
3D Viewing –

Projection Transformations

and

Viewing Pipeline

View Specifications:
VP, VRP, VUP, VPN, PRP, DOP, CW, VRC

u

v

n

VPN

VUP
(umax, vmax)

(umin, vmin)

VRPCW

VP

u

v

n

VPN

VUP
(umax, vmax)

(umin, vmin)

VRPCW
VP

u

v

n

VPN

VRPCW
VP

COP/PRP

Diagrams for an
arbitrary 3D view

Specifying an Arbitrary 3D View

Viewing
Parameter

Example Values
Set 1 Set 2 Set 3

VRP (WC) (0, 0, 54) (16, 0, 54) (0, 0, 0)

VPN (WC) (0, 0, 1) (0, 1, 0) (0, 0, 1)

VUP (WC) (0, 1, 0) (-1, 0, 0) (0, 1, 0)

PRP (VRC) (8, 6, 30) (12, 8, 30) (8, 6, 84)

Window
(VRC)

(-1, 17,
-1, 17)

(-1, 25,
-5, 21)

(-50, 50,
-50, 50)

Projection
Type Perspective Parallel Perspective

F & B
(VRC) +1, -23 - -

Canonical view volume for parallel
projection is defined by six planes:

-Z

X or Y

-1

1

-1

FP BP

X = 1; Y = 1; Z = -1.
X = -1; Y = -1; Z = 0;

Canonical view volume for perspective
projection is defined by six planes:

X or Y

-Z

1

-1

-1
BP

FP

X = -Z; Y = Z; Z = -1.
X = Z; Y = -Z; Z = -Zmin;

Implementation of 3D Viewing

Apply
normalizing

transformation

3-D world
coordinate

output
primitives

Clip against
canonical

View
Volume

Project
onto

Projection
plane

Transform into
viewport in
2D device

coordinates
for display

2D device
coordinates

Steps for implementing normalizing
transformation matrix for

parallel projection
• Translate the VRP to origin

• Rotate VRC such that VPN (n-axis) aligns
with Z-axis (also, u with X and v with Y-axis)

• Shear (not necessary for pure orthographic)
such that DOP is parallel to the Z-axis

• Translate and scale into parallel-projection
canonical view volume (CVV)

VRP)T(R SH T SN parparparpar −=

u

v

n

VPN

VUP
(umax, vmax)

(umin, vmin)

VRPCW

VP

Rotate VRC such that VPN (n-axis) aligns
with Z-axis (also, u with X and v with Y)

Step 2 in normalizing transformations:

Expressions for Step 2 must be derived.

Implement using the concept of combined
transformation (rotation).

Take Rx =

• Rows are unit vectors, when rotated by Rx,
will align with the Y and Z axis respectively.

• When unit vectors along the principle axes
are rotated by Rx, they form the column
vectors.


















−

1000
0)cos()sin(0
0)sin()cos(0
0001

αα
αα

Take Rx =

• Rows are unit vectors, when rotated by Rx,
will align with the Y and Z axis respectively.

• When unit vectors along the principle axes
are rotated by Rx, they form the column vectors.


















−

1000
0)cos()sin(0
0)sin()cos(0
0001

αα
αα



















=



















−

















−

=−

1000
0100
0010
0001

1000
0)cos()sin(0
0)sin()cos(0
0001

1000
0)cos()sin(0
0)sin()cos(0
0001

1

αα
αα

αα
αα

xxRR


















−

=

1000
0)cos()sin(0
0)sin()cos(0
0001

αα
αα

IRx

ࢊࢋ࢙࢏࢘࢖࢓࢕ࢉ	࢙ࢇ	૚ି࢞ࡾ	࢘ࢋࢊ࢏࢙࢔࢕࡯
of row vectors of ࢔࢕࢏࢚ࢇ࢘ࢋ࢖ࡻ;࢞ࡾ	࢙࢏ Pre-Mult, with columns vectors

Now visualize the same,
as Post-multiplication – any issues ??

