
TTLG - An Efficient Tensor Transposition Library
for GPUs

Jyothi Vedurada∗, Arjun Suresh†, Aravind Sukumaran Rajam†, Jinsung Kim†, Changwan Hong†, Ajay Panyala‡,
Sriram Krishnamoorthy‡, V. Krishna Nandivada∗, Rohit Kumar Srivastava†, P. Sadayappan†

∗IIT Madras {vjyothi,nvk}@cse.iitm.ac.in ‡PNNL {ajay.panyala,sriram}@pnnl.gov
†OSU {suresh.86, sukumaranrajam.1, kim.4232, hong.589, srivastava.141, sadayappan.1}@osu.edu

Abstract—This paper presents a Tensor Transposition Library
for GPUs (TTLG). A distinguishing feature of TTLG is that
it also includes a performance prediction model, which can be
used by higher level optimizers that use tensor transposition. For
example, tensor contractions are often implemented by using
the TTGT (Transpose-Transpose-GEMM-Transpose) approach
– transpose input tensors to a suitable layout and then use
high-performance matrix multiplication followed by transposition
of the result. The performance model is also used internally
by TTLG for choosing among alternative kernels and/or slic-
ing/blocking parameters for the transposition. TTLG is compared
with current state-of-the-art alternatives for GPUs. Comparable
or better transposition times for the “repeated-use” scenario and
considerably better “single-use” performance are observed.

I. INTRODUCTION

Tensor transposition is an important layout transformation
primitive for many domains like machine learning and com-
putational chemistry that use tensors as a core data structure.
It involves a permutation of the indices of an input tensor:

Bρ(i0,i1,i2,··· ,id−1) ← Ai0,i1,i2,··· ,id−1

where A and B are the input and output tensors, respectively,
and ρ denotes the index permutation for the transposition.

An arbitrary tensor transposition (of a d-dimensional tensor)
can be simply achieved by a d-nested loop that reads each
element from the input tensor and writes it to the output tensor
element corresponding to the permuted indexing. However,
this is often very inefficient because of the high access stride
for at least one of the two tensors. Consider the 2D case of
transposing a matrix. This can be achieved by a doubly nested
loop: for (i,j) B[i][j] = A[j][i] or for (i,j)
B[j][i] = A[i][j]. With either form, one of the two
arrays is accessed with a high stride, causing poor data locality
(uncoalesced accesses on GPUs) and low performance.

In this paper, we present the design, implementation, and
experimental evaluation of TTLG, a Tensor Transposition
Library for GPUs. TTLG has the following features:

• It includes a taxonomy of tensor transposition schemas
with different data movement strategies, and a model-
driven approach to choose the appropriate kernel based
on the specified permutation and the extents of the tensor
dimensions.

• It provides a performance modeling interface that can be
queried by an invoking context (e.g., a higher level library
using tensor transposition as a building block) to estimate
the time for any tensor transposition.

• It is demonstrated to be comparable or faster than other
GPU tensor transposition libraries/code-generators across
a range of tensor sizes and permutations.

II. BACKGROUND AND RELATED WORK

Background on GPUs: The hardware in a GPU (we use
Nvidia terminology) is organized as a set of streaming mul-
tiprocessors (SM), each of which consists of a set of SIMD
streaming processors (SP). All SPs in an SM share resources
such as registers and shared memory. Shared memory is
divided into multiple banks to facilitate simultaneous accesses
and thus achieve higher memory bandwidth. Shared memory
provides efficient access even for non-contiguous data, as long
as there are no bank conflicts. However, if multiple threads
access the same memory bank (bank conflict), the accesses are
serialized. Array padding can help reduce/avoid bank conflicts.

In a GPU, a single thread represents the finest granularity
of execution. Threads are grouped into warps, and all threads
in a warp are executed in a lock-step manner in an SM. Warps
are grouped to form thread blocks. A grid consists of a set of
thread blocks scheduled to be executed on a GPU. We use the
terms threadid, warpid and blockid to identify a thread, warp,
and thread block, respectively. The warp size on modern GPUs
is 32. From here on, we refer to warp size as WS .
Out-of-place Tensor Transposition: Lyakh et al. [1] proposed
a generic parallel tensor transposition algorithm for multicore
CPUs, Intel Xeon Phi, and NVIDIA Tesla GPUs. Although
the proposed algorithm showed a 2–3x performance over a
naive algorithm, it was suboptimal in terms of the bandwidths
achieved. Hynninen and Lyakh [2] presented cuTT (CUDA
Tensor Transpose), an optimized tensor transposition algorithm
for NVIDIA GPUs that efficiently uses shared memory and
computes the indices (memory positions of tensor elements)
in parallel. TTC (Tensor Transposition Compiler) [3] auto-
generates C++/CUDA code that exhibits high performance
on Intel Haswell, AMD Steamroller, Intel Knights Corner,
NVIDIA Kepler, and NVIDIA Maxwell architectures. While
efficient, TTC generates optimized code for a specific tensor
size and permutation. HPTT [4] (High-Performance Tensor
Transposition) overcomes this limitation but does not currently
support GPUs. In this paper, we describe TTLG, an efficient
tensor transposition library for NVIDIA GPUs. We present
an experimental evaluation comparing performance with cuTT
and TTC.
Autotuning Tensor Transposition: Lu et al. [5] optimized
matrix transposition by combining static analysis and empir-
ical search to tune optimization parameters related to tiling,

578

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00067

vectorization, memory alignment, etc. Wei et al. [6] presented
a three-phase autotuner to improve tensor transposition on a
dual-socket system with Intel Westmere processors and an
IBM POWER 755 with four Power7 processors. TTC [3]
explores candidate implementations that cover a range of
combinations of loop orders and blocking to choose the
fastest candidate based on measured execution time. cuTT [2]
supports two modes to select the tensor transposition algorithm
and associated parameters at runtime. In heuristic mode, cuTT
employs the MWP-CWP GPU performance model [7], based
on the amount of warp-level parallelism. In measurement
mode, cuTT creates and executes a number of plans to choose
the best configuration. We use a performance model, based
on linear regression coefficients developed off-line, to choose
the best kernel and configuration parameters. We present an
experimental evaluation, comparing performance against TTC
and cuTT, with and without including the model/plan time.
Lower Dimensional (2D or 3D) Tensor Transposition:
Prior work has focused on improving 2D tensor (matrix)
transpositions both for CPUs [5], [8] and GPUs [9]. Jodra
et al. [10] proposed algorithms for three-dimensional tensor
transposition on GPUs based on simple extensions to 2D
tensor transposition algorithms to achieve high performance
through coalesced memory accesses. We develop a generic
tensor transposition algorithm that can efficiently handle arbi-
trary dimensional tensor transpositions.
Asymptotic Analysis: Aggarwal et al. [11] present lower
bounds on data movement for matrix transposition, under the
constraint that efficient data movement requires contiguous
blocks of a minimal size B to be moved to/from secondary
storage. Their lower bounds expressions imply that when B2

is larger than the capacity of fast memory, multiple passes
of data movement between slow and fast memory will be
required. Later, we discuss the data-movement complexity of
our tensor transposition schemes in terms of the number of
cache-line transactions. For the GPU transposition context, B2

is much smaller than the capacity of L1/L2 cache and therefore
corresponds to a single pass for the lower bounds analysis of
Aggarwal et al. [11].

