used such that each
legitimate communication channel achieves its single user rate.
For the case of the symmetric rate point, these codebooks
become identical. Thus, we have:

I(Wi;Zn)
(a)

≤ I(Li;Zn)
(b)

≤ I(Li;L1 + L2)
(c)

≤ n (5)

where L1, L2 are uniformly distributed random variables
over the common lattice-based codebook used at each trans-
mitter. Also, (a) and (b) are due to the data processing
inequality and (c) is due to Lemma 2.

B. Weak Interference Channels

Weak interference channels, where a < 1, have received
significant attention in recent years. In [16], the authors
determine that, for all a such that |a + a3P | ≤ 1

2 , treating
interference as noise in the legitimate (unconstrained) channel
is optimal, i.e., that

R1 = R2 =
1
2

log
(

1 +
P

a2P + 1

)
is achievable. The achievability argument in [16] uses

random coding. Here, we show that (nested) identical lattice
codebooks can be used to achieve the same set of rates, and
thus, using identical steps as those in (5), we can establish
that the unconstrained sum-capacity can be achieved in this
channel even with a 1-bit secrecy constraint.

Consider “good” nested lattices Λc ⊂ Λf (as defined in
[11]), and define the codebook

C , Λf ∩ VΛc

where VΛc is the Voronoi region of the lattice Λc. Here, Λc

represents the power constraint on each transmitter and Λf is
chosen to enable successful decoding in the presence of noise
at the receiver. Given Li ∈ C at Transmitter i, i ∈ {1, 2}, we
construct

Xi = [Li + Ui] mod Λc,

where U1, U2 are two independent random vectors chosen
uniformly over VΛc

, and the mod operation is as defined in
[11].

At each receiver, we determine

Y ′i = [αYi − Ui] mod Λc

where
α =

P

(1 + a2)P +N

At Receiver 1, following the analysis in [11], we have

Y1 = [αY1 − U1] mod Λc

= [αY1 − L1 − U1 + L1] mod Λc

= [αY1 − [L1 + U1] modΛc + L1] mod Λc

= [L1 + αY1 −X1] mod Λc

= [L1 + (1− α)X1 + α(X2 +N1)] mod Λc

= [L1 +N ′1] mod Λc

where
N ′1 , (1− αX1) + α(X2 +N1)

is the effective noise with variance

P (a2P +N)
(1 + a2)P +N

that the receiver which is independent of L1. Based on the
analysis in [18], [11], the lattice point L1 can be determined
with high reliability if

R1 <
1
2

log
(

1 +
P

a2P + 1

)
.

A similar argument can be used to analyze the decoding at
Receiver 2 to achieve the same rate. In effect, for this setting
(and a few other multiple access/broadcast/interference chan-
nel settings) random coding arguments for Gaussian channels
that use randomly generated codebooks for encoding followed
by successive decoding at the receiver can be replaced with
lattice coding and decoding arguments to obtain the same rates.
Since in the above coding strategy, the same codebook C is
used at each transmitter, we can follow the same steps as in
5 to get the desired 1-bit secrecy: I(Wi;Zn) ≤ n.

C. General Interference Channels

Here we consider more general Gaussian interference chan-
nel settings, i.e. for values of a that are neither very strong
nor very weak. For an interference channel with two transmit-
receive pairs, the nested lattice coding strategy described in
[10] achieves a rate region that is, in general, a subset of the
Han-Kobayashi region [19]. Thus, for general values of a, it
is not yet known if lattice codebooks can be used to achieve
the same rate region for the unconstrained two-user Gaussian
interference channel as the Han-Kobayashi region. However,
we show that even if lattice codebooks are not necessarily
capacity achieving, they provide the same secrecy benefits for
interference channels with a wiretapper (when a 6= 1) as the
cases analyzed in subsections III-A and III-B.



