3D Viewing —

Projection Transformations

and

Viewing Pipeline




View Specifications:
VP, VRP, VUP, VPN, PRP, DOP, CW, VRC
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Diagrams for an
arbitrary 3D view

COP/PRP




Specifying an Arbitrary 3D View
Viewing Example Values
Parameter Set 1 Set 2 Set 3

VRP (WC) (0, 0, 54) (16,0, 54) (O, 0, 0)
VPN (WC) (0,0,1) (0,1,0) (0,0,1)
VUP (WC) (OI 1, 0) ('11 OI 0) (OI 1, 0)

PRP (VRC) (8, 6,30) (12,8, 30) (8, 6, 84)
Window ('11 17! ('11 25! ('501 50!
(VRC) -1, 17) -5, 21) -50, 50)
Projection
Type
F&B
(VRC)

Perspective Parallel Perspective

+1, -23




anonical view volume for parallel
projection is defined by six planes
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Canonical view volume for perspective
projection is defined by six planes:




Implementation of 3D Viewing

3-D worid Clip against

coordinate Appl_y_ canonical
output normalizing N e—

LIS transformation Volume

Transform into
viewport in
2D device 2D device
coordinates coordinates

for display

Project
onto
Projection
plane




Steps for implementing normalizing
transformation matrix for
parallel projection

e Translate the VRP to origin

e Rotate VRC such that VPN (n-axis) aligns
with Z-axis (also, u with X and v with Y-axis)

e Shear (not necessary for pure orthographic)
such that DOP is parallel to the Z-axis

e Translate and scale into parallel-projection
canonical view volume (CVV)

N,=S,T, SH, RT(-VRP)

par




Step 2 in normalizing transformations:

Rotate VRC such that VPN (n-axis) aligns

Y with z-axis (also, u with X and v with Y)
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Expressions for Step 2 must be derived.

Implement using the concept of combined
transformation (rotation).
0 0
cos(@) -—sin(a)
sin() cos(@)
0 0

e Rows are unit vectors, when rotated by R,
will align with the Y and Z axis respectively.

e When unit vectors along the principle axes
are rotated by R,, they form the column
vectors.




Operation is Pre-Mult, with columns vectors

RR =

Consider R;! as comprised

of row vectors of R, ;

1 0
0 cos()
0 sin(e)
0 0

Now visualize the same,

.
0
0
1_
~
0
0
1_

as Post-multiplication — any issues ?? &

Take R, ! 0 0
0 cos() —-sin()
0 sin(@) cos(a)
0 0 0
0 0] 1 0 0 0] [1 0 0
—sin(ex) 0|0 cos(ex) sin(ex) O 0O 1 O
cos(¢) 0|0 —sin(ex) cos(ex) O 0 0 1
0 1]0 0 0 1] [0 0 O
1 0 0 0
Ey 0 C?S(O!) —simn(ex) 0
0 sin(x) cos(ex) O
0 0 0 1

e Rows are unit vectors, when rotated by R,,

will align with the Y and Z axis respectively.

e When unit vectors along the principle axes
are rotated by R,, they form the column vectors.




1 0 0

0 cos(x) -—sin(a)
0 sin(a) cos(a)
0 0 0

Row Vectors: [ 1 0 0 ]
\'% [0 cos(x) -sin(x) ]
04 [0 sin(a) cos(o)]

0.

Y
Column Vectors [ 1 0 0 T
[0 cos(ax) sin(a)]T
[0 -sin(a) cos(a) ]T




Consider a general
scenario of combined
rotations and use the
property derived based
on the orthogonality
of the R matrix.

Y

Before P

Z Transformation

P, P,

X

P After
2 Transformation




Let the effective
rotation matrix be
a combination

of three rows as:

Rz — [r I.22 I.3z

1z




P,
-

P,

z P>

Thus the rotation matrix of step 2 in
normalizing transformations, can be

l‘lx l.2)( l.3)(

l‘ly r2y r3y

l‘lz rZZ l‘3z
0O 0 O




Step 2 in normalizing transformations:

Rotate VRC such that VPN (n-axis) aligns

Y with z-axis (also, u with X and v with Y)
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VPN

R=—""",
* [VPN|

VUPXR.
\VUPxR \

R =

and R, =R X R,

The overall combined transformation matrix
for parallel projection (WCSVV -> PPCVYV), is:

N,=S.,T, SH, RT(-VRP)




The overall combined transformation matrix
for parallel projection (WCSVV -> PPCVYV), is:

N,=S,T, SH, RT(-VRP)

par

where,

Side view of
shearing of the VV




The overall combined transformation matrix
for parallel projection (WCSVV -> PPCVYV), is:

N, =S,T,SH, RT(-VRP)

par




Implementing normalizing
transformation matrix
for perspective projection

COP/PRP




Canonical view volume for perspective
projection is defined by six planes:




Steps for implementing normalizing
transformation matrix for
perspective projection

e Translate the VRP to origin

e Rotate VRC such that VPN (n-axis) aligns
with Z-axis (also, u with X- and v with Y-axis)

e Translate such that COP (or PRP) is at the
origin

e Shear such that center line of view volume
(VVCL) becomes z-axis

e Scale such that VV becomes the canonical
view volume (CVV)




Scenario of the cross-section of the VV
after first three transformations.

