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Abstract—Graph algorithms are being widely used in several application domains. It has been established that parallelizing graph

algorithms is challenging. The parallelization issues get exacerbated when graphics processing units (GPUs) are used to execute

graph algorithms. While the prior art has shown effective parallelization of several graph algorithms on GPUs, a few algorithms are still

expensive. In this work, we address the scalability issues in graph parallelization. In particular, we aim to improve the execution time by

tolerating a little approximation in the computation. We study the effects of four heuristic approximations on six graph algorithms with

five graphs and show that if an application allows for small inaccuracy, this can be leveraged to achieve considerable performance

benefits. We also study the effects of the approximations on GPU-based processing and provide interesting takeaways.

Index Terms—Graph algorithms, irregular programs, GPU, CUDA, approximate computing
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1 INTRODUCTION

GRAPHS are fundamental data structures for modeling
several real-world phenomena. Graph algorithms are

useful, for instance, to simulate molecular interactions, to
perform program analysis, as well as to optimize sensor
placement. As data sizes grow, handling graphs at larger
scale poses performance challenges. Parallel computation of
graph algorithms has been one of the ways to improve the
execution time of applications. Several popular graph algo-
rithms have now been successfully parallelized across vari-
ous platforms such as multi-core CPUs, distributed systems,
many-core GPUs, and their combinations [1], [2], [3], [4], [5],
[6]. When powerful machines are not at disposal, a practical
question is, given an infrastructure, how tomake the best use
of resources to come upwith a reasonable inexact solution.

An exact answer is required in some applications. How-
ever, one may not always be interested in the accurate
answer. In this work, we target adding controlled approxi-
mations to graph algorithms to improve their efficiency.
Thus, instead of computing the exact answer, algorithms
perform less work to calculate only an approximate solution.
Towards this goal, we propose several graph-theoretic but
algorithm-independent heuristics. These heuristics target
various parts of computation and data. While many such
heuristics are feasible (Fig. 1), we study two techniques
directed towards computation and two techniques directed
towards data. Our investigation reveals that each of these
techniques is quite beneficial in improving the execution
time, at the cost of accuracy. Interestingly, a user can control

the exhibited inaccuracy by controlling the injected approxi-
mation.We believe that our proposed approximations would
be helpful for other graph algorithms aswell.

This paper makes the following contributions.

� We devise a theoretical model of approximation and
illustrate its generality by instantiating it with differ-
ent kinds of approximations (Section 2).

� We propose techniques for executing graph algo-
rithms on GPUs in an approximate manner. In par-
ticular, our techniques perform reduced execution,
process only part of the graph, store graph in an
approximate manner, and approximate attribute val-
ues to gain in efficiency (Section 3). We also discuss
how approximations can be exploited for an efficient
GPU-based parallel processing (Section 4).

� We show that our proposed techniques work quite
well in practice compared to the exact versions.
Parameterized solutions provide tunable knobs to
change the degree of approximation. Using five large
graphs and six graph algorithms, we illustrate that
approximate versions offer considerable perfor-
mance benefits with a small accuracy-loss (Section 5).

2 APPROXIMATION MODEL

We define a theoretical model to characterize approxima-
tions. By instantiating this model with various parameters,
we obtain different approximation techniques.

An approximation A (D, F ) is defined over domain D of
entities, where function F : entity ! entity is used to
approximate the entities. For instance, A (AttrVal, Div1024)
where Div1024(attrval) :- (attrval / 1024) approximates attri-
bute values by making consecutive 1,024 values non-distin-
guishable. In other words, F maps entities in D to a subset
of entities in D. Thus, F , in general, is a many-to-one func-
tion, which provides the necessary approximation.

The mapping function F can be arbitrary, ranging from
identity function (indicating no approximation) to constant
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function (indicating maximum approximation). A judicious
selection of F can help improve algorithmic performance
(both time and space) without losing much precision.

2.1 Function Application Order

The mapping function F is type-preserving, that is, it maps
an entity in the domain to another entity in the same domain.
Therefore, F application can be cascaded: F .F .F .x, leading
to a chain of approximations. However, as long asF is deter-
ministic, the ordering in which various function applications
are performed does not affect the outcome. For instance,
computingminimum among a set of values does not depend
upon the order. Such a property is crucial in a parallel setting
where various thread orderings lead to the same approxi-
mate entity for the original domain entity. On the other
hand, a non-deterministicF may affect the outcome for a dif-
ferent thread-schedule; e.g., merging nodes based on their
neighborhood similarity. We experiment with both kinds of
approximation functions in this study.

2.2 Idempotent Approximation

Non-determinism in thread-scheduling may result in a dif-
ferent number of approximate function applications. This
non-determinism may, in general, lead to different amounts
of approximations added to the processing across different
executions of the same program. Such behaviormay be unac-
ceptable as it means different outputs across different runs of
the same program over the same input. Need for such a
determinism necessitates F to be an idempotent function.
Thus, multiple applications of F should be equivalent to a
single application. Although expecting the mapping func-
tion to be idempotent may sound restrictive, in practice,
most of the standard approximation techniques are indeed
idempotent. For instance, mapping an edge weight (say 23)
to the nearest power of two (32) is an idempotent approxima-
tion, as a remapping (on 32) would maintain the value (as
32). All the approximation techniques we propose are idem-
potent. This allows us to faithfully assess the effect of
approximations compared to the exact processing.

2.3 Approximation Structure

We define a relationR between a pair of entities induced by
the approximation function F . Thus, x1 R x2 iff F (x1) = F
(x2).R is a reflexive (xR x), symmetric (xR y ) y R x) and

transitive (x R y and y R z ) x R z), forming an equiva-
lence relation. Thus,R partitions the domain D.

At one extreme, when the approximation function is an
identity function, each element in the domain is in a sepa-
rate partition, say with cardinality N . At the other extreme,
when the approximation function is a constant function, all
the elements are in the same partition with cardinality 1. In
general, various approximation functions form K partitions
with 1 � K � N , leading to different precision values.

3 APPROXIMATING GRAPH ALGORITHMS

We instantiate the approximation model with various val-
ues of D, and accordingly, multiple values of F . Fig. 1
presents such approximations. The number of instantiations
can be huge; we pick one interesting approximation tech-
nique for four domains and explore it in depth.