III. OVERVIEW OF APPROACH

In this section, we use examples and provide an overview
of the TTLG approach to tensor transposition. The tensor
transposition operation is fully parallel, with no data depen-
dencies. Each elementary data movement can be performed
completely independently of any other. However, efficient data
movement is the challenge. We first use matrix transposition to
highlight how a key requirement for efficient transposition can
be achieved on GPUs: coalesced data access. Figure 1 shows
the transposition of a 2D 128 × 128 matrix using 32 × 32
slices, with each slice being handled by a different thread
block. A shared memory buffer of size 32 × 33 (the extra
column is padded to avoid share-memory bank conflicts) is
used. Each warp in a thread block copies 4 row-segments
in the 2D slice from global-memory to shared-memory, with
adjacent threads in the warp moving contiguous elements in
the row-segment (row-major linearized layout in memory),
thereby ensuring coalesced global-memory access. Different
warps bring different row-segments of the input matrix and
place them in corresponding locations in shared memory.

��

��

����	
��	
��

���

��
�

��
� �����

��
��

��	��	
��	
��

���

��
�

� ���
����

�� �
� ��� �� �
��
��

���
��
����
�

��

���

���

Fig. 1: Matrix transposition

The set of warps then read the buffered data from shared-
memory, column-segment by column-segment, and perform
coalesced stores into contiguous elements in a row of the
result matrix in global memory. Thus efficient coalesced data
movement is achieved both for copy-in from global-memory
to shared-memory, as well as write-out from shared-memory
to global-memory. Without padding, all elements in a column
of a 32 × 32 2D shared-memory buffer would be mapped to
the same shared-memory bank (there are 32 banks), causing
severe slowdown due to serialization of accesses from a
single bank. But the padded 32 × 33 shared-memory buffer
causes staggering of the element-to-bank mapping so that each
element in a column of data in the 2D buffer is mapped to a
distinct shared-memory bank, preventing any bank conflicts.

The above strategy can be directly applied to higher dimen-
sional tensors. For example, let us consider the tensor transpo-
sition [a, b, c, d] ⇒ [d, c, b, a], where ‘a’ is the fastest varying
dimension in the input and ‘d’ is the fastest varying dimension
in the output1. Similar to matrix transposition, a warp can
read contiguous elements from the input tensor (corresponding
to dimension ‘a’) to shared memory and then write out to
contiguous memory locations in the output tensor in coalesced
manner. With tensor transposition, a set of contiguous indices
can be logically treated as a single ‘combined’ index.

For example, let the extent of dimensions a, b, c, d be
16, 2, 32, 32, respectively. If the above matrix transpose ap-
proach is followed, only 16 contiguous elements can be read
along dimension ‘a’, and only half of the 32 threads in a
warp can be active, leading to underutilization of resources.
Instead, ‘a’ and ‘b’ can be viewed as a “combined” dimension
in the input tensor, since they are laid out contiguously in
the tensor. Thus contiguous groups of 32 elements can now
be read in from the input tensor to shared memory. In other
words, the columns in shared memory are mapped to a × b.
Since ‘d’ is the fastest varying dimension of the output tensor,
it is mapped to rows in the 2D shared-memory buffer. While
writing out from shared memory, all the threads in a warp will
simultaneously read a column of shared memory and write to
contiguous locations in the output tensor.

Figure 2 illustrates the transposition approach when the
(combined) fastest varying index-sets of the input and output
tensor are distinct and sufficiently large (greater than 32). This
is one of four transposition schemas incorporated in TTLG,

1While TTLG is implemented in C and uses a row-major linearized view
of multidimensional arrays, we use the MATLAB/Fortran convention for the
abstract notation to stay consistent with previous publications on this topic.

579

�����
����	

�

���

��

�

�

��

��

��

�

�

�
 � � � � ! �
�
�

�
�
�

�
!

�
� �� �
 ���� �� � ��
�! �� �� �� �

�� �! �� �� ���
 �� �� ��
� �� �! �� �� �
 � �
 � � ! � � �� �
 ��

�� �� �� �

� �

���

��

�
�

��

�� �� �	

��
��

�
 � � � ���

���
��
���	
�

�� �� � �
 ��
��

��

�

���

� �

���

��
�� �� ��

�

�

�

�

� �� �
� �

������
����	

�
�

Fig. 2: Tensor transposition (0, 1, 2) → (2, 1, 0): Orthogonal-
Distinct

called the Orthogonal-Distinct schema. This case represents a
direct generalization of the 2D matrix transposition scheme,
where one or more contiguous fastest-varying dimensions for
the input (output) tensor are combined to create a longer
virtual dimension. For this scheme to be applicable, the set of
combined tensor indices from the input tensor and the output
tensor cannot overlap (this is elaborated upon later in this
section); hence the label for this scheme. The figure depicts the
transposition of [i0, i1, i2] ⇒ [i2, i1, i0]. Each thread block
transposes a 9×7×64 slice of the input tensor (we explain later
how slice-size is chosen) in 4 phases. In each phase, each
thread block processes 32×32 elements using a 32×33 2D
shared-memory buffer (phases dealing with elements at a slice-
boundary may process fewer elements). Each phase consists of
two steps: i) copying elements from the input tensor to shared
memory, and ii) moving elements from shared memory to the
output tensor.

Next, let us consider the tensor transposition [a, b, c, d] ⇒
[c, b, d, a], with the extent of dimensions a, b, c, d being
8, 2, 8, 8, respectively. Possible ways of combining indices
for the Orthogonal-Distinct schema are: [{a, b}, c, d] ⇒
[{c}, b, d, a] (slice size: 16×8), [{a}, b, c, d] ⇒ [{c, b}, d, a]
(slice size: 8×16), [{a}, b, c, d] ⇒ [{c, b, d}, a] (slice size:
8×128). With any of these choices, at least one of the
input/output tensors will involve a combined fastest-varying
index smaller than 32, resulting in inefficient data transfer
to/from global-memory.

However, let us consider the combining of indices as:
[{a, b, c}, d] ⇒ [{c, b, d}, a]. Now the combined index for the
input tensor and the combined index for the output tensor both
have a fused size of 128 each. But such a combining involves
some common indices on both the input and output tensor.
This means that the previous 2D orthogonal view for the
Orthogonal-Distinct schema does not hold, i.e., the overlapped

������	�
��
��
��� �������������
��

��������	�����
��	����
������	�
	�����
����
��	�����������	���
 ���
�����
����
���
���!"
���#���$�%&

�'��(�!��)	����
�
��!����	�� ����
��
������
������
#���$�*&

�'��(�!����	���+�
��������	�����
��	����
������	�
	�����
����
��	�����������	���
 ���
�����
����
���
���!"
���#���$�,+���$�%&

������	�
��#-&�.�-/

�
��#-&�0���/

1�

�
�1�

2��

//
2��

�'��(�!����	����
�������	����
�������	���
�
����
���
���!"
���#���$�,&

��������	��3
��
�!���
�����4
�����
���
��	�����������	���
 ���
�����
����
���
���!"
���#���$�5&

6���������������

��
!����

����
!��/

1� 2�� 2��

1�

2�
��#-&7�
��#8&�9����#::&�
�
��#;<-=&7�
��#;<8=&�9��

Fig. 3: Taxonomy of schema for tensor transposition

Algorithm 1: Taxonomy

Input : in{i0, i1, · · · , iN}; B: Required slice size [Alg. 3]
ρ: Permutation function, maps indices from input to output

