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ABSTRACT

KEYWORDS: Saliency; Generic Object Segmentation; Feature Rarity; Back-

ground Prior; Objectness.

Saliency is an important property of the human visual perception. Most often
the focus of interest of the human eye gets attracted to a region or salient object
appearing distinctly in the foreground of a scene. This ability to automatically
segment the objects of interest in an image is also useful for many computer vision
tasks such as, shape-based formulations, object recognition, indexing and retrieval,
image-retargeting, object tracking in videos and so on. This pre-processing step
helps to reduce the search space for many other (intermediate or high-level) pro-
cesses to follow, such as feature-extraction, matching, enhancement, compression

etc., there by reducing the computational time.

There are two primary approaches for such algorithms. First, there are meth-
ods that find any object of interest based on visual stimuli, without any prior
knowledge about its category. These are known as bottom-up methods. Second
class of methods (top-down) find category specific objects which are known and
learned a priori. The former methods attempts to find regions or objects in an im-
age that are prominent and vividly stand out from the rest of the image. This is a
subjective perceptual quality (equivalent to avoiding information overload) in the
human visual system (HVS) that has the ability to select regions with important
visual information from its bottom-up stimuli. This quality is known as visual
saliency and the objects which prominently stand out are considered salient. We

concentrate on bottom-up methods of finding salient objects in a scene.

We present two different approaches for bottom-up salient object segmentation
from images. The first one relies on basic perceptual cues alone. Whereas, the
second one uses generic objectness features along with saliency criteria to segment
salient objects from complex natural scenes. In both of these approaches, we first

segment the image into small homogeneous patches, known as superpixels. In

il



the first method, we utilize the low-level perceptual cues such as, rarity of fea-
ture, center-bias, boundary prior, and mathematically model them to generate a
probability map depicting saliency in an unsupervised framework. Rarity of fea-
ture is computed by exploiting graph-based spectral feature rarity and its spatial
compactness. Graph-based rarity is computed by obtaining the uniqueness of the
spectral features, using the Laplacian of the graph over superpixels. Spatial com-
pactness is obtained using distribution of similar colors over the image. Boundary
prior is obtained by statistically modeling (in color space) the set of superpixels
near to the boundary of an image. Our method produces a full resolution saliency

map, where each pixel is assigned a probability value of being salient.

The second formulation addresses the complex issues in many natural images,
where the object cannot be segmented using the low-level perceptual cues alone.
Natural images exhibit spatial interactions, as: (i) neighboring superpixels are
likely to belong to the same object unless delineated by prominent image edges,
(ii) spatially bounded superpixels together generally represent an object part.
These dependencies can be captured by a graphical model based approach which,
in general, helps in good spatial propagation of low-level saliency cues and different
prior information. Hence, to solve this problem of generic object segmentation,
we construct a conditional random field (CRF) over superpixels. Since, saliency
alone is not sufficient, we exploit saliency in conjunction with different objectness
criteria and appearance features, to formulate a multi-criteria energy function. In
our algorithm, the edge-cost produces a sub-modular CRF. Thus, we perform an
exact inference using graph cut. The CRF parameters are learnt by formulating a
max-margin optimization. As the energy cost is a linear function of its parameters,
we efficiently estimate the CRF parameters. Hence, both learning and inference

are done efficiently so as to perform well on complex situations in natural images.

The performance of both the proposed methods are shown using visual illus-
trations, while the Precision-Recall-Fmeasure and intersection-over-union metric
is used to quantitatively compare the same with recent state-of-the-art techniques

using challenging benchmark real-world datasets (e.g., PASCAL 2012, MSRA-B).
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CHAPTER 1

INTRODUCTION

“Vision is the process of discovering from images what is present in the world,

and where it is.” - David Marr

Modern day life has overwhelming amount visual data and information avail-
able and created every minute. This growth in image data has led to new chal-
lenges of processing them fast and extracting correct information, so as to facili-
tate different tasks from image search to image compression and transmission over
network. One specific problem of computer vision algorithms used for extracting
information from images, is to find objects of interest in an image. Human vi-
sual system has an immense capability to extract important information from a
scene. This ability enables humans to focus their limited perceptual and cognitive
resources on the most pertinent subset of the available visual data, facilitating
learning and survival in everyday life. This amazing ability is known as visual
saliency (Itti et al| (1998)). Hence for a computer vision system, it is important
to detect saliency so that the resources can be utilized properly to process im-
portant information. Applications range from object detection ro Content Based

Image Retrival (CBIR), face or human re-identification and video tracking.

1.1 Motivation: What is Saliency?

Saliency is the ability or quality of a region in an image to standout (or be promi-
nent) from the rest of the scene and grab our attention. Saliency can be either
stimulus driven or task specific. The former one is known as bottom-up saliency
while the later specifies top-down saliency and leads to visual search. Bottom-up
saliency can be interpreted as a filter which allows only important visual infor-

mation to grab the attention for further processing. In our work, we concentrate



Figure 1.1: The top row shows an example of saliency map generated from the
image (left) and the bottom row depicts an ideal segmentation of the
object in the image (left).

on bottom-up salient object detection. Saliency is a particularly useful concept
when considering bottom-up feature extraction, since one must find what is sig-
nificant in an image from the scene data alone. In such circumstances, the role
of context becomes extremely important. That is to say that saliency can be de-
scribed as a relative measure of importance. Hence, the bottom-up saliency can
be interpreted as its state or quality of standing out (relative to other stimuli) in
a scene. As a result, a salient stimulus will often pop-out to the observer, such as
a red dot in a field of green dots, an oblique bar among a set of vertical bars, a
flickering message indicator of an answering machine, or a fast moving object in a
scene with mostly static or slow moving objects. An important direct effect of the
saliency mechanism is that it helps the visual perceptual system to quickly filter
and organize useful visual information, necessary for object recognition and/or

scene understanding.

We propose two different methods for the task. First is based on low-level per-
ceptual features. Second combines the low-level saliency with generic object spe-

cific cues in a graphical model based approach. Both the methods are thoroughly

evaluated against state-of-the-art methods (Cheng et al| (2011)); [Perazzi et al.

(2012)); (Carreira and Sminchisescu| (2010)) on challenging benchmark datasets and




found to produce superior results.

1.2 Objective and Scope

The objective of the thesis is to device an efficient salient object detection method
that can facilitate as a pre-processing step for many of the previously mentioned
tasks. Further, the method must be unsupervised so that it can detect any generic
object. Moreover, it has to be computationally efficient to ensure fast processing,

considering the huge amount of available data.

As already discussed bottom-up saliency can be characterized by the ability to
pop-out in a scene. Consequently, most saliency detection methods in literature
(Achanta et al|(2009); Goferman et al.| (2010)); Cheng et al. (2011); [Perazzi et al.
(2012); [Li et al.| (2013); [Yang et al.|(2013); Jiang et al.| (2013))) propose a model
by exploiting rarity of features. But, as also mentioned by Wei et al.| (2012)); Zhu
et al.| (2014) only feature rarity based approach is not enough to extract salient
regions from natural images of varying scene conditions. We identify this short-
coming in the rarity of feature based approach and exploit boundary prior as a

cue to implement our first method of saliency detection.

Further, class independent object segmentation has recently gained importance
in the Computer Vision community (Carreira and Sminchisescu (2010); Endres and
Hoiem, (2010))). In this context, Alexe et al.| (2012) had addressed the problem
of detecting generic objects and defined objectness properties as likelihood of a
region belonging to an object. But it gives bounding boxes rather than pixel level
segmentation output. However their precision is very low, as a lot of background
regions are proposed as objects. Optimization is based on intersection-over-union
criteria (Endres and Hoiem| (2010)) to rank the maps, but the results show that
the top-most map generally contains almost half of the image. Hence, we propose
an algorithm to generate a single map segmenting only the objects of interest,
using saliency and objectness on a conditional random field (CRF). The focus of
this thesis is on one of the visual capabilities of human - finding objects of interest

in images.
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Figure 1.2: Different challenges in saliency detection, illustrated using samples
from saliency dataset, MSRA B (Achanta et al.(2009)).




1.3 Problem Definition and Challenges

The problem we address in the thesis can be defined in short, as:

Given a natural scene, detect one or more regions of interest (ROI) which contain
the salient objects in a scene. The method must be unsupervised with no training
sample for classes of objects available. Parameters of any optimization function
may be learned using a part of another dataset, or verification subset of the same.
Although the problem is similar to unsupervised foreground segmentation, it dif-
fers in the context of features which is mostly inspired by biological motivation.

Some examples of finding objects of interest are presented in Figure [1.1}

This is a challenging task, because objects of interest are detected without
any prior knowledge about them purely based on unsupervised stimulus driven
perceptual cues. Single features such as, color, brightness, depth alone are not
helpful to solve the problem. It suffers from all the challenges that any computer
vision problem faces and are illustrated in Figure Further, when finding
saliency for challenging datasets like PASCAL to facilitate later process of object
detection or recognition, segmenting the object of interest becomes even harder.
A through study of different method and samples from the dataset reveals the
following challenges, apart from the factors already depicted in Figure [1.2}

1. Only a small part of an object is present on the boundary of an image;
2. Objects with large holes, such as cycle wheel;

3. Repeated Distractors in background or foreground.

These are illustrated with respective samples in Figure [1.3]

1.3.1 Assumptions

1. The images are indoor or outdoor natural scenes, captured using optical
camera (not X-ray or infrared etc.).

2. Object of interest is not just visible in few pixels on the boundary of the
image.

3. Object of interest is generally not hidden behind a large distractor, for ex-
ample, the image in the third row of Figure (1.3

4. Not much of both color and texture overlap between object and scene back-
ground.



Figure 1.3: Different challenges in saliency detection illustrated with images (left)
and respective ground truths (right), from PASCAL dataset (Evering-
ham et al.| (2012)).



1.4 Contribution of the Thesis

The central contribution of the thesis is pixel accurate localization of the object
of interest. The saliency map provided by our proposed methods assign each pixel
a saliency value in the range of 0 to 1, depicting their probability of being salient.
Hence, it can be easily segmented by simple thresholding mechanism, to obtain the
important or salient object. In the work described here, saliency is defined firstly
in terms of spatial rarity of image feature, mainly color. Secondly, objectness
is used in a graphical model for salient object segmentation. This can change
the conventional way of extracting features from the whole image or searching
objects in huge 4-dimensional (position, scale and aspect ratio) sliding window
search space. It would help simulate the same logistics as human vision and
improve both speed and accuracy of the computer vision tasks. Moreover, since
we produce a probability value of each pixel being salient, the saliency map can
also be utilized for identifying most salient regions for different tasks, for example
placing an advertisement in a video. In the following sub-sections, we describe the

methods proposed in the thesis in brief.

1.4.1 Saliency Detection based on Low-level Perceptual

cues

In the first formulation, we formulate three saliency criteria, namely: (i) graph-
based spectral rarity, (ii) spatial compactness and (iii) background prior. Then, a
weighted combination of these three measures of saliency, produce a saliency map.
A saliency map is represented as a gray scale image, where each pixel is assigned

its probability of being salient.

The first two terms named above are based on rarity of feature and the third
term correspond to boundary prior. The idea of boundary prior is that the bound-
ary of an image mostly contains background image elements or superpixels and
background superpixels are spatially connected among themselves, but not with
foreground ones.

Graph-based spectral rarity assigns saliency based on rarity or uniqueness of

a superpixel. This measure utilizes the spectral features (as defined by Ng et al.
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Figure 1.4: Ilustration of the sequence of stages of our proposed algorithm
(PARAM) for saliency estimation, with an example from MSRA-B
Dataset (Achanta et al|(2009)).

(2001))) using Laplacian of the superpixel graph.

On the other hand, spatial compactness takes into account that a color belong-
ing to a salient object would be grouped at a spatial location and thus the spatial
variance of the color would be low. Whereas, background colors are generally
distributed over the whole image and score low on spatial compactness.

Our formulation models background prior using a Gaussian Mixture Model
(GMM). All the superpixels touching the boundary of an image are modeled by
GMM in Lab color space. Saliency of a superpixel is measured as the sum of the
distances from the GMM modes weighted by the particular mixture coefficient.
Since, most of the boundary superpixel would be background, big GMM modes
with high value of mixture coefficient belongs to background colors and thus the
mentioned distance gives a good measure of saliency.

A non-linear weighted combination of these three different cues are used to com-
pute the final saliency map. Also, binary segmentation maps are generated for
quantitative evaluation of performance using an adaptive threshold. An illustra-
tion of the complete flow chart of this proposed saliency detection method, which
is named as PARAM (background Prior And RArity for saliency Modeling), is
depicted in Figure

1.4.2 Salient Object Segmentation in Natural Images

Next we propose a Salient Object Segmentation method that captures the same
visual processing hierarchy as in the human visual system. Our goal is to localize

objects independent of its category by formulating an unsupervised algorithm.



Recent saliency detection methods show high performance in saliency datasets,
but they fail to perform well when tested using natural image datasets like PAS-
CAL (Everingham et al.| (2012))). There are two reasons behind this. First, these
methods use only low-level perceptual cues such as, center surround operations
(Itti et al|(1998)), local and global contrast (Goferman et al. (2010); Cheng et al.
(2011))), uniqueness and color distribution (Perazzi et al| (2012)) and boundary
prior (Yang et al. (2013); Wei et al| (2012))). Second, there is typically a huge
dataset bias which ensures the presence of only a single object at the center of an
image. Moreover, in saliency datasets the objects are in high contrast with respect
to the background. Hence, this class of methods do not scale up for more natural
images such as in the case of PASCAL segmentation dataset (Everingham et al.

(2012)).