3.1 Graph Algorithms

We work with a variety of algorithms: Single Source Short-
est Paths (SSSP), Minimum Spanning Tree (MST), Between-
ness Centrality (BC) PageRank (PR), Strongly Connected
Components (SCC), and Vertex Coloring (Color). The input
to each graph algorithm is a directed graph. The graph-
edges have weights in case of SSSP, MST and BC.

SSSP [7] computation finds the shortest distance of each
vertex from a designated source in a weighted graph. We
implement a variation of Bellman-Ford’s algorithm which is
more amenable to parallelization compared to the work-
efficient Dijkstra’s algorithm. MST [8] computation finds a
tree in a given graph having the minimum sum of the tree’s
edge-weights and which spans all the vertices of a con-
nected graph. We use Boruvka’s algorithm which offers bet-
ter parallelism over Prim’s or Kruskal’s algorithms. Finding
SCC [9] is another fundamental problem which identifies
cycles in a given graph. We use Forward-Backward algo-
rithm for SCC which offers better parallelism over a depth-
first search based processing. Coloring [10] is a well-known
NP-complete problem. We use a greedy approximation
algorithm for dþ 1 coloring (where d is the maximum
degree in the graph). PR [11] is a propagation-based algo-
rithm to compute page rank values (related to importance)
of vertices in a web-graph. BC [12] computes importance of
a vertex in a graph, and deals with identifying the fraction

Fig. 1. Instantiation of the approximation model with various values of D and F .
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of the shortest paths passing through each vertex. We use
Brandes’ algorithm on unweighted graphs which is OðmnÞ,
where m and n are the number of edges and the number of
vertices of the graph respectively.

Algorithm 1. SSSP Computation Over Graph GðV;EÞ
1: v.dist =1 8v 2 V . initialization
2: source.dist = 0
3: changed = true
4: while changed do . outer loop
5: changed = false;
6: for all vertices u in worklist do . GPU parallel
7: for all outgoing edges u ! v do
8: altdist = u.dist + weight(u ! v)
9: if altdist < v.dist then
10: v.dist = altdist . needs synchronization
11: changed = true;
12: end if
13: end for
14: end for
15: end while

Algorithms 1 and 2 present the pseudo-codes for SSSP
and BC respectively. We expose parallelism in BC by proc-
essing a single source vertex at a time and performing each
of the inner loops (on lines 11, 23, 29) in parallel. When we
visit the neighbors of a vertex, edges can be relaxed concur-
rently. dsðvÞ on Line 25 is computed as

dsðvÞ ¼
X

w j v2predðs;wÞ

ssv

ssw
ð1þ dsðwÞÞ: (1)

Equation (1) calculates the dependency of a vertex v with
respect to a given source vertex s. Here, ssv is the number of
shortest paths from s to v, and predðs; wÞ is a list of immedi-
ate predecessors of w in the shortest paths from s to w. The
size of the pred list of a vertex is bounded by the indegree of
the vertex. pred lists of all the vertices together form a DAG
D which is a subgraph of G. BC values for each vertex can
then be computed as below:

bcðvÞ ¼
X

s 6¼v2V
dsðvÞ: (2)

3.2 Technique 1: Reduced Execution

In the reduced execution technique, we cut-short the execu-
tion to compute an approximate solution. Graph algorithms
are often iterative. We exploit this fact to add approximation
to the total amount of work done in terms of the number of
iterations. That is, we execute the main processing loop
(outermost if there are nested loops) for fewer iterations
(compared to the corresponding exact version) with the
hope of improving performance. Less overall work forbids
the algorithm from reaching the fixed-point or the correct
solution. For instance, consider single-source shortest paths
computation shown in Algorithm 1. The outer while loop
at Line 4 is cut-short. Reduced execution approximation is
useful for algorithms where a large amount of work gets
done in the initial iterations. One way to implement this
approximation is by configuring a percentage threshold on
the number of loop iterations. This is feasible as long as the

loop executes a fixed number of iterations (such as Prim’s
minimum spanning tree algorithm, Brandes’ betweenness
centrality computation, and Bellman-Ford shortest paths
processing). In general, a more effective way is to provide
an inaccuracy-tolerance, and the implementation chooses
the maximum possible number of iterations respecting the
inaccuracy limit. The inaccuracy-tolerance refers to the
amount of inaccuracy permitted by an application, and
varies with application. However, we also note that there
may exist computations wherein inaccuracy cannot be cal-
culated without computing the exact solution. Reduced exe-
cution can be applied in such scenarios too, but without any
guarantees on the approximation.

Algorithm 2. BC Computation Over Graph GðV;EÞ
1: bc½v� ¼ 0 8v 2 V . initialization
2: for each s 2 V do
3: marked½v� ¼ false 8v 2 V
4: ss½v� ¼ 0 8v 2 V
5: ss½s� ¼ 1
6: ds½v� ¼ 0 8v 2 V
7: pred ¼ fg . empty list
8: Queue Q . queue for BFS from s; form BFS DAGD
9: Q.push(s)
10: marked½s� ¼ true;
11: while (not Q:emptyðÞ) do
12: u ¼ Q:frontðÞ
13: Q:popðÞ
14: for all v 2 neighbors(u) do
15: if not ðmarked½v�Þ then . new node
16: Q.push(v)
17: marked½v� ¼ true;
18: ss½v� ¼ ss½v� þ ss½u� . needs synch.
19: predðs; vÞ ¼ predðs; vÞ [ fug
20: end if
21: end for
22: end while
23: for all v 2 D do . Backward traverse DAGD
24: for each u 2 predðs; vÞ do
25: ds½v� ¼ ds½v� þ ds½u�
26: end for
27: bc½v� += dsðvÞ
28: end for
29: for all (u ! v) 2 E do . Reset graph attributes
30: reset(u ! v)
31: end for
32: end for

Our experimental evaluation shows that a small decrease
in the outer loop iterations achieves good benefits in execu-
tion time at the cost of small loss in accuracy. For example,
we find that for SSSP, reducing the outer loop iterations to
90 percent achieves an average speedup of 1.6�, with an
inaccuracy of up to 7 percent. However, the inaccuracy
increases rapidly as we further reduce the number of itera-
tions. For instance, reducing the loop iterations to 65 percent
of the exact answer results in a performance gain of around
1.7� at the cost of 21 percent accuracy loss. We also found
that SSSP is a good candidate for reduced execution as most
of the distances get settled within about 50 percent of the
iterations (Fig. 7). In contrast, Color exhibits a much higher
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inaccuracy (29.18 percent) for a modest (45 percent) perfor-
mance improvement.