XorY

VvVCL

N,.=S,. SH, T(~PRP)RT(-VRP

par




Comparison the overall combined
transformation matrices for:

PARALLEL PROJECTION:

N... =S,. T.. SH .. RT(~VRP)

r ~par

PERSPECTIVE PROJECTION:

N. =S, SH  T(-PRP) RT(-VRP)




Implementation of 3D Viewing

3-D worid Clip against

coordinate Appl_y_ canonical
output normalizing N e—

LIS transformation Volume

Transform into
viewport in
2D device 2D device
coordinates coordinates

for display

Project
onto
Projection
plane




Generalized
formula

of perspective
projection matrix:

XorY (COP)

L I P(x, Y, Z)

(@)
P(X,Y,Z
(dy, d,, d,) ( Z)

(0,0, Z,)




Coordinate Systems and Matrices

Perspective
Parallel

3-D modeling Modeling

(object) Transformation
coordinates

View 3D World
R-T(-VRP)  orientation
R.T(-VRP)

matrix

Cont...




. View View
View reference

Orientation Coordinates Mapping
matrix matrix

Normalized :
projection :
Coordinates :

Clip, transform
into 2D screen
coordinates

M CVV3DVP

2D devi
SVICE M.S,..SH,, . T(-PRP)

coordinates ©Tper’




where after clipping, use

Mcvvapve =

T(X vmin ?
X - X

Y

vmin ?

Z

vmin ) *

Y —-Y

vmax vmin i
S(—l . __vimax = vimin . Z — Z

2 vmax vmin )

2
. T(1,1,1)




The 3D Viewing Pipeline

Objects are modeled in object (modeling)
space.

Transformations are applied to the objects
to position them in world space.

View parameters are specified to define
the view volume of the world, a projection
plane, and the viewport on the screen.



e Objects are clipped to this View volume.

e The results are projected onto the
projection plane (window) and
finally mapped into the 3D viewport.

e Hidden objects are then removed.

e The objects are scan converted and
then shaded if necessary.




Flowchart of the 3D Viewing Pipeline

Object
—:1s-; | Scale,Rotate,
Object Translate
Objects

.- Specify View
Apply Normalizing 4
T Calculate Normal,

- Illumination,
Clip Backface




Perspective
Transformation
/Projection

Map to
Device Viewport/

Coordinates Draw to
screen

Remove
Hidden
Surfaces

Shade,
Texture
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The OPENGL PIPELINE

OpenGL Pipeline

Per-Vertex Per
Operations & Rasterization |— ;

Evaluator P T" Fragment
Primitive Operations

Assembly

Pixel
Operations




Vertex Connectivity

Vertey

Transforn

Raste
Operati¢

Pixel Updates

Scene Description

l

Vertex
Processing

}

Primitive
Processing

I

Rasterization

.

Primitive
sembly and
asterization

Fragments

ragment
xturing and
Coloring

Textures
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Application Stage: Here, the programmer (you!) talks to
OpenGL. In this way, you have control over the following
steps. Also in this stage, you give the GPU some triangles to
draw.

Vertex Stage: Those triangles are defined by three vertices
each. Here, the GPU arranges the vertices so that they are in
the right locations on the screen.

Rasterization Stage: Here, the triangles’ vertices are
connected by pixels.

Fragment Stage: Here, the pixels are colored/textured.

Framebuffer Stage: Here, the pixels are written into
graphics memory. Tests are applied to make sure they should
go into memory (for example: if triangle A is behind triangle
B, then we shouldn’'t draw any of triangle A's pixels!).

Screen Stage: Here, the memory on the GPU is displayed on
the screen. It is only here that we get to see what happened.




All program statements/executions falls under the

. Some sophisticated calls let you
program some stages (such as the vertex and fragment
stages). These calls load shader programs to be executed
instead of the fixed function pipeline.

Calls like "glEnable" and "glColor3f" alter the GPU's
internal state. Calls like "glGetFloatv" and "glTexImage2D"
get and retrieve data, and calls like "glVertex3f" and
"giDrawArrays"” draw data using the GPU's current state.

When you tell OpenGL to draw a triangle, the graphics

pipeline begins with the vertex stage. OpenGL also provides
functionality to draw quadrilaterals and some other stuff.
Ultimately, the graphics driver breaks these down into
individual triangles, a process called triangulation.