Output: out{ρ (i0, i1, · · · , iN)}
1 function taxonomy()
2 I = ∅; Ivol = 1
3 index = 0 // fvi
4 while (Ivol < B) do
5 Ivol = Ivol ∗ dim(index)
6 I = I ∪ {index}
7 index = index+ 1

// similarly compute O and Ovol
8 if (I ∩ O == ∅) then
9 transposeOrthogonalDistinct()

10 else if (i0 == ρ(i0)) then
11 if (dim(i0) ≥ WS) then
12 transposeFVIndicesMatchLarge()
13 else if ((dim(i0) ∗ dim(i1) ≥ WS) AND (dim(ρ(i0) ∗

dim(ρ(i1) ≥ WS)) then
14 transposeFVIMatchSmall()
15 else
16 transposeOrthogonalArbitrary()

17 else
18 transposeOrthogonalArbitrary()

indices cannot be mapped both to the columns as well as the
rows of a 2D shared-memory buffer. However, as explained
later with algorithmic details, it is feasible to achieve coalesced
global-memory accesses both for copy-in from the input-tensor
as well as copy-out to the output-tensor, by using indirection
arrays to address the data elements in the shared-memory
buffer. Instead of the simple row-wise and column-wise access
of data in the shared-memory buffer, more complex data access
patterns are required, but can be achieved efficiently because
of the flexibility in accessing data from shared-memory. This
schema is labeled Orthogonal-Arbitrary.

In addition to the two cases discussed above, TTLG im-
plements specialized data movement strategies for the case
where the fastest varying index (FVI) is the same for both
input and output tensors, e.g., [a, b, c, d] ⇒ [a, d, c, b]. For the
FVI Match case, if the FVI extent is greater than or equal to
32, a direct copying strategy is performed, without any need
to buffer data in GPU shared-memory. If FVI extent is less
than 32, a shared-memory buffering strategy is used, where a
set of contiguous segments of size —FVI— are copied into a
shared-memory buffer and then copied out to the output tensor.

A high-level decision flow-chart for choice of the different
schema is shown in Fig. 3, and also shown as pseudocode

580

Algorithm 2: Orthogonal-Distinct

Input : in{i0, i1, · · · , id−1} : d-dimensional input tensor
dimsIn : Selected set of dimensions for input slice [Alg. 3]
dimsOut : Selected set of dimensions for output slice[Alg. 3]
blockA : Selected blocking factor for the slowest varying

dimension in the input slice [Alg. 3]
blockB : Selected blocking factor for the slowest varying

dimension in the output slice [Alg. 3]
in offset : input offsets [Alg. 4]
out offset : output offsets [Alg. 4]
ρ: Permutation function, maps indices from input to output

Output: out{ρ(i0), ρ(i1), · · · , ρ(id−1)} : d-dimensional output tensor
1 kernel transposeOrthogonalDistinct()
2 vol input slice = volume(dimsIn, blockA)
3 vol output slice = volume(dimsOut, blockB)
4 coars rows = ceil (vol input slice/WS)
5 coars cols = ceil (vol output slice/WS)
6 [ip, · · · , oq , · · ·] = decode (blockid)
7 [in base, out base] = compute_base (ip, · · · , oq , · · ·)
8 out row = threadid%WS
9 in col = threadid%WS

10 for row tile = 0 to coars rows do
11 start row = threadid/WS
12 start col = threadid/WS
13 for col tile = 0 to coars cols do
14 for

in row = start row to WS step threadblksize/WS
do

15 sm buf [in row][in col] =
in base[in offset [in row + row tile ∗WS] +
in col + col tile ∗WS]

16 __syncthreads()
17 for out col = start col to WS step

threadblksize/WS do
18 out base[out offset [out col + col tile ∗WS] +

out row + row tile ∗WS] =
sm buf [out row][out col]

19 __syncthreads()

in Alg. 1. In Figure 3, index fusion refers to fusing the
indices that occur consecutively both in the input and in the
output tensors. For example, if [i0, i1, i2, i3] ⇒ [i3, i1, i2, i0] is
the transposition, after fusing the consecutive indices i1 and
i2, we consider the transposition as [i′0, i

′
1, i

′
2] ⇒ [i′2, i

′
1, i

′
0],

where size(i′1) = size(i1) × size(i2), size(i′0) = size(i0) and
size(i′2) = size(i3). In the decision flowchart, first the FVI
on input and output tensor are compared (shown using the
permutation function in the figure). If they match, the extent
of FVI is compared with 32. If larger, direct transfer without
shared-memory is used (Alg. 7). If FVI extent is smaller than
32, but the product of extents of the two fastest varying indices
exceeds 32, a specialized shared-buffering strategy is used
(Alg. 6); if not, the Orthogonal-Arbitrary scheme (Alg. 4)
or Alg. 6 may be used (based on performance prediction).
On the left half of the flowchart, we have the case of non-
matching FVI, where transposition is performed using either
the Orthogonal-Distinct (Alg. 2) or the Orthogonal-Arbitrary
(Alg. 4) strategy.

IV. ALGORITHMIC DETAILS FOR TENSOR TRANSPOSITION

As described in Section III, to perform a transpose opera-
tion, we combine multiple dimensions starting from the fastest
varying dimension (in both input and output tensor) until we
obtain a sufficient number of contiguous elements to achieve
efficient coalesced access for data movement from/to global

memory. Algorithm 2 presents details for the Orthogonal-
Distinct case. For this algorithm to be applicable, there should
be no common indices among the selected FVI indices (for
combining) from the input and output tensors. For example,
consider the transpose operation [a, b, c, d] ⇒ [d, c, b, a]. If we
combine indices a, b, c on the input and combine indices d,
c on the output, index c would be included on both the input
and output tensors, making it inapplicable for the Orthogonal-
Distinct case. We refer to the product of extents of selected
indices as the volume of the input slice and output slice. We
use Algorithm 3 to get the selected indices for the input and
output slices (shown as dimsIn and dimsOut in the Input of
Alg. 2). Algorithm 3 uses performance modeling to predict
the execution times and chooses the indices for the slices
(described in detail later). Once the slice sizes are chosen at
Line 2 and at Line 3, each data slice is assigned to a thread
block for transposition.

For each data transfer, the kernel needs to compute offsets
for the global-memory as well as for the shared-memory,
using indices of all the dimensions of the input tensor and
the output tensor – requires expensive mod and div operations.
The kernel calculates for each thread block, the base addresses
corresponding to the outer indices of the tensors, and the
offset addresses corresponding to the inner indices of the
tensors. The decode function at Line 6 performs mod and
div operations on blockid (refers to the built-in CUDA variable
blockIdx.x) to get the outermost indices of the tensors and the
compute_base function computes the base addresses (at
Line 7) using these indices and the dimension sizes (not shown
in the parameters). Offset addresses are precomputed in input
and output offset arrays with the stride values corresponding to
input and output slice dimensions (computed by Algorithm 4,
see Input of Algorithm 2). We note that the offset arrays are
common for all the slices. Since the offset indexed arrays are
invariant across the slices and shared by all the thread blocks,
there is high reuse. Hence these arrays are mapped to texture
memory. In practice, cache hit rates for the offset arrays are
generally greater than 99%.

