Saliency Detection in Images using Graph-based Rarity, Spatial

Compactness and Background Prior

Sudeshna Roy and Sukhendu Das Visualization and Perception Lab.

Abstract

- The proposed saliency detection method identifies regions in an image, containing prominent objects, which pop out from the background and helps to focus attention.
- We use rarity of feature based approach based on graph-based spectral rarity and spatial compactness of color, as well as boundary prior constraint using Gaussian mixture model.
- Combination of these two complimentary concepts gives better result in terms of both accuracy and speed.

Input

Saliency Map Binary Map

PARAM (background Prior And RArity for saliency Modeling) Algorithm Overview

Image

Segmented Image (Superpixel)

Spectral Rarity

Two measures combined

PARAM
Up-sampled
Saliency Map

Segmented into Superpixel

 First, image is segmented into compact homogeneous color superpixels (SLIC).

Graph-based Spectral Rarity

- Eigen vectors of the Laplacian matrix of the superpixel graph form the descriptor (x_i) for each superpixel.
- Rarity of superpixel i is calculated as,

$$r_i = \sum_{j=1}^{N} ||x_j - x_i||^2 \cdot \exp(-k_r ||p_j - p_i||^2)$$

i.e., sum of Eucledian distances of the descriptors of spatially near superpixels.

Spatial Compactness

• A salient color c_i is spatially compact and close to the spatial mean position (μ_i) of the colors similar to c_i .

Background Prior

• Spatial variance of superpixel i is,

$$v_i = \sum_{i=1}^N ||p_j - \mu_i||^2 \cdot \exp(-k_c ||c_j - c_i||^2)$$

• Thus, spatial compactness of color is formulated as , $\exp(-k.v_i)$.

Upsampling

 Pixel accurate saliency map achieved using range data upsampling method.

Background Prior

- Boundary superpixels are modeled by GMM (K modes) in Lab color space.
- Saliency given by background prior,

$$B_i = \sum_{j=1}^K \pi_j . D_M(c_i, \mu_{Gj})$$

Non-salient superpixels are similar to the large modes depicting background, with low Mahalanobis distance (D_M) .

Results and Evaluations

Conclusion

- Autonomously finds salient regions, thus the prominent objects.
- Fast can be used as preprocessing step to reduce search space.
- Perazzi, F., Krahenbuhl, P., Pritch, Y., and Hornung, A. (2012). Saliency filters: Contrast based filtering for salient region detection. In CVPR
- IPS. Wei, Y., Wen, F., Zhu, W., and Sun, J. (2012). Geodesic saliency using background priors. In ECCV.

REFERENCES

- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Susstrunk, S. (2010). SLIC Superpixels. EPFL.
- Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In NIPS. Wei, Y., V