
Computer Graphics: CS 6360
Spring 2013 Assignments

Prof. Sukhendu Das
TA’s: Ankit Shrivastava, Prateek Shrivastava

www.cse.iitm.ac.in/˜vplab/computer_graphics.html

February 8, 2013

Contents

1 Common Assignments (All Compulsory) 1
1.1 Import a .blend file to OpenGL 2
1.2 Create .geo file for a basic solid object and test it on Gmsh . 3
1.3 Surface construction . 4

2 Team Assignments 5
2.1 Comparison of Continuous Collision detection (CCD) Algo-

rithms . 7
2.2 Chemical formula visualizer 8
2.3 Texture mapping . 9
2.4 Stadium crowd rendering . 11
2.5 Hybrid Ray-tracing on GPU 12
2.6 Object modeling using Constructive Solid Geometry 13
2.7 Face modeling with Opengl 15

1 Common Assignments (All Compulsory)

These assignments are to be done individually. Demonstrate the working
demo to the TA’s. Send email to confirm date and time (prateek.shrvstv@
gmail.com or ankit.jec.jbp@gmail.com). You must bring your own lap-
top for the demo. In case you don’t have a laptop you can request for a
machine in VPLab, atleast 3-4 days before the deadline.

1

www.cse.iitm.ac.in/~vplab/computer_graphics.html
prateek.shrvstv@gmail.com
prateek.shrvstv@gmail.com
ankit.jec.jbp@gmail.com

Requirements: OpenGL 2.0 ready machine preferably having Nvidia graphic
accelerator.

1.1 Import a .blend file to OpenGL

Marks: 9

Deadline: 23rd February 2013.

The aim of this assignment is to get you familiarized with OpenGl as
well as prepare you for future assignments.

The objective is to load a .blend file (default file format for Blender)
in Vertex Buffer Objects and render it using openGL 2.0 or higher. You
are allowed to use any API for the assignment. You are also allowed to
export .blend file to other formats if you like.

The blender model given will have mesh as well as armature data in
it. The assignment will not be considered complete if you fail to load the
armature/mesh data from the blend file. To know more about blender
Google it, there is much information available. Some sample .blend files
can be downloaded from the course web page.

References

1. Computer Graphics using OpenGL; 2nd edn.; F. S. Hill Jr.; Pearson
Education, 2003

2. The OpenGL Programming Guide - The Redbook, seventh Edition,
Addison-Wesley

3. Blender is a open source modeling software and can be found at www.
blender.org/

NOTE: This assignment 1.1 will be helpful for the task of team assign-
ments to be done lat.

2

www.blender.org/
www.blender.org/

1.2 Create .geo file for a basic solid object and test it on
Gmsh

Marks: 3

Deadline: 15 March. [Tentative]

Aim of this assignment is to attempt basic CSG operations to generate
new shapes.

Input: Different views of a basic solid object will be given in jpeg for-
mat. (To be given by the TA’s)
Output: A .geo file which will generate the desired solid.

Testing : Gmsh is a freely available software to read .geo files; use it to
check your output.
Get Gmsh at http://geuz.org/gmsh/

To learn more about .geo file format go here.http://geuz.org/gmsh/
doc/texinfo/gmsh.html#File-formats

3

http://geuz.org/gmsh/
http://geuz.org/gmsh/doc/texinfo/gmsh.html#File-formats
http://geuz.org/gmsh/doc/texinfo/gmsh.html#File-formats

1.3 Surface construction

Marks: 3

Deadline : April 1st Week.

Use the theory taught in class as reference and write simple OpenGl
programs to render a wireframe of Cubic Splines for a set of N points
(for N = 6 - 50) and Bezier Surface for 16 control points. Use of any API
for this assignment is not allowed, and ofcourse you can use OpenGL,
freeglut, and glew (http://www.cse.iitm.ac.in/˜vplab/courses/CG/
opengl_start.html).

Input: Control Points.

Output: Render the Surface or spline, and show wire frame models.

