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ABSTRACT
Recent methods of bottom-up salient object detection have
attempted to either: (i) obtain a probability map with a
’contrast rarity’ based functional, formed using low level
cues; or (ii) Minimize an objective function, to detect the
object. Most of these methods fail for complex, natural
scenes, such as the PASCAL-VOC challenge dataset which
contains images with diverse appearances, illumination con-
ditions, multiple distracting objects and varying scene envi-
ronments. We thus formulate a novel multi-criteria objective
function which captures many dependencies and the scene
structure for correct spatial propagation of low-level priors
to perform salient object segmentation, in such cases. Our
proposed formulation is based on CRF modeling where the
minimization is performed using graph cut and the opti-
mal parameters of the objective function are learned using
a max-margin framework from the training set, without the
use of class labels. Hence the method proposed is unsu-
pervised, and works efficiently when compared to the very
recent state-of-the art methods of saliency map detection
and object proposals. Results, compared using F-measure
and intersection-over-union scores, show that the proposed
method exhibits superior performance in case of the complex
PASCAL-VOC 2012 object segmentation dataset as well as
the traditional MSRA-B saliency dataset.
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1. INTRODUCTION
Human visual system has an amazing capability to local-

ize objects even before recognizing them. This comes from
the ability to select regions with important visual informa-
tion during early vision. This ability of human visual system
is known as Visual Saliency. Again, cognitive science litera-
ture describes that spatial groupings of a small set of simple
primitives give the early description of an image[1]. Local-
ization of multiple objects in an image happens as a part
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of early visual processing. This indicates that saliency can
be substantially utilized for localizing objects, thus imitat-
ing the human visual system. Salient object segmentation
can then be successfully used as a pre-processing step to
accomplish low-level tasks, e.g., shape-based feature extrac-
tion, and high-level vision tasks such as, object recognition,
scene understanding, object tracking etc, as it reduces search
space and minimizes information overload.

Category dependent object localization algorithms work
only for a predefined set of objects and is practically infea-
sible given the huge number of classes existing in reality.
Studies show that human beings can localize objects even
when the identification or recognition system is impaired [2].
There has been thorough research in class specific object de-
tection and localization. Sliding window approaches [3, 4]
try to find objects at different windows at different scale and
orientation. Therefore, these methods incur huge computa-
tional cost. Again, state-of-the-art segmentation methods
[5, 6, 7] are not suitable to extract object specific image
regions. So it is important to devise a system which can lo-
calize objects without any prior knowledge about it. Later,
more features can be learned from these extracted object re-
gions and recognition algorithms can also benefit from this
spatial filtering. In this paper, we propose a Salient Object
Segmentation method so that the same visual processing hi-
erarchy as in humans can be employed by computer vision
techniques. Our goal is to localize objects independent of
its category.

Class independent object segmentation has recently gained
importance in the Computer Vision community [8, 9]. Meth-
ods in this class typically give a bag of binary maps or masks
where each map gives a region in the image so that each
object is represented by at least one of these maps. Both
CPMC [8] and Object Proposal [9] methods start with many
seeds to predict a bag of masks as object proposals. Then,
they rank order these maps based on precision of represent-
ing an object. Since, these methods give as many as few
hundred maps, they give a very good recall. However their
precision is very low, as a lot of background regions are
proposed as objects. Optimization is based on intersection-
over-union criteria [9] to rank the maps, but the results show
that the top-most map generally contains almost half of the
image (refer last row in Fig. 1). [10, 11, 12, 13] also address
the problem of detecting generic objects, but give bounding
boxes rather than pixel level segmentation output. In this
work we concentrate on pixel accurate segmentation maps.
[12] emphasizes on recall and does not intend for a pixel-



accurate map as they aim for object recognition.