For the Orthogonal-Distinct case, a fixed shared memory
buffer of size of WS × (WS + pad), i.e., 32 × 33, is used
(one extra column is used as padding to avoid bank conflicts).
If the volume of the data slice handled by a thread block is
higher than the shared memory capacity, thread coarsening is
used. A sub-slice of size WS ×WS , (32 × 32) is copied in
from the input tensor to shared memory at Line 15 and then
copied out to the output tensor at Line 18. This is done in
multiple iterations until the complete slice is processed. The
warp size (32) is used for determining the shared memory
size and the sub-slice size; the advantages associated with
this are: (1) As the warp size is 32, if each warp brings in
32 elements or its multiple, we can expect to achieve 100%
warp efficiency; (2) Since the transaction size is 128 bytes,
all the 32 elements can be moved in a single transaction
in case of float (two transactions in case of double),
utilizing the complete transaction(s) in both the cases; (3) As
the maximum shared memory limit per SM is 48KB, using
it for storing 32*33 float or double values ensures good
occupancy. All the read and write accesses are fully coalesced
for this algorithm and there are no bank conflicts, enabling

581

Algorithm 3: Slice size choice for Orthogonal-Distinct

Input : I: Set of indices for the input tensor, {i0, i1, . . . , id−1}
O: Set of indices for the ouput tensor, {o0, o1, . . . , od−1}
SharedMemLimitPerSM : Shared memory size of a SM
overbooking factor : Multiplication factor for overbooking

the threadblocks (empirical)
Output: blockA : Selected blocking factor for the slowest varying

dimension in the input slice
blockB : Selected blocking factor for the slowest varying

dimension in the output slice
dimsIn : Selected set of dimensions for the input slice
dimsOut : Selected set of dimensions for the output slice

1 function slice_size_choice()
2 volume input = Πd−1

k=0Rik
3 min num blocks = num SM ∗ SharedMemLimitPerSM /

shared memory used per block // 32× 33
4 maxlimit = volume input / (overbooking factor ∗

min num blocks ∗ shared memory used per block)
5 bestT ime = ∞
6 for limitir = WS to maxlimit step WS do
7 for limitor = WS to maxlimit/limitir step WS do
8 for k = 1 to |I| do
9 if Πk

l=0Ril ≥ limitir then
10 blockA = ceil(limitir/Πk−1

l=0 Ril)
11 dims input slice = I − {ik+1, . . . , id−1}
12 break

13 for k = 1 to |O| do
14 dims output slice = O − {ok+1, . . . , od−1}
15 if (dims input slice ∩ dims output slice) �= ∅ then
16 break

17 if Πk
l=0Rρ−1(ol)

≥ limitor then
18 blockB = ceil(limitor/Πk−1

l=0 Rρ−1(ol)
)

19 time = get PredictedTime(ΠblockAdim−1
k=0 Rik ,

ΠblockBdim−1
k=0 Rρ−1(ok)

, blockA, blockB,
blockAdim, blockBdim)

20 if time ≤ bestT ime then
21 bestT ime = time
22 best dims in = dims input slice
23 best dims out = dims output slice
24 best blockA = blockA
25 best blockB = blockB

26 break

27 dimsIn = best dims in; dimsOut = best dims out
28 blockA = best blockA; blockB = best blockB

good performance of this kernel. Pre-computation of the offset
arrays – by avoiding expensive mod and div operations in
the inner-most loops – further contributes to high achieved
performance.

Algorithm 3 shows how slice sizes are chosen for Algo-
rithm 2. We use the performance model discussed in Section V
to choose the slice sizes with the best predicted performance.
Here, all slices of volume A × B are considered, where A
and B are the combined dimension lengths along the input
and output tensors from the fastest varying dimension, and
both A and B are the minimum value above some multiple
of WS (two outer loops in the algorithm move in steps of
WS). To get the minimum value above some multiple of
WS , we also consider possible blocking of a dimension (the
slowest varying dimension in the group is blocked – Line 10
and Line 18). If each warp brings in warp size (or multiple)
number of elements, we can achieve good warp efficiency.
The maximum slice size is limited to ensure sufficiently

Algorithm 4: Offset calculation for Orthogonal-Arbitrary

Input : in{i0, · · · , id−1} : d-dimensional input tensor
I : Set of indices for the input tensor, {i0, i1, · · · , id−1}
O : Set of indices for the output tensor, {o0, o1, · · · , od−1}
dimsIn : Selected set of dimensions for input slice [Alg. 3]
dimsOut : Selected set of dimensions for output slice[Alg. 3]
perm : Permutation of output indices in terms of input indices

Output: input offset : Slice offset for input
output offset : Slice offset for output
sm out offset : Slice offset in buffer (shared memory)

corresponding to output
1 function Offset_Calculation()
2 dimsOnlyOut = dimsOut− dimsIn
3 ilimit = volume(dimsIn)
4 olimit = volume(dimsOnlyOut)
5 for rowId = 0 to olimit do
6 index = rowId
7 offseti = 0
8 for iter = 0 to num_dims (dimsOnlyOut) do
9 dval = dimsOnlyOut[iter] ;

10 offseti += (index%dval) ∗ get_stride(I,
perm[dimsOnlyOut[iter]]);

11 index = index/dval;

12 input offset[rowId] = offseti ;
13 for colId = 0 to num_dims (dimsIn) do
14 buffoff = decode(rowId ∗ ilimit+ colId, dimsOut,

get_stride(dimsIn+ dimsOnlyOut,
permute(dimsOut), perm));

15 sm out offset[rowId][colId] = buffoff ;
16 offseto = decode(rowId*ilimit+ colId,

dimsOut,get_stride(O,
permute(dimsOut), perm));

17 output offset[rowId][colId] = offseto ;

high thread block count for good occupancy. If slice vol =
input slice size × output slice size, in Algorithm 2, the
number of elements moved by each thread block is slice vol;
higher the slice vol, lower the total number of thread blocks.
It is important to have a sufficient number of thread blocks to
occupy all the SMs (Streaming Multiprocessors) in a GPU to
achieve good performance. We empirically calculated a value
– overbooking factor at Line 4 – that when multiplied with
min num blocks, gives a sufficient number of thread blocks,
based on which the upper bound (maxlimit) for a slice size
is calculated. For each admissible slice size, its performance is
estimated using the performance evaluation model at Line 19
(explained in Section V).

Algorithm 2 requires no common indices between the
selected indices in the input and the output. Algorithm 5
is used when there is at least one common index among
the combined FVI indices of the input and output tensors.
Similar to the algorithm for the Orthogonal-Distinct case
(Algorithm 2), Algorithm 5 also uses offset arrays to store
the strides along the dimensions mapped to rows and columns
of the shared memory. Algorithm 4 shows the computation
of these offset arrays. If IS = {i1, . . . ix} is a set of input
slice indices and OS = {o1, . . . oy} is a set of output slice
indices, OOS = OS − IS is a set of indices that are present
in the output slice but not in the input slice (in the algorithm,
we refer to IS as dimsIn, OS as dimsOut and OOS as
dimsOnlyOut). The shared memory buffer can be viewed as
2D, with indices from the set IS on columns and with indices
from the set OOS on rows. In Algorithm 4, in each iteration,
at Line 9, dval takes the size of a index i such that i ∈ OOS.