Here, we exploit the saliency (PARAM) described in the previous section along
with objectness cues. We formulate two simple but effective objectness factors:
geometric constraint and distribution of edges in the image. These two features are
respectively modeled as boundedness and edge-density. To compute these factors
we exploit the edge map produced by Dollar and Zitnickl (2013). They take a struc-
tured learning based prediction on random forest to produce a high-quality edge
probability map. Since they do a direct inferencing, the method is computation-
ally efficient. Boundedness captures the extent to which a superpixel is bounded
by strong edges on all four directions. Whereas, edge-density computes how much
cluttered or smooth a particular superpixel is. As described by Alexe et al. (2012)),
very smooth or highly cluttered regions generally belong to the background.

Next, a graphical model based approach is used for proper spatial propagation
of these priors. The image cue priors form the unary term and we formulate a
submodular edge cost or pairwise term to specify the CRF (Lafferty et al.| (2001)).
Hence, an exact inference is done efficiently using graph-cut. We employ a mar-
gin rescaled algorithm, as explained by Szummer et al.| (2008), to learn the CRF
parameters. It is a max-margin structured learning based approach. The benefit
of the formulation is that, it takes into account how far a predicted label is from
its ground truth, and the margin is adapted based on how much competing la-
belings differ from ground truth. Results of the proposed method shows superior

performance on PASCAL segmentation dataset (Everingham et al.| (2012)) when
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compared against many recent methods.

In short, the contributions can be described as:

1. Two saliency detection algorithms, which significantly outperform (both
quantitatively and qualitatively) several existing algorithms, have been pro-
posed.

2. A unified criteria of saliency, combining boundary prior, rarity and object-
ness have been proposed.

3. A structured SVM based parameter learning of our graphical model (CRF)
based approach, using high-order loss function.

4. Exhaustive experimentation on two real world saliency and object segmen-
tation datasets have been performed to validate the performance of the pro-
posed methods.

5. Publicly available C++ code of the algorithms (Roy and Das| (2014)).

1.5 Thesis Overview

We address the problem of saliency detection. We propose two different meth-
ods to solve the problem robustly even in challenging natural scenes. Following

subsections briefly describes the chapters in the rest of the thesis.

1.5.1 Chapter 2: Literature Survey

In literature there has been many approaches taken by different authors starting
from spatial uniqueness to frequency domain analysis. Feature-rarity and bound-
ary prior has proved to be successful cues in saliency detection. Graphical model
based approaches show good propagation of low-level priors and results in better

performance.

1.5.2 Chapter 3: Saliency Using Low-Level Perceptual Cues

A suitable combination of novel measure of saliency detection is proposed using
rarity of features and background prior. Rarity of feature is captured by measuring

spectral feature based rarity and spatial compactness of color. background prior,
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on the other hand, is modeled using Gaussian mixture model (GMM) of boundary
image elements. these two cues have proved to be complementary and equally

important, competing state-of-the-art methods.

1.5.3 Chapter 4: Salient Object Segmentation In Natural

Images

Object level saliency in natural images is detected to produce a category inde-
pendent object segmentation. Saliency along with objectness cues are together
used on a graphical model to represent a conditional random field (CRF). Graph
cut based exact inference produces the segmentation, as the energy is modeled as
submodular. CRF parameters are learned using structured max-margin method.
This shows better performance than many saliency and category independent seg-

mentation algorithms.

1.5.4 Chapter 5: Conclusion

In this chapter, we present a summary of the work done and contributions. We

also discuss the possibilities for improvement and the directions for future work.
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CHAPTER 2

LITERATURE SURVEY

The term saliency was first proposed by Tsotsos et al| (1995 in the context
of visual attention. Since then researchers have shown a great interest towards
pre-attentive or bottom-up saliency detection. Early methods have mostly con-
centrated on human eye fixation prediction and they have introduced the basic
principles of saliency detection. Then, the important problem that has been ad-
dressed in literature is salient object detection and segmentation. Since, bottom
up saliency is stimulus driven and does not look for any particular object in the
scene, it can be used for unsupervised segmentation of all the prominent objects in
an image. This leads to a solution of the problem of generic object segmentation.
Additionally, literatures in saliency and object segmentation show that graphical
model based techniques give efficient modeling and promising result in this field.
Hence, we first discuss some relevant state-of-the-art bottom-up saliency detec-
tion techniques, followed by category independent or generic object segmentation

methods.

2.1 Bottom-up Saliency Models

Bottom up saliency models are mostly inspired by neurophysiology, which adapt
the concepts of feature integration theory (FIT) (Treisman and Gelade| (1980))
and visual attention (Koch and Ullman| (1987)). The very first model which is
proposed by [Itti et al. (1998), henceforth referred as IT in the following chap-
ters, uses three features, namely color, intensity and orientation, similar to the
simple cells in primary visual cortex. Center-surround differences over these fea-
ture channels generate feature maps that are then normalized across scales and
linearly combined to give the saliency. Most computational models are based on
either spatial or spectral processing. Spatial models use different local or global

features, like color, intensity, spatial distance, or a combination. Spectral models



use a spectral domain analysis of the image and inherently use global features.
Again, all different saliency methods have mainly two approaches- finding a fix-
ation map or generating a saliency map. Fixation maps (Itti et al| (1998)); Judd
et al.| (2007)) try to capture the human eye gaze behaviors and eye fixation points.
While they are suitable for many different tasks, e.g., finding fixation scan paths,
human gaze pattern analysis, advertise placement in a video, they are not applica-
ble to the problem of salient object segmentation in the field of Computer Vision
and Pattern Recognition. The other set of methods (Harel et al.| (2006); |Achanta
et al.| (2009); Goferman et al. (2010); Cheng et al.| (2011); Perazzi et al.| (2012);
Li et al| (2013); [Yang et al| (2013) ) produce saliency maps where each image
pixel is assigned a saliency strength or probability value. A crisp segmentation
can be obtained from these maps by simple thresholding. Since, these methods

are pertinent to the problem that we try to model, we mostly discuss about them.

2.1.1 Contrast: The Most Important Cue

Most of the models use contrast as an important cue. These approaches work well
for images which have a simple background and high contrast between background
and foreground image elements. Goferman et al|(2010) model context aware (CA)
saliency using both local low-level features and global considerations, as well as
visual organization rules and high level features. They have taken overlapping
patches at different scales and modeled saliency as distance in color, inversely
weighted by distance in position among the patches. The distance between any

two patches p; and p; is formulated as:

dcolor (pl p)
d i’ ‘ _ y 7] 21
(pi> pj) 1+ C-dposition(pi,pj) .

where ¢ is a constant. Then, saliency of ith pixel at scale r is proposed as,

K
1
S =1—eap{~% > d(),q)} (2.2)
k=1

Goferman et al|(2010) take the K most similar patches according to the distance
computation in equation (2.1)). Then, the final saliency map is given by averag-

ing the saliency value over scales. As a result of such pixel-wise distance based
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modeling, edges of the salient regions are highlighted more, rather than the entire

salient object.

Cheng et al.| (2011) have proposed a region-wise contrast (RC) based method
to compute saliency and use Grabcut algorithm (Rother et al.| (2004)) to give a
refined binary segmentation map based on their saliency. They define the saliency

(S(rg)) of kth region 7y as:

S(ri) = Z w(r;) Dy (1, 71) (2.3)

R
where D,(.,.) is the color distance between the two regions and w(r;) gives higher
weightage to bigger regions. The image regions are obtained by segmenting the
image using a graph based segmentation method (Felzenszwalb and Huttenlocher
(2004)). Being a global contrast based method, it works well for large-scale salient

regions.

Since, pixel-wise computation over images is computationally costly, most of
the recent methods downsample the image to superpizels (Achanta et al. (2010))).
Superpixel approaches break the image into homogeneous segments and each su-
perpixel can be used as an image element instead of a pixel. Perazzi et al.| (2012)
find uniqueness and distribution of color over superpixels as measures of saliency
and name the method as saliency filter (SF). They upsample (Dolson et al.| (2010))
the superpixel-level map to obtain a pixel accurate saliency map. It gives a good

precision for focused, large salient regions but fails for natural images.

The graph based visual saliency (GB) model proposed by [Harel et al. (2006
fails to give a smooth object boundary, but works quite well for multiple salient
regions of different sizes. In this method an activation map is generated by sub-
tracting feature vectors at different scales (features, similar to [Itti et al| (1998)
are extracted from scale-space pyramid) to give saliency masses. Then, they use a
random walker on graph based technique to find the salient regions. But, it gives
a blurred map with less precision. |Yang et al. (2013)) and |Jiang and Davis| (2013))
use contrast prior in an optimization framework. |Jiang and Davis (2013) formu-
late the problem as a facility location problem which they show to be submodular,

and thus efficiently solve it using a greedy approach to detect saliency.
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2.1.2 Center Prior

Center prior or center bias, implies that the center of an image always attracts
more attention (Tseng et al. (2009)) and regions at the center become more salient,
rather than that in the surroundings. Usually, center prior is realized as a Gaus-
sian map (Achanta et al|(2009)). It is either directly combined with other cues
as weights (Hou and Zhang| (2007)); Goferman et al| (2010)), or learning-based
methods e.g., as proposed by |Jiang et al.| (2013)) use it as a feature in their learn-
ing framework. |Goferman et al| (2010) use the center-bias factor as “immediate

context” and they redefine their saliency value S; of a pixel i to S; as:
Si = Si(1 = dyoei (7)) (2.4)

where, df..i(7) denotes the spatial Euclidean distance of pixel ¢ from the closet
focus of attention. The focus of attentions are found by thresholding the initial
saliency map (S; > 0.8). The uniqueness term in the method by Perazzi et al.
(2012)) also accounts for center-bias. [Jiang and Davis (2013) use center prior as one
of the high level priors in their optimization framework. They model the centre

prior (p;(x)) as distance (d) of a pixel (z) to the image center ¢, as:

pi(z) = @A) (2.5)

where, 0—12 is computed as expectation over all the pairwise distances.

Table note down the different important methods and their features and

criterion in the field of saliency detection.

2.1.3 Frequency Domain Analysis

Some methods model the problem of saliency detection using spectral features
and perform a frequency domain analysis. |Hou and Zhang| (2007) represent the
log spectrum and Gaussian smoothed inverse Fourier transformed spectral residual
(SR) component for saliency. They use only the phase information and thus works

better for small salient regions in an uncluttered background (Li et al.| (2013)).
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Published Acronym| Reference | Features Saliency Criteria | Dataset
Method used used
A Model | IT Itti et all| Color(RGB),| A neural net- | Own at-
of Saliency (1998) Intensity, work based mod- | tention
Based Orientation | els combines fea- | based
Visual  At- tures linearly at | natural
tention  for multi-scale image set
Rapid Scene
Analysis
Saliency SR Hou andl | Log spectra | Inverse Fourier | Own at-
Detection: Zhang of an image | Transform of | tention
A Spectral (2007) spectral residual | based
Residual of an image. | natural
Approach Spectral residual | image set
is given log spec-
tra - amplitude
spectra
Context CA Goferman | | Color (Lab) | local contrast in | MSRA-B
Aware et all | and spatial | color, visual or- | (1000
Saliency (2010) location ganization rule | Images)
Detection
Frequency FT Achanta Color (Lab) | Distance  from | MSRA-B
Tuned et al. | Contrast mean color af- | (1000
Saliency (2009) ter eliminating | Images)
high frequency
intensities
Graph GB Harel et all | same as IT, | Saliency is found | Human
Based  Vi- (2006) Itti et all| using the equi- | eye-
sual saliency (1998) librium distribu- | fixation
tion on a MRF | dataset
graph of a ran- | of 108
dom walker images
Global Con- | RC Cheng Color (Lab) | Region contrast | MSRA-B
trast based et all | and spatial | by sparse his- | (1000
Salient (2011) location togram compari- | images)
Region son
Detection
Saliency Fil- | SF Perazzi Color(Lab) | Uniqueness and | MSRA-B
ters et all | and spatial | spatial distribu- | (1000
(2012) location tion of image su- | images)

perpixels

Table 2.1: A summary of key features

literature.

in prominent saliency methods from the
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Achanta et al.|(2009) in their frequency tuned (FT) model, first omit the very
high frequency components as those correspond to background texture or noise
artifacts and then compute saliency as the distance from mean color in Lab color

space. The saliency value of a pixel at (x,y), is formulated as:

S(x,y) = HIM - Ith(Iay)H (2'6)

where I, is the mean feature vector (color) and I,p. correspond to the image
pixel vector at (z,y) after eliminating the high frequency components. Due to its

simplicity the approach is very fast.

A more advanced model (Li et al.| (2013)) uses hypercomplex Fourier transform
(HFT, F3[u,v] when written in polar form) over different features like [Itti et al.
(1998) and does a spectrum scale space analysis. They create a spectrum scale
space A = {Ax} by smoothing the amplitude spectrum A(u,v) with Gaussian
kernel of different scales. Given an amplitude spectrum Ay and the original phase
(P(u,v)) and Eigen-axis (x(u, v)) spectra, the saliency map at scale k is computed
as:

St = g * 1P {Ar(u, 0)e ™2 (2.7)

where ¢ is the Gaussian kernel at fixed scale k. Optimal scale is detected by
minimizing an entropy, with saliency as probability maps. It gives good results
for images with different sizes of salient regions with varying background, but fails

to give accurate results often when a single large object is present.