On the other hand, saliency detection in images has been
an area of research interest for long time. Researchers have
taken two different approaches- fixation prediction and salient
object segmentation. In fixation prediction, saliency is de-
picted as eye gaze fixation points [14, 15]. Whereas, salient
object detection or segmentation methods give a pixel ac-
curate saliency map where a pixel value expresses the prob-
ability of that pixel being salient [16, 17, 18, 19, 20, 21].
Although fixation prediction methods establish the funda-
mental principals of saliency detection, they are less suit-
able compared to saliency maps, for the object segmenta-
tion purpose. Recent saliency detection methods show high
performance in saliency datasets, but they fail to perform
when tested in natural image datasets like PASCAL [22].
There are two reasons behind this. First, these methods use
only low-level perceptual cues such as, center surround op-
erations [14], local and global contrast [17, 18], uniqueness
and color distribution [19, 21] and boundary prior [20, 21,
23]. Second, there is typically a huge dataset bias which
ensures the presence of only a single object at the center of
an image. Moreover, in saliency datasets the objects are in
high contrast with respect to the background. Hence, this
class of methods do not scale up for more natural images
such as in PASCAL segmentation dataset [22].

Our method of Salient Object Segmentation uses saliency
feature and objectness criteria as two important cues to gen-
erate a single salient object segmentation map. The aim of
the map is to depict all the object regions with high prob-
ability values. Natural images exhibit spatial interactions,
e.g., neighboring pixels are likely to belong to the same ob-
ject. Graph-based methods can capture these dependencies
and do good spatial propagation of saliency information.
Hence, we employ a graph-based approach and model our
method as a conditional random field (CRF) based opti-
mization approach. We perform all our processing at the
superpixel level. To determine the superpixels of an image,
we use the SLIC algorithm [24] which preserves primitive
information like color, object boundary and edges. Since,
number of superpixels are significantly less than that of pix-
els in an image, this makes our method fast and suitable as a
pre-processor. We take account of low-level perceptual cues
using saliency prediction method. Again, the objectness fac-
tors are incorporated based on geometric constraint and dis-
tribution of edges in the image. Objectness, as first defined
by Alexe et al. [10], are the features that predict the likeli-
hood of a superpixel belonging to any object. These in com-
bination with saliency give the likelihood of each superpixel
belonging to a salient object and forms the unary potential
for CRF in the proposed method. Since, many objects are
roughly homogeneous in appearance [9], CRF smoothness
constraint gives a benefit. In following two sections, we first
describe the image cues, namely saliency and objectness,
followed by, our graphical model formulation, inference and
learning. We have tested our method on challenging PAS-
CAL 2012 dataset [22] and it shows better performance than
saliency as well as object proposal methods, in terms of both
F-measure and intersection-over-union scores.

2. IMAGE CUES
The aim of our approach is to segment all salient objects

Figure 1: Examples of category independent models
on a sample image from PASCAL VOC 2012 seg-
mentation dataset [22]. From left to right, first row
shows the image, its binarized ground truth and out-
put of proposed method (refer Section 3). Second
and third rows show top 3 ranked maps of CPMC
[8] and Object Proposal [9] methods respectively.

in an image. Saliency methods alone produce a probabilis-
tic saliency map. Therefore, to segment out the objects
from an image, we use objectness criteria in conjunction with
saliency. We characterize objectness by two constituent fac-
tors: geometric constraint and distribution of edges in the
image. These two features are respectively modeled and
termed by us as boundedness and edge-density. To find
the image cues, an image is first segmented into a set of
Nsuperpixels, {spi}, i = 1,. . . ,N using the SLIC algorithm
[24]. Then all the image cues are computed over superpixels
as described in the following subsections.

2.1 Saliency as a Cue
Motivated by biological factors of human vision, as de-

scribed in section 1, we employ saliency as a primary factor
in our algorithm. Saliency detection methods mostly rely
on low-level cues, such as, center-surround response [14],
frequency domain features [26, 27, 28] or local and global
contrast based information [17, 18, 19, 20, 21, 29]. All these
methods try to find the rare or unique information in an im-
age and represent that as salient. This kind of approach is
known as feature rarity based approach. Authors in [21, 23]
show that the feature rarity alone is not enough to describe
the salient object. Therefore they introduce a background
prior term. Background prior argues that most of the area in
the boundary are occupied by non-salient regions and these
regions are connected with each other. These are termed as
boundary prior and connectedness prior and distance from
boundary gives a measure of saliency. These methods in
saliency literature have shown considerably improved per-
formance in terms of localizing region belonging to objects.