3.3 Technique 2: Partial Graph Processing

Our next proposal is to process only part of the graph, to
improve execution time. Not all parts of the graph contrib-
ute equally to the final fixed-point information. Ideally, we
would like to process only the highest-contributing parts—
to reduce execution time to the minimal, incurring minimal
inaccuracy. However, such information is often not effi-
ciently computable, and, in fact, changes across iterations.
Therefore, we would need to depend upon heuristics to
choose the part of the graph to be processed. Thus, based on
criteria, for each pass through the graph, or for each itera-
tion of the outermost loop, we choose to selectively process
only a subset of the vertices/edges.

Partial graph processing resembles performing a random
walk on the graph and is performed as below. For one pass
through the graph, for each node we choose to process, we
assign special values to its outgoing edges. The values are
drawn uniformly at random from the set of non-negative
integers 2 ½0;mÞ, where m is the number of edges. In other
words, we generate one of the permutations of the edge
identifiers. From among these values, we traverse only the
highest few (say top 50 or 60 percent). The other edges are
omitted, and the nodes on which the omitted edges are inci-
dent may not be processed in that iteration. An iteration is
said to be complete when all the threads have completed
their share of work. The work of each thread is to process
the (selected) edges for the nodes assigned to it, once. We
stop when the change in a parameter (dependent on the
algorithm) across two successive iterations is small.

For instance, in SSSP as shown in Fig. 1, partial graph
processing would change the for loop at Line 6 to go over a
subset of vertices. We may fix the same edge-permutation
for every iteration. But it leads to high deviation from the
exact output. Therefore, we propose generating a new per-
mutation of edge identifiers in every iteration. We also
experimented with selectively skipping the same outgoing
edges for the vertices we process. Such a scheme consider-
ably reduces precision. Note that our method does not even
traverse the edges not selected. In some graph algorithms
(such as finding the vertex with the maximum-degree)
where the processing loop enumerates through vertices or
edges, the two approximations, namely, reduced execution
and partial graph processing may overlap.

Partial processing allows us to reduce the total number of
graph operations compared to the exact version. This also
reduces the amount of synchronization required in process-
ing the graph. For instance, in SSSP computation, the
number of atomics reduces due to fewer vertices being proc-
essed. Since atomics on GPUs are costlier than regular reads
and writes, this leads to better execution time.

Our experiments show that if we process only a fraction
of the graph without modifying the edge/vertex attributes,
the inaccuracy grows fairly quickly as we reduce the frac-
tion of the graph processed. For instance, in SSSP, if we
process 75 percent of the edges, it achieves around 1.2�
speedup, with 21 percent inaccuracy. However, when we
process only 25 percent of the edges, it achieves a speedup
of around 2.8� but the inaccuracy shoots-up to 63 percent.

On the other hand, if we assign values edge/vertex attrib-
utes carefully, then the error grows gradually even with
the processing of a small fraction of the original graph. In
case of SSSP, when we assign edge weights after prepro-
cessing the graph before applying this approximation, we
observe that processing 75 percent of the graph causes the
answer to deviate from the exact value by 18 percent on an
average. Also, with 25 percent of the graph processed, the
inaccuracy is close to 24 percent and does not increase
drastically.

3.4 Technique 3: ApproximateGraphRepresentation

Reduced iteration and partial graph processing discussed in
the last sections work with the original (exact) graph. In the
approximate graph representation technique, the graph
itself is stored in an imprecise manner. Thus, instead of
working on the exact graph representation, the (exact) algo-
rithm runs on graph’s approximation. There are multiple
ways to implement this. One way is to assign the same ver-
tex-id to multiple vertices. Alternatively, we can store the
graph in a probabilistic data structure (such as bloom fil-
ters). In this work, we explore vertex-merging, which
involves logically merging the adjacency lists (both incom-
ing and outgoing) of the vertices being merged. Merging
leads to a smaller graph containing fewer vertices (and
edges), which reduces the execution time. If there is a trian-
gle a� b� c and a� b get merged, then we assign the
weight to the edge ab� c as the mean of the weights of the
edges a� c and b� c.

The merging can, in general, be performed on an arbi-
trary pair of vertices. But it reduces inaccuracy if performed
carefully. We enable vertex-merging for a pair of vertices if
their neighborhoods are similar. Two vertices have similar
neighborhoods if their Jaccard’s coefficient is above a
threshold. Jaccard’s coefficient Jij, for vertices vi and vj with
sets of neighborsNðviÞ and NðvjÞ respectively, is

Jij ¼ jNðviÞ \NðvjÞj
jNðviÞ [NðvjÞj : (3)

As vertices get merged, they form a meta-vertex, which, in
turn, may get merged with another vertex or meta-vertex,
and so on. vi or vj in Equation (3) may represent an original
vertex or ameta-vertex. Themerging order is important to the
quality of the approximate representation (see Section 2.1).
We merge the vertices using a greedy heuristic, prioritizing
merging vertices with higher degrees.

Node-merging necessitates logical merging of the incom-
ing and the outgoing edges of the vertices being merged.
That is, neighbors of the vertices become neighbors of the
merged vertex (removing self-loops if there was an edge
between the vertices being merged).

The minimized graph thus obtained is fed as an input to
the exact version of the algorithm. In our experiments, we
find that decreasing the merging threshold of the Jaccard
coefficient increases the inaccuracy. Decreasing the thresh-
old also increases the speedups we obtain, in most cases.
This is because decreasing the threshold decreases the num-
ber of vertices in the minimized graph, though the number
of outgoing edges for a vertex may increase. We need to
choose the Jaccard’s threshold judiciously so as to achieve
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good performance benefits while keeping within the accept-
able limits of inaccuracy compared to the exact version.