α

α

Z

Y

Rx =

















−

1000
0)cos()sin(0
0)sin()cos(0
0001

αα
αα

Row Vectors: [1 0 0]
[0 cos(α) -sin(α)]
[0 sin(α) cos(α)]

Column Vectors [1 0 0]T

[0 cos(α) sin(α)]T

[0 -sin(α) cos(α)]T

α

α

Z

Y

Consider a general
scenario of combined
rotations and use the
property derived based
on the orthogonality
of the R matrix.

Z

Y

X
Pn

P3

P2

P1

Z

Y

X

P3

P2

P1 Pn

Before
Transformation

After
Transformation

Let the effective
rotation matrix be
a combination
of three rows as:

















3z2z1z

3y2y1y

3x2x1x

rrr
rrr
rrr

where,

[]

[]

T 1 2
z 1z 2z 3z

1 2

T 1 2 1 3
x 1x 2x 3x

1 2 1 3

T

y 1y 2y 3y z x

P PR = r r r =
P P
P P X P PR = r r r =
P P X P P

and

R = r r r =R X R  

Z

Y

X
Pn

P3

P2P1

Z

Y

X

P3

P2

P1

Pn

Z

Y

X
Pn

P3

P2P1

Z

Y

X

P3

P2

P1

Pn

Thus the rotation matrix of step 2 in
normalizing transformations, can be
formulated as:



















=

1000
0rrr
0rrr
0rrr

3z2z1z

3y2y1y

3x2x1x

R

u

v

n

VPN

VUP
(umax, vmax)

(umin, vmin)

VRPCW

VP

Rotate VRC such that VPN (n-axis) aligns
with Z-axis (also, u with X and v with Y)

Step 2 in normalizing transformations:

xzy

z

z
x

z

R R R and

;
R VUP
R VUPR

;
VPN
VPNR

×=
×
×=

=
where,

The overall combined transformation matrix
for parallel projection (WCSVV -> PPCVV), is:

VRP)T(R SH T SN parparparpar −=

The overall combined transformation matrix
for parallel projection (WCSVV -> PPCVV), is:

VRP)T(R SH T SN parparparpar −=



















=

1000
0100
010
001

par

par

par

shy
shx

SH

where,

;xpar
z

y
par

z

dopshx
dop
dop

shy
dop

= −

= −

y

-z

DOP

VPN
y

-z

DOP

VPNSide view of
shearing of the VV

The overall combined transformation matrix
for parallel projection (WCSVV -> PPCVV), is:

VRP)T(R SH T SN parparparpar −=

)1,2,2(

;
22

minmaxminmax

minmaxminmax

BPFPvvuu
SS

FPvvuuT

par

par

−−−
=





 +−+−=

u

v

n

VPN

VRPCW
VP

COP/PRP

Implementing normalizing
transformation matrix

for perspective projection

Canonical view volume for perspective
projection is defined by six planes:

X = -Z; Y = Z; Z = -1.
X = Z; Y = -Z; Z = -Zmin;

X or Y

-Z

1

-1

-1
BP

FP

Steps for implementing normalizing
transformation matrix for

perspective projection

• Translate the VRP to origin

• Rotate VRC such that VPN (n-axis) aligns
with Z-axis (also, u with X- and v with Y-axis)

• Translate such that COP (or PRP) is at the
origin

• Shear such that center line of view volume
(VVCL) becomes z-axis
• Scale such that VV becomes the canonical

view volume (CVV)

X or Y

-Z

CW

VRP
VPN

VRP)TRPRPTSHSN parperper −−= ()(

Scenario of the cross-section of the VV
after first three transformations.

 VRP)T(R PRP)T(SH SN parperper −−=

VRP)T(R SH T SN parparparpar −=

Comparison the overall combined
transformation matrices for:

PARALLEL PROJECTION:

PERSPECTIVE PROJECTION:

Implementation of 3D Viewing

Apply
normalizing

transformation

3-D world
coordinate

output
primitives

Clip against
canonical

View
Volume

Project
onto

Projection
plane

Transform into
viewport in
2D device

coordinates
for display

2D device
coordinates































+−

+−

−

−

=

1
Qd
Z

Qd
100

Z
Qd
Z

Qd
Z

00

d
d

z
d
d

10

d
dz

d
d01

M

z

p

z

p
z

2
p

z

p

z

y
p

z

y

z

x
p

z

x

gen

Generalized
formula
of perspective
projection matrix:

(COP)

Z

X or Y
P´(xp, yp, Zp)

PP

O

Q

(0, 0, Zp)

P(X,Y,Z)(dx, dy, dz)

L

3-D modeling
(object)

coordinates

Modeling
Transformation

View
Orientation

matrix

3D World
CoordinatesR.T(-VRP)

R.T(-VRP)

Perspective
Parallel

Coordinate Systems and Matrices

Cont…

2D device
coordinates

View
Orientation

matrix

View
Mapping
matrix

Clip, transform
into 2D screen

coordinates

View
reference

Coordinates

Normalized
projection

Coordinates

M . Sper . SHpar . T(-PRP)
Spar . Tpar . SHpar

MCVV3DVP

where after clipping, use

MCVV3DVP =

T(1,1,1) .

)ZZ,
2

YY ,
2

XXS(

 .)Z,Y,T(X

vminvmax
vminvmaxvminvmax

vminvminvmin

−−−

• Objects are modeled in object (modeling)
space.

• Transformations are applied to the objects
to position them in world space.

• View parameters are specified to define
the view volume of the world, a projection
plane, and the viewport on the screen.

The 3D Viewing Pipeline

• Objects are clipped to this View volume.

• The results are projected onto the
projection plane (window) and
finally mapped into the 3D viewport.

• Hidden objects are then removed.
• The objects are scan converted and

then shaded if necessary.

Model
Object

Scale,Rotate,
Translate
Objects

Specify View,
Calculate Normal,

Illumination,
Backface

Apply Normalizing
Transformation

Clip

Object
Space

World
SpaceWorld

Space

Cont…Eye
Space

Flowchart of the 3D Viewing Pipeline

Perspective
Transformation

/Projection

Remove
Hidden

Surfaces

Shade,
Texture

Map to
Viewport/
Draw to
screen

Eye
Space

Image
Space

Device
Coordinates

The Computer
Graphics Pipeline
Viewing Process

The OPENGL PIPELINE

Application Stage: Here, the programmer (you!) talks to
OpenGL. In this way, you have control over the following
steps. Also in this stage, you give the GPU some triangles to
draw.

Vertex Stage: Those triangles are defined by three vertices
each. Here, the GPU arranges the vertices so that they are in
the right locations on the screen.

Rasterization Stage: Here, the triangles' vertices are
connected by pixels.

Fragment Stage: Here, the pixels are colored/textured.

Framebuffer Stage: Here, the pixels are written into
graphics memory. Tests are applied to make sure they should
go into memory (for example: if triangle A is behind triangle
B, then we shouldn't draw any of triangle A's pixels!).

Screen Stage: Here, the memory on the GPU is displayed on
the screen. It is only here that we get to see what happened.

All program statements/executions falls under the
application stage. Some sophisticated calls let you
program some stages (such as the vertex and fragment
stages). These calls load shader programs to be executed
instead of the fixed function pipeline.

Calls like "glEnable" and "glColor3f" alter the GPU's
internal state. Calls like "glGetFloatv" and "glTexImage2D"
get and retrieve data, and calls like "glVertex3f" and
"glDrawArrays" draw data using the GPU's current state.

When you tell OpenGL to draw a triangle, the graphics
pipeline begins with the vertex stage. OpenGL also provides
functionality to draw quadrilaterals and some other stuff.
Ultimately, the graphics driver breaks these down into
individual triangles, a process called triangulation.

The application stage also handles setting up an
OpenGL context, which tells the GPU that a given area of
screen should be rendered to. The OpenGL context
encompasses information about models, textures, lights, as
well as data for the framebuffer(s).

Vertex Stage: - Transformation Matrices:
OpenGL concatenates the model matrix and the view matrix into

the modelview matrix. Multiplying vertices by the modelview matrix
transforms them directly from object space to eye space.

You use the model matrix to move locally defined objects around
to globally defined positions. At the end of the model transform, the
objects are defined in relation to a common origin that all objects share.