All the methods discussed above are bottom-up or stimu-
lus driven methods and do not exploit any prior information
about any specific object. There are on the other hand, top-
down saliency methods [30, 31] which learn the features of
the objects it has to find and given that object class as an
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Figure 2: (a) Image; (b) it’s binary ground truth and (c) saliency map obtained using the method proposed
in [21]; (d) extracted airplanes by the proposed Salient Object Segmentation method. The bottom row
illustrates the objectness factors: (e) the edge map [25] overlaid on superpixel level image and the two cues:
(f) boundedness and (g) edge-density.

input, the object becomes salient for it [31]. However, simi-
lar to category dependent object segmentation models these
methods cannot localize an object before recognizing it. So,
they do not conform with our objective.

For the purpose of our salient object segmentation task
we require a bottom-up saliency method which better pre-
dicts object regions employing both the feature rarity and
boundary prior cues. Authors in [21] use these two factors
effectively and in a time efficient way. Hence, we use the
map produced by [21] as our saliency cue. The saliency de-
tection method [21] produces a probabilistic saliency map of
superpixels which is then upsampled to pixels. The super-
pixel saliency map in [21] is used as the saliency probability
value of ith superpixel and denoted as si.

Figure 2(c) shows the saliency map of [21]. Clearly,
the saliency map visually delineates that the rare features
are depicted as salient. It uses compactness in color space
and distinctness from boundary as the prominent cues for
saliency. Hence, only the purple head of the airplane is fil-
tered as salient. Wings on the other hand are completely
ignored due to color similarity with sky on the top bound-
ary. Also, white color may not be detected as a compact
color in the image. Due to this the small white airplane in
the background is also not identified. Moreover, partly the
sky is predicted as salient which is not correct. Actually
the work in [21] uses color information in great detail but
shape and edge information are not exploited. As, human
eye is most sensitive to color and brightness, the saliency
method proposed in [21] performs good on saliency datasets
(e.g., MSRA-B [26]), but fails when tested on natural image
datasets such as PASCAL VOC dataset [22].

2.2 Objectness Features
Objects typically have well defined boundaries [10] and

many objects are mostly homogeneous in appearance [9].
Superpixels preserve object boundaries as superpixel algo-
rithms (e.g., [24]) group the pixels with homogeneous color
and texture as a single superpixel. So, there should be no
superpixel straddling by edges in an image [10]. Recently,
Dollar and Zitnick have described an efficient edge detection
algorithm in [25]. Their method gives a high-quality edge

probability map using structured learning [32] prediction on
random forest. Since, they do a direct inference, the method
is computationally efficient than other edge detection tech-
niques. We use this algorithm to generate an edge map (Fig.
2(e)). Next we compute the boundedness and edge-density
factors.

2.2.1 Boundedness
Since there should be no superpixel straddling, we assume

that the strong edges, the pixels with high edge probability
value (> T = 0.8) in an edge map, mostly correspond to ob-
ject boundaries. We define boundedness bi of a superpixel
spi based on the extent to which it is bounded by strong
edges in all four directions. Boundedness is calculated for
each pixel first and then averaged to superpixels. Edge con-
tours on an edge map may be discontinuous and exist with
small gaps. Due to this, some bounded pixels belonging
to an object, may score low on boundedness. But most of
the other pixels within the particular superpixel would have
high boundedness score, if the superpixel belongs to an ob-
ject. Hence, averaging over all the pixels makes it insensitive
to noise in the edge contour. Moreover, as it can handle the
discontinuities in the object boundary in an edge map, a
computationally expensive high quality edge map [6] is not
required.
Boundedness of superpixel spi is formulated as:

bi =
1

|spi|
∑

p∈spi

(lp(x,y) + tp(x,y) + rp(x,y) + dp(x,y))

.I(lp(x,y), tp(x,y), rp(x,y), dp(x,y))

(1)

where, lp(x,y), tp(x,y), rp(x,y), dp(x,y) ∈ [0, 1] denote the strength
of the left, top, right and bottom boundaries respectively,
obtained from the edge probability map, of the particular
pixel p with spatial location (x, y). |spi| denotes the num-
ber of pixels in that particular superpixel. Also,

I(lp(x,y), tp(x,y), rp(x,y), dp(x,y)) ={
1, if lp(x,y), tp(x,y), rp(x,y), dp(x,y) > 0
0, otherwise

(2)

is an indicator function and represents whether the pixel is
close-bounded. The bounded pixels then gets the bounded-
ness value dictated by the edge strength of it’s boundaries.



