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Viewing Pipeline



View Specifications:
VP, VRP, VUP, VPN, PRP, DOP, CW, VRC 
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Specifying an Arbitrary 3D View

Viewing 
Parameter

Example Values
Set 1 Set 2 Set 3

VRP (WC) (0, 0, 54) (16, 0, 54) (0, 0, 0)

VPN (WC) (0, 0, 1) (0, 1, 0) (0, 0, 1)

VUP (WC) (0, 1, 0) (-1, 0, 0) (0, 1, 0)

PRP (VRC) (8, 6, 30) (12, 8, 30) (8, 6, 84)

Window 
(VRC)

(-1, 17, 
-1, 17)

(-1, 25, 
-5, 21)

(-50, 50, 
-50, 50)

Projection 
Type Perspective Parallel Perspective

F & B 
(VRC) +1, -23 - -



Canonical view volume  for parallel 
projection is defined by six planes:

-Z

X or Y

-1

1

-1

FP BP

X = 1; Y = 1;       Z = -1. 
X = -1; Y = -1;     Z  = 0; 



Canonical view volume for perspective 
projection is defined by six planes:

X or Y

-Z

1

-1

-1
BP

FP

X = -Z; Y = Z; Z = -1. 
X = Z; Y = -Z; Z = -Zmin; 



Implementation of 3D Viewing

Apply
normalizing

transformation

3-D world
coordinate

output
primitives

Clip against
canonical

View
Volume

Project
onto

Projection
plane

Transform into
viewport in
2D device 

coordinates
for display

2D device
coordinates



Steps for implementing normalizing
transformation matrix for

parallel projection
• Translate the VRP to origin

• Rotate VRC such that VPN (n-axis) aligns 
with Z-axis (also, u with X and v with Y-axis)

• Shear (not necessary for pure orthographic) 
such that DOP is parallel to the Z-axis

• Translate and scale into parallel-projection 
canonical view volume (CVV)

VRP)T( R SH T SN parparparpar −=
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Rotate VRC such that VPN (n-axis) aligns 
with Z-axis (also, u with X and v with Y)

Step 2 in normalizing transformations:



Expressions for Step 2  must be derived.

Implement using the concept of combined 
transformation (rotation).

Take Rx =

• Rows are unit vectors, when rotated by Rx,
will align with the Y and Z axis respectively.

• When unit vectors along the principle axes 
are rotated by Rx, they form the column
vectors.
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Take Rx =

• Rows are unit vectors, when rotated by Rx,
will align with the Y and Z axis respectively.

• When unit vectors along the principle axes 
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of row vectors of ࢔࢕࢏࢚ࢇ࢘ࢋ࢖ࡻ;࢞ࡾ	࢙࢏ Pre-Mult, with columns vectors

Now visualize the same, 
as Post-multiplication – any issues ??
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Consider a general 
scenario of combined 
rotations and use the 
property derived based 
on the orthogonality
of the R matrix.
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Let the effective 
rotation matrix be 
a combination
of three rows as:
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Thus the rotation matrix of step 2 in 
normalizing transformations, can be 
formulated as: 
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Rotate VRC such that VPN (n-axis) aligns 
with Z-axis (also, u with X and v with Y)

Step 2 in normalizing transformations:
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The overall combined transformation matrix 
for parallel projection (WCSVV -> PPCVV), is:

VRP)T( R SH T SN parparparpar −=



The overall combined transformation matrix 
for parallel projection (WCSVV -> PPCVV), is:
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The overall combined transformation matrix 
for parallel projection (WCSVV -> PPCVV), is:
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Implementing normalizing
transformation matrix 

for perspective projection



Canonical view volume for perspective 
projection is defined by six planes:

X = -Z; Y = Z; Z = -1. 
X = Z; Y = -Z; Z = -Zmin; 

X or Y

-Z

1

-1

-1
BP

FP



Steps for implementing normalizing
transformation matrix for

perspective projection

• Translate the VRP to origin

• Rotate VRC such that VPN (n-axis) aligns 
with Z-axis (also, u with X- and v with Y-axis)

• Translate such that COP (or PRP) is at the 
origin

• Shear such that center line of view volume 
(VVCL) becomes z-axis
• Scale such that VV becomes  the canonical 

view volume (CVV)
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Scenario of the cross-section of the VV 
after first three transformations.
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Comparison the overall combined 
transformation matrices for:

PARALLEL PROJECTION:

PERSPECTIVE PROJECTION:



Implementation of 3D Viewing
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normalizing

transformation

3-D world
coordinate
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2D device 

coordinates
for display

2D device
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3-D modeling
(object)

coordinates

Modeling
Transformation

View 
Orientation

matrix

3D World
CoordinatesR.T(-VRP)

R.T(-VRP)

Perspective
Parallel

Coordinate Systems and Matrices

Cont…



2D device
coordinates

View 
Orientation

matrix

View
Mapping
matrix

Clip, transform
into 2D screen

coordinates

View
reference

Coordinates

Normalized
projection

Coordinates

M . Sper . SHpar . T(-PRP)
Spar . Tpar . SHpar

MCVV3DVP



where after clipping, use
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• Objects are modeled in object (modeling)
space. 