To transform to eye space, we multiply by the view matrix. At the
end of the view transform, everything in the entire world is defined in
relation to you, the observer/camera.

Next transform the vertices into a clip space, for clipping to be
performed. To do this, multiply the transformed vertices by the projection
matrix. OpenGL defines a volume called a frustum (rectangular prism)
which defines everything you can see. The projection matrix typically
maps this volume to a cube of side length 2.0, centered at the origin. This
is called clip space, defined relative to the eye, and is in perspective.

After the perspective divide (1/w), we say that the vertices are in
normalized device coordinates (NDC), or, inside the canonical view
volume. The viewport transformation (2-D) is applied here or postponed.

Rasterization Stage :
The process of converting the three points (vertices) into a set of

fragments, (which can be imagined as pixels with an arbitrary amount of
extra information attached to them). A pixel has a position and a color;
fragments can store, among other things, depth, normals, and texture
coordinates, in addition to their position and color.

The rasterizer first finds the set of pixels the polygon covers, and
creates a fragment at each (or often for a set of close) pixel's location. The
data each fragment contains (color, depth, etc.) must be interpolated from
the three vertices' values. This process is often done using barycentric
coordinates.

From here, the fragments go on to the fragment stage, where their
final attribute(s) are computed.

Fragment Stage:
Here, the fragments are prepared for entry into the framebuffer.

This involves setting the final values for the fragment's final attributes.
The most common fragment stage operation is to determine a color for
the fragment.

It is almost always in the fragment stage that texturing, lighting,
and other effects are done. The output of this stage is a fragment with
more limited information.

In the fixed function pipeline, a pixel's final color depends on
lights, OpenGL colors, and texture. If texturing is enabled, the fragment's
color is multiplied by a per-pixel lookup from a texture (basically an
image).

The fixed function pipeline supports a number of lights (at a
minimum, and typically, 8), material properties and multi-texturing. When
using shaders, far more advanced shading methods are possible!

Framebuffer Stage:
The new fragment must now determine whether its information

should be written to the framebuffer. If a fragment passes a sequence of
tests, its data is written into the framebuffer.

Colorbuffer stores the colors of each pixel. The depthbuffer
(sometimes, z-buffer) stores depths.

In addition to the depth test, the fragment may need to pass the
stencil, alpha, and/or other test.

Screen Stage:
This is where we finally get to see what happened. The

framebuffer contains color values, and these are drawn to the screen.

Overwhelmingly, most programs set up double-buffering, which
uses two framebuffers, with only one displayed at a time. In a double-
buffered context, the GPU draws to one framebuffer while the other
framebuffer is being displayed. When the new framebuffer is ready, the
screen flips, swapping the framebuffers. The GPU will now render into the
other framebuffer while the new one is rendering. The cycle repeats.

Rendering pipeline example

RASTERIZATION

Things to know –
GLUT, GLU, GLX, GLEW, and WGL:

• Current Specifications (OpenGL 4.5)
• OpenGL 4.5 API Specification (updated February 2, 2015);

• • OpenGL 4.4
• OpenGL 4.4 API Specification (updated March 19, 2014)

The OpenGL API is defined as a state machine. Almost all
of the OpenGL functions set or retrieve some state in OpenGL.
The only functions that do not change state are functions that use
the currently set state to cause rendering to happen.

The state machine has a very large struct with many
different fields. This struct is called the OpenGL context, and
each field in the context represents some information
necessary for rendering.

Objects in OpenGL are defined as a list of fields in this
struct, that can be saved and restored. Binding an object to a
target within the context causes the data in this object to
replace some of the context's state.

We specify our initial camera model by
identifying the following parameters.

1. A scene, consisting of polygonal elements
each represented by their vertices;

2. A point that represents the camera
position: C = [Cx, Cy, Cz];

3. A point that represents the “center-of
attention” of the camera (i.e. where the
camera is looking): A = [Ax, Ay, Az];

4. A field-of-view angle, α ,representing the
angle subtended at the apex of the viewing
pyramid.

The Camera Model

The specification of “near”
and “far” bounding planes.
These planes considered
perpendicular to the
direction-of-view vector
are at a distance of
‘n’ and ‘f’ from the
camera,
respectively.