The edge map gives a probability map where each pixel value
denotes the strength of an edge passing through that par-
ticular pixel. Let the edge map value for a pixel at spatial
location (x, y) be Pe(x, y). We use a dynamic programming
approach and compute the boundedness in order of num-
ber of pixels and recursively define the strength of the left
boundary as:

lp(x,y) =

 lp(x−1,y) if Pe(x, y) < T
0 if x = 0
Pe(x− 1, y) otherwise

(3)

Similarly, boundary strengths, tp(x,y), rp(x,y), dp(x,y) can be
computed. For the whole image all the values of lp(x,y),
tp(x,y), rp(x,y), dp(x,y) is computed only once in O(number
of pixels) time. While calculating bi, thus these values are
accessed in O(1). High boundedness value implies that most
of the pixels in the superpixel are bounded by strong edges,
thus it is likely to belong to an object.

2.2.2 Edge Density
The distribution of edges in an image is captured as a

cue using our edge-density term. Since, objects are mostly
homogeneous in appearance [9], there should be fewer edges
inside the superpixels belonging to an object. High density
of edges in a region generally implies a cluttered background,
e.g., rippling river, grass or forest. Again, very low density or
overly smooth regions which are also not bounded should be
part of background, e.g., clear sky. As no strong edge crosses
over a superpixel, that is image boundaries are respected
by superpixels, there should be only weak edges inside a
superpixel. So, we compute the density of the edges within
superpixel spi as:

densityi =
1

|spi|
∑

p(x,y)∈spi

Pe(x, y) (4)

Now, we compute the mean µd and standard deviation σd

of the set of densities, {density}i, i = 1,. . . ,N. Then for ith
superpixel, the edge-density edi is calculated as:

edi =

{
1− densityi if |µd − densityi| < σd

0 otherwise
(5)

We have noticed, superpixels with high edge-density value
are again have less probability for belonging to an object.
Thus, we use it as a negative prior in our energy formulation
as mentioned in the next section.

Bottom row of Figure 2 shows a superpixel-level image
with the edge map superposed on it, along with boundedness
cue and edge-density results on an example from PASCAL
Segmentation dataset [22]. In Figure 2(e), red boxes show
the superpixels and white lines portray the edge map. It can
be seen that the closed strong edges mostly depict the object
boundaries and these are mostly respected by superpixels as
well. Exploiting the edge map we generate the boundedness
map and edge-density map as illustrated in Figure 2(f) and
2(g) respectively.

3. SALIENT OBJECT SEGMENTATION
Conditional Random Fields (CRF) [33] has the ability

to concisely represent dependencies among multiple random
variables. Thus it can capture the structure of the problem
efficiently. Hence, we formulate a CRF over superpixels to

estimate the MAP (Maximum a Posteriori) value of each of
them belonging to an object. Now each superpixel has the
three features, as computed in the previous section, along
with color. In the following subsections, we discuss the CRF
formulation and the label prediction task.

3.1 Random Field Model
Let x = {xi}Ni=1 be the feature vector set and y be the

segmentation labels of all the superpixels, where N is the to-
tal number of superpixels. Conditional random field (CRF)
model takes the form:

P (y|x,w) =
1

Z
e−E(y,x;w) (6)

where, w is a parameter vector and Z is the partition func-
tion. The energy term E generally decomposes over nodes
V (set of superpixels) and edges E (8-neighborhood of each
of the superpixel). We consider the energy E with node and

edge features as φ(1) and φ(2) respectively, as:

E(y,x; w) =
∑
i∈V

φ
(1)
i (yi,x

(1)
i ; w1)

+ λ
∑

(i,j)∈E

φ
(2)
i,j (yi, yj ,x

(2)
i ,x

(2)
j ; w2)

(7)

where, w1 and w2 are the parameters in node and edge po-
tential and x(1), x(2) are the features contributing to unary
and pairwise terms respectively. Node potentials are con-
sidered as negative log-likelihoods. So, first we compute dif-
ferent features, such as, saliency, boundedness, edge-density
for the node potential or the unary term. Then we define the
edge cost or the pair-wise smoothness term to fully specify
the CRF.