3.5 Technique 4: Approximate Attribute Values

Our fourth proposal is to reduce the computation cost of
large graphs by approximating attribute values of graph ele-
ments. Numeric attribute values (such as vertex distances or
edge weights) can be rounded-off to discrete values, say
powers of 2. Non-numeric values can be changed to be cho-
sen from a smaller domain (e.g., vertex colors). We discuss
below applying such a discretization for SSSP.

In SSSP, discretization is a two-step process. In the first
step, we perform a traversal through the edges to find the
maximum and the minimum weight edges. Let the maxi-
mum and the minimum edge-weights be wmax and wmin

respectively. In the second step, we perform another tra-
versal on the edges to modify their edge-weights. wmin is
rounded-up to its nearest power of 2 and wmax is rounded-
down to the nearest power of 2. We call these new limits as
w0

min and w0
max respectively. All the edge weights are

rounded to their nearest power of 2 in the range
½w0

min; w
0
max�. With the above modification, we are guaran-

teed that any edge in the graph can take only one of the
k ¼D flog2ðw0

maxÞ � log2ðw0
minÞg values. Assuming each edge

takes any of these values with equal likelihood, an edge has
an expected weight calculated as below.

Let X be a random variable which is defined as the
weight assigned to an edge e 2 E. X can take values from
the set S ¼ fw0

min; . . . ; w
0
maxg. An edge can be assigned any

of these values with probability 1
k. So

E½X� ¼
X
x2S

x:PrðX ¼ xÞ

¼
X
x2S

x:
1

k

¼ 2� wmax � wmin

k
:

So in expectation, the maximum distance between any
two vertices can be ðgraph diameterÞ � 2�wmax�wmin

k .
We can make an informed choice about initial attribute

values which would aid in reducing the portion of the
graph we process. For instance, in case of SSSP computa-
tion, we can initialize the distance from the source to every
vertex to some value other than the customary 1. Such a
value is computed as a preprocessing step as follows. We
run a single pass of the Breadth-First-Search (BFS) on the
graph starting at the source vertex s. This gives us the hop
distance of every vertex from the source vertex. During the
traversal, we also find the largest edge-weight value. Now,
we set the initial distance of every vertex as: v 2 V ,
distðs; vÞ ¼ ð# of hops from s to vÞ � ðmax edge weightÞ.

Approximation of edge-weights, with a careful extra pre-
processing, can enable us to transform the SSSP computa-
tion into an easily parallelizable BFS. As a preprocessing
step, we run BFS on the given graph, from the source vertex
s to get the level information of all the vertices with respect
to s, in the form of the BFS tree rooted at s. In this BFS tree,
we compute a weighted mean of the weights of the edges
from level i to iþ 1, where i 2 f0; 1; 2; . . .g. The weights are
drawn from a uniform distribution with values in the range

(0, 1). We assign this weighted mean to all the edges from
level i to iþ 1 and do the same for all the levels. After
assigning the new edge-weights to all the edges in the BFS
tree, a traversal of the tree gives the approximate shortest
path distance of every vertex from the source node. For
computing the weighted mean, the weight assigned to an
edge-value is inversely proportional to it, i.e., higher edge-
value is multiplied by a lower weight. This is done so that
the weighted mean is not skewed towards the higher edge-
values and is only slightly away from the exact shortest
path length. This approximate technique makes it feasible
to achieve good speedups of the iterative SSSP computation
with plausible error bounds.

Similarly, for the PageRank algorithm, we initialize the
pageranks of all the vertices to 1

n and not to some arbitrary
discrete value. This serves two purposes. First, 1

n implies
that the surfer lands on each page with equal probability.
Second, since the PageRank computation essentially gives
an estimate of the likelihood that the surfer lands on each
page, the value does not vary drastically from the initial
value. Hence, even here, we can afford to process the graph
only partially and still have a reasonable solution. It has the
effect that in large graphs every unprocessed vertex can be
reached with a fairly low probability.

In case of MST, we round-up or -down the edge-weight
to the closest power of 2. We stop when the weight of the
MST overshoots a threshold set to ðn� 1Þ � ðmean weightÞ
rounded to the nearest power of 2, where n is the number of
nodes in the graph. We find that this scheme leads to better
execution time compared to the exact version.

In BC, the betweenness centrality value of each vertex is
in the range [0..1]. We sub-divide this range into 10 equal-
sized buckets, and the centrality value of each vertex is
rounded to the nearest tenth.

4 BENEFITS TO GPU-BASED PROCESSING

Though the proposed approximation techniques can be
applied independent of the architecture, employing them on
a parallel GPU code is particularly useful since they address
important performance bottlenecks. Such bottlenecks are
artifacts of issues such as synchronization, workload-imbal-
ance, CPU-GPU data transfer, etc. We discuss how our
approximation techniques help in diminishing their effect.

4.1 Technique 1: Reduced Execution

Typically, a graph algorithm gets modeled in a bulk-
synchronous fashion where the host code repeatedly calls
the processing kernels. Such processing involves an implicit
barrier at the end of each kernel invocation (e.g., Line 14 in
Algorithm 1). The approximation technique of reducing the
number of iterations of the algorithm reduces the number of
barriers invoked. For algorithms that require a large num-
ber of iterations, the cumulative effect of reducing the num-
ber of barriers helps improve performance.

We also observe that in typical algorithms, the amount of
work done in later iterations is relatively much lesser (see,
for example, Figs. 7 and 10). Especially in the context of
massive-multithreading, such a behavior reduces the paral-
lel work-efficiency. Reduced execution mitigates such an
effect, and improves average work efficiency.
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4.2 Technique 2: Processing Part of the Graph

In case of partial processing, the algorithm operates on only
a subset of the graph. Processing fewer edges translates to
lesser synchronization in each iteration. For instance, in
SSSP computation of Algorithm 1, which uses an atomic
operation at Line 10, reducing the number of processed
edges implies that the number of incoming edges to a node
reduces, thereby reducing the number of atomic operations.

Partial processing also helps partially address the prob-
lem of unbalanced work distribution among threads in a
vertex-centric GPU implementation. Load imbalance hap-
pens due to a few vertices having large outdegrees (as in
social networks). Due to the approximation of partial proc-
essing, however, the number of edges processed by each
thread is lesser, mitigating the effect of load imbalance.