4

http://www.cse.iitm.ac.in/~vplab/courses/CG/opengl_start.html
http://www.cse.iitm.ac.in/~vplab/courses/CG/opengl_start.html

2 Team Assignments

Marks: 25

Submission Deadline: Around 25th April 2013 (Tentative)

1. A Team can have a maximum of 3 members.

2. A team should be registered before starting the work.

3. Registration can be done by meeting the TA’s and informing them
about the choice of assignment, no latter than 23th February 2013.

4. Teams can select from any one of the 7 assignments given in this
section.

5. No two teams are allowed to do the same assignments, allotment will
be done on first come first serve basis.

6. All Team Assignments require the use of assignment 1.1 as starting
point.

7. Use of API’s for any task in the assignment is allowed.

8. You are required to use OPENGL only.

9. Programming language used should be C++.

Submission Procedure

1. Create a presentation for the work you have done. Clearly mention
the input, output, implementation methodology, and any improve-
ments that you have made in the existing technology.

2. Each team will be given 15 mins to present their work.

3. During the presentation you are required to show a working demo
of the assignment you have selected.

4. Your assignments will not be evaluated if you don’t have a Demo.

5. You are required to submit a report along with the demo. Format of
the report can be found at the course webpage.

5

6. Create a CD/DVD containing all the dependencies, references, pre-
sentation slides, results and source code for all the assignments
(including the individual assignments). Add a Readme.txt file for
setting up your project from scratch.

7. Create separate folder for individual assignments for each team mem-
ber on the CD/DVD. Add a Readme.txt file for setting up your project
from scratch.

6

2.1 Comparison of Continuous Collision detection (CCD)
Algorithms

Marks: 20

Use of API’s for implementation of collision detection algorithms is al-
lowed.
The computational cost of a collision detection algorithm depends not
only on the complexity of the basic interference test used, but also on the
number of times this test is applied. Therefore, it is crucial to apply this
test only at those instants and places where a collision can truly occur.

Several strategies have been developed to this end: (1) to ”Find a lower
time bound for the First collision”, (2) to reduce the pairs of primitives
within objects susceptible of interfering, and (3) to cut down the num-
ber of object pairs to be considered for interference. These strategies rely
on distance computation algorithms, hierarchical object representations,
orientation-based pruning criteria, and space partitioning schemes.

Input : The number of objects, layout, motion pattern etc.
Output : You are required to come up with a detailed comparison of

the following CCD algorithms :

1. OBB

2. k-dop

3. KDtree

4. Oct-tree

Use as many metrics that you can find in literature to compare these.

References

1. Jimenez, Pablo, Federico Thomas, and Carme Torras. ”3D collision
detection: a survey.” Computers & Graphics 25.2 (2001): 269-285.

2. Kockara, S., ”Collision detection: A survey.” Systems, Man and Cyber-
netics, 2007. ISIC. IEEE International Conference on. IEEE, 2007.

3. Min Tang, Dinesh Manocha, Sung-Eui Yoon, Peng Du, Jae-Pil Heo,
and Ruofeng Tong, VolCCD: Fast Continuous Collision Culling be-
tween Deforming Volume Meshes, ACM Transaction on Graphics,
30, 5, Article 111 (October 2011), 15 pages.

7

2.2 Chemical formula visualizer

Marks: 22

Biomolecules, such as proteins and nucleic acids (DNA and RNA), are in-
volved in every aspect of cellular function. Often times, understanding
their structure is key to understanding their function. In the past, crys-
tallographers and biologists created detailed real-world models, called
Corey- Pauling-Koltun models, using wooden or synthetic spheres to rep-
resent atoms and sticks to represent bonds. Today, these models of protein
structures, referred to as space-filling and ball-stick models, have been
adopted in computer graphics systems to create visual representations.
Your job is as follows:
Input: A Chemical Formula eg. C6H12 (Cyclohexane).
Output: Visualize it using ball-stick models and Space filled models.
Your demo should produce smooth edges around the intersection of spheres
and cylinders.

Figure 1: Example of Glycine molecule: Left - space-fill model; Right -
Ball Stick model

References

1. Pranav D Bagur, Nithin Shivashankar and Vijay Natarajan, Improved
Quadric Surface Impostors for Large Bio-Molecular Visualization, Pro-
ceedings of the 8th Indian Conference on Vision, Graphics and Im-
age Processing, 16-19 Dec. 2012, Bombay, India.