3.2 Salient Object Likelihood
The node potentials are obtained by combining the image

cues that are defined in Section 2. The image features for

node potential of ith node (superpixel) is denoted by x
(1)
i

and the parameters by w1 = [ws wb we]T . si, bi and edi are

the image features defined in section 2, used to form the x
(1)
i .

These features correspond to the likelihood of a superpixel
being part of an object. So, it penalizes when a superpixel
with large likelihood is assigned a background label or a
superpixel with low likelihood is assigned a foreground label.
Here a particular label yi ∈ {0, 1} is assigned for foreground
and background pixels. Hence, the node potential is written
as:

φ
(1)
i (yi,x

(1)
i ; w1) = ws((1− yi)(1− si) + yisi)︸ ︷︷ ︸

saliency

+wb((1− yi)(1− bi) + yibi)︸ ︷︷ ︸
boundedness

+we((1− yi)edi + yi(1− edi))︸ ︷︷ ︸
edge density

(8)

3.3 Edge Cost
Edge cost enforces agreement between adjacent superpix-

els in an image. If two adjacent superpixels are similar in
appearance, they should have same label, otherwise the ob-

jective function is penalized. x
(2)
i is the feature that ac-

counts for the pairwise term of ith superpixel. Here it is



color in Lab space, denoted by ci. We express the pairwise
or smoothness term as:

φ
(2)
i,j (yi, yj ,x

(2)
i ,x

(2)
j ) = |yi − yj |e−(−kc||ci−cj ||2) (9)

Hence, similarity in Lab color space specifies the edge cost.
Here, kc dictates the sensitivity of color similarity and is
given a constant value in all our experiments.

3.4 Superpixel Label Prediction:
Inference Problem

Now that the random field is fully specified, we have two
tasks, inference and parameter learning.

3.4.1 Inference
The edge-cost defined by our model leads to a sub-modular

CRF and hence, we perform an exact inference using graph
cut. This makes our method time efficient. With more com-
plex edge-cost and approximate inference technique, the la-
bel prediction task becomes computationally inefficient. To
improve the results, we perform the graph cut iteratively
by exponentiating and normalizing the unary prior refined
by the predicted labels. That is, we take a feedback from
the first graph cut output and combine that with the unary
term and again perform graph cut to generate a better seg-
mentation. Experimentally, maximum of 8 iterations are
performed for all the images.

3.4.2 Parameter Learning
As per our formulation, the parameter vector w can be

considered as w = [w1 w2]T = [ws wb we λ]T . This
gives an energy function E which is linear in w and can
be written as wTφ, where φ = [φ(1)φ(2)]. This is important
because linearity in w ensures a convex learning problem
and thus can be solved efficiently. We take a simple max-
margin approach [34] for parameter learning. The benefit of
max-margin method is that, it takes into account how far a
predicted label is from its ground truth, and the margin is
adapted based on how much competing labelings differ from
ground truth. The formulation is given as follows:

min
w

1

2
||w||2 +

1

M

M∑
n=1

ξn

subject to, wTv = 1

wTφn −wT φ̂n ≤ L(yn, ŷn) + ξn

ξn ≥ 0

w2 > 0

(10)

where,
L(yn, ŷn) = False Positive + False Negative

True Positive + False Positive + False Negative

is the loss function. n ranges over the M training instances,
ξ is the slack variable, ŷ is the ground truth labeling and
wT φ̂ represents the ground truth energy. v is considered
as [1 1 1 0]T . The formulation is a structured learning ap-
proach. It is similar to the structured SVM approach [35]
and follows the margin re-scaled algorithm as given by [34].
The first constraint normalizes the unary term. The second
one gives a penalty to the objective function if the calculated
parameters do not lead to an energy close to ground truth
which ideally should have minimum energy. w2 > 0 ensures
the submodularity. Thus, minimizing this objective func-
tion leads to estimating the optimal parameters for which