4.3 Technique 3: Approximate Representation

One of the primary bottlenecks in CPU–GPU systems is the
inter-device data transfer over a relatively slow PCIe inter-
connect, especially for large graphs. Thus, it is desirable
that the number of CPU–GPU transfers be reduced and the
amount of data being sent be also small. With approximate
graph representation, the device-to-device data transfer
reduces, leading to performance benefits.

4.4 Technique 4: Approximate Attributes

Approximating attribute values helps in achieving the fixed-
point in fewer iterations, leading to reduced synchronization
in terms of implicit barriers. In case of algorithms such as
SSSP, we approximate the vertex attributes to get rid of the
atomic operations. We initialize vertex distances using a
BFS-based approximation, which enables us to transform the
SSSP computation to an easily parallelizable level-by-level
BFS processing. Since level-synchronous BFS can be imple-
mented without explicit atomic instructions [13], avoiding
the synchronization improves performance.

In case of MST computation, which often requires several
iterations to converge, we devise a policy for it to converge
faster. MST’s parallelism profile suggests that it has a good
amount of parallelism initially, which reduces as the algo-
rithm progresses. Online approximation of attributes, across
iterations, helps us terminate the algorithm early. By round-
ing the edge attributes to powers of two and setting a suit-
able threshold (Section 3.5), the algorithm makes rapid
strides and converges faster.

5 EXPERIMENTAL EVALUATION

In this section we evaluate the performance of the various
approximation techniques, and compare it with the exact
versions of the respective algorithms. We study six graph
algorithms: single-source shortest paths computation
(SSSP), minimum spanning tree computation (MST), finding

strongly connected components, vertex coloring (Color),
page rank and node betweenness centrality computation
(BC). We compare our approximate SSSP and approximate
MST with the respective exact versions from Lone-
starGPU [7], approximate SCC with the exact SCC by Dev-
shatwar et al. [9], Color with our parallel implementation of
exact largest-degree-first (LDF) coloring algorithm, approxi-
mate PR with Totem [14] and BC with our parallel imple-
mentation of exact Brandes’ algorithm.

We perform experiments on a machine with an Intel Xeon
32-core E5-2650 v2 @ 2.6 GHz CPU having 100 GB RAM and
Nvidia Kepler (Tesla K40C) GPU having 2,880 cores spread
across 15 SMXs with 12 GB memory. The machine runs Cen-
tOS 6.5. We use CUDA 6.5 to compile and execute our meth-
ods on the GPU. We evaluate our approach on a range of
input graphs from SNAP [15] shown in Fig. 2. The base exe-
cution times (in second) for the exact versions are listed in
Fig. 3. While other techniques do not require any preprocess-
ing, approximate graph representation needs to compute
neighborhood similarities to calculate Jaccard’s coefficient.
Since this is a one-time cost, we do not account for this pre-
processing in the execution time.

An important aspect of measuring the effectiveness of
approximations is to compare the accuracy of the computed
values. This can be achieved by computing an absolute dif-
ference between the attribute values of the vertices for the
exact and the approximate versions, and taking an average
across vertices for a run. For multiple runs (say, across
graphs), we compute the geomean difference over the aver-
ages for each run. For SSSP, the attribute is the distance
value; for PR, it is the page rank value; and for BC, it is the
betweenness centrality value. For SCC, we calculate the dif-
ference in the number of SCCs computed by the exact and
the approximate methods. For MST, we calculate the differ-
ence in the weight of the minimum spanning tree computed
by the two methods. Such a mechanism does not work for
discrete values such as colors in vertex coloring. A straight-
forward solution is to use number of colors as a measure to
compare. However, due to the non-determinism in thread-
scheduling, multiple runs of our coloring algorithm may
result in different colorings; leading to a difference in the
number of colors used for the same graph. In our implemen-
tation of LDF algorithm, this happens when one or more
neighbors of a vertex have the same degree. Therefore, the
baseline accuracy of such an exact version cannot be

Fig. 2. Input graphs.

Fig. 3. Execution time for the exact versions.
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faithfully captured in the parallel setting. To address this,
we measure the accuracy as the percentage of pairs of adja-
cent nodes having different colors. Such a quantity indicates
the degree of closeness with the exact coloring (which
would have this value as 100 percent), and importantly, it
will be independent of the thread-scheduling.

5.1 Overall Results

Fig. 4 summarizes the effects of the four approximation
techniques for the six graph algorithms. We list the geo-
mean speedup and the inaccuracy values across all the
graphs in our setup. The approximation of the attribute val-
ues is inapplicable for PR, SCC and Color; hence the entries
are marked as –. Overall, we observe that the approxima-
tions have the capability to achieve high speedups by trad-
ing off more and more accuracy. However, some algorithms
seem to be more amenable to effective approximation than
others. For instance, approximate SSSP and PR achieve rela-
tively higher speedups for lower inaccuracy compared to
MST, SCC, Color and BC. This indicates that continuous-
value-based algorithms (such as SSSP and PR) provide bet-
ter approximation opportunities than discrete-value-based
(such as Color). Second, algorithms that depend heavily on
the graph structure (such as SCC and Color) have a rela-
tively higher inaccuracy. This is an artifact of values getting
refined in each iteration, but structures are often binary
(either an SCC or not, either a neighbor or not), which
affects approximation opportunities. High inaccuracy for
outerloop iterations in Color is because reduced execution
for Color translates to using fewer colors.

We now look at the overall effect of individual approxi-
mations; detailed discussion follows in the subsequent sec-
tions. First, the effect of reduced execution follows value-
based approximations—more effective for SSSP and PR
(with lower inaccuracy and higher speedup) and less so for
MST, SCC and Color. BC gets benefitted in execution time
(1.74�), but at the cost of high inaccuracy (18.07 percent),
due to BFS from fewer source vertices. However, PR appears

to be exceptionally benefitted by this approximation, as the
page rank values converge rapidly to their final values in a
few iterations. Thus, for algorithms where fixed-points are
approached quickly and then refined slowly, reducing exe-
cution turns out to be very useful. Therefore, it is a useful
approximation for gradient-descent kind of algorithms.