• Transformations are applied to the objects 
to position them in world space. 

• View parameters are specified to define
the view volume of the world, a projection 
plane, and the viewport on the screen.

The 3D Viewing Pipeline



• Objects are clipped to this View volume.

• The results are projected onto the 
projection plane (window) and                   
finally mapped into the 3D viewport.

• Hidden objects are then removed.
• The objects are scan converted and 

then shaded if necessary.



Model
Object

Scale,Rotate,
Translate
Objects

Specify View,
Calculate Normal,

Illumination,
Backface

Apply Normalizing
Transformation

Clip

Object 
Space

World
SpaceWorld

Space

Cont…Eye
Space

Flowchart of the 3D Viewing Pipeline



Perspective
Transformation

/Projection

Remove
Hidden

Surfaces

Shade, 
Texture

Map to
Viewport/
Draw to
screen

Eye
Space

Image
Space

Device
Coordinates



The Computer 
Graphics Pipeline 
Viewing Process



The OPENGL PIPELINE





Application Stage: Here, the programmer (you!) talks to 
OpenGL. In this way, you have control over the following 
steps. Also in this stage, you give the GPU some triangles to 
draw.

Vertex Stage: Those triangles are defined by three vertices 
each. Here, the GPU arranges the vertices so that they are in 
the right locations on the screen.

Rasterization Stage: Here, the triangles' vertices are 
connected by pixels.

Fragment Stage: Here, the pixels are colored/textured.

Framebuffer Stage: Here, the pixels are written into 
graphics memory. Tests are applied to make sure they should 
go into memory (for example: if triangle A is behind triangle 
B, then we shouldn't draw any of triangle A's pixels!).

Screen Stage: Here, the memory on the GPU is displayed on 
the screen. It is only here that we get to see what happened.



All program statements/executions falls under the 
application stage. Some sophisticated calls let you 
program some stages (such as the vertex and fragment 
stages). These calls load shader programs to be executed 
instead of the fixed function pipeline.

Calls like "glEnable" and "glColor3f" alter the GPU's 
internal state. Calls like "glGetFloatv" and "glTexImage2D" 
get and retrieve data, and calls like "glVertex3f" and 
"glDrawArrays" draw data using the GPU's current state.

When you tell OpenGL to draw a triangle, the graphics 
pipeline begins with the vertex stage. OpenGL also provides 
functionality to draw quadrilaterals and some other stuff. 
Ultimately, the graphics driver breaks these down into 
individual triangles, a process called triangulation.

The application stage also handles setting up an 
OpenGL context, which tells the GPU that a given area of 
screen should be rendered to. The OpenGL context 
encompasses information about models, textures, lights, as 
well as data for the framebuffer(s).



Vertex Stage:  - Transformation Matrices:
OpenGL concatenates the model matrix and the view matrix into 

the modelview matrix. Multiplying vertices by the modelview matrix 
transforms them directly from object space to eye space.

You use the model matrix to move locally defined objects around 
to globally defined positions. At the end of the model transform, the 
objects are defined in relation to a common origin that all objects share.

To transform to eye space, we multiply by the view matrix. At the 
end of the view transform, everything in the entire world is defined in 
relation to you, the observer/camera.

Next transform the vertices into a clip space, for clipping to be 
performed. To do this, multiply the transformed vertices by the projection 
matrix. OpenGL defines a volume called a frustum (rectangular prism) 
which defines everything you can see. The projection matrix typically 
maps this volume to a cube of side length 2.0, centered at the origin. This 
is called clip space, defined relative to the eye, and is in perspective.

After the perspective divide (1/w), we say that the vertices are in 
normalized device coordinates (NDC), or, inside the canonical view 
volume.  The viewport transformation (2-D) is  applied here or postponed.



Rasterization Stage :  
The process of converting the three points (vertices)  into a set of 

fragments, (which can be imagined as pixels with an arbitrary amount of 
extra information attached to them). A pixel has a position and a color; 
fragments can store, among other things, depth, normals, and texture 
coordinates, in addition to their position and color.

The rasterizer first finds the set of pixels the polygon covers, and 
creates a fragment at each (or often for a set of close) pixel's location. The 
data each fragment contains (color, depth, etc.) must be interpolated from 
the three vertices' values. This process is often done using barycentric
coordinates. 

From here, the fragments go on to the fragment stage, where their 
final attribute(s) are computed.



Fragment Stage:
Here, the fragments are prepared for entry into the framebuffer. 

This involves setting the final values for the fragment's final attributes.
The most common fragment stage operation is to determine a color for 
the fragment. 