582

Algorithm 5: Orthogonal-Arbitrary

Input : in{i0, i1, · · · , id−1} : d-dimensional input tensor
dimsIn : Selected set of dimensions for input slice [Alg. 3]
dimsOut : Selected set of dimensions for output slice[Alg. 3]
blockA : Selected blocking factor for the slowest varying

dimension in the input slice [Alg. 3]
blockB : Selected blocking factor for the slowest varying

dimension in the output slice [Alg. 3]
in offset : input offsets [Alg. 4]
out offset : output offsets [Alg. 4]
sm out offset : shared memory output offsets [Alg. 4]
ρ: Permutation function, maps indices from input to output

Output: out{ρ(i0), ρ(i1), · · · , ρ(id−1)} : d-dimensional output tensor
1 kernel transposeOrthogonalArbitrary()
2 inp vol = volume(dimsIn, blockA)
3 out vol = volume(dimsOut - dimsIn, blockB)
4 [ip, · · · , oq , · · ·] = decode (blockid)
5 [in base, out base] = compute_base (ip, · · · , oq , · · ·)
6 row incr = ceil(inp vol)/threadblocksize
7 start col = threadid%inp vol
8 start row = threadid/inp vol
9 for row = start row to out vol step row incr do

10 for col = start col to in vol step threadblocksize do
11 sm buff [row ∗ inp vol + col] =

in[in offset [row] + col]

12 __syncthreads()
13 for row = start row to out vol step row incr do
14 for col = start col to in vol step threadblocksize do
15 out[out offset [row ∗ inp vol + col]] =

sm buff [sm out offset [row ∗ inp vol + col]]

The algorithm computes the starting address of each row using
every dval and stores it in the input offset array at Line 12.
Similarly, the algorithm computes the offsets of every element
in the IS by OOS array corresponding to shared memory and
output tensor (global memory) into sm out offset array at
Line 15 and output offset array at Line 17, respectively.

Algorithm 5 presents pseudocode for the Orthogonal-
Arbitrary case. Here, each thread initially adds the base
address of the slice to the corresponding input offset to find
the first element to be copied. Thereafter, each thread adds the
row length to find the next element to be copied, thus avoiding
the expensive mod and div operations to compute the address
of the element (at Line 11). Note that this optimization is
enabled by the property that all the dimensions being mapped
to the slice are in the input order (contiguous). However,
this optimization cannot be applied to the output because the
dimensions being mapped to the slice might not be in same
order as in the output tensor. Hence, an output offset array
is used to point to each element of the slice (at Line 15).
We also need an offset array for the shared memory read
access (i.e. while writing to the output tensor) as there is no
regular pattern in the way elements get mapped to the shared
memory – the pattern depends on the given permutation and
sizes of the dimensions. On the input side we are guaranteed
full coalescing, but on the output side the accesses may have
breaks in between, if the dimensions being mapped to the slice
are not consecutive in the output tensor.

Even though Algorithm 5 can handle all the tensor trans-
position cases, it has the additional overhead of offset arrays.
Also, it could suffer from some shared memory bank conflict.
However, these issues can be solved by specialization in many
cases.

Algorithm 6: FVI-Match-Small

Input : in{i0, i1, · · · , id−1} : d-dimensional input tensor
ρ: Permutation function, maps indices from input to output

Output: out{ρ(i0), ρ(i1), · · · , ρ(id−1)} : d-dimensional output tensor
1 kernel transposeFVIMatchSmall()
2 N0 = dim(i0)
3 [ik lb, i1 lb] = decode (blockid)
4 warpid = threadid/WS

// Copy in a chunk of in[i0, i1 : b, · · · , ik : b, · · ·] to
shared memory buffer in coalesced manner

5 for iter = i1 lb+ threadid to (i1 lb+N0 ∗ b) step WS do
6 sm buf [warpid][iter] = in[threadid%WS][iter]
7 __syncthreads()

// Copy from shared memory to
out[i0, ik : b, · · · , i_1 : b, · · ·] in coalesced manner

8 for iter1 = ik lb+ threadid to (ik lb+N0 ∗ b) step WS do
9 out[threadid%WS][iter1] =

sm buf [threadid/N0][threadid%N0 + warpid ∗N0]

1-

1-�7��

�	�

�

Fig. 4: Illustration of approach for FVI-Match-Small case.

Algorithm 6 presents pseudocode for the approach to ef-
ficient transposition of tensors with small matching fastest
varying index (FVI). The scheme is illustrated in Fig. 4. In
order to achieve high warp efficiency as well as coalesced
access on both reading from and writing to global memory,
data is moved in slices that can be logically mapped to a 3D
block of size b × b ×N0 (b is the blocking factor on indices
next-to fastest varying index on input and output, whose size
is chosen by performing modeling). The threads in a warp
collectively move a bundle of b consecutive rows along i1,
while other warps in the thread block concurrently move other
contiguous chunks of size b × N0 for adjacent values of ik,
where ik is the index of the second fastest varying index in
the output tensor. After the b×b×N0 elements are copied into
a shared memory buffer at Line 6, they are then collectively
written from the buffer to the output tensor in transposed form
at Line 9. This is done by having each warp now collect
a bundle of b ‘pencils’ along the orthogonal dimension and
writing a contiguous chunk of b × N0 words in the output
tensor.

Viewing the b × b × N0 3D shared-memory buffer as
an equivalent 2D array with b rows and bN0 columns, as
shown in Fig. 4, suitable padding is introduced to ensure that
threads in a warp can access a collection of vertically stacked
‘pencils’ without any bank conflicts. Let us assume that the
first N0 elements in the first row of the buffer map to banks

583

Algorithm 7: FVI-Match-Large

Input : in{i0, i1, · · · , id−1} : d-dimensional input tensor
ρ: Permutation function, maps indices from input to output

Output: out{ρ(i0), ρ(i1), · · · , ρ(id−1)} : d-dimensional output tensor
1 kernel transposeFVIMatchLarge()
2 [ip, i1] = decode (blockid)
3 [in base, out base] = compute_base (ip, i1) ; // ρ(ip)

and ρ(i1) are used to compute out_base.
4 for iter = threadid to N0 step threadblocksize do
5 out base[iter] = in base[iter]

0, 1, · · ·N0 − 1, the value of pad is chosen so that element 0
in row 1 of the 2D view of the shared-memory buffer maps to
memory bank N0. This ensures completely conflict-free access
for the write-out phase.

Finally, Algorithm 7 shows pseudocode for the case of
matching FVI but range greater than WS . For this case, no
shared memory is used, but contiguous elements are just read
in to registers and written out in a coalesced manner by threads
of a warp.

A. Coarsening
For all the algorithms except the Orthogonal-Distinct case,

the slice size is chosen based on the shared memory size used
by a thread block. As discussed in Algorithm 2 and Algo-
rithm 5, for each slice, a base address calculation with costly
mod and div operations is required. This cost can be alleviated
by using thread coarsening. We apply a heuristic to possibly
consider one dimension for coarsening. The slice size gets
multiplied by the size of the coarsening dimension (if any).
The expensive base address computation using mods and divs
is only performed for the first sub slice. For subsequent sub
slices, the base addresses (input and output) are obtained by
adding the strides corresponding to the coarsened dimension
to the base addresses of the previous sub slice. The heuristic
we use to select the coarsening dimension is to consider the
first dimension in the input order from the fastest varying
one with extent between 4 and 32. A very high coarsening
factor may reduce the total number of thread blocks and may
affect occupancy and cause tail effects. In order to avoid this
problem, we only consider coarsening for tensors of sizes
greater that 2MB.