Hou et al.|(2012) prove that Inverse Discrete Cosine Transform (IDCT) of the
sign of DCT of the original image, concentrates the image energy at the location of
spatially sparse foreground. The saliency map for each color channel z* is formed

as:

S =g x Z (z" 0 7) (2.8)

where, Z denotes the image signature (IS) and defined by the authors as IDCT[sign(DCT(x))].
The operator (. 0.) denotes Hadamard product. Simple sum across the color
channel gives their final saliency map. This method holds good for only small and

sparse salient regions.
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2.1.4 Boundary Prior and Connectivity Prior

Another important cue that has come into prominence is boundary prior or some-
times termed as background prior. This concept again, comes from cognitive sci-
ence literature ), which shows human eye mostly focuses at the cen-
ter of an image and boundary regions are predominantly occupied by background

pixels. Again, the background pixels on the boundary are connected, which is

termed as connectivity prior. Methods by |Wei et al| (2012) and [Zhu et al| (2014)

exploit this concept thoroughly to formulate their saliency models. Wei et al.
define saliency of an image patch as the shortest-path distance to the im-
age boundary, observing that background regions can easily be connected to the
image boundary while foreground regions cannot. The Geodesic saliency of path
P is computed as:

n—1

saliency(P) = MINP,—pPp,,...P,=B Zweight(Pi, Pz‘+1)a s.t.P(B, Pi—l—l) S (2-9)
i=1
where, {P;} is the set of all image patches and B is a virtual background node.
& = {(P, P))|P; is adjacent to P;} U {(P;, B)|P; is on image boundary }. Hence,
geodesic saliency of patch P is the accumulated edge weight along the shortest path
to the background, B. These approaches work better for off-center objects but are
still fragile and can fail even when an object only slightly touches the boundary.

Moreover, they initially need some hand labeling (see Figure reproduced from

Figure 2.1: Examples from Wei et al|(2012) showing the paths of background (in
magenta) and foreground (in green) from the boundary in the top row.
Bottom row shows saliency maps retrieved by their algorithm.
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Wei et al| (2012)). Zhu et al| (2014) use the same concept in an optimization
framework. [Yang et al.| (2013) also use background prior, to rank image element or
superpixels taking background and foreground as query, considering the boundary
as background. |Jiang et al.| (2013) use contrast from boundary regions as a feature

in their regression based learning framework.

2.1.5 Graph-based Modeling

Due their good spatial propagation of saliency information, many authors use
graph based methods (Harel et al. (2006)); Yang et al. (2013))). They formulate it
as an optimization problem and solve either iteratively or derive a closed-form ex-
pression to generate the solution. In graph-based approaches, the image elements
(pixels or superpixels) are modeled as the nodes of the graph and the similarity
between image elements gives the edge weights. Thus, the image is mapped into
a graph G = (V, E), Vs are the node vertices and F is the set of edges with edge
weights W. |Gopalakrishnan et al.| (2010) and Alexe et al.| (2012) model the prob-
lem as quadratic energy models. Random walk models have been proposed for
saliency detection by Harel et al.| (2006 and |Gopalakrishnan et al.| (2010). [Yang
et al| (2013)) use a manifold ranking technique which was originally proposed by
Zhou et al.| (2004b)) to find the saliency.

Both random-walk based methods and manifold ranking method derives a closed-
form expression from a graph-based optimization. Their closed-from solutions are
derived from expressions similar to the Page Rank algorithm, P = D~1W  where,
P is the transition matrix, W = {w;;} is the edge weight matrix and D is a
diagonal matrix denoting the degree of each node as diagonal elements. Again,
they exploit the Laplacian of the graph, L = D — W to extract the saliency from
the energy models. The concept of using the Laplacian of the image graph was
taken from the spectral clustering method (Ng et al.| (2001)). We also exploit this

concept to define a rarity term in our perceptual cue based saliency method (see

section |3.2.2)).

In manifold ranking (MR) (Yang et al.| (2013)), authors rank each of the su-
perpixels, i.e., the nodes in the graph with respect to a given query node x € 0, 1.

The authors take an approach similar to semi-supervised learning using local and
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global consistency (Zhou et al|(2004a)) and attempt to learn the optimal ranking
function which best describes the relevance between unlabeled node and queries

by solving an optimization function:

2
Yi Y 2
E :wj< €. djj) NE (yi — 1) ( )

where g controls the balance between pairwise smoothness term (first term) and
the unary term (second term) and y; denotes the label of ith superpixel. The

closed-form solution is found as (Zhou et al.| (2004b))):
y* = (D—aW)ly (2.11)

where, @ = 1/(1 + p). Using this ranking and each of the four boundaries as the

queries, they formulate the saliency of each superpixels.

Random walk based methods find the equilibrium distribution of the network
or the graph to formulate saliency. Since, these graphs are strongly connected, the
chains or paths on the graph are ergodic and a unique equilibrium distribution
exists (Harel et al. (2006)). Equilibrium distribution reflects the fraction of time
a random walker would spend at a particular node, if he has to walk forever. This
will automatically assign high value to the nodes surrounded by dissimilar nodes,
i.e., the unique or rare nodes. |Gopalakrishnan et al.| (2010) find the equilibrium
distribution as:

y* = (1—-a)((I)—aP") s (2.12)

where, the vector s are the probabilities of random jump to the different nodes

and (1 — «) is the jump probability.

Most of the methods discussed above show result on MSRA-B saliency dataset
(Achanta et al| (2009)) and show promising results. But images in the saliency
datasets are generally highly biased, as pointed out by [Li et al| (2014). Here
the most significant bias is center bias which is an assumption of the saliency
algorithms. Again mostly images have focused large objects without much of

distractors. But while segmenting objects in natural images these assumptions
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may not hold true. Hence, this dataset design bias creates a detrimental effect on
benchmarking. Thus such saliency methods fail to perform well on the challenging
PASCAL segmentation dataset (Everingham et al.|(2012)). Hence, in addition to
saliency, generic object specific cues are also important for modeling salient object

segmentation algorithm.

2.2 Generic Object Segmentation Methods

Class independent object segmentation has recently gained importance in the
Computer Vision community (Carreira and Sminchisescul (2010)); Endres and Hoiem
(2010)). Early methods of object detection were sliding window based and gen-
erally produced a bounding box instead of a pixel-accurate map. Sliding window
methods perform search over a 4-dimensional search space of position, scale and
aspect ratio. This requires a exhaustive search which is computationally very
expensive. Hence, category independent object segmentation methods are useful

and necessary.

2.2.1 Objectness

Alexe et al.| (2012) first address the problem of detecting generic objects. The
authors sample and rank 100,000 windows per image according to their likelihood
of containing an object. This likelihood is called objectness. The objectness score
is based on multiple cues derived from saliency, edges, superpixels, color contrast.

These cues from Alexe et al.| (2012) are discussed in the following subsections.

Multi-Scale Saliency

The saliency method proposed by Hou and Zhang] (2007) is extended to multiscale
and is processed for each of the color channels independently. The multiscale

saliency map (MS(w,0%,5)), for a window w at a scale s, is defined as:

MS.bis) = Y Iiys) x 2 EsPIZ0F ) 4y

w
{pGWIIfQS(p)EGS} ’ |
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Figure 2.2: Figure shows different candidate bounding boxes from |Alexe et al.

2012).

where, I3,4(p) is the saliency for every pixel p and 64,4 are the scale-specific

thresholds. This gives the uniqueness of a particular window.

Edge Density

The edge density (ED) factor captures the density of an edge near the window
border. So, it gives a measure that the bounding box is in accordance with

the image edges or object boundaries. Density of edgels inside a window w (

Inn(w,0pp) = % ) is computed as:

Zpelnn(w,GED) IED(Z’)
Len(Inn(w,0gp))

where Igp(p) € {0,1} is the binary edge map, fgp is a parameter and Len(.)

determines the perimeters of the edgels.

Superpixel Straddling

Since, superpixels preserves the object boundaries, a 'good’ window should not

straddle a superpixel. This idea is presented as superpixel straddling (SS) and
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measured as:

man(|s wl, |s Nwl)

SS(w,Hss):l— Z

565(953)

(2.15)
|w
where the set of superpixels, S(fsg), is found using the segmentation method
proposed by |[Felzenszwalb and Huttenlocher| (2004) at segmentation scale fgg.
This cue computes the degree of straddling as minimum of the area of a superpixel

inside and outside a particular window w.

Color Contrast

The color contrast (CC) term finds how much a window w is distinct from a
window surrounding it (Surr(w,fcc)) and is given as the Chi-square distance

between their histograms in Lab color space, as:
CC(w,0cc) = X*(h(w), h(Surr(w, Occ))) (2.16)

Hence, color contrast actually takes into account that the object window should

be sufficiently distinct from the sounding background.

Alexe et al.|(2012) learn the parameters ¢ using an MLE (Maximum Likelihood
Estimation) approach. Finally the objectness score of a window w is given, using

Naive Bayes, as:

P(0b]) [Teueea Plcue]obs)

p(objl|A) =
( ‘ ) zCG{obj,bg} p(c) cheEAp(cue|c)

(2.17)

where, C = {MS,ED,SS,CC}, the 4 cues and A C C. The proposals tend to fit
objects fairly loosely, but the first few hundred are of high quality (see an example
in Figure [2.2] reproduced from the publication). The algorithm is fast but gives

bounding boxes rather than pixel level segmentation output.

Chang et al. (2011) and |Jia and Han| (2013)) use these objectness cues to obtain
object-level saliency. |Chang et al.| (2011) propose that objectness and saliency

values should be similar for a superpixel that belongs to a salient object. They
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minimize an energy function, defined as:
E(x%,x°%) = Ey(x%) + E,(x°) + A(x*,x°%) (2.18)

where F, and F, are the energy associated with saliency and objectness respec-
tively and the third term brings the saliency and objectness value close. Whereas,
Jia and Han| (2013) use objectness as feature of each pixel to find the affinity

matrix in a graph based approach and propose their final saliency map, as:

1
§ = (diag(G1) — G)" [s 1 —s] (2.19)

0
where, 1 is an N length vector of all ones, elements of matrix G are computed
using the weights between pixels ¢ and j, and s is the saliency prior vector of length
N, the total number of pixels. These two approaches delineate that saliency in

conjunction with objectness can be substantially used for detecting object level

saliency.

2.2.2 Object Segmentation Proposal

Methods in this class typically give a set of candidate binary maps or masks
where each map gives a region in the image, so that each object in the image is
represented by at least one of these maps. Both CPMC (Carreira and Sminchisescu
(2010)) and Object Proposal (Endres and Hoiem| (2010))) start with many seeds
to predict a bag of masks as object proposals. Then, they rank order these maps

based on precision of representing an object.

Carreira and Sminchisescul (2010) do a constrained parametric graph-cut to
minimize the energy over the pixel labels {z1,..., 2}, ; € {0,1}. The energy

function is defined as:

ENX) =) D)+ Y Vielww ) (2.20)

u€ey (u,v)e€

where, A € R is a parameter of the unary term, ) are the vertices and &£ are

the edges in the grid like graph based model. The unary term (D) estimates the
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log-likelihood probability of a pixel u belonging to background or foreground using
RGB color distribution. Whereas, the smoothness term (V) penalizes assignment
of different labels to neighboring pixels u and v, based on the criteria that there
is no gPb contour (globalPb as defined by Arbelaez et al.| (2011)) between them.
They minimize equation for 30 a-priori defined different values of A and split
the foreground in different maps by a connected component analysis. This gives
a large number of diverse maps. After rejecting very small and comparatively
high energy segments, they rank the segments using a regressing based technique.
For the purpose of ranking, 34 features are used exploiting graph partition prop-
erties, region properties (e.g, eccentricity, convexity, Euler number) and Gestalt

properties to produce high quality candidate object segments.

Endres and Hoiem| (2010)) also produce a set of candidate object segments using
different seed and graph-cut based energy minimization approach. But, they use
different stronger criteria for computing their unary term as affinity for belonging
to the same object as the seed chosen. The different features used for computing
affinity include, cohesion (color and texture histogram intersection), boundary
cues and layout agreement. Then to have a diverse ranking so that high quality
segments of different objects are ranked higher, they take a max-margin based
structured learning approach (Tsochantaridis et al.| (2005)) on CRF. Since, these
methods give as many as few hundred maps, they give a very good recall. However
their precision is very low, as a lot of background regions are proposed as objects.
The algorithms requires long computation time, as they rely on the gPb (Arbelaez
et al|(2011)) edge detector. Although they (Endres and Hoiem| (2010)) optimize
based on intersection-over-union criteria to rank the maps, the results show that

the top-most map generally contains almost half of the image (illustrated later in

Chapter [ Figure [4.1).

2.3 Summary
To conclude, saliency has been a prime research area for a long time. The fun-

damental ideas of saliency detection are inspired from cognitive science literature,

that is, human visual system and perception. The area of work started with eye
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fixation generation and fixation maps. Although, eye fixation is a elementary
part of visual system, nowadays more interest has grown towards object oriented
saliency map generation. This is due to its usability in many Computer Vision
applications. Traditional methods use contrast, rarity and background prior for

estimating saliency (Borji and Itti (2013))).

On the other hand, generic object segmentation methods have achieved popu-
larity in recent literature. Objectness cues are exploited to achieve generic object
detection or segmentation. These methods generate much less number of object
proposals compared to the 4-dimensional search space of sliding window based
methods. Hence, sliding window based bounding box approaches of object de-
tection are getting replaced by object segmentation proposals. Further, saliency
being a strong pre-attentive perceptual cue, objectness along with saliency can
give promising object segmentation outputs. This has been the main motivation
and focus of our work, in designing the proposed saliency methods proposed in

this thesis.
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CHAPTER 3

SALIENCY USING LOW-LEVEL
PERCEPTUAL CUES

In recent literature, bottom-up visual saliency methods have become very popular
and relevant to deal with a lot of computer vision tasks like object detection,
object recognition, content based image retrieval, scene understating etc. Bottom-
up saliency can be thought as a filter which extracts selected spatial locations of
interest, which generally stands out from other locations. It reduces the search
space of the problem and helps in extracting correct features for these tasks. It
is a perceptual quality of the human visual system, by which humans attend to a
subset of the pool of available visual information. Saliency of an image is given
by a saliency map where we assign a normalized value to an image component or
superpixel, denoting its probability of being salient. A salient region in an image is
sufficiently distinct from its neighborhood in terms of visual attributes or features,
and grabs attention. In this chapter, we concentrate on unsupervised bottom-up

saliency detection technique when free-viewing a scene.