We now describe the lattice coding scheme and investigate
its secrecy capacity. As depicted in Figure 1, Transmitter Tj

where j ∈ {1, 2}, wants to send a message mj ∈ {1, . . . , 2nR}
to receiver Rj . As in [10], Transmitter Tj , divides its message
mj into N parts mj1, . . . ,mjN so that rate Ri is associated
with the ith message part mji. Each of the N submessages
mji is encoded to Xn

ji using a distinct lattice codebook
Ci. Note that the set of N lattice codebooks used by each
transmitter say C1, . . . , CN , is identical. Both transmitters
assign power Pi to mji. Transmitter Tj transmits mj as∑N

i=1X
n
ji. Without loss of generality (due to symmetry), we

focus on the first transmitter-receiver pair.

The receiver R1 (R2 is handled similarly) receives

Y n
1 =

N∑
i=1

Xn
1i +

N∑
i=1

Xn
2i +N1

where N1 is the noise. R1 successively decodes each of the N
submessages to recover the whole message mj . By choosing
power assignment Pi cleverly depending on the value of a
(see [10] for details), the “very strong” interference condition
can be satisfied at each of the N stages, so that for each
stage the interference can be decoded and subtracted, then the
submessage can be recovered. It is shown in [10], that by care-
ful selection of lattice codebooks for each stage, the message
m1 can be recovered from received codeword

∑N
i=1X

n
1i, with

vanishingly small probability of error (vanishes as n
−n
2 ).

Thus, for the rate region described in [10], as lattice
dimension n → ∞, the tuple of N lattice points (ith point
corresponding to the ith submessage), can be recovered with
arbitrarily small probability of error from the sum of these
points. This implies that for large lattice dimensions, there is
“almost” a one-one mapping between an N -tuple of lattice
points (chosen from the N special lattices of our coding
scheme) and the componentwise sum of these N points. Note
that since the probability of error is nonzero, it is possible
that two N -tuples sum to the same value, but there can be
only very few of such points, and they are negligible as the
dimension of the lattice goes to infinity. This leads to the
following lemma:

Lemma 3: Let Xi be picked uniformly at random from
codebook Ci, for (i = 1, 2, . . . , N), then the distribution of
X =

∑N
i=1Xi converges as n→∞ (in the weak sense) to a

uniform distribution over C = C1 ⊕ C2 ⊕ . . .⊕ CN .

To show one bit secrecy, we next need the following lemma:

Lemma 4: Let L1 and L2 be two random variables
distributed as X . Then,

H(L1 + L2) ≤ log |C|+ n
Proof: By lemma 3, we have that L1 and L2 are distributed
asymptotically uniformly on C. Also, the codebook C =
C1 ⊕ C2 ⊕ . . . ⊕ CN , due to nesting, lies in the same lattice

Λ of lemma 1 which is a“good” Construction A lattice of
dimension n. The proof of the claim thus follows from the
proof of Lemma 1, and is omitted here for brevity.
Thus, by Lemmata 2, 3 and 4, we have that

1
n
I(L1;L1 + L2) ≤ 1

Now, we use steps identical to 5 to obtain the desired 1-bit
secrecy as 1

nI(Wi;Zn) ≤ 1.

IV. SIMPLER PROOF FOR 1-BIT SECRECY

In this section, we provide another proof that 1-bit secrecy
can be achieved by lattice codes.

Theorem 1:

I(W1|Zn) ≤ n
Proof: Consider that each transmitter has a lattice

codebook C which contains 2nR lattice points. Place them
uniformly in 2nR̂ bins, where R̂ < R. The message to be
transmitted is the bin index, and the codeword for the message
w is a lattice point picked uniformly from bin w.