2. Molecular Visualization Freeware www.umass.edu/microbio/rasmol/

8

www.umass.edu/microbio/rasmol/

2.3 Texture mapping

Marks: 25

Texture mapping algorithms use mesh parameterization methods to
find an optimal map for the vertices of a 3D model in texture space. These
techniques vary in the properties they try to optimize such as stretch and
skewness of the texture when mapped onto the surface. While most of
them do well in terms of quality, they tend to be computationally inten-
sive for large mesh models, which limits their use in interactive appli-
cations.Use a greedy alternative that is significantly faster than current
algorithms and achieves comparable quality [1].
Input: Texture image and a polygonal mesh.
Output: Textured surface of a model with minimum seam errors and to
generate self tile-able textures for use in conjunction with your texture
mapping algorithm.

Figure 2: Example of a texture on Model

References

1. Vikram Pratap Singh, Anoop M. Namboodiri Efficient Texture Map-
ping by Homogeneous Patch Discovery Proceedings of the 8th Indian
Conference on Vision, Graphics and Image Processing, 16-19 Dec.
2012, Bombay, India.

2. Survey of texture mapping www.cs.cmu.edu/˜ph/texsurv.pdf

9

www.cs.cmu.edu/~ph/texsurv.pdf

3. NeHe Productions: Texture Mapping nehe.gamedev.net/tutorial/
texture_mapping/12038/

4. Texture Mapping Tutorial http://www.glprogramming.com/red/chapter09.
html

5. Texture Mapping Tutorial http://www.cse.msu.edu/˜cse872/tutorial4.
html

10

nehe.gamedev.net/tutorial/texture_mapping/12038/
nehe.gamedev.net/tutorial/texture_mapping/12038/
http://www.glprogramming.com/red/chapter09.html
http://www.glprogramming.com/red/chapter09.html
http://www.cse.msu.edu/~cse872/tutorial4.html
http://www.cse.msu.edu/~cse872/tutorial4.html

2.4 Stadium crowd rendering

Marks: 23

Many sports titles feature stadia that require some degree of crowd
rendering technology. Your job is to create an animation for portion of a
stadium with a hooting crowd.

Input: Models for various hooting pose’s and Stadium portion.

Output: The implementation should have controls to increase or de-
crease crowd density. Various crowd pose’s are desirable. Use your imagi-
nation to create an interesting crowd.

Figure 3: Examples of Scenes, you are required to render.

References

1. Wolfgang Engel, Chapter 3, GPU Pro-3 Advanced rendering tech-
niques, CRC Press.

2. www.crcnetbase.com/doi/abs/10.1201/b11642-5

3. Crowd simulation with CUDA - Greenleaf www.greenleaf.dk/projects/
cudacrowd

11

www.crcnetbase.com/doi/abs/10.1201/b11642-5
www.greenleaf.dk/projects/cudacrowd
www.greenleaf.dk/projects/cudacrowd

2.5 Hybrid Ray-tracing on GPU

Marks: 22 + 3

Parametric surfaces are used widely in Computer Aided Design (CAD)
and other fields. They provide a compact and effective representation of
geometrical shapes for engineering, graphics, etc. The most powerful fea-
ture of parametric surfaces is their ability to stay curved and smooth even
when viewed at close distances. Parametric bicubic patches of the Bezier
form is the most popular among the many possibilities and is popular in
many engineering and scientific applications. Direct ray tracing of para-
metric patches has natural advantages over rendering their tessellations.
Implement a scheme for interactive ray tracing of scenes with multiple
objects, bounces, soft shadows, etc. using the technique described above.
Input: Polygonal mesh model and light positions.
Output: A scene with complex shapes (not just cubes and spheres) show-
ing effects of soft shadows, color bleeding etc.

Figure 4: Examples of Scenes you are required to render.

References

1. Rohit Nigam and P J Narayanan, Hybrid Ray Tracing And Path Trac-
ing of Bezier Surfaces using a Mixed Hierarchy, Proceedings of the 8th
Indian Conference on Vision, Graphics and Image Processing, 16-19
Dec. 2012, Bombay, India.