In this chapter, we propose a novel unsupervised formulation of saliency mea-
sure using appropriate low-level features for discriminating the salient regions from
the background. Features are based on color and spatial distance among super-
pixels. First, a graph based (spectral clustering) rarity approach uses eigenvectors
of the Laplacian of the affinity graph. Second, the spatial compactness term is
a modified version of the distribution term of Perazzi et al. (2012). The third
component is color divergence with respect to the superpixels at the border of an
image. Wei et al.| (2012) uses this concept in a semi-supervised algorithm which
requires manual intervention. We statistically model the boundary patches using
a Gaussian Mixture Model (GMM), and find the distance of all the patches from
the modeled background colors in Lab color space. Integration of these priors

gives the saliency map.



3.1 Motivation

Most work in the past have defined saliency by, either using spatial features
like color, orientation, spatial distances between image patches (Itti et al.| (1998),
Goferman et al. (2010)), Cheng et al.| (2011)), Perazzi et al.[(2012)), or using spectral
features like amplitude, phase spectrum (Hou and Zhang| (2007), Achanta et al.
(2009), |Li et al| (2013)) and image energy in the spectral domain Hou et al.
(2012) or graph based method (Harel et al| (2006)). Most of them have defined
saliency as rarity of occurrence (or as a surprise) with respect to different local and
global features. Color difference in CIELab space is the most distinctive feature
used across most of the models. Our spectral clustering based rarity and spatial
compactness measures of saliency exploit rarity of feature to extract salient regions

in an image.

Spectral clustering (Ng et al. (2001)) is used in many different applications
like, page ranking (Zhou et al.|(20040))), contour detection (Arbelaez et al.| (2011)),
normalized cut (Shi and Malik| (2000)) approaches. A recent paper (Yang et al.
(2013))) uses the ranking algorithm (Zhou et al.| (2004b))) to find salient regions
in images. We do not use any ranking technique (Zhou et al.| (20040)), nor we
cluster the descriptors obtained from the eigenvectors of the graph Laplacian (Shi
and Malik (2000)). Instead, we find the rarity using these descriptors itself, since

eigenvectors themselves carry information about the superpixels.

Along with the above measures, we exploit the concept of background prior
which is similar to the concepts of boundary prior and connectivity prior (Wei et al.
(2012)). In our work, background refers to the non-salient spatial locations in the
image. The main idea is that, the distance between background patches will be less
and that between background and a salient patch will be more. Recent, cognitive
science literature (Tatler| (2007)) gives the evidence of boundary prior and shows
human fixation happens mostly at the center. This motivates our second compo-
nent of saliency detection, where we statistically model the boundary patches of an
image and use them as background prior in a complete unsupervised formulation
to detect saliency. We call our proposed method based on Graph-based Rarity,
Spatial Compactness and Background Prior, as PARAM (background Prior And
RArity for saliency Modeling).

28



3.2 Intuitive Understanding of the Method

A brief overview of the concepts that we exploit to propose the saliency detection
method, based on low-level perceptual cues are illustrated below. In our approach,
we use Lab color space due to its similarity with human perception (Tomasi and

Manduchi| (1998))).

3.2.1 Abstract the image into Superpixels

We first break our image into superpixels using SLIC superpixel (Achanta et al.
(2010)) method which makes our method computationally fast. All computations
are hence performed on superpixels which are much lesser in number than the
set of pixels. Each superpixel is represented by a 5-D vector {labxy}. Thus each

patch has its specific color and position.

3.2.2 Graph-based Spectral Rarity

We use the eigenvectors of the normalized Laplacian matrix of the affinity graph
with superpixels as nodes. As given in|Arbelaez et al.| (2011)), spectral graph theory
(Ng et al| (2001)) and in particular the Normalized Cuts (Shi and Malik (2000))
criterion provides a way of integrating global image information into the process
of grouping similar pixels. Given an affinity matrix W whose entries encode the
similarity between pixels, one defines a diagonal matrix, as Dy = > i Wi;; and
solves for the generalized eigenvectors of the linear system: (D — W)v = A.Duv,
that is, we find the Eigen vectors of the Laplacian matrix. If we look closely,
the laplacian matrix provides a measure of the fraction of time a free random
walker would spend at each node and what are the most preferable nodes to
go from a particular node, considering the edge weights as cost of moving from
one node to the other. Hence, as also mentioned by [Arbelaez et al. (2011), this
carries information about the edges in the image. If a random walker has low
probability to move from a particular node to another, there is an edge in the image
between the two superpixels. The descriptor extracted from the eigenvectors of

the normalized Laplacian matrix, when using superpixels as nodes, would capture
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the corresponding coarse texture information. Hence, local and global rarity based
on these descriptor would give a measure of saliency which takes rarity of textures

into account.

3.2.3 Spatial Compactness

We exploit the fact that a salient object would be spatially compact and the back-
ground colors will be distributed over the whole image (Goferman et al| (2010);
Hou and Zhang| (2007)). As, human eye can fixate at only one position and vi-
sion is centre surround, spatial compactness is an important characteristics of an
object to become salient. So, the color belonging to the salient object will be
spatially clustered together. Whereas, colors belonging to background will have
high spatial variance. Hence, we use spatial variance of color or color compactness
as a measure of saliency detection. The less the spatial variance more compact

the object is and thus more salient.

3.2.4 Background Prior

Although rarity of feature is a strong cue for saliency, it is alone not sufficient as
some previous methods in literature (Perazzi et al.| (2012)); Cheng et al.| (2011) )
which rely only on rarity of feature show. We exploit the concept of boundary prior
(Wei et al. (2012))), which comes from the natural fact that boundary of an image
would be mostly occupied by background (Tatler| (2007)). Moreover, background
will be mostly spatially distributed but homogeneous (in parts, say, the sky above
and the grass below, for a natural scene) which results in compact clusters in color
(feature) space. Hence, the distance between the background superpixels will be
less, but that between background and foreground (salient) superpixels will be
high, in 3-D Lab color space. However, occasionally a part of the salient object
may exist at the boundary. Hence, it is not justified to consider all the boundary
patches as background. To solve this, we statistically model the boundary prior
using a GMM. Here, Gaussian modes with large number of pixels, having a large
value of mixture coefficient, will generally model the background colors. Whereas,

some Gaussian modes which model the few salient object patches, present at the
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image boundary, will naturally have low mixture coefficients. Hence, we exploit
Mahalonobis distance in color space, between the image patches and these modes,
weighted by the corresponding mixture coefficients, to formulate the background

prior.

3.2.5 Pixel Accurate Saliency

Finally, we combine the saliency measures yielding a granulated saliency map at
superpixel level. To get a pixel accurate saliency map we use the up-sampling

technique proposed by (Dolson et al.| (2010); Perazzi et al.|(2012)).

Results of individual components are illustrated in the Figure |3.1] which shows
that it finally produces a desired saliency map. Experimental results and perfor-
mance analysis discussed in Sec. will reveal the superiority of this model

than many recent state-of-the-art methods.

3.3 Algorithm for Saliency Map Estimation

We formulate two new measures of saliency detection, using graph-based rarity,
spatial compactness of color and statistical model of boundary colors. The overall

process of saliency computation is described in the following subsections:

3.3.1 Pre-processing

We first represent the image using superpixels by exploiting the concept of SLIC
superpixel segmentation (Achanta et al. (2010)) in five-dimensional {labxy} space.
We fix the target number of clusters to be 400, for all the experiments, to the SLIC
superpixel algorithm (see appendix which yields N superpixels, {sp;}Y ;.
The benefit of SLIC segmentation is that, it produces compact homogeneous color
patches as clusters. This helps the next stages of our algorithm. Each superpixel,
sp; has color in CIELab space ¢; and position p;. In the following subsection, we

describe the analytical measures for saliency computation.
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Figure 3.1: (a) Image from MSRA B dataset (Achanta et al.| (2009)); (b) Super-

pixel abstraction of image in (a); Saliency detected by: (c¢) Graph-
based rarity, (d) Spatial compactness, (e) Background prior; and fi-
nally the (f) proposed Saliency Map.

3.3.2 Saliency Computation

Our measure of saliency has broadly two components for salient object detec-
tion. The first one is a feature rarity based approach and is given by graph-based
spectral rarity and spatial compactness of the salient object. Whereas, the sec-

ond component of saliency detection utilizes the concept of boundary prior and

connectivity prior (Wei et al| (2012)).

Graph-based Spectral Rarity

Given an image, we define a graph G = (V, E) whose nodes are the superpixels
and edges E are the 8-neighbors of a superpixel. The edges are weighted by an
affinity matrix W = [w;;|nyxn. Let, D = diag{ds1, ...,dnyn}, be a diagonal matrix,
where d;; = > ;jwij. The normalized Laplacian of the graph G, is given by, L
=] —D WD 2. Let, {uy,...,ux} are the eigenvectors corresponding to largest
k eigenvalues of L. We form the matrix Xy«; by stacking the eigenvectors in
columns. Now we take normalized row vectors of Xy, as the descriptor for each

superpixel. Let, the k-dimensional descriptors be {x1, ..., x5} and spatial position
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of superpixel sp; be p;. We find rarity of sp;, using the following formulation:

N
ri= )l —ailP exp (—killp; — il *) (3.1)
j=1
where, ||.|| implies Euclidean distance. k, controls the spatial extend of rarity.

If k. is infinite, it becomes a global rarity measure. k, is set to 8.0 in all the
experiments (as specified in [Perazzi et al|(2012)). The affinity matrix W is defined
as, wy; = exp (—||¢; — ¢;||?), 4,7 € V, where ¢; is the color feature of sp; in CIELab
space. Figure (b) shows an example of the saliency map generated using only

r; as saliency probability of superpixel sp;.

Spatial Compactness

To compute the spatial compactness, let us first define spatial variance of color
(v;) of a superpixel sp;, with color in CIELab space ¢; and position p; as, how much
similar colored patches are distributed over the image. A salient color is expected
to be spatially compact and thus will be close to the spatial mean position of the

particular color (Perazzi et al.|(2012)). Thus, v; is computed as,

N
vi= by — llP. exp (<kelle; — il ) (3.2)
j=1

where, u;, the weighted mean position of color ¢;, denotes the mean position of a
particular color, ¢;, weighted by the difference in color with other similar colored

patches, as:
D1ps-exp (—kelle; — il )

Hi =
Y exp (—kelle; — cil[?)

(3.3)

k. controls the sensitivity of color similarity, while computing their spatial mean

L
202

position. k. is set to (as in Perazzi et al.| (2012))), in all the experiments. High
value of k. implies that, only when the colors of the patches are very similar, it
would contribute to the computation of y for that particular color.

If the spatial variance of color for superpixel sp; is less, it corresponds to a salient
region, and not the background, as background colors are generally dispersed over
the entire image. Thus, for a salient superpixel sp;, its mean (y;) will be spatially

near to p; and also to all other p;s (j # i) belonging to similar (i.e., Vj|¢; >~ ¢;)
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colored patches in 2-D spatial space. Also, only those patches for which ¢; ~ ¢,
contribute significantly to the summation terms of v;. So, for a salient superpixel
sp;, v; will be small as p;s are close to p; making ||p; — ;|| small, Vj|c; ~ .
Hence, lower the value of v;, more salient is the superpixel sp;.

Hence, our first component of saliency for superpixel sp;, using feature rarity is
given as:

F; = exp (—k.v;).1; (3.4)

Figure (c) shows the saliency map generated using only spatial compact-
ness measure (exp (—k.v;) for i superpixel). Large value of F; indicates greater
saliency. k is the scale of the exponent and set to 3 in all the experiments, as done

in Perazzi et al.| (2012).

Background Prior

The feature rarity based criteria specified above is not enough to find salient object
in various types of images, specially with objects near boundary. We assume that
boundary superpixels are less likely to be salient and recent studies in cognitive sci-
ence (Tatler, 2007)) reveals the same. We model the boundary superpixels using a
Gaussian Mixture Model (GMM) in CIELab-color space and find the Mahalanobis
distance (Dj) of all the superpixels from the means of the Gaussians. The dis-
tance of a superpixel from the boundary superpixel modes in Lab-color space is
proportional to its saliency. Whereas, background superpixels are mostly homo-
geneous and thus the distances of background patches from these GMM means
will be lesser. Again, boundary is mostly occupied by non-salient background su-
perpixels. So, the GMM modes with large value of mixture coeflicient (;) refer
to a non-salient color.

Following above, the second component of saliency measure of superpixel sp;, using

background prior is formulated as,
K

j=1

where, Dy(x,y) denotes the Mahalanobis distance between x and y, ¢; is the

color of i" superpixel, g, is the mean of jth Gaussian mode, 7; is the weight or
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mixture coefficient of the j* Gaussian and K is the number of GMM components
used to model the distribution of the boundary superpixels in CIELab space. We
dynamically compute the optimal value of K maximizing the cluster compactness
of the boundary patches. Cluster compactness can be defined as >, > (2 — ).
It denotes how compact (in corresponding feature space) all the clusters are for any
particular clustering obtained. It is a goodness measure of the clustering. To find
the optimal K (number of GMM components), we iterate over number of clusters
starting from 1 to 4, considering all four boundaries, and find cluster compactness
using k-means clustering. K is taken as the number of cluster for which the cluster
compactness is best. Figure (d) shows the saliency map generated using only

background prior, B; as saliency probability of i superpixel sp;.