Figure 4: Comparative study of the performance
of our proposed method using Precision-Recall and
F-measure, on PASCAL VOC 2012 segmentation
dataset [22]. The proposed method gives high pre-
cision even at high recall and outperforms all other
methods in terms of f-measure.

the energy for predicted labels is close to ground truth en-
ergy. To solve the optimization problem we start with an
initial guess of w and minimize for y, so that we can com-
pute L using the grountruth labels ŷ. Now given the loss
function, the objective function as well as all the constraints
are convex. We have used cvx toolbox [36] to solve the op-
timization problem.
After we perform inference, we obtain a binary map at su-
perpixel level. This superpixel map can be thought as a low
resolution image and we upsample it to full resolution pixel
accurate map [37, 19]. Now each pixel has a label ∈ [0, 1].
Pixel label values depict the probability value of that pixel
belonging to a salient object. The top right image in Fig-
ure 1 shows an example of our proposed upsampled map.
The upsampling algorithm is also a fast implementation [19]
and performs in linear time. We threshold this upsampled
salient object probability map to generate a salient object
segmentation mask. The threshold is taken as the median
of maximum and minimum probability values. This method
of producing the masks are used for all the experiments in
Section 4 and presented in Figure 3.

4. EXPERIMENTS AND RESULTS
We measure the performance of our approach along with

recent saliency detection methods as well as object pro-
posal methods on both object segmentation dataset and
saliency dataset. We evaluate using both F-measure and
intersection-over-union score. All the results presented are
generated using our optimal parameters, w learned from
eqn. (10).

4.1 PASCAL Segmentation Dataset
We use the segmentation part of the PASCAL VOC 2012

dataset [22]. It has a segmentation part which has 2,913
images with object specific segmentation ground truth. To
extract all the objects in an image we generate a binarized
ground truth map as the second image in the top row of
Figure 1 shows. We perform training on 1,464 images in the
training set and testing is done on 1,449 images from the
validation set.

Qualitative result on images from this dataset is presented
in Figure 3. VOC 2012 has images from 20 different classes,
Images from 12 different classes are shown in Figure 3 to il-
lustrate the performance. The figure shows that our method
performs better than the saliency methods, namely, SR [19],
MR [20], PARAM [21]. Examples in first five rows clearly



Figure 3: Visual results of our Salient object segmentation method and three different saliency methods, on
PASCAL VOC 2012 segmentation dataset [22], demonstrate the superiority of the proposed method. GT
denotes the binarized ground truth mask. Last three rows depict the failure cases of all the methods.



depict the superiority of the salient object segmentation by
the proposed method. All the methods fail to perform well
on the samples in the last three rows. In case of the sam-
ple in the last row, for example, the object is not salient
based on features used by saliency methods. In addition,
as the edge map only captures the thick rod of the bi-cycle
as strong edges, the boundedness and the edge-density cues
also fail.
Figure 1 shows an example with category independent ob-
ject proposal methods. The figure shows 3 top ranked masks
of CPMC [8] and Object Proposal (OP) [9] along with our
segmentation output. It is qualitatively visible that their
precision is very low even for top ranked masks and same
has been found in quantitative analysis in section 4.2.

4.2 F-measure and
Intersection-over-Union Score

F-measure is defined as [19, 26],

Fmeasure =
(1 + β).P recision.Recall

β.Precision+Recall

This score is widely used in all saliency detection meth-
ods and β is taken as 0.3 [19, 26]. Figure 4 shows the
precision-recall-fmeasure values on VOC 2012 segmentation
dataset [22], for different competing saliency methods. We
also compare with the category independent object proposal
methods, viz, CPMC [8] and OP [9] (top 10 masks are
taken). GB [16], SF [19], MR [20] and PARAM [21] are
among the competing saliency methods we compare with.
Clearly, in terms of F-measure our proposed method out-
performs all the other methods. In terms of precision and
recall also our method is comparable to very recent saliency
methods [20, 21]. CPMC and OP give high recall values as
they generate a number of maps, but are very low on pre-
cision. This implies that they propose a lot of non-object
parts of an image as object regions, even when top 10 maps
are considered (see Figures 1 and 4).