2. graphics.stanford.edu/papers/i3dkdtree/

12

graphics.stanford.edu/papers/i3dkdtree/

2.6 Object modeling using Constructive Solid Geometry

Marks: 26

CSG gives a high-level description of geometry. It is intuitive because
its syntax resembles the way humans may describe objects in space. Re-
verting for a moment to two dimensions, the object , “ A Simple Two-
Dimensional Object ” could, sacrificing any mathematical accuracy, be
described as ”a circle with four rectangles sticking out its sides” or ”two
rectangles crossed on top of a circle”. Having a computer come up with
such a description is surprisingly hard, mainly because humans, unlike
computers, can ”see” the circle in spite of the fact that its characteristic
circumference is interrupted by rectangles. As it turns out, having the
same computer generate a geometry from such a description is relatively
simple.
Input : Polygonal meshes of basic 3-D shapes and a scene graph.
Output : Creating and Rendering of objects using Boolean set operations.

Figure 5: A typical scene graph

References

1. Carve is a C++ library designed to perform regularized boolean op-
erations between two arbitrary polygonal meshes. http://code.

google.com/p/carve/

13

http://code.google.com/p/carve/
http://code.google.com/p/carve/

2. Library intended to provide a set of useful functions to deal with 3D
surfaces meshed with interconnected triangles. gts.sourceforge.

net/index.html

3. http://cse.csusb.edu/tong/courses/cs520/notes/mesh.php

4. Constructive Solid Geometry tutorial http://www.codecreator.net/
csg/csg.html.

5. CSG in MesoRD http://mesord.sourceforge.net/man/mesord/docbook/

ch04.html

14

gts.sourceforge.net/index.html
gts.sourceforge.net/index.html
http://cse.csusb.edu/tong/courses/cs520/notes/mesh.php
http://www.codecreator.net/csg/csg.html
http://www.codecreator.net/csg/csg.html
http://mesord.sourceforge.net/man/mesord/docbook/ch04.html
http://mesord.sourceforge.net/man/mesord/docbook/ch04.html

2.7 Face modeling with Opengl

Marks : 23 + 4

Task : Simulate the face of person using the frontal 2D image and 3D
model of a face mesh. Since the depth information is not available we will
actually approximate the 3D model of the 2D image, using the texture
mapping, which is provided in OpenGL after finding a appropriate func-
tion, for mapping the pixels of image on the vertices of the face. Three
points each on the wireframe and the image are used for mapping. Light-
ing and shading is used to create a more realistic look.

Input: .wrl/blend file for 3D wireframe of face and images (.jpeg/.bmp)
of faces (frontal poses).

Output: Face at different tilt, yaw and roll angles; also change light
position and observe the effect.

Your implementation should be capable of the following:

1. Reading .wrl/.ply/.blend file and rendering them in OpenGL.

2. Face image (.jpeg or .bmp) must be mapped on a 3D model.

3. Mapping function must be developed.

4. Lighting and shading should be applied using openGL.

5. Several GUI options should be provided to change the light position
etc and for saving the bitmap.

6. Basic animations like realistic movement of eye, eyebrows will de-
serve extra credit.

References

1. Rick Parent. Computer Animation :Algorithm & Techniques, Second
Edition ,Morgan Kaufman Publishers,2008.

2. Donald Hearn, M. Pauline Baker. Computer Graphics C Version ,Sec-
ond Edition. Prentice Hall,2008

3. http://nehe.gamedev.net

4. VRML tutorial http://www.edcenter.sdsu.edu/vrml.

5. http://www.winprog.org

6. http://en.wikipedia.org/wiki/PLY_(file_format)

15

http://nehe.gamedev.net
http://www.edcenter.sdsu.edu/vrml
http://www.winprog.org
http://en.wikipedia.org/wiki/PLY_(file_format)

	Common Assignments (All Compulsory)
	Import a .blend file to OpenGL
	Create .geo file for a basic solid object and test it on Gmsh
	Surface construction

	Team Assignments
	Comparison of Continuous Collision detection (CCD) Algorithms
	Chemical formula visualizer
	Texture mapping
	Stadium crowd rendering
	Hybrid Ray-tracing on GPU
	Object modeling using Constructive Solid Geometry
	Face modeling with Opengl