3.3.3 Saliency by Up-Sampling to Image Resolution

Saliency of each pixel is obtained as a weighted linear combination of saliency of its
surrounding image elements, sp;s, using the idea proposed by Dolson et al.| (2010).
In our work, S;, the saliency value of sp;, is sum of F; and B; (S; = F; + B;) and
we use the same formulation as used by [Perazzi et al.| (2012)) (also see appendix

for details). The saliency of ith pixel is computed as,
N
=1

where, wy; = z-exp(—5(alle; — ¢ll) + (Bllpi — pyll))
Z; is the normalizing factor, so that Zfil w; = 1. « and 8 are the parameters

which controls the sensitivity of up-sampling to color and position respectively.

The whole procedure is illustrated with an example in Figure The figure
also shows that our two components of saliency measures are complementary to
each other and the combined measure produces an improved saliency map than
the individual components themselves. Figure shows the contributions of the
individual saliency priors, demonstrated using Precision-Recall (defined in section
curves. It illustrates the performances by excluding r; from equation
(termed as 'without Rarity’ in figure), and only exploiting equation (3.4)) without
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PARAM
Segmented Image Two measures Up-sampled
(Superpixel) combined Saliency Map

Background Prior

Figure 3.2: Illustration of the different stages of our proposed algorithm for
saliency estimation with an example from MSRA-B Dataset (section
3.4.1)).

Performance of Different Saliency Priors (MSRA B) Performance of Different Saliency Priors (SED 1 Object) Performance of Different Saliency Priors (SED 2 objects)
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Figure 3.3: Performance curves illustrating the importance of the different com-
ponents of our proposed method (PARAM) for saliency computation
(eqn. (3.6), using Precision vs Recall metric on: (a) MSRA-B; (b)
SED1 and (c) SED2 datasets.

the background prior (equation (3.5))) measure (termed as 'without Background
Prior’ in the figure). It also shows the performance of the combined final saliency
map (PARAM), on different datasets (for details of experimentations, see Sec-
tion . The figure illustrates that excluding either the rarity prior or the
background prior measure deteriorates the performance of the method, and thus

quantitatively establishes the importance of these measures.

3.4 Results and Experimentation
The method proposed in this chapter is evaluated on popular saliency and object

segmentation datasets. The performance of the method is measured using preci-

sion, recall and f-measure metrics which are described in the following subsections.
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Figure 3.4: Visual comparison of the results of nine state-of-the-art methods along
with our proposed method (PARAM) of saliency estimation, on eleven
different samples of MSRA-B dataset. PARAM consistently performs
better for different types of images including indoor, outdoor natural
scenes, when compared with the ground truth (GT) given in the last
column.



3.4.1 Datasets

We evaluate the performance of our proposed method (PARAM) using the follow-

ing two benchmark datasets.

MSRA-B

MSRA-H] has 5000 images with their ground truth masks as given in the work
by Achanta et al.| (2009) and |Jiang et al. (2013)). Images are of numerous kind
including indoor, outdoor natural scenes, humans, animals with different types of

contrast and color variance. This makes the dataset diverse and challenging.

SED

Segmentation Evaluation Dataset (SED)P| has two parts, SED1 and SED2. SED1
has 100 images with a single salient object. SED2 images has 100 images with 2
salient objects of different size and color. Ground truth masks for all the images

are publicly available.

3.4.2 Experimental Results and Performance Analysis

We compare the performance of our proposed method, PARAM, with 9 state-of-
the-art methods. Here, I'T denotes |Itti et al. (1998)), SR is Hou and Zhang (2007),
CA is (Goferman et al| (2010), FT is Achanta et al.| (2009), RC is Cheng et al.
(2011), IS is Hou et al. (2012)), GB is Harel et al|(2006), HFT is |Li et al. (2013)
and SF denotes [Perazzi et al.| (2012)). We use this set of acronyms for the rest of

the thesis to refer to these prior published works.

Figures|3.4|- |3.7|show results of these 9 different state-of-the-art saliency detection
methods along with our proposed saliency method, PARAM. Figure gives a
visual illustration of PARAM and the 9 other methods. Saliency map provided by
PARAM is closest to the ground truth (denoted by GT) and highlights the overall

'http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/
salient_object.htm
“http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/dl.html
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salient object uniformly, giving better results than the existing state-of-the-art

methods.

Quantitative Performance Evaluation

We quantitatively evaluate the performance of our method (PARAM) using pre-

cision, recall rate similar to the |Achanta et al. (2009)), |Cheng et al.| (2011)), Houl
and Zhang| (2007)).

Precision measures what part of the predicted output is correct and is given

by the formula,
SNG|  tp

S| to+fp
where, S is the predicted output and G is the ground truth map. Both S and G

Precision =

(3.7)

have 1’s as the salient pixels and 0’s as background. tp and fp are true positive

Precision-Recall Curve (MSRA B)
1
--SR--FT--CA-~RC IT--GB--IS—HFT —SF—PARAM

TSI

i, SO

i
0 0.2 04

Recall
(a)
Precision-Recall Curve (SED 1 Object) Precision-Recall Curve (SED 2 objects)
1 1
——SR--FT--CA-~RC IT-~GB—IS—HFT —SF—PARAM -—-SR-—-FT--CA--RC IT--GB—IS—HFT —SF—PARAM
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Precision
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Figure 3.5: Performance analysis of 9 different state-of-the-art methods along with
our proposed method (PARAM) using Precision vs Recall metric on:
(a) MSRA-B; (b) SED1 and (c¢) SED2 datasets. It shows that PARAM
out-performs all the methods on MSRA-B and SED1 datasets, and is
the second best for SED2 dataset. This figure is best viewed in color.
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Figure 3.6: Visual comparison of the Adaptive Cut binary maps of the nine state-
of-the-art methods and our proposed method (PARAM), on two sam-
ples of MSRA-B dataset, with the ground truth as given in the last
column.

and false positive respectively.

Recall measures what part of the correct output has been predicted and is

given by the formula,

_snaGl o tp

Recall =
G " tp+fn

(3.8)

where fn is false negative. In order to generate the precision-recall curve we
threshold the saliency map by {0, ...,255} values and compute the precision and
recall similar to|Achanta et al.| (2009). We have compared our method with all the
above mentioned 9 state-of-the-art methods. We do not compare with |Jiang et al.
(2013)), as being a training based method, it has output for only their test set which
contains 2000 images from MSRA-B. Our method, PARAM, clearly out-performs
all the methods on MSRA-B (Figure|3.5| (a)) and SED1 (Figure|3.5( (b)) datasets.
Only for the SED2 (Figure 3.5|(c)) dataset, PARAM is not a clear winner. This is
mainly due to the occasional presence of two objects only on the boundary. Such

a scenario is not biologically plausible to become salient for human vision either.

We take the adaptive threshold (1,) as twice of average saliency (Su,,) and
create a binary map, which is proposed as Adaptive Cut in |Achanta et al.|(2009).

Method | IT | FT | GB CA RC | IS | HFT | SF | PARAM
Time (s) | 0.41 | 0.13 | 1.63 | 128.05 | 0.21 | 2.20 | 0.76 | 0.23 0.23

Table 3.1: Average runtime (in seconds per image) of different competing methods
of estimating saliency.
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Savg 1s obtained as:
_1H-—

[z

LW
W S(z,y) (3.9)

=0 y

Savg =

Il
=)

where, S is the full resolution saliency map of width W and height H.

Figure[3.6|shows the binary maps or adaptive cuts, on 2 images from MSRA-B
dataset, which are generated using adaptive threshold, from the saliency maps
obtained from the 9 different state-of-the-art and our proposed method, PARAM.
From these binary maps we calculate specific values of precision, recall and the

f-measure as in |Achanta et al.|(2009), for the 9 methods along with PARAM.

Given Precision and Recall, F-measure is computed as:

Precision x Recall
B2 Precision + Recall

Fy=(1+ 4% (3.10)

We use % = 0.3 as also used by Achanta et al.| (2009) and [Perazzi et al.| (2012).

Precision, Recall and F-measure (MSRA B)

T T T
WlPrecision

08 | JRecall

0.7+ lF- measure

0.6

0.5r

0.4r

0.3

0.2

0.1+

SR FT CA RC IT GB IS HFT SF PARAM

Precision, Recall and F-measure (on SED1) Precison, Recall and F-measure (on SED2)

0.9

WlPrecision
0.8 [JRecall 08 i
0.7 IlF- measure 07 i
0.6 -0.6f —
0.5 -0.5r -
0.4 -0.4r 4
0.3 -0.3r -

Wl Precision
H -0.2F .
02 [Recall
0.1 0.1 |IlF- measure .
. minln
SR FT CA RC IT GB IS HFT SF PARAM SR FT CA RC IT GB IS HFT SF PARAM

(b) (c)

Figure 3.7: Precision, Recall & F-measure using adaptive cut, on (a) MSRA-B;
(b) SED1 and (c¢) SED2 datasets, show that our method (PARAM)
performs better than all the 9 state-of-the-art methods for all the
datasets. RC performs close to PARAM only in case of SED2 dataset.
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The bar charts in Figure show that the adaptive cuts generated using
PARAM saliency output produce the best result for all the three performance
measures: Precision, Recall and F-measure. This implies that PARAM produces
better segmentation than the 9 competing state-of-the-art methods. Only RC
(Cheng et al|(2011)) has comparable (near, but marginally better) performance
to PARAM for SED2 Dataset (see Figure |3.5[(c)).

Efficiency

Although our method has more than one saliency priors to be computed, it is time
efficient and can be easily used as preprocessing step for different applications.
This is mainly due to the fact that the saliency computation by our method is
performed on image patches (or superpixels) which are much lesser in number than
the set of pixels. Moreover, parallel computation of the priors is also possible. We
compare the running time of our implementation (in C++) with other competing
methods. We use the Matlab implementation from authors for [Itti et al.|(1998),
Goferman et al.[(2010), Achanta et al.| (2009)), |Li et al. (2013), Harel et al.|(20006),
Hou et al|(2012) and C++ implementation of Cheng et al.| (2011), Perazzi et al.
(2012) on a intel core 2 extreme 3.00 GHz CPU with 4 GB RAM. Table lists
the average running time of 8 competing methods along with PARAM. In case of
Hou and Zhang (2007), we get the results from the publicly available executable
of (Cheng et al| (2011)), and we do not have the time efficiency information for
the same. The work (FT) proposed in |Achanta et al. (2009)) is the fastest, but
performs much inferior (refer Figures -[B.7). RC (Cheng et al] (2011)) is as
fast as our method and performs comparable on SED2 dataset, but the results are

not at par with us on MSRA-B and SED1 datasets.

3.5 Discussion

In this chapter, we have presented a bottom-up saliency estimation method for
images purely based on low-level perceptual cues. We have proposed a novel graph-
based feature rarity computation, utilizing the concepts of spectral clustering (Ng

et al|(2001)). It shows that eigenvectors of the Laplacian of the affinity matrix
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of the graph, taking image elements as nodes gives a good measure of rarity.
This term actually also accounts for center prior. Additionally, we exploit spatial
compactness of color and use the cue of boundary prior by statistically modeling
the background in color space. We show, both qualitatively (Figure and
quantitatively using Precision-Recall metric (Figure , that these two priors
compliment each other. We also give a comparative study of the performance
of our method with 9 state-of-the-art methods, using three different measures of
evaluation on two popular real-world benchmark datasets. Since, our method is
not just restricted to global spatial feature rarity, but also utilizes the boundary
cue as well as spectral clustering based feature rarity, it gives better performance

(Figure and and in most of the cases accurately detects the salient object.
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CHAPTER 4

SALIENT OBJECT SEGMENTATION IN
NATURAL IMAGES

Segmenting objects in a scene, without prior knowledge about the class of the
object, is a significant and highly challenging problem. Bottom-up salient object
detection methods attempt to predict a probability map with pixel-accurate object
locations, but fail in most natural images. We propose an efficient method that
uses saliency in conjunction with objectness cues to predict the likelihood of a
region belonging to an object in an image. Further, a CRF based approach with
these likelihood priors perform a salient object segmentation using graph cut.
Our method is orders of magnitude faster than various state-of-the-art algorithms
and can be employed as a pre-processor to different high-level computer vision
tasks. We compare our method against saliency methods as well as category
independent object proposal methods on the PASCAL 2012 segmentation dataset
(Everingham et al| (2012)). Our method shows a 21% increase in performance
using intersection-over-union score when compared with the top 10 masks of the
recent category independent object proposal methods (Carreira and Sminchisescu

(2010); |[Endres and Hoiem (2010))).

4.1 Motivation

Human visual system has an amazing capability to localize objects even before
recognizing them. This comes from the ability to select regions with important
visual information during early vision. This ability of the human visual system
is known as wvisual saliency. Again, cognitive science literature describes that
spatial groupings of a small set of simple primitives give the early description of
an image (Treisman and Gormican| (1988)). Thus, localization of multiple objects
in an image happens as a part of early visual processing. This indicates that

saliency can be substantially utilized for localizing objects, imitating the human



visual system. Salient object segmentation can then be successfully used as a pre-
processing step to accomplish low-level tasks, e.g., shape-based feature extraction,
and high-level vision tasks such as, object recognition, scene understanding, object

tracking and so on.

Category dependent object localization algorithms work only for a predefined
set of objects and are practically infeasible given the huge number of classes that
exist in reality. Studies show that human beings can localize objects even when the
identification or recognition system is impaired (Goodale et al|(1991])). There has
been thorough research in class-specific object detection and localization. Sliding
window approaches (Viola and Jones| (2004)); Felzenszwalb et al.| (2010)) try to find
objects at different windows at different scales and orientations. Therefore, these
methods incur huge computational cost, due to the 4-D search space of sliding
window approach. Further, state-of-the-art segmentation methods (Shi and Malik
(2000); |Arbelaez et al.| (2011); Felzenszwalb and Huttenlocher| (2004))) are often
not suitable to extract object-specific image regions. Hence, it is important to
device such a system which can localize objects without any prior knowledge about
it. Later, more features can be learned from these extracted object regions, and

recognition algorithms can also be benefited from this spatial filtering.