Second, partial graph processing is uniformly useful
across algorithms, with high speedups, but the usefulness is
offset by a higher inaccuracy. This is an indication of algo-
rithms working on graph properties that are global, and get
affected by most of the graph elements. For instance, remov-
ing some edges of the graph would affect shortest path or
page rank value propagations. Partial graph processing is
more beneficial for algorithms that compute local properties,
such as computing the maximum clique or minimum span-
ning tree. In such problems, removal of a few edges or
nodes would have a reduced probability of affecting the
max-clique or MST, leading to the approximation being
more effective. We observe such behavior for MST wherein
the performance of the approximate version with partial
graph processing is particularly higher (speedup of 1.74�)
compared to other techniques (speedup � 1.5�). For BC,
partial processing achieves moderate benefits.

Third, approximate graph representation (using Jaccard’s
similarity) is consistently beneficial for performance, with
relatively better accuracy (compared to other techniques).
This is understandable for structure-based algorithms such
as SCC. Even for Color, since two vertices with almost com-
mon neighborhood can be given the same color, merging
them is likely to maintain accuracy. A similar propagation
effect happens in case of PR—common neighbors propagate
common values across vertices—hence merging the nodes
does not adversely affect accuracy. However, such amerging
approximation is unlikely to be useful for SSSP where edge-
weights play a major role despite the common neighbor-
hood. Therefore, we observe reduced benefits due to this
approximation for SSSP (speedup of 1.27�), compared to
other techniques (speedup > 1.3�). For BC, setting the
Jaccard’s similarity threshold for merger moderately affects
the speedup. A lower threshold aggressively merges the ver-
tices but, in turn, increases the number of neighbors of the
meta-vertex. On the other hand, setting a high Jaccard’s simi-
larity thresholdmerges fewer vertices.

Finally, approximating values is applicable for weighted
algorithms such as SSSP and MST. We have also applied it
to unweighted BC, approximating the vertex attribute, that
is, the BC value. While this approximation achieves good
performance for both the weighted algorithms, the inaccu-
racy is higher for MST (19.07 percent) compared to SSSP
(17.64 percent). This happens because of the algorithm’s
behavior—MST is implemented using Boruvka’s algorithm
which merges components based on the lightest inter-com-
ponent edge. Thus, the number of choices for inter-compo-
nent edge increases after the power-of-2 approximation—
which can lead to a different edge getting selected. An accu-
mulation of errors across multiple iterations leads to
increased inaccuracy for MST. A similar effect happens in
SSSP too, but since the effect is restricted to choosing the
minimum distance across neighbors (rather than across a
collection of vertices), the effect is small, leading to better
accuracy. For BC, we observe that the decent speedup of

Fig. 4. Overall results.
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1.41� is accompanied by a high inaccuracy of 23.16 percent.
This is primarily due to the per-iteration approximation of
BC values. To be specific, we discretize the BC values after
each iteration to the nearest tenth. The algorithm halts when
the difference in the BC values across iterations is less than
a threshold.

We discuss the effect of each technique in more detail.

5.2 Effect of Reduced Execution

Fig. 5 presents the effect the reduced execution technique
(Section 3.2) on the six algorithms. To avoid clutter, we show
results for three largest graphs. We observe that by trading
off some accuracy, one may enjoy considerable performance
benefits. From the shape of the plots, we see that algorithms
which compute global properties such as MST and SCC, the
inaccuracy almost linearly follows the added approximation.
However, SSSP and BC depend upon a source vertex and
perform the computation based on it. Such algorithms are
more sensitive to reduced execution—they can achieve high
speed-upwith high inaccuracy.USA-road is a notable excep-
tion—the performance benefits due to reduced execution
approximation is relatively low. This is an artifact of struc-
tural properties of the road networks. In particular, road

networks have large diameters and uniform degree distribu-
tion. This is in contrast to other networks that follow small-
world property and have power-law degree distribution. PR
benefits substantially by the approximation on outer loop
iterations with little drop in accuracy. This happens due to
fast convergence of PR. On the other hand, Color has the
highest overall inaccuracy with low-performance improve-
ment. This happens in power-law graphs as there is a long
tail of small degree nodes, only some of which get processed.
Note that other algorithms do not process these scale-free
graphs in degree order.

Takeaway 1. Reduced execution approximation is beneficial for
algorithms that converge quickly to the final solution.

Takeaway 2. Reduced execution approximation provides
reduced benefits for algorithms whose precision gets affected by
the long tail of vertices processed in scale-free graphs.

Fig. 6 shows the effect of varying the percentage of
outer loop iterations for various graphs (20, 50 and 90
percent iterations). We observe a good similarity in the
plots across the graphs: not only the trend, but also the
values are similar—which hints at the robustness of this

Fig. 5. Algorithm-wise effect of varying the percentage of outer loop iterations.

Fig. 6. Graph-wise effect of varying the percentage of outer loop iterations.
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technique (as we will see, not all techniques exhibit this
robustness).

Fig. 7 shows the work done (number of vertex distances
settled) per iteration in exact SSSP for various graphs. We
can choose to reduce the execution based on how much
work is sufficient for the algorithm. The amount of work
done is directly proportional to the accuracy and inversely
proportional to its execution time.

5.3 Effect of Partial Graph Processing

Fig. 8 presents the effect of processing part of the graph
(Section 3.3). A striking difference with the reduced execu-
tion (Fig. 5) is that the accuracy of the results is largely uni-
form across graphs as well as across algorithms. It is
interesting to observe that the speedup effect differs consid-
erably across algorithms (MST being more amenable to this
approximation over SSSP), but the inaccuracy values do
not. For BC, we observe that the effect of partial graph proc-
essing on the scale-free graphs is relatively small in terms of
the impact on inaccuracy than that on the road network.
This is due to the difference in diameters. For low-diameter
graphs, vertices can be reached from one another by travers-
ing only a few edges. Therefore, processing only a fraction
of the edges still has a high probability of traversing from
one vertex to another, reducing the overall BC error. This is
an indication that the inaccuracy of partial graph processing
depends primarily on the amount of graph processed (more
detailed results follow). This is expected, but not always
true with other approximations.

Fig. 9 shows the effect of varying the percentage of the
graph processed for each graph in our testbed. We observe a
considerable similarity in the shapes of the plots indicating a

near-uniform effect of this approximation across graphs.
There is some variation in the behavior for the road network
USA-road in MST computation, but otherwise, the speedups
and the inaccuracy values follow the trend.