Far P
lan

e

C

α

A

Far P
lan

eC α

A

3D view of the
viewing space

The Viewing Pyramid

v

u
w The image space

volume:
1wv,u,1 ≤≤−

Side view of the viewing space

f

n

α

Far P
lan

e

Near
Plane

Derivation of the viewing transformation
matrix, in terms of camera parameters:

O (COP) -w 

(u´, v´, w´)

P(u, v, w)

PP

d

u or v

d.u d.v d.u d.v d.w(u,v,w) (, , d) (, ,)
w w w w w

Thus,
(u, v, w, 1) (d.u, d.v, d.w, w)

→ − =
− − − − −

→ −

[] []wd.wd.vd.u

0000
1d00

00d0
000d

1wvu

)

0000
d
1100

0010
0001

 or (;

0000
1d00

00d0
000d

−=



















−





















−


















−
=dP

Express as transformation:

Transformation of the finite (truncated)
viewing pyramid to the
cube (CVV), -1 < u, v, w < 1.

Let us first analyze w-axis only.
Use the transformation matrix:

;

0b00
1a00

0010
0001

P



















−
=

such that,
(0, 0, -n)P  (0, 0, 1)
and
(0, 0, -f)P  (0, 0, -1)

Solve for parameters a and b, using the
above equations:

The image space
volume:

1wv,u,1 ≤≤−

From the constraints of the
above two equations:

fba.f
and

nban

−=+−

=+−

The
solution:

nf
2f.nb

;
nf
nfa

−
=

−
+=

What about u and v-axis transformations
in the pyramid ?

Hence the
transformation is:























−

−
−
+

=

0
nf

2f.n00

1
nf
nf00

0010
0001

P

O (COP) -w 

n.tan(α/2)

u or v

α/2

f.tan(α/2)

(0, 0, -n) (0, 0, -f)

u and v-axis transformations
in the pyramid

O (COP) -w 

(0, n.tan(α/2), -n)

v

α/2

(0, f.tan(α/2), -f)

(0, 0, -n) (0, 0, -f)

Transformations for the two points
are as follows:

[]

[]ff/2)f.tan(0

f
nf

2nf
nf
nff/2)f.tan(0

.1f/2)f.tan(0

−=







−
+

−
+−=

−

α

α

α P

Desired normalized 3-D
coordinates for both the
points: [0, 1, +/-1, 1].























−

−
−
+

=

0
nf

2f.n00

1
nf
nf00

0010
0001

P

Thus modify P
to be:























−

−
−
+=

0
nf

2f.n00

1
nf
nf00

00)2/cot(0
000)2/cot(

P'
α

α

[]

[]110

n
nf

2nf
nf
nfnn0

'.1n/2)n.tan(0

=







−
+

−
+−=

− Pα























+−

−=−

2fn
nf100

2fn
nf000

00tan0
000tan

P 1

)2/(
)2/(

α
α

Its inverse has the form:





















−
−

−+=

=

0000

d
nf

2n)d(f00

00)2/(d.cot 0
000)2/(d.cot

.PPP df

fn
α

α

The Viewing Transformation Matrix

[] []wd.wd.vd.u

0000
1d00

00d0
000d

1wvu

)

0000
d
1100

0010
0001

 or (;

0000
1d00

00d0
000d

−=



















−





















−


















−
=dP























−

−
−
+=

0
nf

2f.n00

1
nf
nf00

00cot(0
000)cot(

P

)2/
2/

α
α





















−
−

+=

0000

1
n)d(f

2fn-n)d(f00

00)2/(cot0
000)2/(cot

or

α
α

using the regular expression of Pd

[] []wd.wd.vd.u

0000
1d00

00d0
000d

1wvu

)

0000
d
1100

0010
0001

 or (;

0000
1d00

00d0
000d

−=



















−





















−


















−
=dP























−

−
−
+=

0
nf

2f.n00

1
nf
nf00

00cot(0
000)cot(

P

)2/
2/

α
α

End of Lectures on

3D Viewing –
Projection Transformations

and
Viewing Pipeline