We propose a Salient Object Segmentation method that captures the same
visual processing hierarchy as in the human visual system. Our goal is to localize
objects in an image independent of its category. Our method of salient object
segmentation uses saliency and objectness feature as two important cues to gen-
erate a single salient object segmentation map. The aim of the map is to depict
all the object regions with high probability values. Natural images exhibit spatial
interactions, e.g., neighboring pixels are likely to belong to the same object or
spatially bounded regions by image contours generally represent an object part.
Graph-based methods can capture these dependencies and provide good spatial
propagation of saliency information. Hence, we employ a graph-based approach
and model our method as a conditional random field (CRF) based optimization
approach. We perform all necessary processing at the superpixel level. To deter-
mine the superpixels of an image, we use SLIC algorithm (Achanta et al.| (2010))
which preserves primitive information like color, object boundary and edges (re-

fer Section [3.3.1)). We incorporate low-level perceptual cues within the saliency
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prediction method. Additionally, the objectness factors are incorporated based
on a geometric constraint and distribution of edges in the image. Objectness, as
first defined by (Alexe et al.| (2012))), describes the features that predict the like-
lihood of a superpixel belonging to any object. Thus objectness in combination
with saliency gives the likelihood of each superpixel belonging to a salient object
and forms the unary potential of CRF in the proposed method. Since, many ob-
jects are roughly homogeneous in appearance as discussed by |Endres and Hoiem
(2010), CRF smoothness constraint gives a benefit. In the following two sections,
we first describe the image cues, namely saliency and objectness, followed by our
graphical model formulation, inference and learning methods. We have tested our
method on the challenging PASCAL 2012 dataset (Everingham et al.|(2012))) and
it shows better performance than other existing saliency as well as object proposal

methods, in terms of both F-measure and intersection-over-union score.

4.2 Image Cues

The aim of our approach is to segment all the salient objects in an image. Saliency
methods generally produce a probabilistic saliency map. Therefore, to segment
the objects from an image, we use objectness criteria in conjunction with saliency.
We characterize objectness by two constituent factors, geometric constraint and
distribution of edges in the image. These two features are respectively modeled
as boundedness and edge-density. To find the image cues, an image is first seg-
mented into a set of N superpixels, {sp;}, i = 1,...,N using the SLIC algorithm by
Achanta et al.|(2010)) (see appendix. Then all the image cues are computed

over superpixels as described in the following subsections.

4.2.1 Saliency as a Cue

Motivated by biological factors of human vision, as described in section [4.1], we
employ saliency as a primary factor in our algorithm. Saliency detection meth-
ods mostly rely on low-level cues, such as, center-surround response (Itti et al.
(1998)), frequency domain features (Achanta et al. (2009); [Hou et al. (2012)); |Li

et al| (2013))) or local and global contrast based information (Goferman et al.
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Figure 4.1: Examples of category independent models on a sample image from
PASCAL VOC 2012 segmentation dataset Everingham et al.| (2012).
From left to right, first row shows the image, its binarized ground
truth and output of proposed method (refer Section . Second and
third row show top 3 ranked maps of CPMC |Carreira and Sminchis-
escu| (2010) and Object Proposal |[Endres and Hoiem! (2010) methods
respectively.

(2010); |Cheng et al.| (2011)); |Perazzi et al.| (2012); |Yang et al. (2013); [Liu et al.
(2011))), as discussed in Section [2.1] All these methods attempt to detect the rare
or unique information in an image and represent that as salient. This kind of ap-
proach is known as feature rarity based approach. Our proposed saliency method
described in Section and also that in |Wei et al.|(2012) show that the feature
rarity alone is not enough to describe the salient object in complex scenes. There-
fore we have introduced a background prior term. Background prior argues that
most of the area in boundary are occupied by non-salient regions and these regions
are connected with each other. The criteria formulated for these pair of propo-
sitions are termed as boundary prior and connectedness prior. Further, distance
from boundary (in feature space) gives a measure of saliency, as also described in
Section [3.3.2] These methods, which have exploited background prior for saliency
detection, have given considerably improved performance in terms of localizing

region belonging to objects, as shown in literature.
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Figure 4.2: The figure shows the (a) Image with (b) it’s binary ground truth and
(c) saliency map of PARAM (Chapter [3)); (d) extracted airplanes by
the proposed Salient Object Segmentation method. The bottom row
illustrates the objectness factors with (e) the edge map Dollar and Zit-|

(2013) on superpixeled image and the two cues: (f) boundedness
and (g) edge-density.
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All the methods discussed above are bottom-up or stimulus driven methods
and do not exploit any prior information about any specific object. There exists
on the other hand, top-down saliency methods (Zhang et al| (2008); [Yang and
Yang| (2012))) which learn the features of the objects to be found and given that
object class as an input, the object becomes salient within an image (Yang and
Yang| (2012)). However, similar to category dependent object segmentation mod-
els these methods cannot localize an object before recognizing it. So, they do not

conform with the goal of our work.

For the purpose of our salient object segmentation task we require a bottom-up
saliency method which better predicts object regions employing both the feature
rarity and boundary prior cues. We have shown in Section [3.4.2] that our proposed
method (PARAM, section uses these two factors effectively and in a time ef-
ficient way. As we are proposing our method to work as a pre-processing stage for
different computer vision tasks, computational efficiency is very important without
compromising on performance. Hence, we use the map produced by PARAM as
the saliency cue. The saliency detection method, PARAM produces a probabilistic
saliency map on superpixels which is then upsampled to pixels. We use this super-

pixel saliency map and denote the saliency probability value of ith superpixel as s;.

Figure (C) shows the saliency map of PARAM on a sample from PASCAL
VOC 2012 segmentation dataset. Clearly, the saliency map visually delineates that
the rare features are depicted as salient, although not very accurately. PARAM
uses compactness in color space and distinctness from boundary as the promi-
nent cues for saliency. Hence, only the purple head of the airplane is filtered as
salient. Wings on the other hand are completely ignored, due to color similarity
with sky on the boundary. Furthermore, since white color is not detected as a
compact color in the image, the white airplane in the background is also not iden-
tified. Moreover, partly the sky is predicted as salient which is not correct. More
specifically, PARAM exploits color information in great detail, but shape and
edge informations are not utilized. As, human eye is most sensitive to color and
brightness, the proposed saliency method (PARAM) performs good on saliency
datasets, but fails when tested on natural image datasets such as PASCAL VOC
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dataset (Everingham et al. (2012)).

4.2.2 Objectness Features

Objects typically have well defined boundaries (Alexe et al| (2012)) and many
objects are mostly aggregation of regions that are homogeneous in appearance, as
also mentioned by |Endres and Hoiem| (2010)). Superpixels preserve object bound-
aries, as superpixel algorithms (e.g., |Achanta et al.| (2010])) group the pixels with
homogeneous color and texture as a superpixel. So, there should be no superpixel
straddling by edges in an image (Alexe et al.| (2012))). Recently, |[Dollar and Zit-
nick (2013) have described an efficient edge detection algorithm. Their method
gives a high-quality edge probability map using structured learning (Nowozin and
H. (2011)) prediction on random forest. Since, they do a direct inferencing, the
method is computationally efficient than all competing edge detection methods.
We use this algorithm to generate an edge map. Next we compute the boundedness

and edge-density factors.

Boundedness

We first define the strong edges in an image as the pixels with high probability
values (> T = 0.8) in an edge map. As there should not exist any superpixel
straddling, the pixels with high edge probability values mostly correspond to object
boundaries. We define boundedness of a superpixel sp; as b;, based on the extent
to which it is bounded by strong edges on all four directions. Boundedness is
calculated at pixel level first and then averaged to superpixels. Edge contours
on an edge map may be discontinuous and often exist with small gaps. Due
to this, some pixels which are visually bounded and belong to some object may
not be bounded on all four directions, producing a low score on boundedness.
But all of the rest of the pixels within the particular superpixel would not score
low, if that superpixel belongs to an object. Hence, averaging over all the pixels
makes it insensitive to noise in the edge contour. Moreover, as it can handle
the discontinuities in the object boundary in an edge map, a computationally

expensive high quality edge map (Arbelaez et al.| (2011)) is not required.
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Boundedness of superpixel sp; is formulated as:

1

bi —
|spil

> (o) + o) + o) + doay)
PESP; (41)

'I(lp(fcvy% tp(z,y)> Tp(z,y)s dp(%y))

where, ly(z.y), tp@y): Tp(z.y)> p(z,y) € [0, 1] denote the strength of the left, top, right
and bottom boundaries (defined later) respectively, obtained from the edge prob-
ability map of the particular pixel p with spatial location (x,y). |sp;| denotes the

number of pixels within ith superpixel. Also,

Iap(af,y)? p(z,y) s Tp(z,y) s dp(ﬂmy)) =

L if lp(ay)s tp(ey)s To(y) s Dp(ay) > 0 (4.2)

0, otherwise

is an indicator function and represents whether the pixel is close-bounded. For all
pixels the boundedness values dictated by the edge strength of it’s boundaries are
estimated.

The edge map gives a probability map where each pixel value denotes the strength
of an edge passing through that particular pixel. Let the edge map value for a pixel
at spatial location (x,y) be Pe(,,). We use a dynamic programming approach to
compute the boundedness in order of number of pixels, and then recursively define

the strength of the left boundary as:

l-1y) 1 Pe@y <T
bp@y) =4 0 if 1 =0 (4.3)

Pep—1,y) otherwise

Similarly, boundary strengths, t,4), Tp@y): dpzy) can be computed. For the
whole image all the values of I, ), tpay)s Tp(zy)s dpey) are computed only once
in O(number of pixels) time. Thus while calculating b;, these values are accessed
in O(1). High boundedness value implies that most of the pixels in the superpixel
are bounded by strong edges, and is likely to belong to an object.
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Edge Density

The distribution of edges in an image is captured as a cue using our edge-density
term. Since objects are mostly homogeneous in appearance (Endres and Hoiem
(2010)), there should be less edges inside the superpixels belonging to an object.
High density of edges in a region generally implies a cluttered background, e.g.,
rippling river, grass or forest. Again, very low density or overly smooth regions
which are also not bounded should be part of background, e.g., clear sky. As
no strong edge crosses over a superpixel (i.e., image boundaries are respected by
superpixels) there should be only weak edges inside a superpixel. So, we compute

the density of the edges within a superpixel sp;, as:

1
density; = Z Pe(zy) (4.4)
|spi _
p(,y)Esp;
Now, we compute the mean p, and standard deviation o, of the set of densities,

{density;}, 1 = 1,...,N. For ith superpixel, the edge-density ed;, is calculated as:

1 —density; 1 — density;| < o
od — yi if yil < o4 (45)
0 otherwise
We have noticed that superpixels with high edge-density value have less probabil-

ity for belonging to an object. Thus, we use it as a negative prior in our energy

formulation as mentioned in the next section.

Bottom row of the Figure shows a superpixel-level image with the edge
map superposed on it, along with boundedness cue and edge-density results on
an example from PASCAL Segmentation dataset (Everingham et al|(2012)). In
Figure (e), red boxes show the superpixels and white lines portrays the edge
map. It can be seen that the strong edges mostly depicting the object boundaries,
are mostly respected by superpixels as well. Exploiting the edge map we generate

the boundedness map and edge-density map as illustrated in Figure [£.2(f) and
[1.2(g) respectively.
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4.3 Salient Object Segmentation

CRF (Conditional Random Fields) described in the work of Lafferty et al.| (2001)),
has the ability to concisely represent dependencies among multiple random vari-
ables. Thus it can capture the structure of the problem efficiently. Hence, we
formulate a CRF over superpixels to estimate the MAP (Maximum a Posteriori)
value of each of the superpixels belonging to an object. Now each superpixel
has three features, as computed in the previous section, along with color. In the
following subsections, we discuss the CRF formulation and the label prediction

task.

4.3.1 Preliminaries: Random Field Model

Let x = {x;}¥, be the feature vector set and y be the segmentation labels of all
the superpixels, where N is the total number of superpixels. Conditional random

field model takes the form,
1 —E(y,x;w)
P(ylx, w) = —e 7 (4.6)

where w are parameters and Z is the partition function. The energy term E gen-
erally decomposes over nodes V (set of superpixels) and edges £ (8-neighborhood
of each of the superpixel). We consider the energy E with node and edge features

as o and ¢® respectively, resulting in the following formulation:

1) 2
Ely,x;w) =Y o ixtViw) + 2 > 6P iy x® xPiwa) (A7)
eV (i,9)€€
where, w; and wy are the parameters in node and edge potential respectively.
Node potentials represent negative log-likelihood. Thus we first compute different
features, such as, saliency, boundedness, edge-density for the node potential or

the unary term. We then define the edge cost or the pairwise smoothness term to

fully specify the CRF.

Now we can consider the inference and learning tasks. The two tasks of our

interest are: (i) the test-time prediction of labels of a likely segmentation and (ii)
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Figure 4.3: Graphical model showing a basic CRF model. Green boxes are su-
perpixels and red circles represents the hidden layer of labels. Orange
and blue lines depict corresponding node potentials and edge poten-
tials respectively.

the parameter learning task in which we have annotated training data to compute
an optimal set of parameters w = [wy Wz]T. Figure represents a basic CRF
model. It pictorially illustrates the dependencies among the superpixels and the

hidden layer of labels.

