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Abstract
Parallelizing graph algorithms on GPUs is challenging due to
the irregular memory accesses and control-flow involved in
graph traversals. In this work, we tame these challenges by
injecting approximations. In particular, we improve memory
coalescing by renumbering and replicating nodes, memory
latency by adding edges among specific nodes brought into
shared memory, and thread-divergence by normalizing de-
grees across nodes assigned to a warp. Using a suite of graphs
with varied characteristics and five popular algorithms, we
demonstrate the effectiveness of our proposed techniques.
Our approximations for coalescing, memory latency and
thread-divergence lead to mean speedups of 1.3×, 1.41× and
1.06× achieving accuracies of 83%, 78% and 84%, respectively.

CCS Concepts • Computing methodologies → Paral-
lel algorithms; • Mathematics of computing → Graph
algorithms; Approximation.

1 Approximation Techniques
Memory Coalescing. Existing optimization techniques to
improve coalescing [2] have limitations, as those propos-
als deal with exact computation. We break this barrier by
allowing certain approximations in the computation.

The original input graph is represented in the Compressed
Sparse Row (CSR) format (similar to the prior art [1]), having
an offset array, an edges array, and zero or more auxiliary
arrays to store edge attributes and nodes attributes, as appli-
cable. A primary primitive in graph operations is neighbor-
enumeration, wherein a warp assigned to a set of vertices
iterates through their neighbors to propagate information.
We focus on this primitive for improving coalescing.

At a high level, our technique of improving coalescing
creates a modified layout of the graph by renumbering the
graph nodes and replicating a select set of nodes and edges. It
creates copies of the nodes, subject to a criterion, and inserts
the copies of the selected nodes, along with their edge-lists,
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(a) Modified graph
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Figure 1. Example graph after pre-processing

in the vicinity of those nodes in the CSR representation
arrays that would facilitate the coalesced accesses to the
global memory. We introduce additional edges going out
from these replicated nodes to make sure that the nodes read
in a coalesced fashion are used effectively.

To improve neighbor-enumeration, we renumber the nodes
such that the nodes to be accessed by the warp-threads are
assigned nearby id’s; this results in improved coalescing. We
start with a node having the highest outdegree and perform
breadth-first-search (BFS) traversals on the graph to obtain
a BFS forest. The nodes at the same level in the BFS forest
are assigned id’s incrementally in a round-robin fashion —
the first neighbor of each of the parents from the previous
level is assigned a new id, followed by the renumbering of all
the second-neighbors, and so on. Our technique ensures that
the id’s under the renumbering scheme start at a multiple
of the warp-size (32) for each level in the BFS forest. Since
not all levels will have number of nodes in multiples of the
warp-size, the renumbering scheme creates holes in the CSR
representation arrays. We exploit these holes to enhance the
degree of coalescing by replicating specific nodes in these
holes. The replication introduces some approximation.
The nodes chosen to be replicated to fill the holes are

those having a good connectivity to the nodes in the chunk,
of size 32, containing the holes. Node replication involves
adding new edges from the new replicated node to all the non-
hole nodes in that chunk. Note that the modified graph is
independent of the algorithm and the above transformation
can be performed as a pre-processing step at the time of
graph-generation. This modified graph is fed as an input to
the exact graph algorithm. An example modified graph is
shown in Figure 1.
Memory Latency. Graph processing is often memory in-
tensive. For the vertex-based processing of graphs, a node
is cheap to process when its neighbors are cached. Our pro-
posed technique increases the reuse of the subgraph brought
into shared memory, and also increases the useful work done.
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Figure 2. Effect of the coalescing technique

If the nodes brought into shared memory are connected,
it ensures faster propagation of information. To this end, we
arrange the nodes in decreasing order by their clustering
coefficients (CC). We move the nodes having a large CC,
and its neighbors, along with the other required information
into the shared memory. Further, we add new edges among
the neighbors of a large-CC node inside shared memory to
improve propagation of information. In case of weighted
graphs, the weight of the new edges introduced in shared
memory is the average of the edge-weights of the edges in
the original chunk. Each subgraph thus brought into shared
memory is processed in an iterative manner, with results
written back to the global memory. The next outer loop
iteration processes another unprocessed high-CC node.

Clearly, higher the CC of the nodes brought into the shared
memory, fewer are the extra edges added, and smaller is the
approximation. Thus, to minimize the overall error in the
final computed answer, we bring in the nodes, along with
their neighbors, in the decreasing order of their CC values.
Thread-divergence. In vertex-based processing of graphs,
thread-divergence is prevalent due to skewed degree distri-
bution. We mitigate thread-divergence by making the node-
degrees uniform within a warp. As a preprocessing step, we
perform bucket sort on the nodes array using node-degree
as the key. Each of the buckets is further sorted by node de-
gree. We assign the nodes to the warps in the order of their
position in the sorted array. If the node degrees assigned to
a warp are different, we add a few extra edges or remove ex-
isting edges (leading to approximation). The extra edges are
added to those nodes that are deficient in their connectivity.
By noting that most graph algorithms are propagation-based,
we choose the destination nodes of the newly added edges
to be the 2-hop neighbors. In the case of weighted graphs,
weight of a new edge, (a,c) is the sum of the edge-weights of
the edges (a,b) and (b,c); a, b, c being nodes in the graph.
For nodes having degree greater than the average degree

Algo. Technique Speedup Inaccuracy
(w.r.t. exact parallel)

Coalescing 1.35 21%
SSSP Memory latency 1.40 24%

Thread divergence 1.06 16%
Coalescing 1.30 23%

MST Memory latency 1.36 26%
Thread divergence 1.03 15%

Coalescing 1.32 17%
BC Memory latency 1.42 24%

Thread divergence 1.06 16%

Figure 3. Overall results

in the warp, we remove some out-edges, picked uniformly
at random. Structural change to the graph in this manner
reduces thread-divergence, and may improve convergence.

2 Experiments
Figure 2 presents the effect of the coalescing technique for
two graphs – LiveJournal and USA road network, and three
algorithms – single-source shortest paths computation (SSSP),
minimum spanning tree computation (MST) and between-
ness centrality computation (BC). In general, as we increase
the threshold on the number of edges to a chunk from a node
for node-replication, only the nodes having a high connec-
tivity with a chunk get replicated in the chunk. This reduces
the number of extra edges added within a chunk, resulting
in improved accuracy. Also, increasing the threshold up to
a point improves the speedup due to several holes in the
chunks being occupied and the replicated nodes having a
good connectivity with the chunk nodes. However, setting
the threshold too high results in diminishing benefits.

Figure 3 presents the overall results. The speedup obtained
in the case of approximations aimed at reducing memory
latency is higher compared to the other two techniques. How-
ever, it also suffers from larger inaccuracy. The increased
inaccuracy stems from the addition of extra edges to the
sub-graphs moved to shared memory and from the repeti-
tive processing of the modified sub-graphs inside the shared
memory. The increase in the speedup is due to the reuse of
the node- and edge-data brought into shared memory with
high connectivity among the nodes within the sub-graph.
The performance benefit is low with a relatively high

inaccuracy for approximation aimed at reducing thread-
divergence. The low inaccuracy is attributed to the removal
of edges from some of the nodes, which results in loss of
information about the connectivity of the graph and also the
edge attributes that get removed. We do get some benefits
in execution time by reducing thread-divergence, with an
overall relatively small inaccuracy.
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