Takeaway 3. Partial graph processing affects computation in a
uniform manner across various graphs in our testbed.

Fig. 10 shows the effect of processing part of the graph in
SSSP for rmat28, USA-road and LiveJournal. It plots the
amount of work done in each iteration for the number of
edges processed as 100 percent (exact), 50 and 25 percent.
The three plots show different shapes of these curves: for
low-diameter graphs such as rmat28 and LiveJournal, the
amount of work done is initially high and reduces gradu-
ally; whereas for road networks, the work done is high in
the middle (due to uniform degree distribution). In all the
cases, we observe that the approximate versions clearly per-
form much lesser work, leading to better performance.

Fig. 11 shows the variation in work done per iteration for
partial graph processing in case of Color. In this algorithm,
we consider work done to be the number of nodes colored.
An interesting observation is that, unlike in SSSP, the shapes
of the plots remain the same and are not guided by the
diameter. This occurs because coloring follows the largest-
degree-first processing, and thus performs more work ini-
tially. Based on this observation, one may wish to reduce
the fraction of the edges processed with increasing number
of iterations.

5.4 Approximate Graph Representation

Approximate graph representation offers relatively higher
benefits compared to the other approximation techniques.

Fig. 7. Work done per iteration in SSSP for rmat28, USA-road and LiveJournal:

Fig. 8. Algorithm-wise effect of varying the percentage of graph processed.
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Fig. 12 shows the algorithm-wise effect of approximate
graph representation using Jaccard’s coefficient. We observe
a uniformity in the behavior both in terms of trend and
magnitude. An interesting aspect is that the speedups and
the inaccuracy values get clustered for this approximation
for each graph. This occurs because similarity measure
makes sure that the nodes being merged are indeed similar.

Fig. 13 shows the graph-wise effect of the approximation.
We observe a similar trend across various algorithms, and
there is also a high uniformity in the magnitudes.

Takeaway 4. Partial graph processing with Jaccard’s similarity
affect speedup and inaccuracy uniformly in our testbed.

Fig. 14 plots the work done per iteration for different
thresholds of Jaccard’s index for SCC and SSSP computa-
tions. For SCC, work done is defined as the number of verti-
ces changing their component. For both the algorithms, the
overall work done per iteration reduces as we lower the
Jaccard’s index threshold for merging of vertices. This is
due to power-law degree distribution for LiveJournal. When
the threshold for merging is high (J-index = 0.8), the merger
causes the higher degree vertices to merge while the smaller
degree nodes are largely left unmerged. So the number of

nodes reduces but the degree of the merged nodes increases.
As we reduce the threshold for merging (J-Index = 0.6), the
merger causes even the smaller degree nodes tomerge.

5.5 Approximate Attribute Values

Fig. 15 presents the effect of approximating the attribute val-
ues in SSSP, MST and BC, which work on weighted graphs
(see Section 3.5). We observe relatively higher benefits with
moderate inaccuracies for SSSP and MST, but consistently
high inaccuracies for BC. On an average, we observe a 17
percent inaccuracy with a harmonic mean speedup of 1.9�
in SSSP. For MST, an average inaccuracy of 19 percent
fetched a speedup of around 1.4�. For BC, we observe a
speedup of 1.4� and a high inaccuracy (�23 percent). While
the speedup is encouraging, the high inaccuracy is due to
discretization of the BC values obtained after every iteration.

Takeaway 5. Approximating attribute values achieves better
speedup at the cost of accuracy in our testbed.

Fig. 16 plots the work done per iteration in MST for
rmat28 and USA-road. Work done per iteration is measured
as the number of edges contracted. We observe that the
work done per iteration with approximate attribute values

Fig. 9. Graph-wise effect of varying the percentage of graph processed.

Fig. 10. Work done across iterations in SSSP for rmat28, roadNet-USA, and LiveJournal due to partial graph processing.

Fig. 11. Work done across iterations in Color for rmat28, roadNet-USA, and LiveJournal due to partial graph processing.
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closely follows the exact version for USA-road. Note that it
does not mean that the two versions contract the same edges;
it simply indicates that they contract almost the same number
of edges, but the approximate version converges faster. This
reduces the overall work done and, correspondingly, the
execution time. In case of rmat28, the work done per itera-
tion reduces considerably due to approximating attribute
values.

5.6 Effect on Graph Type

Our testbed consists of scale-free low-diameter graphs
(rmat28, LiveJournal and Twitter), Erd€os-Reny�ı style random

graph (random), and large diameter road network (USA-
road). Work-done per iteration for scale-free graphs is ini-
tially high and quickly reduces, and remains low for several
iterations (long tail). In contrast, for large diameter graphs,
it increases in the initial iterations, remains high for some
iterations, and then gradually reduces. For random graphs,
it remains almost uniform throughout. This behavior dic-
tates how an approximation affects processing on these
graphs. Reduced execution is more useful for large diameter
graphs. Partial graph processing changes only the magni-
tude of work done per iteration. Hence, it affects graphs
uniformly. A similar behavior is observed with approximate

Fig. 12. Algorithm-wise effect of varying the Jaccard’s coefficient.

Fig. 13. Graph-wise effect of varying the Jaccard’s coefficient.

Fig. 14. Work done per iteration for LiveJournal in SCC and SSSP for varying Jaccard’s coefficient.
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graph representation. However, we see that the perfor-
mance and the inaccuracy values are more sensitive to par-
tial graph processing compared to the approximate graph
representation. Finally, the effect of approximating attribute
values is not conclusively dependent upon the graph type,
as graph type is a structural property whereas attribute
value is a numeric property of the graph elements.

Summary. Overall, we note that our proposed approxima-
tions bear the potential to trade-off performance and accuracy
very effectively. While, in general, algorithmic processing
and input graphs affect the magnitude of benefit, we see that
approximations consistently offer considerable improvement.
We believe that practical large-scale algorithms on GPUs
would find our approximation proposals suitable.