The application stage also handles setting up an
OpenGL context, which tells the GPU that a given area of
screen should be rendered to. The OpenGL context
encompasses information about models, textures, lights, as
well as data for the framebuffer(s).




Transformation Matrices:
OpenGL concatenates the model matrix and the view matrix into
the modelview matrix. Multiplying vertices by the modelview matrix
transforms them directly from object space to eye space.

You use the model matrix to move locally defined objects around
to globally defined positions. At the end of the model transform, the
objects are defined in relation to a common origin that all objects share.

To transform to eye space, we multiply by the view matrix. At the
end of the view transform, everything in the entire world is defined in
relation to you, the observer/camera.

Next transform the vertices into a clip space, for clipping to be
performed. To do this, multiply the transformed vertices by the projection
matrix. OpenGL defines a volume called a frustum (rectangular prism)
which defines everything you can see. The projection matrix typically
maps this volume to a cube of side length 2.0, centered at the origin. This
is called clip space, defined relative to the eye, and is in perspective.

After the perspective divide (1/w), we say that the vertices are in
normalized device coordinates (NDC), or, inside the canonical view
volume. The viewport transformation (2-D) is applied here or postponed.




a=
Rasterization Stage : . o

The process of converting the three points (vertices) into a set of
fragments, (which can be imagined as pixels with an arbitrary amount of
extra information attached to them). A pixel has a position and a color;
fragments can store, among other things, depth, normals, and texture
coordinates, in addition to their position and color.

The rasterizer first finds the set of pixels the polygon covers, and
creates a fragment at each (or often for a set of close) pixel's location. The
data each fragment contains (color, depth, etc.) must be interpolated from
the three vertices' values. This process is often done using barycentric
coordinates.

From here, the fragments go on to the fragment stage, where their
final attribute(s) are computed.




Fragment Stage:

Here, the fragments are prepared for entry into the framebuffer.
This involves setting the final values for the fragment's final attributes.
The most common fragment stage operation is to determine a color for
the fragment.

It is almost always in the fragment stage that texturing, lighting,
and other effects are done. The output of this stage is a fragment with
more limited information.

In the fixed function pipeline, a pixel's final color depends on

lights, OpenGL colors, and texture. If texturing is enabled, the fragment's
color is multiplied by a per-pixel lookup from a texture (basically an
image).

The fixed function pipeline supports a number of lights (at a
minimum, and typically, 8), material properties and multi-texturing. When
using shaders, far more advanced shading methods are possible!




Framebuffer Stage:

The new fragment must now determine whether its information
should be written to the framebuffer. If a fragment passes a sequence of
tests, its data is written into the framebuffer.

Colorbuffer stores the colors of each pixel. The depthbuffer
(sometimes, z-buffer) stores depths.

In addition to the depth test, the fragment may need to pass the
stencil, alpha, and/or other test.

Screen Stage:

This is where we finally get to see what happened. The
framebuffer contains color values, and these are drawn to the screen.

Overwhelmingly, most programs set up double-buffering, which
uses two framebuffers, with only one displayed at a time. In a double-
buffered context, the GPU draws to one framebuffer while the other
framebuffer is being displayed. When the new framebuffer is ready, the
screen flips, swapping the framebuffers. The GPU will now render into the
other framebuffer while the new one is rendering. The cycle repeats.
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RASTERIZATION
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glRenderMade(GL_FEEDBACK)

- ey
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Geometry Path TN

Application Primitives and image data
Vertex Transform and lighting
Primitive assembly
Geometry
Clipping
Texturing
Fragment
Fog
Alpha, stencil, and depth tests
Framebuffer operations
Framebuffer blending

Rasterization H

Image Fath

Pixel Pixel Transfer
Ciperation

gliReadPixels()

Fragment Frame
Operation Buffer

LT T  F RN TR RN NN REEE FEREREEETEREREYNEEEY®FEN.]

glReadPixels() f giCopyPixels()
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vertn:es
Vertex Shader

transfﬂrmed
vertlces

Primitive/Patch
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primitive/patch
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Graphics

Context

Buffer 0
(D@ size / type / stride
Array
Object Buffer n

Program

Buffer Object (vertex attrib 0)

~ Buffer Object (vertex attrib )

Vertex Shader Object

Fragment Shader Object

Object

I—H Image Objects (textures)

F-l Buffer Objects (uniforms)

Texture Filter Objects (samplers)

Framebuffer
Object

Image Object (color buffer 0)

Format Object (color buffer )

Stencil Test State

L = ey e |
= 2dll IF':I!"'_" Depth Test State
Uperations Blend Functions

Obiect Elend Equations

Brc.