B. Register Usage
Modern GPUs map small arrays to registers when the index

can be statically determined to be constant. To make use of
this we ensure constant indexing to the dimension and the
stride arrays in the code. We do this by writing macro defined
code corresponding to the tensor rank (until rank 15). Since
dimension-blocking is possible on the input and output tensor,
we need to index into the arrays corresponding to their index
locations to identify the full and partial blocks. If this checking
is done via variables (as blocking dimension index varies
with respect to input), it could inhibit the register usage of
the arrays. In order to handle this, we always move the two
blocking dimensions to the beginning of the arrays and index
them by 0 and 1, and consider the rest of the dimensions from
index 2 onwards. This way, all the array accesses required for
slice base calculation and for checking the full and partial
blocks are fully compile time determinable constants.

Input Output
Algorithm DRAM SM TM DRAM SM TM
FVI-Match-Small C1 C1 0 C1 C1 0
FVI-Match-Large C2 0 0 C2 0 0

Orthogonal-Distinct C3 C3 C3 C′
3 C′

3 C′
3

Orthogonal-Arbitrary C3 C3 C3 C′
3 C′

3 2 × C′
3

TABLE I: Analysis of all the four proposed algorithms.

C. Algorithm Analysis
In this sub-section, we quantify the data movement required

for the various cases. For transposition [i0, i1, . . . , in−1] →
[o0, o1, . . . , on−1], we quantify the number of load transactions
and store transactions for each type of memory: DRAM,
shared memory (SM) and texture memory (TM, used for offset
arrays). We consider the 128 byte GPU transactions that can
move 32 float elements at a time. For the FVI-Match-Small
(Alg. 6) case, if b is the blocking factor on i1 and o1 (next
indices to FVI), the number of DRAM load transactions is

C1 =
⌈ size(i0)×b

32

⌉×
∏n−1

k=1 size(ik)

b , because b× size(i0) con-

tiguous elements are moved by a single warp and
∏n−1

k=1 size(ik)

b
is the total number of warps. We can see from Alg. 6 that the
#DRAM store transactions, #SM store transactions and #SM
load transactions are the same as C1. Table I shows the anal-
ysis for each of the proposed algorithms. For the FVI-Match-
Large (Alg. 7) case, the number of DRAM load transactions is

C2 =
⌈ size(i0)

32

⌉×∏n−1
k=1 size(ik). Here, the left operand of the

product (×) shows the number of contiguous elements moved
by a thread block and the right operand shows the number of
thread blocks, and there is no use of shared memory. Similarly,
for the Orthogonal-Distinct (Alg. 2) and Orthogonal-Arbitrary
(Alg. 5) cases, if IS = {i0, . . . ix} is a set of input slice
indices and OS = {o0, . . . oy} is a set of output slice
indices, the number of DRAM load and store transactions is

C3 =
⌈
(
∏x−1

p=0 size(ip))×bx
32

⌉
×

∏n−1
k=x size(ik)

bx
, bx is the blocking

factor on ix and C ′
3 =

⌈
(
∏y−1

q=0 size(oq))×by
32

⌉
×

∏n−1
k=y size(ok)

by
,

by is the blocking factor on oy , respectively. Here, along
with DRAM and SM transactions, we have TM transactions
used for the offset arrays. The last row of Table I shows the
TM transactions corresponding to input offset, output offset
and sm out offset arrays of Alg 4. We note that for ease of
presentation we have assumed that a blocking dimension size
is a perfect multiple of its blocking factor (computation for
the remainder blocks is ignored).

V. PERFORMANCE MODELING OF TRANSPOSE

As discussed in the preceding sections, the transpose oper-
ation for some permutations can be performed by more than
one algorithm, and multiple choices may exist for parameters
like slice sizes and block sizes for each algorithm. For ex-
ample, both Algorithm 2 and Algorithm 5 can be used for
a transpose operation in which the fastest-varying-index of
the input tensor does not match that of the output tensor;
and for both these algorithms, slice and block sizes must be
chosen. To address this, we use a performance model based on
linear regression to predict the execution times for each of the
proposed algorithms for different parameters. The comparative
analysis in Section IV-C is not sufficiently detailed for accurate
performance modeling. Instead we use additional parameters

584

to construct a linear regression model for each kernel. Due
to space constraints, we only present modeling details for the
more complex kernels, and omit modeling details for the FVI-
Match-Small and FVI-Match-Large cases. We first describe the
dataset used for constructing the models.
DataSet. To create a diverse dataset, we consider several
transpose test cases that cover different ranks, volumes,
extents (sizes of dimensions) and orderings among the
extents. Tensor ranks range from 3 to 6 and include all
possible permutations. We note that ranks 1 and 2 are also
covered by this range when extents get combined with index
fusion. Volumes of the tensors range from 16MB to 2GB.
Different orderings among extents include (example shown in
brackets for a 3D tensor with indices i0, i2, i3): (1) all same
(i0 = i1 = i2) , (2) monotonically increasing (i0 < i1 < i2),
(3) monotonically decreasing (i0 > i1 > i2), (4) increasing
till the center dimension and then decreasing (i0 < i1 > i2),
(5) decreasing till the center dimension and then increasing
(i0 > i1 < i2). We randomly select four-fifths of all the
configurations to form training data and the remaining
configurations as test data.

Features. A key step in the modeling is the identification of
appropriate parameters that capture the performance variation
of the kernel. We now discuss the features used for modeling
the Orthogonal-Distinct and Orthogonal-Arbitrary kernels (see
Table II). The total execution time of any transpose is directly
related to the amount of data moved. Thus, data volume
is selected as a feature for both kernels. For these models,
we also use input slice volume, output slice volume, and
total number of threads (#ThreadBlocks*ThreadBlockSize) as
features in the model.

As seen for the Orthogonal-Distinct kernel, the data slice
processed by a warp, {input slice X output slice}, is viewed
as a 2D space, and the transpose operation in the inner loop
happens on each 32 × 32 tile of the 2D space. Since the
input slice an doutput slice may not be perfect multiples of
the warpsize, warp-level inefficiency due to idle threads will
occur with “boundary” tiles. An abstract measure of number
of “cycles” is computed to capture the inefficiency due to idle
threads in warps.

We calculate the number of cycles spent on input and output
for each full tile and the partial tiles. Let the number of full
tiles and the count of the three possible kinds of partial tiles
(remainder on input slice only, remainder on output slice only,
and remainder on both input and output slices) be n1, n2, n3,
n4, respectively, and the remainder tiles on input slice and
on output slice be rem1 and rem2 respectively. Number of
cycles spent is calculated as f1 = n1 × (32 + 32) + n2 ×
(32 + rem2) + n3 × (rem1 + 32) + n4 × (rem1 + rem2).
With respect to the blocking performed on one of the indices
on the input slice and one of the indices on the output slice,
when the extent of the tensor is not a perfect multiple of the
block-size for a partially traversed index in a slice, there will
be partial slices similar to the partial tiles discussed above.. If
the number of full and partial slices are N1, N2, N3 and N4;
and f1, f2, f3 and f4 are the cycles calculated for full and
partial slices, then the total number of cycles is computed as
N1 × f1 +N2 × f2 +N3 × f3 +N4 × f4.