4.3.2 Salient Object Likelihood

The node potentials are obtained by combining the image cues that are defined
in Section . The image features for node potential of ith node (superpixel) is
denoted by Xi(l) and the parameters by wy. s;, b; and ed; are the image features,
as described in equations , and respectively. These features cor-
respond to the likelihood of a superpixel being part of an object. So, it penalizes
when a superpixel with strong likelihood is assigned a background label or a less
likely superpixel is assigned a foreground label. Here, a particular label y; € {0, 1}
is assigned for foreground and background respectively. Hence, the node potential

1s written as:

6 (i, xYyw) = wa(1— w) (1 — 53) + yisi) + wp(1— ) (1 — by) + wiby)

saliency boundedness

(4.8)
+we((1 —yi)ed; + y;(1 — ed;))

J/

~
edge density
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Hence, w; = [w, wy w.]’. The method to learn the optimal values of these

parameters are discussed in section [4.3.4]

4.3.3 Edge Cost

Edge cost enforces agreement between adjacent superpixels in an image. If two
adjacent superpixels are similar in appearance, they should have the same label,

2)

otherwise the objective function is penalized. xg is the feature that accounts for

(2)

the pairwise term of 7th superpixel. Here x;” is color in Lab space, denoted by c;.

We express the pairwise or smoothness term as:

(2) (@)
77

2 —(=kel|ci—c;]|?
O (9ir v, %4 = [ys — ysle”rellemallD (4.9)

Hence, similarity in Lab color space specifies the edge cost. Here, k. dictates the

sensitivity of color similarity and is given a constant value in all our experiments.

4.3.4 Superpixel Label Prediction: Inference Problem

Now that the random field is fully specified, we have two tasks, inference and

parameter learning.

Inference

The edge-cost defined by our model leads to a sub-modular CRF and hence, we
perform an exact inference using graph cut. This makes our method time efficient.
With more complex edge-cost and approximate inference technique, the label pre-
diction task will become computationally inefficient. To improve the results, we
take a feedback from the first graph cut output and combine that with the unary
term and again repeat the process (perform graph cut) to generate a better seg-
mentation. In subsequent iterations, unary prior is taken as the exponentiated
and normalized intersection of the original unary prior (as calculated in eqn.
and the result of graph cut from previous iteration. Hence, the unary prior is
refined by the predicted labels in each iteration, by using the graph cut result as

a feedback for better prediction. Experimentally, a maximum of 8 iterations are
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performed for all images.

Parameter Learning

As per our formulation, the parameter vector w can be considered as w =

(w1 wa]T = [w, wy w. \]T. This gives us a energy function E which is linear
in w and can be written as w’¢. This is important because linearity in w en-
sures a convex learning problem and can be solved efficiently. We take a simple

max-margin approach for parameter learning, given as follows:

1 1«
L. L 2 L
minimize 2||w|] + 97 ;:1 &n

T

subject to, w'v =1
w0, = Wb, < L(ya.Fu) + & 10
& =0
we >0

where,

£( ~ ) _ False Positive + False Negative
Yn,¥n) = True Positive + False Positive + False Negative’

is the loss function.

n ranges over the M training instances, ¥ is the ground truth labeling and WTQZB
represents the ground truth energy. £ represents the slack variable (refer to ap-
pendix for details), and v = [1 1 1 0]7. The formulation is a structured
learning approach. It is similar to the structured SVM approach (Tsochantaridis
et al|(2005), see appendix [B.1)) and follows the margin rescaled algorithm (Szum-
mer et al. (2008)). The second part of the objective function in equation m,
gives a penalty if the calculated parameters do not lead to an energy close to
ground truth, which ideally should have minimum energy. Thus, minimizing this
objective function leads to estimating the optimal parameters for which the energy
for predicted labels is close to ground truth energy. The first constraint normal-
izes w. This is necessary so that the unary term alone does not dominate the
summation cost function, given in eqn. [£.7 It also gives a lower bound to w.
wy > 0 makes sure that the problem remains submodular and we can hence do an
exact inference via graph cut. This is an important point for the efficiency of the

algorithm.
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Since, we are using a high-order loss function £ (1- IoU), in equation m,
the margin-rescaled structured SVM formulation is not a simple Quadratic Pro-
gramming (QP) problem any more, unlike normal SVM formulation. So, to solve
the problem, we take a simple iterative approach similar to EM (Estimation-
Maximization). In the following algorithm we give step-by-step details of our

approach.

Algorithm 4.1 Finding optimal w

Input:

- input-labeling pairs {(z,, y,)} of M training instances
- initial parameters: w = w°

Repeat until w is unchanged (within a tolerance)
1. Run graph cuts to find the MAP labeling y,,

2. Estimate the loss function £

3. Given L, update the parameters w by optimizing the formulation in equation

4.10

Since, the objective function as well as all the constraints are convex in step 3, we

have used cvx toolbox (Grant and Boyd (2008))) to solve the optimization problem.

After we perform inference, we obtain a binary map at superpixel level. This
superpixel map can be thought as a low-resolution image and we upsample it to
full resolution pixel accurate map (as described in Dolson et al.|(2010)). Now each
pixel has a label € [0,1]. Pixel label values depict the probability value of that
pixel belonging to a salient object. The top right image in Figure [4.1f shows an
example of our proposed upsampled map. The upsampling algorithm is again a
fast implementation and performs in linear time. We threshold this upsampled
salient object probability map to generate a salient object segmentation mask.
Refer to section [3.3.3| and appendix for details of upsampling method. Here,
the threshold is taken as the median of maximum and minimum probability values.
This method of producing the resultant masks are used for all the experiments in

Section [£.4] and a few results are presented in Figure [4.4]
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4.4 Experiments and Results

We measure the performance of our approach and compare the same with recent
saliency detection as well as object proposal methods, on both object segmenta-
tion and saliency datasets. We evaluate the performance using both F-measure
and intersection-over-union score. All the results presented are obtained using
the optimal learned parameter set, generated using the optimization process in

algorithm 4.1 solving equation (4.10)).

4.4.1 PASCAL Segmentation Dataset

We use the segmentation part of the PASCAL VOC 2012 dataset (Everingham
et al|(2012))) to evaluate the proposed method. It has a segmentation part which
has 2,913 images with object specific segmentation ground truth. To extract all
the objects in an image we generate a binarized ground truth map as the second
image in the top row of Figure shows. We perform training on 1,464 images

in the training set and testing is done on 1,449 images from the validation set.

Qualitative results on images from this dataset are presented in Figure 4.4]
VOC 2012 has images from 20 different classes, from which we have shown images
from 12 different classes to illustrate the performance. The figure shows that our
method performs better than the recently proposed saliency methods, namely,
SF (Perazzi et al.| (2012)), MR (Yang et al.|(2013))), PARAM (proposed in Section
and top 3 masks of CPMC (Carreira and Sminchisescu (2010)), OP (Endres
and Hoiem, 2010). Examples in first five rows clearly depicts the superiority of the
segmentation by the proposed method. All the methods fails to perform well on
the samples in last three rows. The example in the last row shows a failure case of
our approach too. In this case, objects are not salient by the features used in the
saliency methods. In addition, as the edge map mostly captures the circles in the
stand at the front, the boundedness and the edge-density cues also fail. Again,
it is qualitatively visible that precision of CPMC and OP is generally very low
even for top ranked masks and same has been found in the quantitative analysis

presented in the next subsection.
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Figure 4.4: Visual results of our Salient Object Segmentation method and different
saliency and low-level object proposal methods, on some samples of
PASCAL VOC 2012 segmentation dataset (Everingham et al., 2012).
It clearly demonstrates the superiority of our segmentation. GT de-
notes the binarized ground truth masks.
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Figure 4.5: Precision Recall F-measure on PASCAL VOC 2012 segmentation
dataset |[Everingham et al.| (2012). It demonstrate that proposed
method keeps a good Precision-Recall balance and outperform in terms
of F-measure.

4.4.2 F-measure and Intersection-over-Union Score

F-measure (Eqn. score is widely used in all saliency detection methods where
[ is taken as 0.3 ( as in |Perazzi et al|(2012); Achanta et al.| (2009)). Figure
shows the precision-recall-fmeasure values on VOC 2012 segmentation dataset (Ev-
eringham et al [2012), for different competing saliency methods. We also compare
with the category independent object proposal methods, viz, CPMC (Carreira and
Sminchisescu| (2010)) and OP (Endres and Hoiem (2010)) (where top 10 masks are
used). Competing saliency methods used are GB (Harel et al|(2006)), SF (Perazzi
et al](2012)), MR (Yang et al|(2013))) and PARAM (Section [3.3)) for comparison.
Clearly, in figures, in terms of F-measure our proposed method outperforms all
the other methods. In terms of precision and recall also our method is compara-
ble to very recent saliency methods Yang et al. (2013) and our saliency detection
method PARAM. CPMC and OP give high recall values as they generate a num-
ber of maps, but are very low on precision. This implies that they propose a lot

of non-object parts of an image as object regions, even when just the top 10 maps

are considered (see Figures and [4.5)).

Intersection-over-Union (IoU) score is computed as,

| Predicted Map N Ground Truth|

IoU =
¢ | Predicted Map U Ground Truth|
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Method Name IoU Score

CPMC 0.3319
OP (Object Proposal) 0.3266
Proposed 0.4097

Table 4.1: Intersection-over-Union score of top 10 object maps of category inde-
pendent generic object segmentation methods, viz., CPMC |Carreira
and Sminchisescu| (2010)), OP [Endres and Hoiem| (2010)) and our pro-
posed method of Salient object segmentation, on the PASCAL 2012
segmentation dataset.Our proposed method produces much better seg-
mentation results.

On PASCAL VOC 2012
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Figure 4.6: Precision Recall Curve of proposed method and other competing
saliency methods on PASCAL VOC 2012 dataset (Everingham et al.
(2012))).

We compute the IoU score of CPMC, OP and our method against the binarized
ground truth on PASCAL segmentation dataset. Results are presented in Table
. We use the 10 top-ranked maps of CPMC and OP to compute the IoU score,
considering all the objects. Table shows that the single map of our method
produces 21% better object segmentation maps in terms of IoU score, compared

to the object proposal methods.

Figure illustrates the performance for different methods with a Precision-
Recall curve (see Section for process of generation) on the PASCAL VOC
2012 (Everingham et al. (2012))) dataset. We compare the saliency map of the com-
peting methods, such as, the saliency method proposed in Chapter |3| (PARAM),
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Figure 4.7: Precision Recall F-measure for proposed method and six other saliency
methods on MSRA-B saliency dataset (Achanta et al.| (2009)).

MR (Yang et al| (2013)) and GB (Harel et al| (2006)) with our CRF-based up-
sampled map. Our proposed method gives visibly better precision than all other
methods for higher values of recall. For very low values of recall MR (Yang et al.
(2013))) is marginally better. This is also reflected in the bar plot in Figure [1.5
This can be interpreted as, if MR (Yang et al.| (2013)) attempts to find most of the
salient object regions (i.e., for high recall), it incorporates a lot of false positives

(i.e., the precision falls).

We do not compare with a few other detection proposal methods, such as
Objectness (Alexe et al.|(2012)), SelectiveSearch (van de Sande et al. (2011)) or
BING (Cheng et al.|(2014))), as they only generate bounding box proposals and do
not produce fine segmentation (foreground masks) results. SelectiveSearch (van de
Sande et al.|(2011])) emphasizes on recall and does not intend for a pixel-accurate

map as they aim for an object recognition application.

4.4.3 Performance on Saliency Dataset

We also compare the performance with recent state-of-the-art saliency techniques
also, on a saliency dataset (as in section . For this purpose we use MSRA-
B dataset (Achanta et al.| (2009)). It has 5000 images with publicly available
pixel accurate binary ground truth masks. Figure shows the precision-recall-
fmeasure values on MSRA-B dataset, for our method along with that for other

recent saliency methods, viz, RC (Cheng et al. (2011))), GB (Harel et al.| (2006)),

62



HFT (Li et al| (2013)), SF (Perazzi et al.| (2012)), MR (Yang et al| (2013)) and
PARAM (Section [3.3). It illustrates the result on MSRA-B dataset with the
parameters learned using PASCAL segmentation dataset. Although, the recent
saliency method MR performs marginally better with little higher precision, it
provides low recall when tested on natural image dataset like PASCAL segmenta-
tion dataset (see Figure , i.e., it fails to extract many object regions and thus

not always the best for the current task.

4.4.4 Computational Efficiency

Our proposed method of Salient Object Segmentation is deemed to work as a
pixel-level pre-processing step for different computer vision tasks and must be
suitable for a live system. Hence, computational efficiency is of real importance.
However, since related category independent object proposal methods use much
complex procedure of generating a bag of outputs from different seeds and ranking
them, they are less time efficient. Our proposed method has three components to
be computed for the prediction task, viz., saliency, edge map and objectness cues.
All of these happen in either order of pixels or even less (order of superpixels).
The edge map (Dollar and Zitnick, 2013) extraction method has described time
efficiency in their paper, and is completely suitable for a real-time or online system.
Also, the proposed saliency method (PARAM) described in Section [3.4.2] uses fast
computations as proposed by Perazzi et al|(2012) and does all the operations at
superpixel level and is thus making it computationally efficient. Our computation
of boundedness and edge-density is in order of number of pixels, compared to the
objectness cues of |Alexe et al.| (2012) which are costly. Hence, our method is time

efficient and is suitable as a precomputing technique.

We avoided a direct run-time comparison as shown in the previous chapter
(Table , as it may be inappropriate to compare with methods such as CPMC
(Carreira and Sminchisescu| (2010)) or OP (Endres and Hoiem (2010)). These
methods produce around 1000s of binary map proposals, whereas our method is
way much faster and produces a single map. Average run-time required per image

(on the PASCAL segmentation dataset) for the entire pipeline of our proposed
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method is 0.42 secs, whereas the same for OP is 3 min 16 secs (using i7, 16GB
RAM). Complexity of Graph-cut is O(V * E?) = O(8%.V3) [8-neighborhood is
considered] = O((number of superpixels)®).