Poly Mode /
Offset.
Hints, etc.

Image Object (color buffer n)

Format Object (color buffer n)

Image Object (depth buffer)

Format Object (depth buffer)

Format Object (stencil buffer)




OpenGL 4.3 with Compute Shaders




Things to know -
GLUT, GLU, GLX, GLEW, and WGL:

« Current Specifications (OpenGL 4.5)
* OpenGL 4.5 API Specification (updated February 2, 2015);

« OpenGL 4.4
 OpenGL 4.4 API Specification (updated March 19, 2014)

The OpenGL API is defined as a state machine. Almost all
of the OpenGL functions set or retrieve some state in OpenGL.
The only functions that do not change state are functions that use
the currently set state to cause rendering to happen.

The state machine has a very large struct with many
different fields. This struct is called the OpenGL context, and
each field in the context represents some information
necessary for rendering.

Objects in OpenGL are defined as a list of fields in this
struct, that can be saved and restored. Binding an object to a
target within the context causes the data in this object to
replace some of the context's state.




The Camera Model

We specify our initial camera model by
identifying the following parameters.

1. A scene, consisting of polygonal elements
each represented by their vertices;

2. A point that represents the camera

position: C = [C,, C,, C,];

3. A point that represents the “"center-of
attention” of the camera (i.e. where the
camera is looking): A = [A,, A, A,];

4. A field-of-view angle, o ,representing the
angle subtended at the apex of the viewing
pyramid.




The specification of “"near”
and “far” bounding planes.
These planes considered
perpendicular to the
direction-of-view vector
are at a distance of

‘n" and ‘f’ from the
camera,

respectively.

aue|d J1e




The Viewing Pyramid

3D view of the
viewing space

m
)
1
5
m
5
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I:Iear The image space
ane volume:

—1<u,v,w<l1




Side view of the viewing space

aue|d 1e

Plane




Derivation of the viewing transformation

matrix, in terms of camera parameters:

du dv du dv dw
(ll,V,W) — ( 5 s d) — ( 5 5 )
—W —W —W —W —W

Thus,
(u,v,w, 1)>(d.u,d.v,dw, —w)

O (COP)
d
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Transformation of the finite (truncated)
viewing pyramid to the

cube (CVV), -1 <u, v, w < 1. The image space
volume:

Let us first analyze w-axis only.

Use the transformation matrix:

such that,

(OI OI 'n)P > (OI OI 1)
and

(OI OI 'f)P -2 (OI OI '1)

Solve for parameters a and b, using the
above equations:




From the constraints of the
above two equations:

solution:




Hence the
transformation is:

What about u and v-axis transformations
in the pyramid ?




u and v-axis transformations
in the pyramid

n.tan(a/2)
f.tan(o/2)
of2

O (COP) (0,0,-n) (0,0, -f) ~w-




Transformations for the two points
are as follows:

0, n. 2), -
o (0, f.tan(o/2), -f)

of2

o (coP) (0,0, -n) (0,0, -f) -w >




[0 ntan(e/2) —n 1]P

[ f+n 2nf
_I_

L f-n f-n

= [O n.tan(e/2) n n]

=0 n.tan(e/2) [—n

_q Desired normalized 3-D

coordinates for both the
0 points: [O, 1, +/-1, 1].

0 ftan(e/2) —f 1|P

[0 ftan(e2) —fitmy 20t

L f-n f-n
=0 ftan(er2) —-f f]




Thus modify P cot(ar/2) 0 0 0

to be:
0 cot(/2) 0 0

pro 0 0 f+n

0

0

ntan(e/2) —-n 1[P
| f+n 2nf

O n —n +
f—-n f—n




Its inverse has the form:

tan(c/2) 0
0 tan(o/2) 0




The Viewing Transformation Matrix
P.=P,.P

"d.cot(ar/ 2) 0
0 d.cot(a/2) 0

d(f+n)-2 fn B
f—n

0

d 0 0 0 L0 0 0 “cot(c/2) 0 0 0]
0 d 0 0 0 1 0 0
P = o o "0 g 10) 0 cot(c/?2) fﬂn 0
0 0 d -1 | p= 0 0 7
0 0 0 0 0 0 0 0 o
B _ B _ - 2f-n
d 0 0 0 0 0 ff_n 0
10 d 0 0 - =
[u v w 1 =[d.u dv dw —w]
0 0 d -1
0 0 0 0|



or

0
0

S © & O

[uvwlZ

I QRN S

S © © N

cot(ar/2)

0

cot(ar/2)

s( or

S & S O

0

S O N O

S N S O

0
0
d(f + n)-21n
d(f —n)

cot(c/2)
0

0

0
cot(c/?2)

0




End of Lectures on

3D Viewing —
Projection Transformations
and

Viewing Pipeline