For the Orthogonal-Arbitrary kernel, we compute the

Algorithm Feature Estimate Std. Error t value Pr(> |t|)

Orthogonal-
Distinct

Volume 1.278e-11 5.097e-15 2508.13 <2e-16
NumBlocks 5.001e-08 9.926e-11 503.88 <2e-16
Input slice 7.835e-07 9.369e-09 83.62 <2e-16
Output slice 1.252e-06 9.355e-09 133.81 <2e-16
Cycles -2.692e-11 1.222e-12 -22.03 <2e-16

Orthogonal-
Arbitrary

Volume -3.018e-11 3.189e-12 -9.465 <2e-16
NumThreads 2.730e-10 6.492e-12 42.058 <2e-16
Total Slice 2.126e-07 2.086e-08 10.196 <2e-16
Input Stride -8.880e-12 7.295e-13 -12.173 <2e-16
Output Stride -1.091e-11 7.344e-13 -14.851 <2e-16
Special Instr 3.047e-11 2.138e-12 14.246 <2e-16
Cycles 5.112e-10 2.439e-11 20.962 <2e-16

TABLE II: Parameters and coefficients of linear regression fits for
the Orthogonal-Distinct and Orthogonal-Arbitrary cases.

cycles in terms of the number of transactions on the input
and on the output side. Similar to the Orthogonal-Distinct
case, we can have partial input and partial output slices
based on the chosen blocking factors. If f1 (=C3 + C ′

3, from
Section IV-C) is the number of transactions on the full slices,
and f2, f3 and f4 are the number of transactions on the three
types of partial slices, the number of cycles is calculated as
f1 + f2 + f3 + f4. Here, as the threads move the elements of
a slice in a round-robin fashion (unlike row/columns-wise in
Orthogonal-Distinct), we consider the size of the contiguous
memory chunks on the input and on output side in a slice
as features, referred to as input stride and output stride,
respectively. Special instructions here represent the number of
integer mod and div operations, used for boundary checking
in the remainder code (not shown in Algorithm 5). These
instructions are automatically converted to floating point
(MUFU) instructions by the compiler.

Model. We use linear regression to develop models for pre-
dicting the execution time of a given tensor transposition.
The model for the Orthogonal-Distinct kernel was trained on
77,502 data points with different slice size configurations,
and the Orthogonal-Arbitrary kernel was trained on 8042 data
points (fewer configurations because in this case, the shared
memory size is proportional to the slice volume, and the slice
size configurations which crossed the shared memory limit
are infeasible). Table II shows a summary of the two models.
The last column in the table shows a low p-value (close to
0 and much less than the standard cut-off of 0.05) for all
selected features, implying that all these features are significant
in the two models. We calculate the precision of a model as
mean((abs(actualT ime− predictedT ime))/actualT ime)×
100 and the error percentages on train and test data are: 1)
Orthogonal-Distinct case: 4.161% and 4.159% respectively,
and 2) Orthogonal-Arbitrary case: 11.084% and 10.75% re-
spectively. We use these models to choose the right slice sizes
among the possible ones which are expected to give the best
performance. For the Orthogonal-Distinct case, Figure 5 shows
the actual and predicted times for a transpose example with
dimensions {27 27 27 27 27} and permutation ‘4 1 2 0 3’
over 31 slice variants. The volume (size of input slice ×
size of output slice) of different slice variants are shown
on the X-axis and time is shown on Y-axis of the plot. The
figure also highlights the best choice–the slice variant which

585

gives the best performance. We observe the predictions follow
the trend of actual execution times. Using this model, we can
choose the potential best slice variant (input slice size = 189
and output slice size = 27) for the kernel.

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 2000 4000 6000 8000 10000 12000

T
im

e
(s

ec
)

Slice Volume

ATIME PTIME CHOICETIME

Fig. 5: Predictions of execution times for a transpose with dims: 27
27 27 27 27 and perm: 4 1 2 0 3 for Orthogonal-Distinct case.

VI. EXPERIMENTAL EVALUATION

Resource Details

CPU Intel core i7-2600 (4 cores, 3.40 GHz, 8 MB L3cache,
16 GB DDR3-1333)

GPU Tesla K40c (15 Kepler SMs, 192 cores/MP, 12 GB
Global Memory, 745 MHz, 15 MB L2 cache, ECC off)

Software Red Hat Enterprise Linux Server release 6.7x86 64,
CUDA 7.5, GCC 4.8.1, Nvidia driver 352.79

TABLE III: Machine configuration

Table III shows the configuration of the machine used for
evaluating TTLG. The following test cases were used:

• Transpositions involving all the 6! = 720 possible per-
mutations of a 6D tensor, with dimension sizes: (a) all
of size 15, (b) all of size 16, and (c) all of size 17.
Although the actual rank of the tensors is 6, due to index
fusion, the effective tensor rank (labeled scaled rank in
the performance charts) varies from 1 to 6.

• Transpositions for a fixed permutation but with varying
dimension sizes/tensor volumes ranging over KBs, MBs
and GBs

• The benchmark set [12] used by TTC [3] and cuTT [2],
consisting of 57 input tensors of volume around 200
Mbytes and tensor ranks ranging from 2 to 6. The
permutations chosen in the benchmarks are such that no
index fusion is possible.

For each transposition, we report achieved bandwidth (in
GB/sec): given the volume (product of dimension sizes) of the
tensor and the time taken for its transposition, bandwidth =
(2×volume×8)
(time×109) . Each experiment was repeated five times and

the average is reported. The variance across runs was ex-
tremely low for all experiments, with rarely a variation of
more than 1% across the runs.

 0

 50

 100

 150

 200

 250

15 15 15 15

16 16 16 16

31 31 31 31

32 32 32 32

63 63 63 63

64 64 64 64

127 127 127 127
128 128 128 128

B
an

dw
id

th
 U

sa
ge

 (
G

B
ps

)

Dimension Sizes

Permutation 0 2 1 3

TTLG
cuTT Heuristic

cuTT Measure

Fig. 13: Transpose Performance: Varying Dimension Sizes

We consider two use cases of a transpose library function:
(1) a transpose operation is performed once or a small number
of times on a tensor of specific shape/size, (2) a transpose
operation is performed repeatedly a large number of times in
an iterative application. TTC is a code generator and is targeted
at the repeated use scenario. cuTT has a plan mode where
an execution plan is created by first performing a number of
measurements and saved for repeated use. cuTT also has a
heuristic mode where an execution plan is chosen by a fast
heuristic, with much lower overhead than the expensive mea-
sure operations for the plan mode. We compare performance
with cuTT for both the single use case and the repeated use
case.

Fig. 6, Fig. 8 and Fig. 10 present results for the repeated-
use case with TTC, cuTT and TTLG, for all permutations of
a 6D tensor, for sizes all 16, all 15, and all 17 respectively.
The charts show achieved bandwidth for all 720 cases, grouped
according to scaled rank of the tensor (the red “staircase” lines
in the charts) after index fusion is performed. For example, for
the permutation (0 2 1 3 4 6 5), the scaled rank of the tensor is
5 since 3,4 occur contiguously in the same order in the input
and output tensor and can be fused. These results exclude any
plan overhead (which includes memory allocation times for
any buffer) and just corresponds to the kernel execution time.
For most cases, TTLG outperforms cuTT-measure, which is
always better than cuTT-heuristic. If any kernel is selected
by cuTT heuristic, cuTT measure would also consider it, as
the measure mode is elaborate, where all candidate kernels are
executed and the best one is chosen. This way, due to possible
cache effect in our experiments, cuTT measure timings had a
very slight advantage as compared to cuTT heuristic even if
the same kernel is chosen by both (visible at many points in
the graph). TTC was found to be slower than the library based
approaches.