Hence, complete run-time complexity can be given as:

Run-time for (PARAM) saliency + Objectness criteria + grpah-cut minimization
— O(number of superpixels) + O(number of pixels) + O((number of superpixels)®)
— O((number of superpixels)®) (approx).

In comparison, the unary term or ’affinity’ calculation for each seed itself in OP
(Endres and Hoiem| (2010))) is much complex (larger) than O(number of pixels)

depending upon the number of regions and boundaries present in the image.

4.5 Discussion

We attempt to solve the problem of category independent salient object segmen-
tation using a multi-criteria objective function. We propose a time efficient ap-
proach which performs better than the recent state-of-the-art methods. Motivated
by saliency and category independent object segmentation methods, we propose
to predict a segmentation which captures all the salient objects in an image. We
device two objectness factors which are computed in linear time and used with
saliency as the priors. We demonstrate that graph-based methods can be used
efficiently both in terms of inference and learning parameters. Proposed method
can be easily utilized as a pre-processing step for many high-level computer vision

tasks.
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CHAPTER 5

Conclusion

In the thesis, we have described two competent salient object detection techniques.
In the following, we summarize the two efficient methods and discuss how they
have contributed to the recent progress in Computer Vision area. We discuss

possible applications and important future extensions possible from our work.

5.1 Thesis Summary

In summary, we propose two novel image saliency algorithms. The first method
concentrates in finding high-level saliency information. It shows that rarity and
compactness of a color are visually important cues to attract human attention. It
explores another important factor known as boundary prior. Further, it shows that
the rarity based measures and boundary prior are two complementary components

in detecting salient object in images.

The second method utilizes object-level constraints over saliency prior devised
in first method. Then the consistency among salient regions are enforced by a
proper spatial propagation of the saliency and our novel objectness information,
using a CRF with image elements (superpixels) as nodes and their exponentially
weighted color difference as edge-weights. Hence, the unary terms are designed us-
ing saliency and objectness features and pairwise term depicts the color similarity

based edge-weights. CRF parameters are learned using a max-margin approach.

Results on three real-world datasets exhibit the superiority of proposed meth-
ods. These methods can provide significant advantage in many high-level Com-
puter Vision tasks, such as object recognition, object detection, video segmenta-
tion and retrieval, summarization, re-identification etc. Unsupervised bottom-up
algorithms to detect salient regions (segments) in images will act as a good ini-
tializer for fast convergence during learning activities from videos, object shapes,

scene recognition, posture identification and so on.



5.1.1 Limitations

One main limitation comes from the issue related to dataset bias. Every dataset
has some bias of feature distributions, depending upon the different sets of image
samples it contains. For example (comparing the images from MSRA-B and PAS-
CAL VOC datasets), in images from MSRA-B the objects are mostly homogeneous
in color and occupy a large portion of the image. Whereas, images from PASCAL
VOC dataset contain objects which may be visible in small parts or a single object
is present with lot of variability in intensity at different parts. Hence, evidently
the set of parameters that are learned on the PASCAL VOC dataset may not help
the saliency detection algorithms to perform well on images in MSRA-B dataset,
compared to some method which targets to learn the parameter set from MSRA-B
dataset itself and vice-versa. In addition to that, since saliency is the major focus
of our algorithms, as per definition of saliency in section [1.1} proposed methods
may fail to catch the objects which are less visible to the human eye. Specifically,
very small part of an object present at the boundary of an image, ignored by the
human vision, may also be ignored by our proposed methods. Again, we rely on
boundedness of the superpixels; that is, a superpixel belonging to an object is
likely to have contours surrounding it. Hence, very thin parts of an object, such
as spokes of a cycle wheel, may also be ignored. But the optimistic point is, al-
though proposed methods may fail to capture all the objects (specially which are
slightly visible or not clearly visible due to less contrast) in an image or internals
of an object (some parts such as cycle spokes), it produces correct results for the
important or visible objects which also would be visible to a human eye and also
gives a good estimate of the holistic shape of the object. This is very important
for further processing of the image for different tasks, e.g., object recognition and

detection.

5.2 Some Reflections and Future Work

There has been a paradigm shift in Computer Vision in recent years. Researchers
are inclined towards developing algorithms similar to human visual perception.

These approaches have been shown to perform more accurately and intuitively.
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Segmentation aimed towards object detection has become popular. Intelligent
CBIR, CVBR tasks often need fast and efficient detection of objects in images or
videos. This is where saliency has been found to be very useful and similar to the
human visual system. Our first method follows these lines of thought. Again to
solve this problem of detecting objects from an image, segmentation or generating

object proposal is a natural solution.

Hence, a fundamental shift in object detection approaches have occurred. Ob-
ject detection algorithms have started to use segmentation and object proposals
instead of the costly sliding window based approach. So, we correctly employ
salient and objectness feature and contribute to these kind of novel approaches
for detecting the object of interest. In addition to detecting the salient object
in an image, our proposed segmentation based approaches can be aptly used for
detecting the boundary or salient contour of an object (useful for sketch based

retrieval).

Our methods and approaches can be further extended in different directions.
Firstly, our method of saliency map generation (refer Section can also be used
to find the most salient part of an image or finding the important fixation regions
for different applications, such as placing advertisement in a video frame. Secondly,
our object level saliency map (refer Section can be refined to generate a small
set of accurate object proposals so as to capture all the different objects in an image
and hence can capture their boundary information. The boundary information can

be used for shape based processing of images.

Extension to a top-down saliency model can form a nice scope of future work.
Here the system needs a pre-defined task or goal and a few training samples under
each category of objects. Task specific top-down saliency (as in humans) will
need large research effort from the academic community. Here the context and
environment dictates the goal, e.g., locate food if you are hungry or if you have
lost your key, look for small metallic objects. Training using eye-fixation data
forms an integral part of such top-down saliency detection modules. Hence the
methods are generally supervised, unlike our proposed bottom-up unsupervised

algorithms.

As a final thought, most supervised methods get biased on the type of training
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dataset being used. Making an unbiased saliency detection process by incorporat-
ing deep learning, DA (domain adaptation), transfer learning based methods, or
try using “ImageNet” dataset with partially hand-labeled or weakly labeled ground
truth, may form some future directions of work, which need a lot of analytical and
experimental studies. Future researchers may need to estimate attention, saliency
and recognition under a unified umbrella for the design of an automatic visual

registration system.
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APPENDIX A

Image Processing Techniques

A.1 Superpixels

For all our approaches mentioned in Chapter [3] and [4] we first abstract the image
into superpixels or perceptually uniform regions. The image abstraction we use is
an adaption of SLIC algorithm (Achanta et al| (2010)) and was proposed in the
work of |Perazzi et al|(2012)). Superpixels are locally compact edge aware clusters

of pixels and the adaptation guarantees connectivity also.

A.1.1 SLIC Superpixels

The SLIC algorithm (Achanta et al| (2010)) generates superpixels by clustering
pixels based on their color similarity and proximity in the image plane and uses a
simple linear iterative clustering algorithm, very similar to K-means, in the five-
dimensional [labry/ space. Given input K, start with K superpixel cluster centers
in 5D space with k = [1,K] at regular grid intervals and the distance measure is
given by sum of Euclidean distance in 3D lab space and 2D zy space, normalized

by the grid interval.

Given a desired number of approximately equally-sized superpixels K for an
image with IV pixels, roughly there will be superpixel center at every grid interval
S = \/N/—K . Initially K regularly spaced cluster centers are sampled and seeds
are placed at the location corresponding to the lowest gradient position in a 3
neighborhood, to avoid placing the seeds on edge. Image gradients are computed

taking both color and intensity information into account:
G(z,y) = |z +1y) — Lz — Ly +[[L(z,y + 1) = I(z,y = DI* (A1)

where I(z,y) is the lab vector of pixel at (z,y). Now all the pixels are clustered



based on these seeds or cluster centers in an approach similar to K-means algo-

rithm.

For the distance measure in clustering Euclidean distance in Lab color space
is the perceptually most meaningful measure, but only for small distance. If
spatial distance is so high that it exceeds this perceptual color distance limit, it
overweights color similarity and as a result it may create superpixels which do not
respect region boundaries. Therefore, instead of using simple Euclidean distance,
distance measure Dg is defined as:

m

Dg = djap + 5

gy
where,
dlab = \/(lk — ll)Q + (Clk — ai)Q + (bk — 51)2

Ay =V (w1, — 73)2 + (g1 — ;)2

(A.2)

Hence, Dg or the distance is taken as sum of [ab distance and normalized xy
distance. Here m controls the compactness of a superpixel and given a constant
value (m = 10). This keeps good balance between color similarity and spatial
proximity. To segment into superpixels iteratively cluster centers are updated
until the residual error (L1 distance between prevu=ious centers and recomputed
centers) goes below a certain threshold. Finally, connectivity within the superpixel
is ensured by relabeling disjoint superpixels with the labels of largest neighboring

cluster.

A.2 Up-sampling

Every time we abstract the image into superpixels after desired computation it
needs to be computed at pixel level so as to generate a complete full resolution
output map. This is done by upsampling algorithm. A superpixeled image can be
thought as a low resolution image and we upsample it to pixels. It basically does

a d dimensional filtering which can be mathematically expressed as:
é =Y flpi —pil)-c (A.3)
j=1
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Figure A.1: Some example of upsampling to illustrate the importance of upsam-
pling. Left column shows image before upsampling and right column
has the corresponding upsampled images.

where, ¢; is the color value of pixel ¢ with surrounding image elements j =
{1,...,n} and p;, ¢; are the pixel position and color respectively. In the most
common case, function f can be any kernel. Most commonly used in case of
denoising is, f(x) = e*%, the standard Gaussian function with a standard devia-

tion 0. Moreover, it uses a accelerated d dimensional filter as proposed by Adams

et al.|(2010).

The upsampling algorithm (Dolson et al.| (2010))) can be summarized in three

steps:
1. 5-D feature (RGBXY) are sampled at the resolution of the image

2. and then blurred with values of neighboring node

3. Then value of each pixel is queried using location, along the original position
space

This pipeline greatly accelerates a bilateral filter and also Adams et al.| (2010)
show that a 5D representation is more accurate than just filtering 3D illuminance
volume. Some example of upsampling from Chapter 4 are presented in Figure[A.T]

This illustrates result of our method before and after upsampling.
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APPENDIX B

Structured Prediction

While working on posteriors and building autonomous systems, we not only want
to sense the environment but also recognize and interact with it. A structured
prediction on MRF is a fantastic mathematical tool which just not try to solve
an individual task, but tries to give a solution of all these tasks together in a
holistic way. This is important because we want to propagate uncertainty of these
different tasks instead of only making a single decision. There are four things that
we need for a structured prediction, data, good learning and inference algorithm
and proper representation. Representation is very important, that is, what are

the random variables and connection among them.

B.1 Max-Margin Method: Structured SVM

A general formulation (Ramanan) 2013) of a max-margin method or SVM which
encompasses various common problems, such as binary classification, regression,
and structured prediction. Given training data where the i*" example is described
by a set of N; vectors {z;;} and a set of N, scalars {/;;}, where j varies from 1 to

N;, we wish to solve the following optimization problem:
, 1
arg min L(w) = §||w||2 + Z 1;2&}\/}5(0, lij — wzy) (B.1)
This can also be written as the following Quadratic Program (QP) as:

N
R
argmin S{lwl* + 3 &

s.t.Vi,j € Ny whay; > 1i; — &



B.1.1 Structured SVM

A linearly-parametrized structural predictor produces a label of the form
Label(z) = arg max w? (x4, ) (B.3)
ye

where Y represents a (possibly exponentially-large) structured output space. The
associated learning problem is given by a dataset {w;,y;} where z; € RN and

yevyY:

1 9
arg min —||w||” + i
2 i gl + 3¢ -
stVi,h ey, ngzS(xi,yi) — qub(xi, h) > loss(y;, h) — &

One can define N; = |Y|, x5 = ¢(xs, y:) (x4, j) and l;; = loss(y;, j), where j = h

is interpreted as an index into the output space Y.

B.2 Margin-Rescaled Approach

The first approach that was proposed (Tsochantaridis et al.| (2005))) for the case
of arbitrary loss functions, is to re-scale the slack variables according to the loss
incurred in each of the linear constraints. Intuitively, violating a margin constraint
involving a y # y; with high loss A(y;, y) should be penalized more severely than
a violation involving an output value with smaller loss. This can be accomplished
by multiplying the margin violation by the loss, or equivalently, by scaling the

slack variable with the inverse loss. The slack-rescaled approach is formulated as:

1
arg min >|[w] +Zfi

&i

stVi,heY, wlho(z,y) —wlé(x;, h) >1—
O(@i; i) ¢(zi, h) N

This formulation has the advantage that the loss ¢ and slack penalty share the
same scale. In particular, it enforces the same default margin of 1 for all examples.

In contrast, the margin-rescaled formulation (Tsochantaridis et al.| (2005)), and
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was proposed by B. Taskar and Koller| (2004)) for the special case of the Hamming
loss) requires large margins of labelings differing significantly from the ground
truth, which could cause the algorithm to focus on assigning high energies to
poor labelings, rather than assigning low energies to labelings close to ground
truth. The margin constraints for margin-rescaled formulation, thus becomes the

following:

As high order loss functions are used, the problem remain no longer QP and
becomes intractable. Many different approximate and iterative solutions are given

in this context (Tarlow and Zemel (2011); [Pletscher and Kohli (2012)).
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