6 RELATED WORK

A survey of approximations is presented by Mittal [17].
Gubichev et al. [18] presented a preprocessing-based

technique for finding the approximate single source
shortest path from a designated source node for a given
graph. The precomputation step involves computing for
every node in the graph a shortest path to and from a
small number of landmark nodes. The obtained set of
paths are stored in external memory. The precomputed
information is used to provide a fast approximation of
the node distance at query time. It works by combining
the distance of the query nodes, s and d to or from a
selected landmark node l into the approximate distance
~d(s,d). They implement a few other optimizations—Cycle
Elimination, Shortcutting, on top of the basic scheme to
further improve the query time. The proposed scheme is
implemented on an RDF-3X system. Our method, on the
contrary, does not perform any preprocessing to store
the shortest path distances.

A* search [19] heuristic was proposed to compute approx-
imate shortest distances with a reduced latency compared to
the traditional algorithms. They also establish plausible error
bounds on the computed solution. This heuristic is comple-
mentary to our techniques. Agarwal et al. [20] propose a
look-up based iterative approach to efficiently compute
point-to-point shortest paths for a large fraction of source-
destination pairs. They maintain a data structure to store the
exact distance to the immediate neighbor of a node and also
its two hop neighbors. This enables them to trace the shortest
path alongwith reporting the shortest distance.

Grosset et al. [21] propose a parallel graph coloring
algorithm for GPUs. The algorithm proceeds in three
phases. First, the graph is partitioned so that there is
load-balance across threads. In the second phase, each
thread assigns colors to its subgraph, using a heuristic—
first fit, highest saturation then highest degree, maxi-
mum degree out of the partition, minimum degree out
of the partition. In the third phase, conflicts are resolved
sequentially on the CPU. The proposed GPU implemen-
tation provides better results in terms of the number of
colors used, and the running time is comparable to the
sequential First Fit algorithm.

Deveci et al. [10] propose an edge-based graph coloring
approach. It is shown to be equivalent to Dþ 1 coloring. It is
empirically shown that edge-based coloring usually outper-
forms other algorithms on GPUs. They implement the
scheme using the Kokkos library. In contrast, our coloring
algorithm employs the largest-degree first heuristic.

There is a large body of work on graph compaction tech-
niques. Spanners and sparsifiers have been studied exten-
sively with respect to approximate graph representation.
These are sparse subgraphs of the original graph from
which properties of the original graph can be approximated.
Spielman and Teng [22] construct spanners by performing a
natural random rounding of the graph to achieve a good
approximation of the original graph. Another popular
method for obtaining approximate graph representation is
sampling. Bencz�ur and Karger [23] propose sampling graph
edges with varying probabilities. The compressed graph is
built by including an edge e with probability pe and assign-
ing it a weight of 1

pe
if it is included. In contrast, our tech-

nique for graph compaction uses Jaccard’s coefficient for
similarity.

There has been some work on parallelization of BC com-
putation. Sariy€uce et al. [12] discuss various techniques for
speeding up the exact betweenness centrality computation
on GPUs and on heterogeneous CPU/GPU architectures by
exploiting the coarse-grained and fine-grained parallelism
available in Brandes’ algorithm.

Fig. 15. Effect of approximating attribute values.

Fig. 16. Work done per iteration in MST due to approximating attribute values.

SINGH AND NASRE: SCALABLE AND PERFORMANTGRAPH PROCESSING ON GPUS USING APPROXIMATE COMPUTING 201



There have also been attempts at approximating the
betweenness centrality of nodes. Riondato and Upfal [24]
propose a progressive sampling based family of algo-
rithms to approximate the BC values in a graph. They also
establish probabilistic guarantees on the solutions. The
method outperforms the exact versions and other approxi-
mation algorithms with the same guarantees on quality. In
comparison, the approximation techniques we apply to
Brandes’ algorithm result in inexact but mostly determin-
istic solutions.

Seo et al. [25] propose GStream, a GPU based exact
method for processing large-scale graphs that do not fit
entirely in the GPU device memory. Nasre et al. [26] imple-
ment Boruvka’s algorithm in CUDA for finding the MST on
a weighted undirected graph through successive edge con-
tractions. Nobari et al. [27] propose a GPU based parallel
minimum spanning forest (MSF) algorithm. They propose a
parallelized version of Prim’s algorithm where they concur-
rently expand several subsets of the computed MSF. Our
baseline for MSF is Boruvka’s algorithm.

Hong et al. [28] present a scalable implementation for
finding strongly connected components, which performs
well on diverse, small-world graphs. They improve over the
conventional FW-BW-Trim algorithm by exploiting the
data-level parallelism, letting every thread work on the
same partition of the graph. All the threads are used to find
the reachable sets. Subsequently, they return to the conven-
tional implementation, which exploits task-level parallel-
ism. In the current work, we apply approximations on top
of the exact FW-BW-Trim algorithm.

Graph algorithms [29], [30] have been shown to bear
enough parallelism especially in the context of distrib-
uted [31], [32], [33] and heterogeneous systems [14]. Merrill
et al. [1] propose work-efficient graph traversal with several
optimizations based on prefix-sum. Luo et al. [2] propose a
BFS for multi-core CPUs and a single GPU. Their method
uses a well-optimized hierarchical queue to keep track of
frontiers. Hong et al. [3] propose multiple methods for BFS
on a heterogeneous system. Their hybrid method chooses
the best execution among sequential, multi-core CPUs and
single GPU. Harish and Narayanan [34] propose a two-
phase method for performing BFS. Fu et al. [35] propose
BFS for GPU clusters. Being a distributed setup, their focus
is communication across devices. Contrary to our work,
these methods deal with exact graph algorithms.

7 CONCLUSION

We studied the effect of various algorithmic approximations
on graph algorithms on GPUs. It is believed that for irregular
computations such as graph algorithms, the effectiveness of
a technique depends primarily upon the input. There exist
algorithms, for instance, that target specially power-law
graphs and which do not work well with large diameter
graphs. On the contrary, our study reveals that while the
amounts of performance improvement and inaccuracy vary,
approximations are consistently helpful in achieving the
trade-off well. In other words, approximate computation of
graph algorithms is a robust way of dealing with irregulari-
ties. Our techniques are general and applicable to other
graph algorithms as well. We believe that our proposals and

their study would pave the way for many more algorithm-
specific and algorithm-independent approximations.
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