It is almost always in the fragment stage that texturing, lighting, 
and other effects are done. The output of this stage is a fragment with 
more limited information.

In the fixed function pipeline, a pixel's final color depends on 
lights, OpenGL colors, and texture. If texturing is enabled, the fragment's 
color is multiplied by a per-pixel lookup from a texture (basically an 
image).

The fixed function pipeline supports a number of lights (at a 
minimum, and typically, 8), material properties and multi-texturing. When 
using shaders, far more advanced shading methods are possible!



Framebuffer Stage:
The new fragment must now determine whether its information 

should be written to the framebuffer. If a fragment passes a sequence of 
tests, its data is written into the framebuffer.

Colorbuffer stores the colors of each pixel. The depthbuffer
(sometimes, z-buffer) stores depths.

In addition to the depth test, the fragment may need to pass the 
stencil, alpha, and/or other test.

Screen Stage:
This is where we finally get to see what happened. The 

framebuffer contains color values, and these are drawn to the screen.

Overwhelmingly, most programs set up double-buffering, which 
uses two framebuffers, with only one displayed at a time. In a double-
buffered context, the GPU draws to one framebuffer while the other 
framebuffer is being displayed. When the new framebuffer is ready, the 
screen flips, swapping the framebuffers. The GPU will now render into the 
other framebuffer while the new one is rendering. The cycle repeats.



Rendering pipeline example



RASTERIZATION



















Things to know –
GLUT, GLU, GLX, GLEW, and WGL:

• Current Specifications (OpenGL 4.5) 
• OpenGL 4.5 API Specification (updated February 2, 2015);

• • OpenGL 4.4 
• OpenGL 4.4 API Specification (updated March 19, 2014) 

The OpenGL API is defined as a state machine. Almost all 
of the OpenGL functions set or retrieve some state in OpenGL. 
The only functions that do not change state are functions that use 
the currently set state to cause rendering to happen.

The state machine has a very large struct with many 
different fields. This struct is called the OpenGL context, and 
each field in the context represents some information 
necessary for rendering.

Objects in OpenGL are defined as a list of fields in this 
struct, that can be saved and restored. Binding an object to a 
target within the context causes the data in this object to 
replace some of the context's state.



We specify our initial camera model by
identifying the following parameters.

1. A scene, consisting of polygonal elements 
each represented by their vertices;

2. A point that represents the camera
position:  C = [Cx, Cy, Cz];

3. A point that represents the “center-of
attention” of the camera (i.e. where the
camera is looking): A = [Ax, Ay, Az];

4. A field-of-view angle, α ,representing the
angle subtended at the apex of the viewing
pyramid.

The Camera Model



The specification of “near”
and “far” bounding planes.
These planes considered
perpendicular to the
direction-of-view vector 
are at  a distance of  
‘n’ and  ‘f’ from the 
camera, 
respectively. 

Far P
lan

e

C

α

A



Far P
lan

eC α

A

3D view of the 
viewing space
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Derivation of the viewing transformation
matrix, in terms of camera parameters:
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Express as transformation:



Transformation of the finite (truncated)
viewing pyramid to the 
cube (CVV), -1 < u, v, w < 1.

Let us first analyze w-axis only.
Use the transformation matrix:

;
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(0, 0, -n)P  (0, 0, 1)
and
(0, 0, -f)P  (0, 0, -1)

Solve for parameters a and b, using the 
above equations:
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From the constraints of the 
above two equations:
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What about u and v-axis transformations
in the pyramid ?

Hence the 
transformation is:
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O (COP) -w 

n.tan(α/2)

u or v

α/2

f.tan(α/2)

(0, 0, -n) (0, 0, -f)

u and v-axis transformations
in the pyramid



O (COP) -w  

(0, n.tan(α/2), -n)

v

α/2

(0, f.tan(α/2), -f)

(0, 0, -n) (0, 0, -f)

Transformations for the two points 
are as follows:
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The Viewing Transformation Matrix

[ ] [ ]wd.wd.vd.u

0000
1d00

00d0
000d

1wvu

)

0000
d
1100

0010
0001

  or  (;

0000
1d00

00d0
000d

−=



















−





















−


















−
=dP























−

−
−
+=

0
nf

2f.n00

1
nf
nf00

00cot(0
000)cot(

P

)2/
2/

α
α























−
−

+=

0000

1
n)d(f

2fn-n)d(f00

00)2/(cot0
000)2/(cot

or

α
α

using the regular expression of Pd

[ ] [ ]wd.wd.vd.u

0000
1d00

00d0
000d

1wvu

)

0000
d
1100

0010
0001

  or  (;

0000
1d00

00d0
000d

−=



















−





















−


















−
=dP























−

−
−
+=

0
nf

2f.n00

1
nf
nf00

00cot(0
000)cot(

P

)2/
2/

α
α



End of Lectures on 

3D Viewing –
Projection Transformations

and
Viewing Pipeline