Fig. 7, Fig. 9 and Fig. 11 present performance for the
single-use scenario, thus including any plan creation time.
TTLG’s peak bandwidth has dropped from about 200 GBps to
around 130 GBps and similarly for cuTT-heuristic. For cuTT-
measure, the performance drop is much higher since its plan
time includes multiple actual executions of the kernels. TTC
is not shown in this graph, as it is a code generator and does
not have an online plan time. Its offline code generation time
took around 8 seconds for each input.

Fig. 12 presents performance for the repeated-use scenario

586

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

B
an

dw
id

th
 U

sa
ge

 (
G

B
ps

)

Input Cases

TTLG
cuTT Heuristic
cuTT Measure

TTC
Scaled Rank

Fig. 6: Transpose of 6D Tensor (all 16) for Repeated Use Case

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700

B
an

dw
id

th
 U

sa
ge

 (
G

B
ps

)

Input Cases

TTLG
cuTT Heuristic

cuTT Measure
Scaled Rank

Fig. 7: Transpose of 6D Tensor (all 16) for Single Use Case

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

B
an

dw
id

th
 U

sa
ge

 (
G

B
ps

)

Input Cases

TTLG
cuTT Heuristic
cuTT Measure

TTC
Scaled Rank

Fig. 8: Transpose of 6D Tensor (all 15) for Repeated Use Case

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700

B
an

dw
id

th
 U

sa
ge

 (
G

B
ps

)

Input Cases

TTLG
cuTT Heuristic

cuTT Measure
Scaled Rank

Fig. 9: Transpose of 6D Tensor (all 15) for Single Use Case

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

B
an

dw
id

th
 U

sa
ge

 (
G

B
ps

)

Input Cases

TTLG
cuTT Heuristic
cuTT Measure

TTC
Scaled Rank

Fig. 10: Transpose of 6D Tensor (all 17) for Repeated Use
Case

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700

B
an

dw
id

th
 U

sa
ge

 (
G

B
ps

)

Input Cases

TTLG
cuTT Heuristic

cuTT Measure
Scaled Rank

Fig. 11: Transpose of 6D Tensor (all 17) for Single Use Case

as a function of the number of repeated calls. We used a 6D
tensor with all dimension sizes 16 and considered permutations
P : ‘0 2 5 1 4 3’ and ‘4 1 2 5 3 0’, with fastest varying
dimension at the left end. P [i] = j means that the ith

dimension in the output corresponds to the jth dimension
in the input. For the ‘0 2 5 1 4 3’ permutation (Fig. 12a),
TTLG always performs better than cuTT-measure. For the ‘4

1 2 5 3 0’ permutation (Fig. 12b), cuTT-measure eventually
slightly outperforms TTLG after about 500 repeated calls.
Fig. 13 shows the performance comparison for varying dimen-
sion sizes of the tensor. For smaller volumes, the achieved
bandwidth is low for all the three library implementations.
Once the volume is reasonably large, TTLG outperforms cuTT.

Fig. 14 presents performance comparison for the TTC

587

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

B
an

dw
id

th
 U

sa
ge

 (
G

B
ps

)

No. of Repeated Calls

Permutation: 0 2 5 1 4 3

TTLG
cuTT Heuristic

cuTT Measure

(a) Matching FVI

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

B
an

dw
id

th
 U

sa
ge

 (
G

B
ps

)

No. of Repeated Calls

Permutation: 4 1 2 5 3 0

TTLG
cuTT Heuristic

cuTT Measure

(b) Non-matching FVI

Fig. 12: Transpose Performance: Repeated Use Case

benchmarks. For most cases, TTLG outperforms cuTT-
measure and cuTT-heuristic. Performance of TTC is much
better for these inputs, but is still below both TTLG and cuTT.

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50

B
an

dw
id

th
 U

sa
ge

 (
G

B
ps

)

Input Cases

TTLG
cuTT Heuristic

cuTT Measure
TTC

Fig. 14: Transpose Performance: TTC benchmarks

VII. CONCLUSION

In this paper, we have presented TTLG – an efficient library
to perform tensor index-permutations (transposition) on GPUs.
It is based on a systematic analysis of different permutation
scenarios and development of four kernels to effectively handle
the multitude of possible cases to enable efficient coalesced
access of data to/from global memory. Further, the library
incorporates a queryable performance prediction model that
can be used by higher level libraries for devising optimized
kernels that use tensor transposition as a building block.
TTLG performs comparably or better than currently available
alternatives for the repeated-use case and is considerably better
for the single-use case.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback and
suggestions that helped improve the paper. This work was sup-
ported in part by the U.S. National Science Foundation (NSF)
through awards 1440749 and 1513120, by the U.S. Department

of Energy, Office of Science, Office of Advanced Scientific
Computing Research under award number 71648, and the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. Pacific
Northwest National Laboratory is operated by Battelle for
DOE under Contract DE-AC05-76RL01830. Jyothi Vedurada
is supported by the TCS Research Scholarship Program for
her doctoral studies.

REFERENCES

[1] D. I. Lyakh, “An efficient tensor transpose algorithm for multicore CPU,
Intel Xeon Phi, and NVidia Tesla GPU,” CPC, 2015.

[2] A. Hynninen and D. I. Lyakh, “cuTT: A High-Performance Tensor
Transpose Library for CUDA Compatible GPUs,” CoRR, 2017.

[3] P. Springer, A. Sankaran, and P. Bientinesi, “TTC: A Tensor Transpo-
sition Compiler for Multiple Architectures,” in ARRAY, 2016.

[4] P. Springer, T. Su, and P. Bientinesi, “HPTT: A High-performance Tensor
Transposition C++ Library,” in ARRAY, 2017.

[5] Q. Lu, S. Krishnamoorthy, and P. Sadayappan, “Combining Analytical
and Empirical Approaches in Tuning Matrix Transposition,” in PACT,
2006.

[6] L. Wei and J. Mellor-Crummey, “Autotuning tensor transposition,” in
IPDPS, 2014.

[7] S. Hong and H. Kim, “An Analytical Model for a GPU Architecture
with Memory-level and Thread-level Parallelism Awareness,” in ISCA,
2009.

[8] G. Mateescu, G. H. Bauer, and R. A. Fiedler, “Optimizing Matrix
Transposes Using a POWER7 Cache Model and Explicit Prefetching,”
ACM SIGMETRICS, 2012.

[9] A. Derler, R. Zayer, H.-P. Seidel, and M. Steinberger, “Dynamic
Scheduling for Efficient Hierarchical Sparse Matrix Operations on the
GPU,” in ICS, 2017.

[10] J. L. Jodra, I. Gurrutxaga, and J. Muguerza, “Efficient 3D Transpositions
in Graphics Processing Units,” IJPP, 2015.

[11] A. Aggarwal and S. Vitter, Jeffrey, “The input/output complexity of
sorting and related problems,” Commun. ACM, vol. 31, no. 9, pp.
1116–1127, Sep. 1988. [Online]. Available: http://doi.acm.org/10.1145/
48529.48535

[12] P. Springer, “TTC benchmark,” 2016, https://github.com/HPAC/TTC/
blob/master/benchmark/benchmark.py.

588