The eavesdropper sees

Zn = b(Xn
1 +Xn

2 ) +Nn
e

but by DPI,

I(W1;Zn) ≤ I(W1, Ẑ
n)

where Ẑn = Xn
1 +Xn

2 .
Thus, it suffices to show that I(W1, Ẑ

n) < nε. We have:

H(W1|Ẑn) = H(W1|Ẑn)−H(W1|Ẑn, Xn
1 )

= I(W1;Xn
1 |Ẑn)

= H(Xn
1 |Ẑn)−H(Xn

1 |W1, Ẑ
n)

≥ n(R− 1)−H(Xn
1 |W1, Ẑ

n) (6)
≥ n(R− 1)−H(Xn

1 |W1) (7)
≥ n(R− 1)− {H(W1|Xn

1 ) +H(Xn
1 )−H(W1)}

(8)

≥ n(R− 1)− {0 + nR− nR̂} (9)

≥ n(R− 1−R+ R̂)

≥ n(R̂− 1) (10)
(11)

I(W1;Zn) = H(W1)−H(W1|Zn) (12)

= nR̂−H(W1|Zn) (13)

≤ nR̂− n(R̂− 1) (14)
= n (15)

as desired.



V. THE NEED FOR STRUCTURED ENSEMBLES OVER
RANDOMLY GENERATED ENSEMBLES

Notice that in the coding arguments presented above, the
codebooks utilized at each of the transmitters are identical.
This coupling, along with the linear structure, are important
features of the lattice coding argument. To explain this further,
let us reconsider the symmetric interference channel with a
wiretapper (Figure 1) and use randomly generated codebooks
as defined in [17] for the legitimate channel.

Note that randomly generated codebooks with joint (typical-
set) decoding is the conventional achievability argument for
the multiple-access channel. As shown in [17], as long as:

R1 +R2 ≤
1
2

log
(

1 +
b2(P1 + P2)

Ne

)
along with individual rate bounds on each R1 as given in [17],
the probability of error, averaged over all randomly generated
codebooks, can be made arbitrarily small. This clearly does
not mean that each codebook has a small probability of error
(averaged over all codewords). It does imply that a large
fraction of these codebooks are good choices for this channel.
In essence, as the block length of the codebook is increased, a
larger fraction of the set of all randomly generated codebooks
can be chosen to meet the probability of error constraint.

This is the main reason that randomly generated codebooks
are, in general, bad choices for communicating over the
interference channel with a wiretapper. Although there might
exist a particular random generated codebook that is “good”
for the legitimate channel and “bad” for the eavesdropper,
for sufficiently large b (or correspondingly, sufficiently small
Ne), most of the randomly generated codebooks provide
limited to no secrecy to the legitimate interference channel.
As noted in the previous sections, the 1-bit secrecy afforded
by lattice codes holds regardless of the value of b or of Ne.

A Note on Computational Secrecy: Note that there is a
computational aspect to this secrecy problem (a.k.a. weak
secrecy). As established in [20], low density lattice codes
exist that can be encoded and decoded in polynomial time.
As the channel codes considered here result in nested lattices
at the receiver, lattice decoding is sufficient for determining
the lattice point and thus the message being communicated,
and can thus be implemented in polynomial-time.

The eavesdropper, on the other hand, can at best determine
the sum of the two lattice points being communicated. As
there exist an exponential number of possible lattice pairs that
sum to the same value, even if the eavesdropper successfully
determines the sum-lattice point, it is exponentially hard for
it to enumerate (and therefore, even locate) the pair of lattice
points being communicated in the legitimate system.

VI. CONCLUSIONS

In this paper, we consider an interference channel with a
wiretapper. The key feature of this model is that the channel
between the transmitters and legitimate receivers and the
channel between the transmitter and the eavesdropper are

different. The fact that channel gain a 6= 1 leads to nested
lattices at the receiver, which can be decoded, however the
eavesdropper sees a sum of 2 distinct (not nested) lattices,
which do not reveal information. Thus, this asymmetry is
exploited by structured coding schemes, while random coding
is, in general, blind to it.

As a next step, we plan to investigate a larger class of
multi-source networks, and utilize channel asymmetries, along
with structured codes, to enhance the rate at which secure
communication is possible over these networks.
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