Intersection-over-Union (IoU) score is computed as,

IoU =
|Predicted Map ∩Ground Truth|
|Predicted Map ∪Ground Truth|

We compute the IoU score of CPMC, OP and our method
against the binarized ground truth on PASCAL segmenta-
tion dataset. Results are presented in Table 1 . We take the
top ranked 10 maps of the method CPMC and OP to com-
pute the IoU score considering all the objects. Table 1 shows
that the single map of our method produces 21% better ob-
ject segmentation maps in terms of IoU score, compared to
the object proposal methods. Visual results in Figure 1 also
illustrate the same.

4.3 Performance on Saliency Dataset
In order to show the efficiency of our proposed method,

we compare the performance with recent state-of-the-art
saliency techniques on a saliency dataset. For this purpose
we use MSRA-B dataset, a part of which was first used
by [26]. It has 5000 images with publicly available pixel
accurate binary ground truth masks. Figure 5 shows the
precision-recall-fmeasure plot on MSRA-B dataset for our
method along with recent saliency methods, viz, RC [18],
GB [16], HFT [28], SF [19], MR [20] and PARAM [21]. It il-
lustrates our result on MSRA-B with the parameters learned

Method Name IoU Score

CPMC 0.3319
OP (Object Proposal) 0.3266
Proposed 0.4097

Table 1: Intersection-over-Union score of top 10
object maps of category independent generic ob-
ject segmentation methods, viz., CPMC [8], OP [9]
and our proposed method of Salient object seg-
mentation, on the PASCAL 2012 segmentation
dataset.Our proposed method produces much bet-
ter segmentation results.

Figure 5: Precision, Recall, F-measure for proposed
method and six other saliency methods on MSRA-B
saliency dataset [26].

using PASCAL segmentation dataset. The results establish
the dataset bias in saliency datasets, as explained in section
1. Recent saliency method MR [20] has shown to perform
always with little higher precision. But it has very low recall
when tested on natural image dataset like PASCAL segmen-
tation dataset, i.e., it fails to extract many object regions
and thus not suitable for current task.

4.4 Computational Efficiency
Our proposed method of salient object segmentation is

deemed to work as a pixel-level pre-processing step for differ-
ent computer vision tasks and must be suitable for a live sys-
tem. Hence, computational efficiency is of real importance.
However, since related category independent object proposal
methods uses much complex procedure of generating a bag
of outputs from different seeds and ranking them, they are
less time efficient. We mainly have three components to be
computed for the prediction task, viz., saliency, edge map
and objectness cues. All of these happens in either order of
pixel or even less (order of superpixels). The saliency [21]
and edge map [25] extraction methods have described time
efficiency in their paper. [25] is completely suitable for a live
system. Also, [21] uses fast computations proposed by [19]
and does all the operations at superpixel level and thus, is
computationally efficient. Our computation of boundedness
and edge-density is in order of number of pixels, compared
to the objectness cues of [10] which are costly. Hence, our
method is time efficient (O(|superpixels|3) which is even less
than |pixels|2) and is suitable as a precomputing technique.



5. CONCLUSIONS
We attempt to solve the problem of category indepen-

dent salient object segmentation using a multi-criteria ob-
jective function. We propose a time efficient approach which
performs better than recent state-of-the-art methods. Mo-
tivated by saliency and category independent object seg-
mentation methods, we propose to predict a segmentation
which captures all the salient objects in an image. We de-
vise two objectness factors which are computed in linear time
and used with saliency as the priors. We demonstrate that
graph-based methods can be used efficiently both in terms of
inference and learning parameters. Proposed method can be
easily utilized as a pre-processing step for many high-level
computer vision tasks.
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